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Changes in Producers’ Perceptions of Within-field Yield Variability  
Following Adoption of Cotton Yield Monitors 

 
ABSTRACT 

 
This article investigates how information from cotton yield monitors influences the within-field 
yield variability perceptions of cotton producers. Using yield distribution modeling techniques 
and survey data from cotton producers in 11 Southeastern states, we find that cotton farmers tend 
to underestimate within-field yield variability (by about 10%-30%) when not utilizing site-
specific yield monitor information. Survey results further indicate that cotton farmers in the 
Southeastern United States place a value of about $20/acre/year (on average) on the additional 
information about within-field yield variability provided by yield monitors. 
 
Keywords:  Precision Farming, Risk, Yield Monitor, Yield Variability, Yield Perceptions, 

Spatial Yield Distributions, Within Field Variability 
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Changes in Producers’ Perceptions of Within-field Yield Variability  
Following Adoption of Cotton Yield Monitors 

 
Introduction 
 
The widespread availability of satellite signals in 1995, together with the availability of Global 

Positioning System (GPS) technology, made it possible for farmers to locate yield data spatially 

using yield monitors (Lechner and Baumann, 2000). Moreover, these geo-referenced data from 

yield monitors enabled farmers to create field maps to facilitate variable-rate (VR) application of 

inputs. 

With advances in yield monitor technology in the 1990s, the adoption of yield monitors 

in the United States spread rapidly over the next decade, especially for grain and oilseed crops 

(i.e. corn and soybeans). In 2000, for example, 30% of total corn area and 25% of total soybean 

area in the United States were already being harvested by machines with yield monitors 

(Daberkow et al., 2002). In 2001, the total corn area harvested in the United States by such 

machines increased to 37%, whereas for soybean it increased to 29% in 2002 (Griffin et al., 

2004). By comparison, less than 3% of the total cotton area of the United States was harvested 

by machines with yield monitors between 2000 and 2002. By 2005, that area had increased to 

only about 8%. 

The slower rate of adoption of yield monitors in cotton farming was initially constrained 

primarily by ineffective equipment (Searcy and Roades, 1998; Valco et al., 1998; Durrence et al., 

1999; Sassenrath-Cole et al., 1998). Early cotton yield monitors, first introduced in 1997, had 

many problems including poor accuracy, failure to maintain calibration and sensors that became 

blocked by dust and other materials (Wolak et al., 1999; Durrence et al., 1999; Roades et al., 

2000). Progress was made when cotton yield monitoring technologies became more reliable and, 
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consequently, cotton growers became more receptive to adopting and using this technology 

(Perry et al., 2001).   

Given the more effective cotton yield monitors available today, it is important to 

determine how this technology influences producers’ yield variability perceptions of their fields. 

This issue is important because how producers perceive within-field yield variability 

fundamentally affects their decision-making behavior (See Manski, 2004 and Delavande, Gine, 

and McKenzie, 2009 for a summary of the literature on how subjective expectations or 

perceptions could affect economic decision-making in other contexts). In a precision farming 

context, for example, a farmer without yield monitoring technology may believe that the spatial 

yield variability in his/her field is low (i.e., believes the field is spatially more homogenous than 

it actually is) based on prior experience of farming the field. Thus, this particular farmer may 

decide not to invest in VR technology to apply inputs at variable rates across different sections of 

the field.  As English, Mahajanashetti, and Roberts (2001) have shown, the economic viability of 

VR input application depends critically on degree of the spatial variability of the farmer’s fields 

– higher spatial variability results in higher returns from the use of VR application technologies. 

But, if the farmer’s prior perception of spatial yield variability is lower than the true spatial yield 

variability, an error could be made in the grower’s decision-making about whether or not to 

adopt VR technology. The farmer may decide to continue using a uniform-rate approach instead 

of implementing VR application of inputs, which presumably would provide higher economic 

returns. With the use of yield monitoring technology, the producer may be able to more 

accurately assess the spatial yield variability of farm fields and make better input allocation 

decisions to enhance farm returns. 



3 

 

The objective of this research is to determine how information from cotton yield monitors 

influences the within-field yield variability perceptions of producers. Cross-section survey data 

collected from cotton producers in the Southeastern United States and yield distribution 

modeling techniques are used to achieve this objective. In addition, we utilize survey data to 

provide information on the “value” cotton producers place on the information derived from yield 

monitor technology. 

A number of studies have investigated farmers’ perceived temporal yield distributions 

(and temporal yield variability) (e.g., Bessler, 1980; Grisley and Kellog, 1983; Pease, 1992; 

Smith and Mandac, 1995; Egelkraut et al., 2006a and 2006b; Clop-Gallart and Juarez-Rubio, 

2007). Most of these studies, however, focus primarily on comparing a subjectively elicited 

temporal yield distribution with an objectively measured historical/temporal yield distribution 

(i.e., from county-yields, historical individual yields from farm records, etc.). In general, this 

literature shows that mean yields that are subjectively elicited tend to coincide with the objective 

measures, but higher moments from the subjective temporal yield distribution (including 

temporal yield variability) tend not to be as accurate. Subjectively elicited or perceived temporal 

yield variability tends to be lower than objective estimates, which implies an underestimation of 

temporal variability. This underestimation is consistent with what the behavioral finance 

literature calls “overconfidence” (See Tversky and Kahneman, 1974; Smith and Mandac, 1995).  

Even though a number of studies have examined perceived temporal yield variability as it 

compares to objective measures, to the best of our knowledge, none has empirically shown how 

information from yield monitoring technology affects farmers’ perceived spatial yield variability 

using the empirical approaches utilized in this study. This paper contributes to the literature in 

this regard. One directly related study (Larson and Roberts, 2004) showed, through regression 
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techniques, that adoption of yield monitoring technology with GPS has a statistically significant 

positive effect on cotton farmers’ perceptions of spatial yield variability. This result implies that 

farmers tend to be overconfident about spatial yield variability perceptions (i.e., perceived spatial 

yield variability tends to be lower than the yield variability based on the yield monitor data). Our 

study is different from Larson and Roberts (2004) in that we use yield distribution modeling 

techniques (rather than regression techniques) to examine the effect of yield monitoring 

information on spatial yield variability perception and we also show how this information affects 

the whole yield distribution (rather than just yield variability). Our study provides further 

empirical evidence on the existence of “overconfidence” in farmers’ perceived yield variability 

and we specifically show this overconfidence in the “spatial” dimension of yield variability.  

Empirical Strategy 
 
Survey and data description 
 
Data for this study were collected from a survey of cotton producers in 11 states: Alabama, 

Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, 

Tennessee, and Virginia (Cochran et al., 2006). A mailing list of potential cotton producers for 

the 2003-2004 season was first obtained from the Cotton Board in Memphis, Tennessee. Based 

on this mailing list, 12,243 survey questionnaires were sent on January 28, 2005. Reminders and 

follow-up mailings were sent on February 4, 2005 and February 23, 2005, respectively. Of the 

12,243 surveys mailed, 200 were returned either undeliverable or by farmers indicating they 

were no longer cotton producers, leaving a total of 12,043 farmers. Of the remaining cotton 

producers in the sample, 1,215 individuals provided data giving a 10% usable response rate. 

 Cotton producers were asked questions about the extent to which precision agriculture 

technologies were used on their farms as well as information on the general structure and 
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characteristics of their farming operations. They were also asked about the profitability of 

precision agriculture in their operations as well as the outlook on the future prospects of 

precision farming in general. For this study, we primarily utilize two survey questions that focus 

on perceptions about spatial yield variability. The first question was: 

1. Since yields are likely to vary within a field, please estimate your cotton lint 
yields (lb/acre) for the following portions of your typical cotton field: 

 
Least productive 1/3___ Average Productive 1/3___ Most productive 1/3 ___. 

 
This question is used to establish a baseline distribution against which to measure changes in 

perceived spatial yield variability after yield monitoring information is obtained.1 A total of 934 

farmers gave an estimate for all three field segments requested in the question.  

 The second survey question used in this study applies only to those who already adopted 

yield monitors (i.e., the questionnaire provides instructions to only answer the second question 

below only if they had adopted yield monitors) and directly asks how the yield monitor 

information changed their perception of yield variability: 

2. How did the yield information you obtained from yield monitoring change your 
perception of the yield variability within your typical cotton field? Circle the 
statement that best matches your findings. 

 
A. Substantially increased my perception; my yields appear to be at least 50% 

more variable than I thought. 
B. Somewhat increased my perception; my yields appear to be from 25-50% 

more variable than I thought. 
C. Slightly increased my perception; my yields appear to be from 1-25% more 

variable than I thought. 

 
1 Given the cross-sectional nature of the data and the way the first question was asked, this “baseline” distribution 
does not necessarily reflect the actual perceived distribution before yield monitor information was used. However, 
this distribution can still serve as a “base” for which to apply the changes in yield variability perception given in the 
proceeding question utilized in this study. The resulting distribution based on data from the full sample (i.e., 
includes yield monitor adopters and non-adopters) can be interpreted to reflect an average “base” distribution. In the 
analysis below we use this as the “base”, but we also calculate a “base” based only on the sample respondents who 
answered the first and the second questions (i.e., the self-selected yield monitor users, see below). 
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D. Did not change my perception; my yields appear to be the same as I 
originally thought. 

E. Slightly decreased my perception; my yields appear to be from 1-25% less 
variable than I thought. 

F. Somewhat decreased my perception; my yields appear to be from 25-50% 
less variable than I thought. 

G. Substantially decreased my perception; my yields appear to be at least 50% 
less variable than I thought. 

 
The information from the second question is used to determine the change in the perceived 

spatial variability and, ultimately, the change in the perceived subjective spatial yield 

distribution. A total of 81 cotton farmers answered question 2 above. However, only 66 

producers answered both questions 1 and 2 (i.e., of the 81 farmers who answered question 2, 15 

of them did not answer question 1). Note that a total of 134 cotton farmers reported using a yield 

monitor. Descriptive statistics for question 1 are presented in Table 1 and a frequency 

distribution of the responses in question 2 is shown in Table 2. 

Change in Perception of Spatial Yield Variability Assuming a Normal Yield Distribution 
 
One way to interpret and use the answers from question 1 is to assume that the response for each 

1/3 portion of the field is the median value for that particular part of the field. With this 

interpretation, we can characterize the perceived yield distribution of the cotton farmer to be 

symmetric and normally distributed (Figure 1).2 The median values reported can then be used to 

divide each 1/3 portion of the field in half so that the normal distribution as a whole can be 

divided into 6 intervals (with 1/6 allocated to each interval). Under the assumption of normality, 

the median value reported for the “Average Productive 1/3” of the field can be interpreted as the 
 

2 Although a majority of the crop yield distribution literature argues that crop yields are distributed asymmetrically 
(i.e.,skewed) and  are non-normal (See Harri et al., 2009 for a recent summary of this literature), other studies 
maintain that the normality assumption is reasonable for modeling crop yield distributions (See Just and Weninger, 
1999).  Hence, we still consider the normal distribution a plausible distribution to assume when studying changes in 
within-field yield variability perceptions. We also investigate this issue using an asymmetric distribution (i.e., beta) 
in the next section. The normal distribution is considered a “starting point” for the analysis of the change in 
perceived within-field yield variability due to yield monitor information.  
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mean of the distribution and we know from basic statistics that one standard deviation from the 

mean in each direction contains approximately 68% of the probability mass. Since the middle 4/6 

of the distribution contains about 2/3 (or 67%) of the probability mass, one can estimate the 

standard deviation of the normal distribution as the yield range in the middle 2/3 of the 

distribution. The information and assumptions above can then be used to estimate the standard 

deviation of the perceived “base” yield distribution.  

 The standard deviation is estimated by first calculating the difference between the 

reported median value at the upper and lower 1/3 of the normal distribution. In Figure 1, this 

gives an estimate of the middle four intervals (4/6) of the normal distribution. Therefore, adding 

1/3 of the value of the middle four intervals gives the range of the whole normal distribution 

(where range = maximum – minimum value). The range value can then be divided by four to get 

an estimate of the standard deviation of the distribution and the estimated variance is calculated 

as the square of this standard deviation value. The estimated variance and the reported median 

values in the average 1/3 of the field (which is also the mean in the normal) for the sample would 

then allow one to calculate an average mean and an average variance. These “average” values 

will serve as the two parameters needed to depict an “average” subjective normal yield 

distribution for the surveyed cotton farmers. This calculated distribution serves as our “base” 

normal yield distribution. 

 Once the “base” normal yield distribution is characterized, the paired responses to 

question 2 are used to quantify the average change in perceived spatial yield variability due to 

the availability of yield monitor information (for the whole sample). If the response is A or G 

(i.e., increase/decrease variability perception by at least 50% or more), we assume the perceived 

variance increases or decreases by 50%. If the response is B or F (i.e., increase/decrease 
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variability perception by 25-50%), we assume the perceived variance increases or decreases by 

37.5%. If the response is C or E (i.e., increase/decrease variability perception by 1-25%), we 

assume the perceived variance increases or decreases by 12.5%. Lastly, if the response to 

question 2 is D, the new variance is the same as the “base” variance. These transformed 

quantitative responses allow us to calculate the new variance for each individual in the sample 

and calculate the change in within-field yield variability for each individual producer. Averaging 

these changes in perceived spatial yield variability across respondents allows calculation of an 

average change in farmers’ perceptions of within-field yield variability for the sample. Using this 

new variance, a new normal yield distribution can be graphically depicted (as in Figure 2) to 

reflect the average change in the perceived within-field yield distribution due to the yield 

monitor information.  

Change in Perception of Spatial Yield Variability Assuming a Beta Yield Distribution 
 
The limitation of the analysis above is the symmetry assumption implied by the use of a normal 

distribution. We address this limitation by examining the effect of yield monitor information on 

the within-field yield variability perception assuming a perceived yield distribution is based on a 

beta distribution. The beta distribution is used in this study because, relative to other non-normal 

parametric distributions used in the literature (i.e., the gamma or weibull), it is “flexible” enough 

to accommodate a wider range of skewness and kurtosis values and, thus, allows for varying 

degrees of asymmetry, which is not possible with the normal or other less flexible parametric 

distributions. Previous literature (e.g., Ramirez, Misra, and Field, 2003; Field, Misra, and 

Ramirez, 2003; Chen and Miranda, 2008) shows that temporal cotton yield distributions tend to 

be right-skewed, which can be easily accommodated by the beta distribution. In addition, most of 

the empirical literature in agricultural economics over the past decade has used the beta 



distribution to model temporal crop yields (e.g., Babcock, Hart, and Hayes, 2004; Goodwin, 

2009). 

 The first task is to determine the four parameters needed (i.e., minimum, maximum, and 

two shape parameters) to estimate a “base” spatial beta yield distribution that is perceived by the 

sample of cotton producers: 

(1)    
1 1

1

1 ( ) ( )( )
( , ) ( )

y a b yf y
B b a

α β

α βα β

− −

+ −

− −
= ⋅

−
, 

where y is the random variable of interest (i.e., yields in our case),α  and β  are shape 

parameters, a and b are the minimum and maximum (respectively), and ( )B ⋅  is the beta function. 

We can use a yield of zero (i.e., lowest possible cotton yield) as the minimum of our perceived 

beta distribution and, from question 2 (and Table 1), the maximum observed data point of the 

“Most Productive 1/3” variable (i.e. in this case, 2,060 lb/acre) as the maximum of our perceived 

beta distribution. The two shape parameters are estimated using the Method of Moments (MoM) 

formulas for the beta distribution expressed as follows: 
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2

2

1
1

( )
y

y a y a
y a b a b a
b a

b a

α
σ

⎛ ⎞− −⎛ ⎞⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟− ⎜ ⎟− −⎛ ⎞ ⎝ ⎠⎝ ⎠= −⎜ ⎟⎜ ⎟− ⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

, 

 

(3)   
2

2

1
1 1

( )
y

y a y a
y a b a b a
b a

b a

β
σ

⎛ ⎞− −⎛ ⎞⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟− ⎜ ⎟− −⎛ ⎞ ⎝ ⎠⎝ ⎠= − −⎜ ⎟⎜ ⎟− ⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

, 

 

9 

 



where α  and β  are the two shape parameters of the beta distribution, y  is the estimated mean, 

2
yσ  is the estimated variance, and a and b are the minimum and maximum values.  

 To estimate the shape parameters in equations (2) and (3), one ideally should have a  

spatial yield data series for each cotton farmer’s field in the sample (i.e., having a perceived yield 

for each grid/section of the farmer’s field). This type of data series allows for calculation of the 

mean and variance of their perceived within-field yield distribution and, consequently, the two 

shape parameters that account for the potential asymmetry in the distribution (i.e., skewness). 

However, we are limited by the fact that the subjective yield data we have for each cotton 

producer in the sample is only based on their responses to question (1). To overcome this 

limitation, we take advantage of the empirical insight from Johnson (1997) who showed that a 

triangular distribution is a good proxy for the beta distribution, implying that the mean and the 

variance parameters estimated from a triangular distribution are good approximations of the 

mean and variance for a beta distribution. Thus, they can be used to estimate the shape 

parameters of the beta distribution (using equations (2) and (3)).  

 The mean and variance parameters from a triangular distribution can be calculated using 

the following formulas: 

(4)     
3

a b my + +
=  

(5)    
2 2 2

2

18y
a b m ab am bmσ + + − − −

= , 

where a and b are the minimum and maximum values, and m is the mode. Therefore, to 

implement (4) and (5) above, we use the minimum and maximum values as discussed above (i.e. 

minimum = 0 and maximum =2,060 lbs/acre) and also we take the most frequent response to the 
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“Average Productive 1/3” category as the mode (i.e., in this case 1,000 lbs/acre). The resulting 

mean and variance from (4) and (5) can then be plugged into equation (2) and (3) to complete the 

four parameters needed to characterize the average perceived “base” spatial beta yield 

distribution for the sample. 

 As with the empirical approach for the normal distribution above, the average change in 

within-field yield variability perception is quantified using the responses to question 2. In this 

case, we first calculate the average percent change in the variance using the quantified version of 

the responses to question 2. We use this average change in variance to calculate the new 

perceived within field yield variance (i.e. the average percent change is multiplied by the 

variance estimate in equation (5) and the resulting value is added to the “base” perceived 

variance). The new variance estimate, together with the previously estimated “base” mean make 

it possible to re-calculate the two shape parameters and graphically depict the change in the 

perceived “base” spatial beta yield distribution due to the yield monitor information’s effect on 

the farmer’s within-field yield variability perceptions (as in Figures 3 and 4).   

Robustness Check: Using the PERT Approximation to Estimate the Beta Distribution 
 
Another approach to overcome the limitation of the yield perception data is to use the mean and 

variance formulas found in the PERT (Program Evaluation and Review Technique) literature to 

approximate the mean and variance of the perceived beta yield distribution. Malcolm (1959) and 

Moskowitz and Bullers (1979) showed that a pragmatic, or shorthand, way to estimate the mean 

and variance of a beta distributed random variable is: 

(6)     4
6

a b my + +
=  

(7)     
2

2 ( )
36y

b aσ −
= . 
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This method has also been used by Clop-Gallart and Juarez-Rubio (2007) to evaluate the 

reliability of subjectively elicited temporal crop yield probability distributions. The estimated 

mean and variance parameters from equations (6) and (7) are used in equations (2) and (3), 

respectively, to estimate beta shape parameters. The procedures presented in the previous sub-

section are then used to calculate the average change in within-field yield perception variability 

and to graphically depict the change in the perceived beta yield distribution due to yield monitor 

information. The results using these PERT estimates of mean and variance are compared with 

the results using the mean and variance estimated using the triangular distribution to evaluate the 

robustness of our results. 

The Value of Yield Monitor Information 

The survey questionnaire also directly elicited information about whether or not the yield 

variability information from the yield monitor is valuable to the farmer: 

3. Do you think the additional information about within-field variability you 
obtain from your cotton yield monitor is valuable to you? YES ____ NO ____ 

 
4. If yes, what value do you place on the additional information you obtain from 

your cotton yield monitor?  $_______ acre/year. 
 

These two questions were asked separately for both self-declared yield monitor adopters and 

non-adopters. Hence, we compare the value a yield monitor adopter attaches to this technology 

versus the value a non-adopter attaches to it. 

Results and Discussion 
 
Change in Spatial Yield Variability Perception Assuming a Normal Yield Distribution 
 
Assuming normality, perceived spatial variability (i.e., the standard deviation) increases by 25 

lbs/acre (or 12.4%), on average, for the 66 respondents who answered both question 1 and 2. 

This increase is graphically depicted in Figure 2A where the use of yield monitor information 
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resulted in a more dispersed normal yield distribution. Figure 2B also graphically shows the 

effect of yield monitor information on cotton producers’ perceptions of within-field yield 

variability. But in this case we use the average standard deviation of all 934 respondents who 

answered question 1 to calculate the initial perceived base distribution (i.e., 178 lbs/acre instead 

of 202 lbs/acre). With this change in base variability comes a more dramatic increase in the 

perceived yield variability (48 lbs/acre or 27.5% increase).  

 Results from Figures 2A and 2B support the general notion of “overconfident” 

perceptions of spatial yield variability. Assuming a normal yield distribution, cotton farmers in 

our sample tend to underestimate the spatial yield variability in their fields. Yield monitor 

information allows them to more accurately discern the within-field yield variability. 

Change in Spatial Yield Variability Perception Assuming a Beta Yield Distribution 

Figure 3 shows the change in the perceived within-field yield distribution after obtaining yield 

monitor information, when the beta distribution is assumed and the mean and variance of the 

triangular distribution are used to calculate the shape parameters. In this case, perceived within-

field yield variability increases by 44.97 lbs/acre (or about 10.69%) after yield monitor 

information is obtained by cotton producers.  

 This result is again supportive of the behavioral expectation that cotton producers relying 

solely on judgment from experience tend to underestimate within-field yield variability. Thus, 

perceived spatial yield variability tends to be lower than a more objective measure of spatial 

yield variability, such as variability information coming from a yield monitor.    

Robustness Check: Using the PERT Approximation to Estimate the Beta Distribution 

The perceived base distribution using the PERT formulas to estimate the shape parameters of the 

beta distribution is tighter than the one using the triangular distribution formulas (Figure 4). 
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Using the PERT formulas resulted in a more pronounced change in within-field yield variability 

perception relative to using the triangular distribution formulas.  

 Perceived within-field yield variability increases by 17.7 lbs/acre (or 31.4%) after 

information from yield monitoring technology becomes available (Figure 4). The magnitude of 

this increase relative to perceived within-field yield variability is higher than the ones in Figure 

3, but is close in magnitude to the spatial variability increase of 27% observed in Figure 2B. 

Nevertheless, the results in Figure 4 provide further evidence of the overconfidence of cotton 

producers with regards to within-field yield variability perceptions and this result is robust across 

the different distributional assumptions used in this study.  

Potential Implications for Temporal Yield Variability and Yield Risk Perceptions   

To this point we have talked about how yield monitor information could influence farmer’s 

perceived spatial or within-field yield variability, but not on how changes in spatial yield 

variability perception could possibly translate to changes in temporal yield variability perception 

or the more traditional notion of yield risk perception. Note that temporal variance (or standard 

deviation) is the typical measure used to define risk. Hence, if the change in spatial variability 

perception influences temporal variability perception, then it can be argued that yield risk 

perceptions are also directly affected by change in spatial yield variability perception. In the 

foregoing discussion, we explore how changes in spatial yield variability perceptions could 

possibly affect farmer’s yield risk perceptions and its implications for risk management 

decisions. 

 Intuitively, it seems fairly straightforward how changes in spatial variability perceptions 

of yield can affect the temporal variability perceptions (Lowenberg-Deboer, 1999). First assume 

that there are two sources of shocks that influence the temporal variability of yields – weather 



across time (that influences the whole field the same way at each point in time) and the degree of 

spatial heterogeneity of the field from year-to-year. Presumably, if a field is perceived to be more 

heterogeneous, then there are perceived low-yielding areas that represent the lower tail of the 

perceived temporal yield distribution. Therefore, if the perceived low-yielding areas are 

“eliminated” (i.e., say, the yield monitor shows less spatial variability and low-yield areas are 

really closer to having average yields), then it may be reasonable to anticipate that the probability 

mass in the lower tail of the perceived temporal distribution should also be reduced, ceteris 

paribus (i.e., assuming the temporal shocks are still the same). The converse should also hold 

true when the perceived spatial variability is higher than originally thought. 

 More formally (and without loss of generality), assume a field only has two sections – a 

high-yielding section (H) and a low-yielding section (L) – and we are only considering a two 

year case (t = 1, 2). Let iδ  (i = H, L) be the proportion of the field in the ith section such that 

. The yield for the whole field in each year t can then be expressed as: 1iδ =∑

(8)     F H H LY Y LYδ δ= + , 

where   is the yield for the whole-field, FY HY  is the yield for the high-yielding section and  is 

the yield for the low-yielding section. Let the yields 

LY

HY  and  not be know with certainty (i.e., 

perceptions are not perfect or the presence of measurement errors) such that they can be 

characterized as random variables with means 

LY

HY , LY  and variances  2
Hσ , 2

Lσ . Based on (8) and 

the standard variance decomposition formula (Greene, 2003 p. 862-863), spatial variability (or 

variance) of the whole field ( 2
Fσ ) can then be written as: 

(9)    2 2 2 2 2 2F H H L L H L HL H Lσ δ σ δ σ δ δ ρ σ σ= + +  
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where Hσ and Lσ  are the standard deviations of HY  and , and LY HLρ  is the correlation 

coefficient between HY  and . Given the spatial variability of the whole field in (9) and since 

the whole-field yields in years 1 and 2 are random variables, the temporal variability for the 

whole-field for our two-year time period is: 

LY

(10)    2 2 2
,1 ,2 12 ,1 ,22T F F F Fσ σ σ ρ σ σ= + +  

where 2
,1Fσ  and 2

,2Fσ  are the spatial variances of the whole-field in years 1 and 2 respectively, 

12ρ  is the correlation coefficient of the whole-field yields in years 1 and 2, and ,1Fσ , ,2Fσ  are the 

whole-field standard deviations for years 1 and 2, respectively. 

 Taking the first derivative of the temporal variability equation in (10) with respect to the 

spatial standard deviations ( ,1Fσ  and ,2Fσ ) gives: 

(11a)    
2

,1 12 ,2
,1

2 2T
F F

F

σ σ ρ σ
σ
∂

= +
∂

, 

(11b)    
2

,2 12 ,1
,2

2 2T
F F

F

σ σ ρ σ
σ
∂

= +
∂

. 

If 12ρ  is positive (i.e., positive autocorrelation), then the signs of (11a) and (11b) are 

unambiguously positive. This indicates that changes in spatial yield variability perceptions are 

positively related to changes in temporal yield variability perceptions (or yield risk). With our 

finding above that a cotton farmer who does not use a yield monitor tends to be overconfident 

(i.e., perceives less spatial variability), we can then posit that the use of yield monitor 

information would increase the perceived spatial variability such that perceived 2
Fσ  without 

yield monitor information is less than perceived 2
Fσ  when yield monitor information is utilized 
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(  < ).  In this case, the higher (but more accurate) spatial yield 

variability perception when using yield monitor information would directly translate to higher 

temporal variability perceptions and an increase in yield risk perceptions. If 

2
, no yield monitorFσ 2

, with yield monitorFσ

12ρ  is negative, then 

the signs of (11a) and (11b) are ambiguous and will depend on the relative magnitudes of ,1Fσ  

and ,2Fσ . In this case, the unambiguous relationship between spatial yield variability and 

temporal yield variability perceptions discussed above would only be true if (11a) and (11b) are 

positive. 

 If the conditions for positive (11a) and (11b) hold, more accurate spatial variability 

perceptions may have a direct impact on temporal yield variability (or yield risk perceptions). 

Consequently, improved perceptions about temporal variability, or yield risk, would aid cotton 

producers in making risk management decisions (Egelkraut et al., 2006b). Producers would be 

more able to choose the appropriate risk management instruments that fit the risks of their 

operation better. A producer would better determine the best crop insurance plans, insurance 

coverage levels, and marketing strategies for the farm. This, in turn, would provide more 

adequate risk protection for his/her operation and this added protection would likely lower the 

taxpayer costs from government provided disaster payments (Egelkraut et al., 2006b). In 

summary, our discussion above shows that improved within-field variability perceptions from 

the use of yield monitors may have more wide-ranging implications to the more traditional 

notion of yield risk (i.e., temporal yield variability) and risk management decision-making.  

The Value of Yield Monitor Information 

The information in Table 3 addresses the question of whether the aforementioned correction in 

overconfidence derived from yield monitor information translates into perceived value to the 
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producer.  The average value perceived by yield monitor adopters is $21.67/acre/year, while non-

adopters perceive a lower, but similar value of $20.40/acre/year. The statistical comparison of 

these two means using t-tests indicate that the mean information value of adopters are not 

significantly different from the non-adopters (i.e. the null hypothesis of equality of means is not 

rejected; t-statistic = 0.2935 with a p-value of 0.7692). Finding similar mean values was 

somewhat unexpected given that yield monitor adopters have actually used the technology to 

collect spatial information and may have more information to more accurately value the yield 

monitor information. Nonetheless, the non-significant difference in the yield monitor information 

value provided by adopters and non-adopters suggest that non-adopters can also accurately 

assess the value of yield monitor information even without actually using technology. Both 

adopters and non-adopters place the same marginal value on the yield monitor information, but 

the non-adopters may just have decided not to use the technology (i.e., their cost-benefit 

calculations indicate that the value of the information may not be enough to cover the costs in the 

non-adopters’ case). However, if the non-adopters have access to yield monitor information, say, 

provided as a demonstration by a salesman, their decision calculus may change in favor of 

adoption. 

Conclusions and Implications 
 
Using survey data from cotton producers in 11 states in the Southeastern United States, we 

empirically examine the effect of yield monitor information on farmers’ perceptions about 

within-field yield variability. We find that cotton farmers tend to underestimate within-field yield 

variability when site-specific yield monitor information is not utilized. Results from various 

yield distribution modeling analyses (under different assumptions) show that cotton farmers in 

the Southeastern United States tend to underestimate within-field yield variability by about 10% 
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to 30%, compared with the more objective spatial yield variability estimates from yield 

monitoring. Survey results further indicate that cotton farmers in the Southeastern United States 

place a value of about $20/acre/year (on average) on the additional information about within 

field yield variability provided by yield monitors. 

 The underestimation of spatial yield variability is consistent with the existing literature in 

the sense that farmers tend to be “overconfident” with respect to perceptions about yield 

variability. However, the empirical evidence in the literature typically pertains only to 

overconfidence about temporal yield variability. This study provides evidence that the 

overconfidence about yield variability is also present in the spatial dimension. We also discuss 

how the changes in spatial (or within-field) yield variability perceptions may translate to changes 

in temporal yield variability perceptions (or yield risk perceptions) and influence risk 

management decision-making. 

 The findings in this study provide important implications for input use and risk 

management. A farmer’s subjective view of within-field yield variability fundamentally affects 

input application decisions. In the absence of spatial yield monitor information, it is possible that 

farmer overconfidence (i.e., underestimating within-field yield variability) could influence the 

decision to adopt variable rate application technologies. Without yield monitor information, the 

farmer would perceive more spatially homogenous yields and be less likely to use variable rate 

input application techniques (English, Mahajanashetti, and Roberts, 2001; Larson and Roberts, 

2004). But more accurate yield monitor information that shows higher within-field variability 

would increase the likelihood of a perceived benefit from using variable rate input application 

techniques. Yield monitor information gives a more precise “signal” about the true nature of the 

within-field variability and could be used by farmers to make better input application decisions 
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(Bullock et al., 2009). This insight can also have implications for dealers of variable rate 

technologies. If dealers can provide more accurate within-field yield variability information 

through inexpensive yield monitoring, farmers may be encouraged to purchase variable rate 

application technologies (especially when the true variability is substantially higher than initial 

perceptions). 
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Table 1. Summary Statistics of Responses to Survey Question 1 (n=934) 
Estimated Yields from: Mean St. Dev. Min. Max.
  
Least Productive 1/3 of field 600.27 201.54 100 1300
Average Productive 1/3 of field 847.08 194.82 200 1650
Most Productive 1/3 of field 1135.96 256.12 300 2060
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Table 2. Frequency Distribution of Responses to Survey Question 2 (n=66) 
Response Frequency Percent Cumulative Percent
  
A. Substantially increased my perception; 

my yields appear to be at least 50% 
more variable than I thought. 

11 16.67 16.67

B. Somewhat increased my perception; 
my yields appear to be from 25-50% 
more variable than I thought. 

24 36.36 53.03

C. Slightly increased my perception; my 
yields appear to be from 1-25% more 
variable than I thought. 

20 30.30 83.03

D. Did not change my perception; my 
yields appear to be the same as I 
originally thought. 

10 15.15 98.48

E. Slightly decreased my perception; my 
yields appear to be from 1-25% less 
variable than I thought. 

1 1.52 100.00

  
Note: (1) Of the n=66 respondents who answered questions 1 and 2, none chose “F. Somewhat 
decreased my perception; my yields appear to be from 25-50% less variable than I thought.” or 
“G. Substantially decreased my perception; my yields appear to be at least 50% less variable than 
I thought.” 
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Table 3. Summary Statistics: Self-Reported Value ($/acre/year) of Yield Monitor Information  
Variable Mean St. Dev. Min. Max
  
(i) Value placed on yield monitor 

information for producers who have 
adopted yield monitor technology 
(n=50) 

21.67 30.08 0 150

  
(ii) Value placed on yield monitor 

information for producers who have not 
adopted yield monitor technology 
(n=433) 

20.40 28.72 0 200

  
Notes: (1) The summary statistics reported in this table are for the sample who found yield 

monitor information to be valuable. For (i), 80 yield monitor adopters (out of 104) 
indicated that yield monitor information is valuable and 50 of those placed a value on 
it. For (ii), 642 producers who did not adopt yield monitors (out of 866) indicated that 
yield monitor information is valuable and 433 of those placed a value on it.  

 
 



 
 

 
Figure 1. Probability Distribution Showing the Productivity Zones and “Typical” Values
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A. Base Distribution Mean= 847 lbs/acre and St. Dev.=202 lbs/acre 
    New Distribution Mean= 847 lbs/acre and St. Dev.=227 lbs/acre 
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B. Base Distribution Mean= 847 lbs/acre and St. Dev.=178 lbs/acre 
    New Distribution Mean= 847 lbs/acre and St. Dev.=227 lbs/acre 

 
Figure 2. Change in Perceived Yield Distribution due to Yield Monitor Information:  

Normal Distribution Assumption 
 

Notes: (1) Figure 2A assumes the base and new distribution are based on the sample 
that answered questions 1 and 2 (n=66). 

            (2) Figure 2B assumes the base distribution is based on the sample that 
answered question 1 (n=934) and the new distribution is based on the 
sample that answered questions 1 and 2 (n=66). 
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Figure 3. Change in Perceived Yield Distribution due to Yield Monitor Information:  

Beta Distribution/Triangular Distribution 
 

Notes: (1) The parameters of the base beta distribution above are calculated from the 
estimated mean and variance derived from the moment equations of a 
triangular distribution. 

            (2) Parameters of the base beta distribution are: y =1020, yσ =420.55, 
α =1.96, and β =2.51. 

            (3) Parameters of the new beta distribution are: y =1020, yσ =465.52, 
α =1.42, and β =1.96. 
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Figure 4. Change in Perceived Yield Distribution due to Yield Monitor Information:  

Beta Distribution/PERT Estimates 
 

Notes: (1) The parameters of the base beta distribution above are calculated from the 
estimated mean and variance derived from the moment equations in the 
PERT literature. 

            (2) Parameters of the base beta distribution are: y =1010, yσ =343.33, 
α =3.41, and β =4.07. 

            (3) Parameters of the new beta distribution are: y =1010, yσ =451.03, 
α =1.55, and β =2.15. 
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