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Positive Analysis of Invasive Species Control as a Dynamic Spatial Process 
 

Abstract 
 
This paper models control of invasive buffelgrass (Pennisetum ciliare), a fire-prone African 
bunchgrass spreading rapidly across the southern Arizona desert as a spatial dynamic process. 
Buffelgrass spreads over a gridded landscape. Weed carrying capacity, treatment costs, and 
damages vary over grid cells. Damage from buffelgrass depends on its spatial distribution in 
relation to valued resources. We conduct positive analysis of recommended heuristic strategies 
for buffelgrass control, evaluating their ability to prevent weed establishment and to reduce 
damage indices over time. The high dimensionality of the problem makes full dynamic 
optimization intractable. However, two heuristic strategies – potential damage weighting and 
consecutive year treatment – perform well in terms of percent damage reduction relative to no 
treatment and to static optimization. Results also suggest specific recommendations for 
deployment of rapid rapid-response teams to prevent invasions in new areas. The long-run 
population size and spatial distribution of buffelgrass is sensitive to priority weights for 
protection of different resources. Land managers with different priorities may pursue quite 
different control strategies, which may pose a challenge for coordinating control across 
jurisdictions.    
 
Keywords: invasive species, integer programming 
JEL codes: Q57, Q58 
 
 
Introduction 
 
This study examines the spread and management of invasive weeds as a spatial-dynamic 

problem (Wilen, 2007; Smith et al. 2009;). Wilen (2007) defines this as, “some (generally 

biophysical) process that generates potentially predictable patterns that evolve over space and 

time (p. 1134).” Here, underlying dynamics of biophysical (and economic) systems have 

important spatial manifestations. The spatial dynamic framework is applied to answer questions 

about management of buffelgrass (Pennisetum ciliare), an invasive fire-prone African 

bunchgrass that is spreading rapidly across the desert landscapes of southern Arizona. 

Buffelgrass forms dense stands, crowding out native species, reducing species diversity, and 

increasing wildfire risk.   



While studies of invasive species account for spatial aspects of population growth, they 

usually abstract from other important aspects of spatial heterogeneity. For example, they may 

treat control costs as independent of the terrain where invasive weeds are found or model 

damage as a function of the total invasive weed population, but not the location of that 

population. New work has begun to formally model critical spatial-dynamic relationships in the 

study of biological invasions. For example, Epanchin-Niell and Wilen (2009) consider how 

optimal control of invasive weeds is affected by landscape size, landscape shape, and where an 

initial invasion occurs.  

 We begin by introducing a general dynamic spatial model of weed invasion with multiple 

sources of spatial heterogeneity.  Buffelgrass spreads across a gridded landscape. Each cell in the 

grid represents one acre of land. The potential for an invasive weed to become established, the 

weed’s carrying capacity (maximum achievable population density), the costs of its control, and 

the damages it causes all can vary across the landscape. Previous work has focused on a sub-set 

of these features, usually treating damage as a function of total weed population. Here, we 

emphasize that damages caused by invasive species depend on their location relative to resources 

of value. Damage caused by buffelgrass in a given cell depends on the buffelgrass population 

density in the cell and whether valued, threatened resources are in or near that cell. A land 

manager’s problem is to minimize damage over time, subject to budget and labor constraints. A 

damage index is specified as a weighted sum of damages to different resources, with weights 

reflecting management priorities. Buffelgrass can be treated at most once per period. So, given 

constraints, the manager must choose exactly which cells to treat at each time period. A 

numerical simulation model is developed and calibrated to replicate historical spread behavior.   



Because of the high dimensionality of the problem, a full, dynamic optimal solution to the 

general model is not tractable. Nevertheless, the model proves useful as an organizing 

framework and as a way to conceptualize invasive weed control.  We simplify problems to 

address specific questions concerning buffelgrass management.   

 First, we use the model to estimate labor requirements to prevent buffelgrass from becoming 

established in a recently invaded area.  Costs of delay are evaluated in terms of growing labor 

requirements needed to eradicate new infestations. The National Invasive Species Council 

(NISC) was established by Executive Order 13112 in 1999 to improve coordination of invasive 

species control programs. The Council’s Management Plan stresses the importance of rapid 

response to invasive species and calls for the used of “rapid-response teams” to control new 

invasions before they spread (NISC, 2001). Model results have direct implications for the 

staffing and deployment of rapid response teams to prevent buffelgrass establishment. They 

suggest (a) how large these teams should be, (b) what size of infestation they should target, and 

(c) the number of years follow-up treatments should continue.  

 Second, we conduct positive analysis of treatment recommendations from the Southern 

Arizona Buffelgrass Strategic Plan (Rogstad, 2008). The Strategic Plan recommended using 

potential-damage weighting and consecutive-year treatment rules to prioritize which areas to 

treat. These recommendations are specified as heuristic treatment rules and applied as integer 

programming problems in the spatial-dynamic framework. These heuristic rules do not represent 

full dynamic optimization. They do, however, optimize objective functions that account for 

certain dynamic relationships. These heuristic rules are evaluated in terms of their effectiveness 

at (a) preventing buffelgrass from becoming established in a newly invaded area and (b) reducing 



damage over time. Rules are evaluated in terms of damage reduction compared to no treatment 

and to static optimization.   

Our approach is in the tradition of research comparing specific strategies for invasive species 

management. For example, Moody and Mack (1988) and Martin et al. (2007) compare the 

efficiency of targeting new, small invasive weed populations over larger, established 

populations. Wadsworth et al. (2000) compare random treatment with alternative strategies based 

on proximity to human settlements and weed population size, age, and spatial distribution. Jetter 

et al. (2003) estimate the benefits and costs of biological control programs and subsidies for 

private rangeland restoration to control Yellow Starthistle. Cacho et al. (2004) compare the net 

benefits of immediate eradication versus containment and no-control strategies, examining under 

what conditions each of the three alternatives dominate.     

A limitation of our approach is that while we can identify conditions where a particular 

decision rule will dominate other rules, we do not identify the dynamically optimal treatment 

regime. That is, we identify the strategy that is best among a set of selected strategies but do not 

attempt to find optimal solutions. However, many optimal control or dynamic programing 

models of invasives species management often fail to provide specific, useful recommendations. 

Often, robust results are so general that they could be derived from first principles. As Wilen 

(2007) points out, “the more important questions seem to be where to spray, when, and at what 

intensity in a landscape setting (p. 1139).”  The heuristic rules introduced here have the 

advantage of telling land managers, “treat these acres now.”   

One distinct advantage of our approach, is its applicability. We are able to use Excel to (a) 

manage data layers, (b) use cell formulae to maintain spatial and dynamic relationships, and (c) 

use the chart function to produce maps of costs, damages, weed population, and treatment 



recommendations. The ILOG CPLEX software package, a powerful tool for solving linear 

integer (binary) programs interfaces with Excel programs so that model solutions can be readily 

converted to treatment priority (and other) maps.    

Buffelgrass invasion risks in southern Arizona  

Buffelgrass (Pennisetum ciliare) is African bunchgrass originally brought to the United States 

for forage. It was selected for its drought hardiness, high establishment rates, and grazing 

tolerance (Stevens and Falk, 2009).  Introduced in the 1940s, it has become invasive in southern 

Arizona. This region represents the northern stretches of the Sonoran Desert, home of unique 

species such as the giant saguaro cactus (Carnegiea gigantean). The Sonoran Desert ecosystem 

has sparse vegetation and is not fire adapted (Burquez-Montijo et al., 2002; Rogstad et al., 2009; 

Stevens and Falk, 2009). Buffelgrass, however, forms dense stands that crowd out native species 

and carry wildfire (Bowers, et al. 2006;). Evidence from Australia suggests that invasive 

buffelgrass can reduces biological diversity (Clarke et al., 2005; Jackson, 2005).  The saguaro 

cactus, an iconic symbol in southern Arizona is particularly vulnerable to fire (Esque et al., 

2004). Betancourt (2007) has warned that buffelgrass and other invasive perennial grasses are 

“rapidly transforming fireproof desert into flammable grassland.”  Wildfire not only threatens 

native species, but also poses risks to commercial and residential property bordering the desert.   

A spatial dynamic model of buffelgrass management 

Buffelgrass spread equations 

Let t ∈ {0,…,T} be any year T is the entire time horizon. Define an index on the x-axis i∈ 

X={1,…,I} and an index on the y-axis j∈ Y={1,…,J} giving the coordinates of cell (i,j). At any 

time t, the pre-treatment population density of buffelgrass in a cell depends on the population 

density in that cell and in surrounding cells in the previous year.    



(1) Ni,j,t – N i,j,t-1 = g(Ni,j,t-1  , N~i~,j,t-1 , K(s)i,j ) 

Ni,j,t  = pre-treatment buffelgrass population density in cell (i, j) in year t 

N~i~,j,t  = pre-treatment buffelgrass population density in the eight cells surrounding cell (i, j) in  

year t 

K(s)i,j  = carrying capacity (maximum buffelgrass population density) possible in cell (i, j) 

s = vector of attributes affecting carrying capacity such as soils, altitude, climate, slope,  

 aspect, and past land disturbance. 

A cell receives propagules from plants within the cell and from neighboring cells. The rate at 

which a cell receives propagules from neighboring cells is governed by an exponential decay 

function. The function g() has a logistic growth form, where population grows at an increasing 

rate at first, then at a decreasing rate as the population approaches the carrying capacity in the 

cell. Growth slows as the cell becomes saturated with buffelgrass.   

A numerical, biological spread model was calibrated using historical data (aerial 

photography, and population monitoring data) from the University of Arizona Desert Laboratory 

and environs laid out on a 40 x 50 acre grid. The Desert Lab on Tumamoc Hill is a 914-acre 

reserve west of downtown Tucson, where ecological research has been conducted for more than 

100 years. The 2,000-acre study area includes the Desert Lab lands, Sentinel Peak (‘A’ 

Mountain) a city-managed park, other open space, and some homes. More homes, commercial 

real estate, and schools surround the area. Buffelgrass populations have been monitored regularly 

around the Desert Lab since 1983 (Bowers et al., 2006).  Parameters of the numerical buffelgrass 

spread model were calibrated to replicate actual, historic spread behavior. 



Buffelgrass treatment 

The most effective means of controlling buffelgrass is treatment with the herbicide glyphosate.  

Buffelgrass can be manually removed using pry bars, but this method is highly labor intensive. 

Moreover, many sites in Arizona (including the Desert Lab) have Native American cultural 

resources lying below ground, limiting the extent too which removal via digging is permitted.   

The decision whether to treat a cell is a discrete choice such that a cell is either treated 

(sprayed) or not. The treatment choice variable xi,j  is binary, equal to 1 if  cell (i,j) is treated, and 

0 otherwise. The post-treatment buffelgrass population density in a cell, ni,j,t ,  is   

(2) ni,j,t  = Ni,j,t ( 1 – k ) 

where 

k = kill rate of herbicide treatment;    k = 0.9 if Ni,j,t > Ni,j,t ; k = 1.0 if Ni,j,t < Ni,j,t  

Ni,j,t = critical population, below which, it is possible to eradicate buffelgrass from a cell. 

Treatment reduces the buffelgrass population by 90% in each year of treatment. Because 

herbicide treatment is only effective for a short time following (rare) rainfall events, we assume 

that cells are treated once a year, at most. Successive treatments reduce the population by 90%, 

based on recent data for treatment effectiveness on Tumamoc Hill. If the population falls below 

the minimum threshold Ni,j,t , however, we allow for the possibility that an additional treatment 

can drive the population to zero in a cell.   

The costs of treating a cell (i,j), Ci,j are linearly increasing in pre-treatment buffelgrass 

population, average cell slope, and distance of the cell from the closest road. 

(3)   Ci,j = c1 + c2 Ni,j,t + c3 slopei,j, + c4 distancei,j, 

Treatment costs can vary for each cell, but the cost of treating an individual cell in a given year is 

constant. The cost of treating an individual cell can change, however, as pre-treatment 



buffelgrass population, Ni,j,t, changes. Without treatments to reduce the buffelgrass population, 

the cost of treating a landscape will increase over time. Treatments costs increase until they reach 

a maximum, where the buffelgrass population is at its carrying capacity in each cell.  Cost 

parameters were estimated based on recent records of treatments in and around the Desert Lab.  

Resource constraints 

The land manager faces a budget constraint in treating buffelgrass  

(4)  ∑ i∈ X∑ j∈ Y Ci,j,t xi,j,t <   Bt         

where Bt  is the annual control budget in time t.  In reality, land managers are likely to face both a 

monetary budget constraint and a labor availability constraint. Volunteer labor conducts a 

significant amount of buffelgrass treatment. Moreover, chemical treatment is only effective at 

certain times of the year (not too long after rainfall) so time constraints can be as important as 

monetary ones.   

Buffelgrass damage functions 

Post-treatment damage caused by buffelgrass in a cell (i,j) depends on its density in the cell, 

whether there are resources that it threatens in that cell, and whether there are resources 

threatened in neighboring cells.    

(5) Di,j,t = Di,j,t (ni,j,t  , Ri,j,t  , R~i~,j,t ) 

Di,j,t  = damage caused by buffelgrass in cell (i,j) 

ni,j,t   = post-treatment buffelgrass population 

Ri,j,t   = resource at risk in cell (i,j) 

R~i~,j,t  = resource at risk in cells surrounding cell (i,j) 

Damage from buffelgrass follows an exponential decay pattern. Buffelgrass in the same cell as a 

threatened resource contributes most to damage. As a resource at risk is farther away from the 



buffelgrass, the buffelgrass causes less damage. Distance is measured from centroids of cells. We 

assume damage depends on resources in cell (i ,j) and the eight cells adjacent to it. The relevant 

risk factors for cell (i, j) are 

R i – 1, j+1 R i +1, j +1 R i +1, j +1 
R i – 1, j R i, j R i +1, j 
R i – 1, j – 1 R i +1, j – 1 R i +1, j – 1 

 
Damage from buffelgrass depends not only on the total population of the invasive species, but 

also on the distribution of the species relative to resources of value throughout the landscape. 

There can be more than one resource at risk, so that there is a different damage function for each 

resource. In this paper, we focus on risks to buildings, to saguaro cactus, and to (ephemeral) 

riparian vegetation.  Saguaros and vegetation may be threatened by crowing out from dense 

buffelgrass stands. Buildings, saguaros, and vegetation may all be at increased risk from 

wildfires.  

Land manager’s problem  

The land manager’s problem is to minimize long-term damage by choosing which cells to treat.  

Cells are either treated or not. The land manager’s objective function is a damage index DI, 

which is the sum of damages caused by buffelgrass in each cell over the time horizon, T.  

Formally, the land manager’s objective is 

(8) min DI = ∑ i∈ X∑ j∈ Y ∑ t∈ T Di,j,t with respect to xi,j,t ∈ {0 ;1}  for all i, j, t               

subject to equations (1) – (5)  

For completeness, optimization is also subject to initial conditions at t = 0. The problem can be 

generalized further to account for multiple types of damage.  

(9)   min DI = ∑ i∈ X∑ j∈ Y ∑ t∈ T ∑ r∈ R ρr Di,j,t   with respect to xi,j,t ∈ {0 ;1}  for all i, j, t  

  subject to equations (1) – (5)  



where r denotes different resources the manager wants to protect and ρr represents the relative 

weight placed on protecting resource r in the overall objective function.   

For a 40 x 50 acre grid, the problem involves 2,000 non-linear, interrelated state equations. 

Full, dynamic optimization of functions (8) or (9) is not tractable. We turn, therefore, to address 

two problems that are tractable. First, we consider the resource requirements necessary to 

prevent buffelgrass from becoming established in an area. Critical issues here are the costs of 

delay in response to new invasions and their implications for the design of invasive species 

rapid-response teams. Next, we consider alternative heuristic strategies to minimize buffelgrass 

damage under resource constraints. The strategies are compared in terms of their ability to 

reduce the path of the damage index, DI over time.     

Preventing invasive species establishment 

Our first simulations consider how much labor is required to prevent buffelgrass from becoming 

established after it first appears in an area. A related question is how much do delays in initiating 

a treatment regime increase these labor requirements. We focus on labor requirements because 

land managers in Arizona frequently face binding labor constraints for buffelgrass control.  

It is assumed that buffelgrass is initially discovered on 48 cells of the 40 x 50 acre grid (about 

2.4% of cells).  In this initial year (Year 0), median, mean, and maximum buffelgrass densities 

on infested cells are 0.2, 0.5, and 2.6 plants per square meter. The maximum density possible is 

about 6 plants per square meter. Next, we consider a program of most rapid local eradication 

(MRLE). Under MRLE, each infested cell is treated each year until the population across the 

entire area is driven to zero, preventing buffelgrass establishment. Labor requirements can be 

measured in hours or in terms of 400-hour, team-weeks. Each team-week represents a 40-hour 

workweek of a 10-person team.  



We consider labor required for MRLE given different start years for the local eradication 

program, Years 1, 3, 5, 9 and 13 (Figure 1). If the local eradication program is initiated in Year 1 

or 3, labor requirements are modest. Fewer than three team-weeks would be required in any 

single year. It takes at least six years, however, to drive the population to zero. If treatment is 

delayed until Year 5, then five team-weeks are needed in Year 5, with declining labor 

requirements in subsequent years. If treatment is delayed to Year 9, however, 15 team-weeks are 

needed initially. By Year 13, requirements exceed 27 team-weeks in the initial year of treatment.   

Treatment on a scale of 27 team-weeks or more is likely infeasible for two reasons.  First, 

land management agencies face budget and labor time constraints. Second, backpack spraying 

with glyphosate is only effective when the plants have turned green after sufficient rainfall.  In 

Arizona’s arid climate, there may simply be too few weeks in a year when glyphosate treatment 

is viable. The need to deploy a large numbers of laborers during a short treatment window can 

create “peak-load” problems for land managers.   

The cumulative discounted labor cost to prevent buffelgrass establishment is shown in Figure 

2. The Buffelgrass Strategic Action Plan prices labor at $18.50 per hour based on trained 

applicator costs (Rogstad, 2008).  Figure 2 presents cumulative labor costs of MRLE assuming 

that costs rise at the rate of inflation and using real discount rates of 2% and 4%. If treatment 

begins by Year 3, total discounted costs range from $70,000 to $78,000. The treatment regime 

requires about 8 years, so one can think of the annualized cost of $8,000-$10,000 per year over 

an 8-year period. If the treatment regime begins in Year 5, cumulative costs rise up to $119,000 

(or up to $15,000 on an 8-year, annualized basis). After Year 5, however, cumulative labor costs 

rise substantially. By Year 17, costs range from $0.4-$0.6 million.   



Our results have direct implications for the staffing and deployment of rapid response teams 

to prevent buffelgrass establishment. They suggest (a) how large these teams should be, (b) what 

size of infestation they should target, and (c) the number of years follow-up treatments should 

continue. Our results suggest that two, 10-person rapid response teams working 3 weeks per year 

would be sufficient to prevent buffelgrass from becoming established in a newly infested area if 

(a) they began treatment within 5 years of initial infestation and (b) they continued with follow-

up treatments over 6-8 years. In most years, the two teams would not have to be deployed for the 

full three weeks (or alternatively, smaller teams could be assembled). While costs of delay 

between Years 1 and 3 are small, cost of delay grow quite large beyond Year 5. This suggests 

that beyond Year 5, land managers need to consider shifting strategies from local eradication in 

an area to longer-term management and damage containment.   

Heuristic decision rules with binding resource constraints 

We now consider the effectiveness of heuristic decision rules in reducing different types of 

damage. In southern Arizona, a Buffelgrass Working Group was established through a 

Memorandum of Understanding between federal, state and county agencies along with private 

organizations.  In 2008, the Working Group published a Strategic Plan, which included 

recommendations for coordinating and implementing buffelgrass control across jurisdictions 

(Rogstad, 2008). One Working Group recommendation was to, “Set and implement control 

priorities based on actual and potential impacts (page vii) (emphasis added).” Another 

recommendation was for land managers to “institute a minimum three-year treatment and 

management program (Rogstad, 2008, p. 16, 32)” to control buffelgrass.   

 In this section we specify how these heuristic rules are incorporated as decision rules in our 

dynamic spatial model. While fully dynamic optimization is not tractable, we can obtain 



solutions following these heuristic rules. In subsequent sections, we examine how these rules 

perform in terms of their ability to prevent buffelgrass establishment and in terms of reducing the 

long-run path of damage indices.   

Rule 1 – Static optimization.   

We first establish static optimization as a baseline rule. Subsequent rules may be evaluated both 

in terms of their performance relative to no treatment and relative to this static rule. The static 

optimization decision rule is lexicographical. The objective is: 

1. Reduce current damage as much as possible, subject to a labor constraint.  

2. If all cells generating positive, current damage are treated and labor is remaining, then 

treat cells to minimize buffelgrass population, subject to remaining labor availability.   

We defined the damage function such that buffelgrass only causes damage if a resource of value 

is either in that same cell or in an adjacent cell. This leaves open the possibility that buffelgrass 

would not be treated if it first appeared in a cell distant from resources of value, even though it 

could contribute considerably to future damage. Hence, the second rule prevents acres going 

untreated when the labor constraint is not binding.1 This rule is myopic. It does not consider how 

current treatment affects future damage or subsequent treatment costs.   

In a static setting, minimizing current damage is equivalent to maximizing the reduction in 

current damage. The reduction in damage from treating a cell is 

(10)  DRi,j,t xi,j,t = xi,t [Di,j,t (Ni,j,t  , Ri,j,t  , R~i~,j,t ) – Di,j,t (ni,j,t  , Ri,j,t  , R~i~,j,t )] 

where xi,j,t denotes the binary decision of whether to treat the cell, the left term in brackets is 

damage at the pre-treatment population, and the right term in brackets is post-treatment damage.   

                                                 
1 An alternative would be to reduce the decay rate of the damage function so that buffelgrass damage depends on 
more distant cells. This increases the computational complexity of the model, however.   



The first part of Rule 1 is treated as a static integer linear programming (ILP) problem. The first 

objective is    

(11)  max DR1=  ∑ i∈ X∑ j∈ Y  DRi,j,t xi,j,t  with respect to xi,j,t ∈ {0 ;1}  for all i, j, t               

subject to constraints (2) – (5) from the dynamic spatial model, with an additional labor 

constraint 

(12)  ∑ i∈ X∑ j∈ Y Li,j,t xi,j,t <   Lt         

where Lt is a labor availability constraint.  Labor requirements are assumed to be linearly 

increasing in pre-treatment buffelgrass population, cell average slope, and cell distance from the 

nearest road. We assume that the labor constraint becomes binding before the monetary budget 

constraint does, rendering the latter redundant. Throughout the rest of the paper we focus, 

therefore on labor constraints. The objective is the well-known, 0-1 knapsack problem 

formulation (Wolsey, 1998).   

The second part of Rule 1 takes effect if the damage function is maximized and the labor 

constraint is not binding. In this case, current damage is reduced to zero. Buffelgrass may remain 

in the landscape that is currently distant from resources of value. It may not contribute to the 

current damage index, but can increase potential future damage. Let L*t represent the optimal 

amount of labor used to maximize (11). If L*t < Lt then the second part of Rule 1 implies the land 

manager will  

(13) min  ∑ i∈ X∑ j∈ Y  ni,j,t with respect to xi,j,t ∈ {0 ;1}  for all i, j, t               

subject to constraints (2) – (5) as before with a labor constraint 

(14)  ∑ i∈ X∑ j∈ Y li,j,t xi,j,t <   Lt  – L*t  

where ni,j,t is the total post-treatment buffelgrass population, Lt  – L*t is labor left over (if any) 

after current damage is reduced to zero, and li,j,t is application of remaining labor to treatment. 



Thus, our Rule 1 might be summarized as follows. First, minimize current buffelgrass damage. 

Second, if damage is reduced to zero, use any remaining labor to minimize the current 

buffelgrass population. 

Rule 2 – Potential damage weighting 

Under Rule 1, cells are prioritized for treatment based on their contribution to current damage.  

Rule 2 simulates the Buffelgrass Working Group’s recommendation to prioritize areas to treat 

“based on actual and potential impacts.” Rule 2 employs potential damage weighting as a way of 

simulating the Buffelgrass Working Group’s recommendation. Cells are prioritized for treatment 

based not only on their contribution to current damage, but also on their potential contribution to 

future damage. The maximum potential damage buffelgrass can cause in cell D+
i,j,t depends on 

resources of value in proximity to that cell and the buffelgrass carrying capacity Ki,j, of the cell 

(15) D+
i,j,t = Di,j,t (Ki,j, Ri,j,t  , R~i~,j,t ) 

Rule 2 is  

(16)    Max DR2=∑ i∈X ∑ j∈ Y (wDRi,j + (1 – w) D+
i,j,t ) xi,j,t            

subject to labor and other constraints (as under Rule 1). Again, this rule is lexicographical, where 

the first objective is to maximize DR2, while the second is to minimize buffelgrass population 

with any labor remaining after maximizing DR2. Rule 1 is simply the special case of Rule 2, 

where w = 1. In subsequent discussion, we focus on an equal weighting scheme where w = 0.5.    

Rule 2 prioritizes cell treatment considering (a) how much current damage buffelgrass causes 

and (b) the potential damage that could be caused if the population were allowed to reach its 

carrying capacity. Thus, cells with higher carrying capacity will receive higher priority for 

treatment. This rule, thus accounts for factors such as soils, aspect, elevation, or climate that 

affect the suitability of an area to foster buffelgrass establishment and growth. Low populations 



in suitable areas may cause more future damage than higher populations in less suitable areas. 

While Rule 2 is not dynamic optimization, it is forward-looking in one sense. It considers 

potential future damage of leaving a cell untreated.  

Rule 3. Treat 3 times  

This rule simulates the Buffelgrass Working Group’s recommendation to treat areas in at least 

three consecutive years. Because of buffelgrass’ logistic growth, treating a cell with a population 

near its carrying capacity will push the population to the fast part of its growth path. Thus, if a 

high population cell is treated only once, there is great scope for it to rebound the following year.  

Repeated treatments can push populations down to the slow portions of their growth paths and 

may even reduce cell populations to zero. Rule 3 is lexicographical with the following priorities: 

Rule 3.  Treat three times consecutively; then follow Rule 1 (static optimization) 

A. Treat a cell treated in the previous two years, but not the previous three 

B. Treat a cell treated for the first time the previous year 

C. Follow Rule 1 above  

a. Maximize current damage reduction 

b. Minimize buffelgrass population with any remaining labor. 

In the initial year, the treatment strategy under Rules 1 and 3 are identical. After that, priorities 

shift to emphasize repeated treatments of cells, so that cells are treated in at least three 

consecutive years.  

Rule 4. Treat 3 times with potential damage weighting 

Rule 4 combines heuristics of previous rules: 

Rule 4.  Treat three times consecutively, and then follow Rule 2 (potential damage weighting) 

A. Treat a cell treated in the previous two years, but not in the previous three years. 



B. Treat a cell treated for the first time the previous year. 

C. Follow Rule 2 above:  

a. Solve problem (16) with w = 0.5. 

b. Minimize buffelgrass population with any remaining labor. 

Solution algorithm and data management 

The above formulation for maximizing the reduction of the damage caused by buffelgrass 

invasion is a linear, binary integer program. Such programs are usually solved by linear 

programming based tree search, which guarantees that the solution obtained is optimal. In the 

literature these tree search based algorithms are called the branch and bound methods 

(Nemhauser and Wolsey, 1988). Modern software packages for solving linear integer (binary) 

programs are well developed and highly sophisticated. In our computations we used ILOG 

CPLEX (2010).   

ILOG CPLEX has the additional advantage of having a straightforward interface with Excel 

spreadsheets.  Data inputs and outputs can be managed and represented in Excel, while 

computations can be carried out efficiently using ILOG CPLEX. Data layers for buffelgrass 

population, treatment costs, resources at risk, and damages are maintained as Excel worksheets. 

Each cell in the worksheets corresponds to a specific acre of land. Three resources-at-risk layers 

are measured in terms of saguaro density, presence or absence of buildings/structures, and 

presence or absence of ephemeral riparian vegetation. In principle, money metrics for these risk 

layers could be developed and applied. The interface with Excel also makes it possible to use the 

surface function in Excel’s chart command to generate maps. Thus, land managers following 

heuristic decision rules could print out maps indicating which acres to treat.   

 



Heuristic rules and local eradication  

We now compare the performance of the four decision rules in terms of their scope for 

preventing buffelgrass establishment (achieving local eradication) under binding labor 

constraints. Our previous analysis of most rapid local eradication (MRLE) assumed labor 

supplies were unconstrained. Using our 40 x 50 acre grid and initial infestation assumption as in 

the MRLE problem, we consider three different damage indices, risk to buildings and structures, 

risk to saguaro cacti, and risk to (ephemeral) riparian vegetation. The four decision rules are 

applied to maximizing damage reduction to the three different resources at risk separately. We are 

interested in whether, given binding labor constraints, these rules can achieve local eradication.   

Most rapid local eradication (MRLE) of buffelgrass was possible using no more than 1,200 

hours of labor in any single year, with treatment initiated by Year 3 in the model (Figure 1). If 

treatment did not begin until Year 5, nearly 2,000 hours were needed in the first year, while more 

than 1,600 hours were needed in Years 6 and 7 and more than 1,200 hours were needed in Year 8.  

Local eradication is possible using less labor than under the MRLE rule, although it takes 

more years to accomplish (Table 1).  Under Rules 3 and 4, which call for treating infested cells a 

minimum of three consecutive years, local eradication is possible using no more than 800 labor 

hours per year, if treatment is initiated in Year 1. Under Rules 1 and 2, however, buffelgrass is 

eradicated when the objective is to minimize risk to saguaros, but not when attempting to reduce 

the other risk factors. Ironically, because minimizing saguaro risk leads to local eradication, it 

performs better at reducing risk to buildings or risk to vegetation than rules directly targeting 

those risks. This is a peculiarity (and problem) of relying on rules of thumb instead of true 

constrained, dynamic optimization.   



If treatment is delayed until Year 5 and labor is constrained to 1,200 hours, only following 

Rule 4 to minimize saguaro risk leads to local eradication. If the labor constraint is relaxed to 

1,600 hours, then Rules 3 and 4 (requiring three treatments) lead to eradication, while the other 

two, again, only lead to eradication when targeting saguaro risk. The rules requiring three 

treatments lead to local eradication under more cases, when labor is constrained.   

Heuristic rules and damage reduction   

The decision rules may also be compared in terms of their effects on long-run damage paths.  

Damage indexes DI,r,t for each resource, r (property, saguaros, riparian vegetation) are  

 (17)  DI,r,t = ∑ i∈ X∑ j∈ Y  Dr,i,j,t 

where (17) is just the single-year value of the objective function from the full dynamic 

programming problem (equation (8)). The indices for each resource are scaled so that, absent any 

treatment, each index approaches 1,000 after 30 years. We then evaluate the four decision rules 

in terms of how well they reduce the path of each damage index over time, given varying labor 

constraints.   

We can examine how well the four decision rules reduce damage indexes when treatment 

begins in Year 9 and labor is constrained at 400 hours (Figures 3a-b) and at 2,000 hours (Figures 

4a-b). In each case, Rule 4 (combining treating 3 times with potential damage weighting) reduces 

the path of the damage index the most. Without treatment, the damage indexes approach 1,000 

by Year 29.  Simple static optimization (Rule 1) consistently performs least well.  Even under 

static optimization, however, the terminal value of the vegetation damage index is 20% lower 

than under no treatment if labor is constrained to 400 hours per year. If labor expands to 2,000 

hours per year, then the terminal value of the vegetation damage index is reduced 40%.  

Following Rule 4, however, the terminal value of the vegetation damage index falls about 33% 



(80%) with 400 (2,000) labor hours per year. Under Rule 1, the terminal value of the saguaro 

damage index is reduced 22% (75%) with 400 (2,000) labor hours per year. Under Rule 4, the 

index’s terminal value falls 40% (98%) with 400 (2,000) labor hours per year. Treating at least 3 

times (Rule 3) or applying potential damage weighting (Rule 2) are modest improvements over 

static optimization. Combining both approaches (Rule 4) provides the greatest damage reduction.  

Figure 5 shows how the decision rules affect risk to buildings. This index is relatively easy to 

reduce because structures are primarily on the periphery of the grid, while initial infestations are 

not close to that periphery. Protecting building, then involves maintaining a “defensible space” in 

front of properties. With 800 hours of labor per year, each rule reduces the terminal value of 

damage below 120 on a 1,000-point scale (Figure 5).  Again, Rule 4 outperforms the others.    

The ordering of how well each rule performed was consistent across the three resources at 

risk and at labor levels between 400 and 1,200 (not reported here, but available upon request).  

Rule 1 always resulted in the highest damage trajectory, while Rule 4 always resulted in the 

lowest.   

Figures 6a-c illustrate how labor constraints affect damage index trajectories. Trajectories are 

shown when Rule 4 is applied, labor is constrained at constant annual levels, and treatment 

commences in Year 13.  For saguaros, treatment stabilizes damages at decreasing levels as more 

annual labor is applied. The damage trajectories have relatively little slope after Year 20.  For 

building damage, the damage index is driven close to zero if 800 or more hours of labor are 

applied annually. While buffelgrass populations near structures are kept at low levels, they are 

continually re-infested from untreated cells that are farther away. Thus, creating a defensive 

space requires modest but continuous applications of labor if sources of buffelgrass are not 

removed. Riparian vegetation is the most difficult resource to protect. Terminal values of the 



damage index are highest for every quantity of annual labor. Moreover, the trajectory of damage 

increases after Year 18.  Why does this occur?  A likely possibility is that unlike saguaros that 

are in more concentrated stands and structures that are concentrated on the periphery of the grid, 

riparian vegetation is dispersed more widely across the grid.  It is more difficult to establish 

defensible space around this dispersed vegetation.   

Resource protection priorities and long-run invasive species populations 

The resources a land manager chooses to protect can have important effects on the total number 

and spatial distribution of the invasive species. Reducing the damage indexes is not the same as 

reducing the buffelgrass population.  Figures 7a-c show population densities of buffelgrass in 

year 29, assuming treatment commences in Year 9, Rule 4 is used to control buffelgrass, and 

2000 hours of labor are used annually. The objectives are to minimize damage to saguaros (7a), 

buildings (7b), and riparian vegetation (7c).  Compare figures 7a and 7b, recalling that buildings 

border the northern, eastern, and southern edges of the grid. When the objective is to minimize 

risk to buildings, the terminal population of buffelgrass is cleared from these borders. In contrast, 

when the objective is to protect saguaros, buffelgrass is allowed to grow along the southern edge 

of the grid.  However, terminal buffelgrass populations are cleared from a patch in the south-

central part of the grid, where there is a large stand of saguaros.   

Figures 7a-c also illustrate that the long-run populations of invasive species can be quite 

sensitive to the choice of weights in a multi-attribute damage index. For policy makers, this 

means that the choice of weights is not an innocuous assumption. The approach used here can be 

used to develop maps illustrating the consequences of different weighting schemes. The figures 

also illustrate what could happen if different agents have different priorities in damage reduction.  

For example, private homeowners or the city government may care about protecting buildings 



and structures, while federal land agencies may have mandates to protect endangered species.  

Different land managers may treat acres quite differently. This may pose challenges for 

coordinating control across jurisdictions.    

Conclusions 

This paper developed a general spatial dynamic model of invasive weed spread and management 

and applied it to address questions about management of buffelgrass in southern Arizona. A 

numerical simulation model was developed and calibrated to match historic buffelgrass spread, 

treatment effectiveness, and treatment cost data. Although full dynamic optimization of the 

model proved intractable, we were nevertheless able to solve simplified problems to address 

policy relevant questions.   

 First, the National Invasive Species Council’s Management Plan (NISC, 2001) calls for 

“rapid-response teams” to control new invasions before they spread.  Our first simulations 

quantified labor requirements needed for such teams to prevent new buffelgrass establishment. 

The also illustrated how requirements increase with delay of program initiation.  Results 

quantified how large response teams need to be (b) what size of infestation they should target, 

and (c) the number of years that follow-up treatments should continue in order for team efforts to 

be effective. The approach developed here is readily applicable to rapid response to other 

invasive species. 

 Next, we evaluated two control recommendations – potential-damage weighting and 

consecutive-year treatment rules – from the Southern Arizona Buffelgrass Strategic Plan 

(Rogstad, 2008). These recommendations were modeled as heuristic treatment rules solved as 

special-case integer programming problems in the spatial-dynamic framework. Applying these 

rules together increased scope for preventing buffelgrass establishment under resource 



constraints. They also, reduced paths of buffelgrass damage substantially, both relative to the no-

treatment option and relative to static optimization.   

Third, the long-run population size and spatial distribution of buffelgrass is sensitive to 

priority weights for protection of different resources. Land managers with different priorities 

may pursue quite different control strategies, which may pose a challenge for coordinating 

control across jurisdictions. A possible of extension of work presented here would be to consider 

problems of coordination between land managers with different priorities for buffelgrass control.  

Work by Grimsrud et al. (2008) suggests that such multi-agent problems can provide important 

insights concerning invasive species control.   

While the simulations show heuristic rules can be a significant improvement over static 

optimization, static optimization is a lower bound of performance. The key question is, “how far 

are these heuristic rules from full, dynamic optimization?” Our ongoing research seeks to answer 

this important question. A weakness of many invasive species optimal control models is their 

failure to provide specific, useful recommendations. If these heuristic rules are good 

approximations of the dynamic optimum, this means easy-to-determine treatment strategies can 

be effective. If, however, these rules are not good approximations to the optimal solution, this is 

also important to know. If not, one could explore under what conditions they are or are not 

reasonable approximations. This could lead to other rules of thumb that are still easy to 

implement, but close to optimal. 
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Table 1. Occurrence of eradication depending on labor constraints, treatment starting year, and 

decision rule followed 

 Rule 1 Rule 2 Rule 3 Rule 4 

 

Static 

Optimization 

Potential Damage 

Weighting Treat 3x 

Treat 3x + 

Potential Damage 

Weighting 

     

     

Labor = 800; Start Year = 1    

Vegetation Risk no no  yes yes 

Building Risk no no  yes yes 

Saguaro Risk yes yes yes yes 

     

Labor = 1200; Start Year = 5    

Vegetation Risk no no no no  

Building Risk no no no no  

Saguaro Risk no no no yes 

     

Labor = 1600; Start Year = 5    

Vegetation Risk no no yes yes 

Building Risk no no yes yes 

Saguaro Risk yes yes yes yes 



Figure 1. Annual labor requirements (400-hr. work teams) to prevent 
buffelgrass establishment, by year of control initiation
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Figure 2. Discounted cumulative labor costs to prevent buffelgrass 
establishment ($ 000) under 2% and 4% discount rate 
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Figure 3a. Vegetation, L=400; Start Year = 9
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Figure  3b. Vegetation, L = 2000; Start Year = 9
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Figure 4a. Saguaro, L= 400; Start Year = 9
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Figure 4b. Saguaro, L = 2000; Start Year = 9
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Figure 5. Buildings, L = 800, Start Year = 9
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FIgure 6a. Saguaro Damage Function with different 
annual labor budgets (Rule 4)
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FIgure 6b. Building Damage Function with different 
annual labor budgets (Rule 4)
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Figure 6c. Riparian Vegetation Damage Function 
with different annual labor budgets (Rule 4)
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Figure 7a. Buffelgrass population in year 29 
with objective to protect saguaro cacti
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Figure 7b.  Buffelgrass population in year 29 
with objective to protect buildings 
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Figure 7c. Buffelgrass population in year 29 
with objective to protect riparian vegetation
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