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Abstract 

Index insurance has been promoted as a cost-effective risk management alternative for 

agricultural producers in developing countries.  In this paper, we ask whether spatially 

separated weather variables commonly used in index insurance design, such as rainfall at 

different weather stations within a defined geographical area, are more highly correlated 

at the tails.  As a case study, we assess the degree of tail dependence exhibited by Iowa 

June county-level rainfalls using copulas.  We search among various candidate bivariate 

copulas and, using goodness-of-fit for copulas, attempt to identify the copula structures 

that best explain the nature of dependence among rainfalls in adjacent counties.  Our 

results provide strong evidence that lower tail dependence exists in most of adjacent 

county-level rainfalls in Iowa.  The results also suggest that patterns of tail dependence 

differ across counties. 
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Researchers and practitioners in the field of development finance have exhibited 

growing interest in the use of index insurance contracts to manage the risks faced by poor 

agricultural producers (e.g., Miranda and Vedenov 2001; Barnett and Mahul 2007; Bryla 

and Syroka 2007).  Unlike conventional insurance, which indemnifies the insured based 

on verifiable losses, index insurance indemnifies the insured based on the observed value 

of a specified “index”.  Ideally, an index is a random variable that is objectively 

observable, reliably measurable, and highly correlated with the losses of the insured, and 

which additionally cannot be influenced by the actions of the insurer or the insured. 

Indices that have been employed or proposed in the design of index insurance contracts 

for managing agricultural risk in developing countries include area-yields, rainfall, 

temperature, satellite-measured vegetation indices, and regional livestock mortality rates 

(Miranda 1991, Skees, Hartell and Hao 2006, Khalil et al. 2007). 

Index insurance has been promoted as a cost-effective risk management 

alternative for agricultural producers in developing countries where traditional insurance 

is likely to fail due to high transaction costs.  Index insurance is generally free of moral 

hazard, is less susceptible to adverse selection, and is less expensive to administer than 

conventional insurance (Miranda 1991, Miranda and Vedenov 2001, Barnett and Mahul 

2007).  However, index insurance has been criticized on the grounds that, in practice, 

available indices are not sufficiently correlated with losses to provide effective protection 
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against common farm or household risks (Cummins, Lalonde and Phillips 2004; Doherty 

and Richter 2002; Skees 2008).  The potential benefits of index insurance ultimately 

depend on the statistical relation between the indemnities based on the index and the 

losses suffered by the insured. 

A question of special interest in index insurance design and analysis is whether 

spatially differentiated indices, such as rainfall measured at different meteorological 

stations, exhibit “lower tail dependence”.  Lower tail dependence among random 

variables exists if the random variables are more highly correlated at the lower tail of 

their distribution than in other ranges of their domains.  For example, rainfall indices 

exhibit lower tail dependence if they are more highly correlated during times of 

widespread droughts. 

The existence of lower tail dependence is an important question in the design of 

index insurance products for two reasons.  First, suppose an insurer offers a range of 

index insurance contracts written on a variety of weather indices, say, rainfalls, at 

different locations in a defined geographical area.  The insurer will be interested in 

assessing the distribution of payouts of his entire portfolio of index insurance contracts in 

order to calculate the maximum probable loss associated with his entire book of business.  

If the underlying weather variables exhibit tail dependence, then standard portfolio risk 

assessments based explicitly or implicitly on normal distribution theory could result in 



 4

serious underestimates of the riskiness of the portfolio, leaving the insurer exposed to 

greater business risk than he realizes.  

Second, an important task in index insurance design is to compute the expected 

indemnity associated with a given indemnity schedule.  Indemnities, however, are paid 

only when the index falls below a certain threshold, an event that occurs only infrequently.  

As such, data available to support the calculation of this critical statistic is usually very 

limited.  One way to address the paucity of extreme data values is to estimate the 

expected indemnities of multiple contracts jointly.  This should lead to gains in 

efficiency that will depend primarily on the degree of tail dependence exhibited by the 

indices. 

Tail dependence has been of special interest in the general finance literature in 

recent years.  As a result of the financial crisis of 2007-9, financial analysts began to 

suspect that stock returns might be more highly correlated during financial crises than in 

normal times, thus making stock portfolios riskier than predicted by conventional asset 

pricing models (Durante and Jaworski 2010; Bradley and Taqqu 2004; Bradley and Taqqu 

2005a; Bradley and Taqqu 2005b).  The questions being addressed by financial analysts 

are analogous to those that must be addressed in index insurance design: in both cases, 

one is concerned with the degree of dependence exhibited by two or more random 

variables at the extremes of their distribution, or at the tail of their distribution. 
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Assessing tail dependence among agricultural indices forces us to think more 

broadly about how one should measure association among random variables.  

Association between two random variables is typically measured empirically using the 

Pearson correlation coefficient, a statistical measure of the degree of linear dependence 

that exists between a pair of random variables over their entire domain.  The Pearson 

linear correlation coefficient, however, is not a useful measure of association in index 

insurance design and analysis for two reasons.  First, two indices could be strongly 

related to each other, but in a nonlinear fashion that would go undetected by the linear 

correlation coefficient.  Second, the Pearson linear correlation coefficient is a measure 

of global dependence, and could ultimately provide misleading information regarding the 

degree of association at the critical tails of the distribution. 

Actuarial and statistical assessments of index insurance products call for the use 

of flexible multivariate statistical methods that can faithfully capture the potentially 

nonlinear distributional dependencies that exists among indices, particularly in the 

extremes of the distributions.  Copulas, which provide a theoretical framework for 

capturing complex dependencies among random variables, are well-suited for this task.  

In this paper, we search among various candidate bivariate copulas and, using 

goodness-of-fit tests, attempt to identify the copula structures that best explain the nature 

of tail dependence among June rainfalls in adjacent Iowa counties, using 1954-2008 data 
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obtained from National Climatic Data Center (NCDC). 

 

Copulas 

A bivariate copula is a function that describes how two univariate marginal 

distributions are combined to form a bivariate joint distribution (Nelsen 2006; Embrechts, 

Lindskog, and McNeil 2001; Trivedi and Zimmer 2007; Yan 2007).  Formally, a 

bivariate copula C(u,v) can be written as a function C: 2[0,1] [0,1]→  such that (Nelsen 

2006) 

          ( ,0) (0, ) 0, , [0,1]C u C v u v= = ∀ ∈  

          ( ,1)C u u=  and (1, ) , , [0,1]C v v u v= ∀ ∈  

          2 2 2 1 1 2 1 1 1 2 1 2( , ) ( , ) ( , ) ( , ) 0, , .C u v C u v C u v C u v u u v v− − + ≥ ∀ ≤ ≤  

In other words, a bivariate  copula is a joint cumulative distribution function of two 

dependent random variables u and v.  Both u and v, on the margin, are uniformly 

distributed on the unit interval.  A natural choice of u and v is the cumulative 

distribution function (cdf) of random variables. 

How copulas work to capture the dependence among jointly distributed random 

variables is explained by Sklar's Theorem (Nelson 2006).  Sklar's Theorem for bivariate 

copulas states that any continuous bivariate cumulative distribution function 

2: [0,1]F R →  can be uniquely written as 
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          1 2 1 1 2 2( , ) ( ( ), ( ))F x x C F x F x= ,  (1) 

where C is an bivariate copula and Fi is the i
th

 marginal cumulative distribution function 

associated with F.  Conversely, if C is an bivariate copula and : [0,1]
i

F R →  is a 

univariate cumulative distribution function, then F as defined above is a cumulative 

distribution function on 2R  with marginal cumulative distributions Fi.  The joint 

probability density function associated with a differentiable cumulative distribution 

function F can be recovered from its copula decomposition through the relation  

          1 2 1 1 2 2 1 1 2 2( , ) ( ( ), ( )) ( ) ( )f x x c F x F x f x f x= , (2) 

where c is the joint probability density function associated with C and fi is the univariate 

probability density function associated with Fi. 

Copulas are useful in index insurance analysis because they provide a general, 

flexible framework for modeling the joint distributions of indices whose marginal 

distributions are unknown or members of distinct parametric families.  Multivariate 

normal distributions are commonly used in actuarial analysis to model joint distributions.  

The assumption of normality, however, is not always tenable in agricultural index 

insurance design and analysis.  Certain agricultural indices, such as rainfall, cannot be 

negative, and therefore are obviously not normally distributed.  Moreover, agricultural 

indices may exhibit complex dependence structures, such as asymmetric tail dependence, 

that cannot be adequately captured by a joint normal distribution.  As such, the use of 
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multivariate normal distributions to model agricultural indices may lead to extremely 

inaccurate assessments of loss probabilities and expected indemnities. 

 

Copula Families 

A number of parametric families of copulas are commonly used in statistical 

analysis of dependence.  The two most frequently used parametric copula families are 

elliptical copulas, which include the Gaussian and Student-t copulas, and Archimedean 

copulas.  The two-dimensional Gaussian copula distribution is (Freez and Valdez 1998): 

          1 1( , ) ( ( ), ( ))C u v u vρ
− −= Φ Φ Φ , for any , [0,1]u v ∈ ,      (3) 

where, 1−Φ  is the inverse of standard normal cumulative distribution function, and ρΦ  

represents the standard bivariate normal distribution with correlation ρ .  

Two-dimensional Student-t copula is defined analogously to the Gaussian copula by 

using a multivariate extension of the t distribution with parameterα : 

          1 1( , ) ( ( ), ( ))t t tC u v F F u F v
α

− −= .             (4) 

Another widely studied parametric family of copulas is the Archimedean copulas.  

An Archimedean copula is constructed through a generatorϕ : 

          1( , ) [ ( ) ( )]C u v u vϕ ϕ ϕ−= + ,            (5) 

where :[0,1] [0, )ϕ → ∞  is a continuous, strictly decreasing, convex function with 

(1) 0ϕ =  (Nelsen 2006).  Three widely used one-parameter Archimedean copulas are 
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Frank copula, Clayton copula and Gumbel copula whose generator functions are shown 

in table 1. 

 

Copula Functions and Tail Dependence 

Interests in describing asymmetric dependence at extreme values lead to the 

introduction of tail dependence.  Tail dependence measures the dependence between two 

random variables in the upper-right and lower-left quadrants of their domains (Nelsen 

2006).  In other words, tail dependence measures how large the association among 

random variables is when one random variable or all the variables has/have large (or 

small) values.  According to Nelson (2006), the parameter of asymptotic lower tail 

dependence, noted by 
L

λ , is the conditional probability in the limit that one variable 

takes a very low value, given that the other also takes a very low value.  Similarly, the 

parameter of asymptotic upper tail dependence, noted by 
U

λ , is the conditional 

probability in the limit that one variable takes a very high value, given that the other also 

takes a very high value.  The asymptotic tail dependence parameters for copula function 

are shown as following (Nelsen 2006)  

          
0

( , )
lim

L
t

C t t

t
λ

+→
= ,                (6) 

          
1

1 ( , )
2 lim

1
U

t

C t t

t
λ

−→

−
= −

−
.              (7) 

The asymptotic tail dependence parameters 
L

λ  and 
U

λ  cannot be solved 
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analytically for all the families of copulas.  For some of the families, 
L

λ  and 
U

λ  can 

be easily evaluated, while for others, they can only be solved numerically.  In the case of 

Gaussian copula and Student-t copula, the copula functions are symmetric, which implies 

that the asymptotic upper and lower tail dependences are identical.  For an Archimedean 

copula with generator ϕ , the tail dependence parameters can be written as (Nelsen 2006) 

          
1 1

1
0

(2 ( )) (2 )
lim lim

( )
L

xt

t x

t x

ϕ ϕ ϕ
λ

ϕ+

− −

−→∞→
= =  and                            (8) 

          
1 1

1
1 0

1 (2 ( )) 1 (2 )
2 lim 2 lim

1 1 ( )
U

t x

t x

t x

ϕ ϕ ϕ
λ

ϕ− +

− −

−
→ →

− −
= − = −

− −
.                     (9) 

The asymptotic parameters for Frank copula, Clayton copula and Gumbel copula are 

summarized in table 2.  As is shown in table 2, the Clayton copula can describe the 

asymmetric lower tail dependence but cannot capture the upper tail dependence, and the 

Gumbel copula can model the asymmetric upper tail dependence but cannot capture the 

lower tail dependence.  The Frank copula cannot characterize either the lower tail 

dependence or the upper tail dependence. 

One approach to detecting and measuring lower or upper tail dependence is to fit 

different copulas and to compare their performance using the goodness-of-fit statistics for 

copulas.  If the Clayton copula provides a better fit than other copulas, the existence of 

lower tail dependence can be concluded; if a Gumbel copula provides a better fit than 

other copulas, the existence of upper tail dependence can be concluded.  Based on the 
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evidence of the degree of lower tail dependence, upper tail dependence or both lower tail 

and upper tail dependence, the related index insurance products, for drought, flood or 

both, could be designed and actuarially analyzed. 

 

Empirical Estimation Methods 

We now examine tail dependencies among rainfalls in adjacent Iowa counties 

using five distinct copulas: Gaussian, Student-t, Frank, Clayton and Gumbel. 

 

Data 

County-level June rainfalls from 1954 to 2008 (55 years) for all 99 Iowa counties 

were obtained from National Climatic Data Center (NCDC)
1
.  In this paper, we examine 

tail dependence between rainfalls in adjacent counties.  Among the 99 counties, there 

are 297 pairs of adjacent counties.  Based on a visual assessment of the histograms of 

rainfall data for each county, we selected the lognormal distribution to model the 

marginal distributions of rainfalls.  The parameters of lognormal distribution are 

estimated for rainfall separately for each county.  Table 3 reports the summary of the 

descriptive statistics for the pooled June rainfall data of all 99 counties. 

 

Computing Goodness-of-Fit 

                                                        
1 http://www.ncdc.noaa.gov/oa/ncdc.html 
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After the estimation of marginal distribution for each county, we estimate 

parameters for each of the five copulas and for each pair of adjacent counties using the 

fitted marginal distributions by maximum likelihood estimation (MLE).  To compare the 

performance of these copula functions, the Goodness-of-fit statistic for copulas is 

calculated for each fitted copula function and for each pair of adjacent counties. 

Goodness-of-fit is a measure of how well a statistical model fits a set of 

observations.  Genest, Quessy and Remillard (2006) develop a Goodness-of-fit statistic 

and apply parametric bootstrapping to compare the fit provided by copulas.  Suppose 

1 2( , )F x x  is the joint distribution based on specific copula function as is shown in (1).  

Let 1 2( , ) { ( , ) }K t P F x x tθ = ≤  with the copula parameter θ .  The empirical version of 

( , )K tθ  is defined as 

          
1

1
( ) 1( )

n

n j

j

K t V t
n =

= ≤∑ , [0,1]t ∈ ,                                 (10) 

where n represents the size of sample, 
j

V  are pseudo-observations defined by 

1 1 2 2

1

1
1( , )

n

j k j k j

k

V X X X X
n =

= ≤ ≤∑ , and 1( )
j

V t≤  refers to the indicator function that has 

the value of 1 when 
j

V t≤  and the value of 0 when 
j

V t> .  The Goodness-of-fit 

statistic for copulas is given by 

          
1

2

0
| ( ) | ( , )S t k t dtγ θ= ∫                                          (11) 

where ( ) [ ( ) ( , )]
n

t n K t K tγ θ= −  and ( , )k tθ  represents the density function of 
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( , )K tθ . 

In order to compute the Goodness-of-fit statistic based on the empirical process 

γ , we generate a large number of independent samples of size n from the fitted copulas, 

and compute the corresponding values of the statistic S for each copula and for each pair 

of adjacent counties.  In this paper, we use Gaussian kernel density function to fit the 

empirical distribution.  Specifically, the procedure using bootstrap follows three steps.  

First, we fit a bivariate kernel density of the observations and calculate the cdf’s of 

bivariate kernel function at N N×  grids in the area 2[0,1] .  Here, we use N = 50.  

Second, we generate 1000 random samples of size n, in our case n = 55, from the fitted 

copula function Ĉ  with the estimated parameter θ̂ .  For each of these samples, we fit 

a bivariate kernel function and obtain the cdf’s of bivariate kernel at the same grids as in 

step one.  Third, for each of the 1000 samples, a Goodness-of-fit statistic for copulas, S, 

is computed based on the cdf’s in the first step and the second step and the kernel density 

function in the second step.  We repeat the procedure for each of the five copulas.  The 

means of the S statistic in the 1000 samples generated from the five copulas are used to 

compare the performance of the five copulas. 

 

Empirical Estimation Results 

The comparison of the five copulas is conducted for each of the 297 adjacent pairs 
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of counties using the Goodness-of-fit statistic for copulas.  The performance of copulas 

is evaluated by the rankings of Goodness-of-fit statistic for each pair of counties.  Table 

4 shows the percentage of rankings for each of the five copulas.  In all the 297 pairs of 

adjacent rainfalls, 43%, or 128 pairs, are best fitted by the Clayton copula, 18%, or 53 

pairs, are best fitted by the Gumbel copula, 16%, or 48 pairs, are best fitted by the 

Student-t copula, 13%, or 39 pairs, are fitted best by the Gaussian copula, and only 10%, 

or 29 pairs, are best fitted by the Frank copula.  Considering the second best fit, 33% of 

the 297 pairs select the Clayton copula, and 39% of the pairs select Gumbel copula.  

When it comes to the worst fit with respect to the Goodness-of-fit statistic, 39% of the 

pairs list the Frank copula as the worst fit, and 29% of the pairs list it as the second worst 

fit.  It is obvious that the Clayton copula performs best in fitting the rainfall data of 

adjacent counties, the Gumbel copula is the second best one, and the Frank copula 

performs worst.  Gaussian copula and Student-t copula perform better than the Frank 

copula but worse than the Clayton copula and the Gumbel copula. 

By looking at table 2, the Clayton copula is characterized by strong lower-tail 

dependence.  The good performance of the Clayton copula, therefore, implies that for 

many pairs of adjacent counties, rainfalls are more strongly related when precipitation is 

abnormally low, which is strong evidence that lower tail dependence exists in many 

adjacent counties.  For some pairs of adjacent counties, the Gumbel copula provides a 
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better fit, suggesting that upper tail dependence also exists.  It is possible that some pairs 

of adjacent rainfalls have both lower tail dependence and upper tail dependence.  The 

Gaussian copula and the Student-t copula can also capture some degree of tail 

dependence.  However, since they are symmetric copulas, they tend to underestimate 

lower tail dependence when, as is in the case of Iowa rainfall, the correlation of rainfall in 

adjacent counties rises asymmetrically in drought years, but may only slightly rises in 

years of high precipitation. 

The tail dependence parameters for each pair of counties can be computed by the 

functions shown in table 2 using the estimated copula parameters.  Table 5 reports the 

mean and standard deviation of estimated copula parameters for all the 297 pairs of 

adjacent counties and the related tail dependence.  The estimated parameter of the 

Clayton copula has relatively highest variation across the adjacent counties.  The 

average lower tail dependence of the 297 pairs of adjacent counties is 0.46 and the 

average upper tail dependence is 0.62, with standard deviation 0.17 and 0.06, respectively.  

The upper tail dependence tends to be more stable than lower tail dependence across all 

the pairs of adjacent counties.  Therefore, contract design that focuses on the correlation 

between the indemnity and losses caused by drought may require further investigation in 

the change of lower tail dependence among adjacent counties. 
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Conclusion 

The existence of tail dependence between spatially separated agricultural indices 

such as rainfall is important for insurers who are interested in assessing the maximum 

probable loss associated with his portfolio, and who must estimate expected indemnities 

using limited extreme value data.  The Pearson linear correlation coefficient, which is 

commonly used in measuring dependence, is generally inadequate for the task because it 

cannot describe nonlinear association and cannot distinguish between lower-tail and 

global dependence. 

In order to test for and measure tail dependence among county-level June Iowa 

rainfalls, we estimated a variety of copula functions, including Archimedean copulas 

(Clayton, Gumbel, and Frank) and elliptical copulas (Gaussian and Student-t) for adjacent 

county pairs.  The performance of the five copulas was compared by the Goodness-of-fit 

statistic for copulas based on a nonparametric bootstrap procedure.  Our results indicate 

that the Clayton copula fits the data best, which implies that lower tail dependence exists 

in most of adjacent county-level rainfalls in Iowa.  The results suggest that accounting 

for tail dependence in the contexts where extreme events could substantially enhance the 

accuracy of loss assessment for agricultural index insurance portfolios.  The results also 

suggest that patterns of tail dependence differ across counties.  Some of the adjacent 

counties tend to have higher correlation when drought occurs, while some tend to have 
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higher correlation in normal or abnormally wet years. 
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Tables 

Table 1.  Archimedean Copula Generator Functions 

Family Parameter ( )tθϕ  

Clayton 1, 0θ θ≥ − ≠  
1

( 1)t
θ

θ
− −  

Frank 0θ ≠  
1

ln
1

t
e

e

θ

θ

−
−

−
 

Gumbel 1θ ≥  ( ln )t θ−  

 

Table 2.  Lower and Upper Asymptotic Tail Dependence for Archimedean Copulas 

Family L
λ  

U
λ  

Clayton, 0θ ≥  1/2 θ−  0 

Frank 0 0 

Gumbel 0 1/2 2 θ−  

 

Table 3.  Summary of the descriptive statistics for the pooled data 

Mean Stand deviation Maximum Minimum 1
st
 quarter 3

rd
 quarter 

458 250 2218 0 275 596 
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Table 4.  Percentage of copulas’ rankings in adjacent counties 

Rankings 1 2 3 4 5 

Gaussian copula 13% 15% 23% 25% 24% 

Student-t copula 16% 18% 28% 23% 15% 

Frank copula 10% 13% 9% 29% 39% 

Clayton copula 43% 33% 11% 6% 7% 

Gumbel copula 18% 21% 29% 17% 15% 

 

Table 5.  Summary of estimates of parameters for three Archimedean copulas and the 

average tail dependence of adjacent counties 

Copulas 

Mean of 

θ̂  

Std. of 

θ̂  

Mean of 

L
λ  

Std. of 

L
λ  

Mean of 

U
λ  

Std. of 

U
λ  

Frank 6.69 1.64 0 - 0 - 

Clayton 1.01 0.44 0.46 0.17 0 - 

Gumbel 2.20 0.35 0 - 0.62 0.06 

 

 


