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Abstract 

 

Kenya is currently in the process of introducing genetically modified maize (Bt maize). A major 

concern is that the Bt gene might cross into local varieties through cross pollination. Current 

regulatory strategies to ensure coexistence of the two cropping systems at the farm level rely on 

spatial isolation measures-separation distances and/or buffer zones. However, the interaction of 

practical measures and costs of spatial isolation with the farmer’s economic incentive to plant a Bt 

maize crop have not been studied in Kenya. The purpose of this study was to analyze the technical 

and economic feasibility of the implementation of spatial coexistence measures. Using spatial geo-

referenced data from the actual agricultural landscape in lowland coastal Kenya, the study finds 

that flexible separation distances hold the possibility of ensuring coexistence in the region, but will 

be difficult to implement and don’t affect all farmers equally. Rigid buffer strips on the other hand 

are not consistent with the producers’ economic incentive to plant a Bt maize crop. 
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Introduction 

Kenya is currently in the process of introducing genetically modified maize. Since 1999, the Insect 

Resistance Maize project for Africa (IRMA), a joint collaboration between Kenya Agricultural 

Research Institute (KARI) and International Maize and Wheat Improvement Center (CIMMYT), 

has been working to develop conventional and transgenic-based insect resistant maize. The first 
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conventional varieties have been released, and the transgenic varieties could be ready in the next 

year. Transgenic varieties are genetically engineered (GE) to express protein toxins derived from a 

soil bacterium Bacillus thuringiensis (Bt). Bt maize is expected to protect maize from stem borers 

(mainly the Chilo partellus and Buseola fusca), that have been reported to cause field crop losses 

of up to 13.5% nationally (De Groote et al, 2004). 

However, a major concern related to the cultivation of Bt maize is that the Bt gene might 

cross into conventional maize varieties through cross pollination. Bt is a dominant gene (Eugene et 

al. 2003). If it crosses into conventional maize varieties, it will express itself in the conventional 

varieties and cause loss of unique conventional maize traits.  Safety concerns have raised important 

scientific, economic and policy issues and have delayed the introduction of Bt maize. Kenya's maize 

production system relies primarily on small scale farmers who grow local varieties and recycle 

their seed seasonally. The local varieties are a vital source of genetic diversity and famers prefer 

them because of household preferences and/or risk aversion towards new varieties (Wekesa et al. 

2003). Surveys by Kimenju and De Groote (2008) found that while Kenyan consumers are less 

concerned about food safety, they care about the environment and biodiversity. These concerns 

necessitate that none adopters of Bt maize and consumers be protected. 

Given the importance of both production systems (GM and non-GM), coexistence1 

between the two becomes an important issue. Current regulatory and management plans rely on 

spatial and/ or temporal isolation strategies of the two cropping systems. In this region, maize is 

planted in two seasons. These seasons are often not clearly defined, so maize grows most of the 

year. Temporal separation in this setting is not realistic, leaving spatial separation as the only 

                                                 
1 Coexistence is the ability of farmers to make practical choices between conventional, organic and GM crops and is 

mainly concerned with the potential economic impact of the admixture of GM and non-GM crops (Demont et al.2008) 
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option. The most important spatial measures are separation distances and or buffer zones (Perry 

2002; Ingram 2002).  

In Kenya, land fragmentation is a major concern in that it may not allow farmers who opt 

to plant Bt maize to meet the specific separation distance requirements. Of interest is whether 

spatial isolation measures are technically and economically feasible under the current agronomic 

conditions in Kenya. The spatial distribution of existing crops (Belcher et al. 2006), the size of 

maize fields and the minimum regulatory distances between GM and non-GM fields (Beckmann et 

al. 2006; Ingram 2000; Demont et al. 2008; Messean et al. 2006) are important factors that affect 

coexistence. However, the interaction of these factors and practical measures together with the 

farmer’s economic incentive to plant a Bt maize crop have not been studied in Kenya. Moreover, 

most studies on coexistence have been conducted using simulated data covering only a small 

section of the landscape. 

 In this study, using spatial georeferenced data, we consider isolation distances and buffer 

zones as the appropriate coexistence measures. We define separation distances as mandatory 

minimum distance requirements between Bt maize and conventional maize fields and buffer zones 

as separation measures that involves planting a strip of conventional maize crop around a Bt maize 

crop field. These measures are imposed on Bt maize producers. Our concern is that some specific 

separation levels may be impractical and or may not be proportional to the producer’s economic 

incentive to plant a Bt maize crop.  

To contribute to the understanding of this issue in Kenya, we characterize the spatial 

distribution of Open Pollinated Maize Varieties (OPVs) in the low tropics maize production zone 

in Kenya as defined by Hassan et al. (1998) and analyze the economic impacts of how this 

distribution may affect the implementation of different spatial isolation standards. Specifically, we 
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document the distribution and concentration of local maize cultivars across the region; determine 

the size of maize fields, and the distances between maize fields across the agricultural landscape. 

Using these measures, we estimate the economic costs of different ex ante separation standards at the 

farm level. 

 This study does not aim to provide optimal separation measures. Rather, we make specific 

reference to isolation standards in other countries (Table I) planting Bt maize and use these as our 

guideline for assessing the economic impact and feasibility of potential separation measures in 

Kenya. Results from this study will provide empirical evidence to enable prediction of GM 

contamination and provide evidence for the feasibility of implementing different isolation 

strategies and hence guide in formulation of clear policy frame work to regulate Bt maize 

cultivation 

The rest of the paper is structured as follows: after this introduction, section 2 briefly 

describes the importance of maize in Kenya and constraints to its production. The section ends 

with a brief description of the study area. In section 3, we derive a simple spatial conceptual model 

for analyzing the technical and economical feasibility of coexistence at the farm level. Section 4 

deals with the methodology of spatial sampling and data collection, and the analytic framework. In 

section 5, we present and discuss results. The paper ends with conclusions and recommendations. 

 

Background 

Maize is the basic staple food in Kenya. It provides about 42% of the dietary energy intake for 

about 90% of Kenyans (Karanja and Oketch 1990). It is also an important source of income for 

farm households in the maize surplus regions. Despite the great efforts being made to increase 

maize production, demand has occasionally outpaced supply. Average maize production in Kenya 

is estimated at 81kg/capita, while consumption is estimated at 103kg/per capita (Pingali, 2001).  
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The causes of low production have been documented as poor soil fertility, weeds 

(especially parasitic striga), stem borers (Wekesa et al. 2002) and frequent droughts. Participatory 

rural appraisal studies have indicated that farmers perceive stem borers (mainly Chilo partellus and 

Buseola fusca) as the major challenge (Wekesa et al. 2002 and De Groote 2004). Field crop losses 

from stem borer infestation nationally are estimated to average 13.5% of the maize crop. In the 

coastal region, pre-harvest losses from stem borers were estimated at 9% and 6.1% in the long and 

short rain seasons, respectively.  Measured maize crop yield in the low land tropical zone with 

stem borer infestation was estimated to be 1.36t/ha (De Groote 2004) compared to the potential 

yield of 1.5t/hac (Hassan, et al. 1998).  

These pests are most destructive in the larval stage. After hatching, the larvae tunnel inside 

maize stalks and become difficult to control. They cause structural damage to stems and increase 

the likelihood of falling. Pests may also attack maize ears, making the cob vulnerable to rot. 

Conventional chemical spraying, although effective, is expensive and labor intensive. It is also 

difficult to time these applications and predict levels of infestations. Genetic engineering (GE), on 

the other hand, offers a promising alternative. With GE, a single gene is inserted into maize and 

the maize produces the Bt pest control agent from within the plant itself (Eugene et al.2003). The 

larvae that penetrate the plant tissues are killed when they ingest the toxins.  

However biotechnology in Kenya is a sensitive issue and highly regulated. The IRMA project 

intends to study the environmental and regulatory systems and how transgenic varieties fit in the 

farming system. This calls for a critical assessment before these varieties are released into the 

agricultural system. It is this issue that the Kenyan regulatory authorities and IRMA hope to solve 

through scientific assessment. 
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Study Area  

The study area is the low tropics maize production region, covering the administrative districts of 

Kwale, Mombasa, Kilifi and Malindi. These districts form the active maize production area of the 

coastal region. Coastal low land agroecological zone is divided into five subzones characterized by 

climatic, topographic, soil and other environmental features influencing agricultural productivity 

and development potential (Jaetzold and Schimidt 1983). These sub zones are used in this study as 

the reference spatial strata and are denoted as coastal lowland (CL): CL1 CL2, CL3, CL4, CL5 and 

CL6. CL1 falls outside the active coastal maize production area. Compared with other 

agroecological zones in Kenya, coastal lowland land is of low potential maize production, 

characterized by yields of 1.5tons/hec. Together with the mid-altitude and dry transitional zones, 

cover about 29% of maize area in Kenya but produce only 11% of the country’s maize (Hassan, 

1998). 

 

Conceptual framework  

Landscape structures are important when assessing the possibilities for spatial coexistence of GM 

and non-GM agricultural systems. In lowland coastal Kenya, the agricultural landscape is 

relatively fragmented and typically consists of a mix of several crops and grassland. The greater 

the area of land occupied by non-maize activities, the less land devoted to maize and the greater 

the expected distance between maize fields.  

To analyze the economic feasibility of coexistence, the definition of the GM farmer’s value 

function is important in guiding the decision to adopt or not to adopt Bt maize. The value (V) of 

the option to plant a Bt maize crop can be defined as the expected value of the difference between 
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the profit (π) obtained from Bt maize cultivation as compared to the conventional crop after 

considering all costs C of the GM technology and coexistence.  

(1)                   V = E(π − C) 

Assuming that other costs are constant, the farmer is assumed to adopt the Bt crop when V is equal 

to or greater than zero. The expected costs related to coexistence are the costs of respecting ex-ante 

regulations. The value function for the GM farmer can then be formulated as:  

(2)              V = E[π (p, y)− C(s, reg) 

where p is the price of maize, y is the difference in the per-hectare yields of the GM and 

conventional maize crop, s is the size of the maize fields, C is cost of ex ante regulation and reg is 

the enforced GM legal standard for the country. The variable reg is interpreted as the minimum 

distance (d) between the GM crop and the maize field’s external limits. 

The above framework can be used to assess the impact of regulation standards on a 

farmer’s decision to adopt GM crops. One possibility is to evaluate the effect of the variable 

reg on the relevant farm size. The relevant farm size for the given problem is the dimension at 

which the value function is greater than or equal to zero. Since the farm is a single field, it is 

possible to determine and evaluate the relationship between the minimum adoption size (s) and the 

value V at a given mandatory separation distance. We can also fix s (take s as the average farm size 

across the agroecological zone), and then determine the feasibility of different separation distance 

standards, ie the isolation distance standard at which V is non zero and the proportion of farmers 

that may be affected at different separation levels.  

Methodology 

The general methodological framework is to first to determine the spatial distribution and 

concentration of local maize varieties using GIS arc view software and descriptive statistics and 
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then use this distribution to empirically determine the technical and economic feasibility of 

different separation standards.  

a) Spatial sampling design and data collection 

Data was collected basing on a geographical sampling design.  The design was based on 

the establishment of a left-right determination of points along an established line transect drawn 

perpendicular to a baseline (Figure I). First, a baseline was set out consisting of the coast line that 

falls into the lowland tropic maize zone as defined by Hassan et al. (1998); the length L of the 

baseline was estimated to be about 300km. On the baseline, 10 base points were selected at equal 

distance at an interval of 300/(n+1) with a randomized starting point where n is the number of 

desired transects. Starting on each base point, a secondary line 70km long was established 

perpendicular to the baseline. On each secondary line, 10 points were selected systematically at 

equal distance 70/n. The first point was randomly established from a probability space of between 

1 and 7 using Microsoft excel. With a base point randomly selected on the first segment, 9 more 

points were selected.  

The baseline was drawn by hand on a physical map. The starting point was drawn on the 

map and the coordinates derived from it. From there, the coordinates of the other (initial) points 

were calculated through extrapolation, based on the distance of one decimal degree, longitude and 

latitude. Each of the initial points was located in the field with a GPS. From the initial points, two-

km stretches of crop (maize or otherwise) were walked on a seven-km interval along each transect 

in the direction perpendicular to the baseline. At every point where the vegetation changed, at the 

border of a field, or where a field was left to fallow, a transition point was marked and 

georeferenced using a hand held GPS. At each point georeferenced on the segment, the following 
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additional information was collected: first and second crop depending on the percentage of the area 

occupied by a crop on a plot, and name of the varieties. 

 From the middle of the segment, a perpendicular shorter segment of one-km was walked, 

500m on either side starting at the SW point, up to the NE point, in the direction parallel to the 

base line. Since the main variation was expected perpendicular to the coast, more segments were 

selected in that direction relative to the distance, and the segments were also longer in that 

direction. Transforming GPS readings to actual ground distance was obtained on a degree-to-Km 

equivalence using arcView software by triangulation. The average length of maize field sections and 

in-between plots were calculated from the segments and transition points. This information was 

then used to approximate the mean distance between maize fields, the mean plot size for a given 

spatial orientation, and the concentration and distribution of maize plots across the region.  

The distance between maize fields was obtained by adding the distance from one maize 

field to the next field on the same segment. This is based on the assumption that the distance 

between maize fields on the same segment is equal to the shortest distance between the two fields. 

For simplest, maize fields were assumed to be square; otherwise fields were not oriented in a fully 

consistent way.  

b) Spatial distribution  

As indicated before, agro-ecological zones (AEZ) are used in this study as the reference 

spatial strata for analyzing the distribution and concentration of maize fields. The zones were 

indentified with the GPS sample points and located on the map using GIS arcview software. Mean 

sizes of maize fields and distances between maize fields per agroecological zone were computed as 

least square means. Comparison of the mean estimates of the size of maize fields and distances 

between maize fields across the zones were conducted using ANOVA. Since the design of the 
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sampling was not entirely balanced across the study area, the generalized linear model (GLM) 

procedure was used to estimate mean variations.  The GLM was estimated in SAS specifying AEZ 

as the class variable and the least square means calculated for size of maize fields and distances 

between maize fields as single effects. 

c) Costs of coexistence 

To determine the costs of coexistence, a simple field-to-field situation was considered (Figure 2). 

Consider two isolation scenarios: (i) the case of flexible minimum separation distance and (ii) the 

case of rigid buffer zone/strip. These measures are imposed on the Bt maize farmer. In case (i), we 

assume that any two maize fields will be separated by a certain distance that may compensate for 

the minimum isolation distance requirement, while in case (ii) we assume that a Bt maize field is 

closely surrounded by conventional maize variety fields. Under scenarios (i) and (ii), for squared 

fields of length a (m), the area of isolation is determined as in equation 1 and 2, respectively: 

(3)                   Ais = (d-x)a 

(4)                Ais bs = a2- (a-2d)2 

where Ais is area of isolation in the case of separation distance, Ais bs is area of isolation-buffer 

strip, d is the regulatory minimum isolation distance and x is existing distance between maize 

fields.  

Isolation area requirements mean that growers must forego benefits of the Bt crop on a 

portion of their planted field. The value of the crop lost in the isolation area is the cost of spatial 

coexistence. If the isolation area is planted with a conventional maize crop, crop loss for that area 

can be calculated as the difference between potential production in the absence of insect pests 

(potential yield from GM), and actual production. If the isolation area is not planted, crop loss is 

the yield that would have been obtained in that area had it been planted with Bt maize crop. 
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Economic evaluation is obtained by multiplying crop loss in the isolation area by the average 

maize prices: 

(5)                      Cc =  Ais (Yb - Yp) P 

where  Cc is the cost of coexistence, Yp is the yield of conventional maize varieties, Yb is the yield 

of GM maize crop or potential maize yield in the zone and P is the average market price of maize.  

The benefits from Bt technology (the value of the yield gain due to planting GM maize) 

will be lost if a farmer cannot meet the minimum requirements of isolation distance to allow for 

coexistence. At the regional level, the likely proportion of farmers who would be affected at 

different minimum isolation distance requirement is determined from a cumulative distribution 

function of the distances between maize fields. 

Results and discussion  

 Spatial distribution  

Results for the distribution and concentration of maize fields are presented in Table II and 

Table III. Table II contains descriptive statistics of the length of maize field sections and the 

proportional concentration of maize fields per zone. Most maize farming activity is in zones 

adjacent to the sea in CL3 and transitional zone CL3-4. There is sparse concentration of maize 

fields in zone CL4.  

Least square mean estimates of the sizes of maize fields and distances between them are 

included in table III. The estimated mean distance between maize fields was significant for each of 

the zones at 5% level. When the mean size of the distances between maize fields across the zones 

were compared, results indicated that there was no significant difference at the 5% level. Across 

the region, the estimated mean size of distances between maize fields was 129.2m. Results from 

this study indicate no clustering of maize fields was observed in individual zones even though it 
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was expected that zones with high cultivar of local maize varieties near the coast would have fields 

that are in close proximity with the trend towards sparse as you move off the coast to the grazing 

highland areas 

The estimated mean sizes of maize fields per sub zone are presented in table III. There was 

no significant difference between the mean sizes of maize fields across the zones. The size of 

maize fields across the region was estimated to be 1.73 hac. Relatively, sub zone CL5 has larger 

maize fields while CL4 has the smallest maize fields. Table III also includes the 95% confidence 

limits of the sizes of maize fields and distances between fields.  

Implications of spatial distribution on technical feasibility of coexistence 

To determine whether the available distance between maize fields is enough to allow for 

spatial isolation, we compare the mean distance between maize fields within the zone with the 

potential regulatory mandatory separation distance standard. The question at hand is what 

separation distance standards would be feasible under the current farming system. From the 

distribution of the distances between maize fields, the potential for coexistence is discerned if any 

neighboring farmland falls within the recommended separation distance.  

Using a cumulative density function (Figure 3) for the distribution of distances between 

maize fields, the proportion of fields across the region that would not comply with particular 

minimum separation distance standards is estimated. The distribution of the distances between 

maize fields is skewed to the right with a mean size of 129.2m. Figure 3 shows that at a separation 

distance of 50m, 100m and 150m, approximately 43%, 48% and 52%, respectively, of the maize 

farmers would not meet the minimum isolation distance requirement. For these farmers to meet the 

stipulated minimum separation distance, they would have to reduce their maize fields.  
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Economic feasibility of coexistence 

Within the region, the estimated mean size of maize fields is 1.7 hac which yields 0.59 t of 

maize above the yield of conventional maize varieties. At current maize prices ($225.75MT), this 

translates into USD 132.7 in benefits earned on average by Bt maize farmers in the region. These 

benefits are reduced if a maize field must be reduced to allow for coexistence. Assuming a border 

buffer strip, the potential costs of coexistence based on the mean size of maize fields that would 

result at different ex ante separation levels are included in Table IV. At a regulatory separation 

distance of 20m, the cost of isolation is $68.97 while at a regulatory separation distance of 50m, 

the cost is $125.56. At these regulatory separation levels, Bt maize benefits the grower $63.73 and 

$7.1 assuming border strip of 20m and 50m respectively.  

Cost estimates in table IV are based on the assumption that maize fields are adjacent to 

each other. From the distribution of the distances between maize fields, the mean separation 

distance between maize fields across the region is 129.2m. Where maize fields are separated, the 

cost of isolation is reduced due to isolation distance compensation. Table V gives a range of the 

potential costs incurred when maize fields are separated by a certain distance. From table V, on 

average across the region, the costs of isolation are approximately $38.98 when the minimum 

separation distance requirement is 150m. Under this scenario, Bt maize benefits the grower $93.72  

A particular feature of separation distances is that they will not affect all farmers equally 

because the distribution of maize fields is not constant. The costs of observing separation distances 

would only be incurred in areas where the distance between maize fields is less than the minimum 

isolation distance standard.  
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CONCLUSIONS 

The purpose of this study was to describe the spatial distribution and concentration of open 

pollinated maize varieties in lowland coastal Kenya and analyze how this distribution affects the 

economic and practical feasibility of the implementation of spatial coexistence measure.  From the 

analysis of the available data, the following conclusions are drawn:  

The distribution of the distances between maize fields is skewed to the right. Maize fields 

are in close proximity. Across the region, the estimated mean distance between maize fields was 

129.2m and the mean maize field size was 1.7 hac. The size of the distance between maize fields 

and the size of the maize fields across the region didn’t differ significantly by zone.  

The gross economic benefits from planting GM maize in the region at current maize prices 

were approximated to be USD132.7. These benefits are lost by potential GM farmers unable to 

plant GM maize due to respecting coexistence measures. The economic consequences of 

coexistence are related to the opportunity cost of not growing GM maize. At farm level, this cost 

amounts to the difference in economic performance between the GM and non-GM maize varieties. 

At the region level, the economic effects will depend on the landscape affected, the size of fields 

and mandatory minimum separation distance. At a minimum separation distance of 50m, 100m 

and 150m, approximately 43%, 48% and 52%, respectively, of the farmers would not meet the 

minimum isolation distance requirements.  

Separation distances hold the possibility of ensuring coexistence in the region, at the 

moment, there application is limited. They are difficult to implement in practice and are 

inconsistent with the regions agricultural heterogeneity of maize cultivation, i.e. they don’t affect 

all farmers equally. Rigid buffer strips on the other hand are inconsistent with the producers’ 
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economic incentive to grow Bt maize beyond separation levels of 50m given the average farm size 

in the region. A high level of communication between neighboring farmers will be necessary.  
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Tables and figures 

 

Table I. Isolation distances (m) proposed by EU states to 

ensure coexistence for GM and Conventional Maize 

EU member state 
        Isolation perimeter 
(m)  

Sweden (forage) 15 

Netherlands 25 

Spain, Ireland, France 50 

Czech Republic 70 

UK (forage) 80 

UK (grain) 110 

Germany 150 

Slovakia, Portugal, Belgium 200 

Hungary 400 

Luxembourg 800 

Source: Yann, D. et al. 2008.   
Adapted from the EC’s report on the Implementation of national  
measures on coexistence of GM crops with conventional crops                                                                                          
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Table II. Average length (m) of the maize field sections   

AEZ 
Potential for 

crop production 

Proportion 
number of 

Maize fields  
Length (m) of maize 

field sections 

      Mean 
Standard 
deviation 

CL2 
Medium, poor 

soils 
not sampled 

CL3 High 0.32 81.5 103.4 

CL 3-4 Medium 0.3 106.8 80.3 

CL4 Low to medium 0.12 123.7 241.9 

CL5 low 0.25 112.6 98.6 

CL6 Lowest    

CL=Coastal lowland zone 
    
 

Table III. The GLM Procedure, Least Square Means 

 

AEZ Distance between maize fields (m)  Size of Maize Field (hac) 

   95%CL for Mean   95%CL for Mean 

  Mean Std error Lower Upper Mean Std error Lower Upper 

CL2 Not Sampled      

CL3 112.1 19.0342 67.8 156.6 1.7 0.45999 0.60 2.80 

CL3,4 127.7 21.2289 87.7 167.6 1.8 0.51303 0.90 2.60 

CL4 158.0 42.9853 58.3 258.1 0.25 1.0388 0.08 0.42 

CL5 122.9 25.2418 84.8 161 2.2 0.61 0.94 3.50 

CL6 No maize fields found     

Mean Estimates are significant at 5%      
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Table IV. Cost of isolation using buffer strips/zones  

Cost of Isolation distance (m) 
 

Size of isolation 
area (hac) 

Maize crop lost 
t/hac isolation ($/hac) 

20.00 0.88 0.31 68.97 

25.00 1.05 0.36 82.30 

50.00 1.61 0.56 125.56 

100.00* - - - 

*Not feasible       Price of maize = $225.75/MT  
 

 

Table V. Cost of isolation, maize fields separated   

Cost of Distance 
between 
fields(m) 

Regulatory 
separation 

distance (m) 

Size of 
isolation 

area (hac) 

Maize crop lost 
in isolation area 

(t/hac) 
isolation 
($/hac) 

 20.00 0.00 0.00 0.00 

20.00 50.00 0.69 0.24 54.07 

 100.00 1.45 0.50 112.94 

 150.00 1.70 0.59 132.76 

50.00 100.00 1.05 0.36 82.30 

 150.00 1.61 0.56 125.56 

100.00 150.00 1.05 0.36 82.30 

129.20 150.00 0.50 0.17 38.98 
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Figures 

 
Figure 1. Agro ecological zones at the coast, with the sampling design 
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Figure 2: Spatial layout of fields 
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Figure 3: Cumulative distribution function for distance between maize fields 

 


