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Abstract  
 
Since the early 1990s, researchers have routinely used count data models (such as the 
Poisson and negative binomial) to estimate the demand for recreational activities. Along 
with the success and popularity of count data models in recreational demand analysis 
during the last decade, a number of shortcomings of standard count data models became 
obvious to researchers. This had led to the development of new and more sophisticated 
model specifications. Furthermore, semi-parametric and non-parametric approaches have 
also made their way into count data models.   
 
Despite these advances, however, one interesting issue has received little research 
attention in this area. This is related to the fast decay process of the dependent variable 
and the associated long tail. This phenomenon is observed quite frequently in recreational 
demand studies; most recreationists make one or two trips while a few of them make 
exceedingly large number of trips. This introduces an extreme form of overdispersion 
difficult to address in popular count data models. The major objective of this paper is to 
investigate the issues related to proper modelling of the fast decay process and the 
associated long tails in recreation demand analysis. For this purpose, we introduce two 
categories of alternative count data models. The first group includes four alternative 
count data models, each characterised by a single parameter while the second group 
includes one count data model characterised by two parameters. This paper demonstrates 
how these alternative models can be used to properly model the fast decay process and 
the associated long tail commonly observed in recreation demand analysis. The first four 
alternative count data models are based on an adaptation of the geometric, Borel, 
logarithmic and Yule probability distributions to count data models while the second 
group of models relied on the use of the generalised Poisson probability distribution.  
 
All these alternative count data models are empirically implemented using the maximum 
likelihood estimation procedure and applied to study the demand for moose hunting in 
Northern Ontario. Econometric results indicate that most of the alternative count data 
models proposed in this paper are able to capture the fast decay process characterising the 
number of moose hunting trips.  Overall they seem to perform as well as the conventional 
negative binomial model.and better than the Poisson specification. However further 
investigation of the econometric results reveal that the geometric and generalised Poisson 
model specifications fare better than the modified Borel and Yule regression models.  
 

 
Keywords  : fast decay process ; recreational demand; count data models ; Borel, Yule, 
logarithmic and generalised Poisson regression models. 
     



 1  

THE FAST DECAY PROCESS IN OUTDOOR RECREATIONAL ACTIVITIES 
AND THE USE OF ALTERNATIVE COUNT DATA MODELS 

  

INTRODUCTION  

To measure the nonmarket values of various recreational activities using the travel cost 

method, economists generally use annual demand for trips.  The data for individual 

recreationists are often collected from recreation sites where only the number of 

participants consuming positive quantities are represented.  Data for non-participants or 

for participants consuming zero quantities are not readily available. Since observed trips 

are nonnegative and occurs in integer quantities, the dependent variable is truncated and 

censored. Failure to address censoring and truncation issues in econometric analysis can 

lead to biased estimates.  

Early attempts to address these issues include estimation of continuous demand models 

with truncated error distributions (Shaw). Smith and Kaoru, and Hanneman estimated 

random utility models in which recreational choice is represented as purely discrete. 

Finally, Heckman and Bocksteal et al. made attempts to combine continuous and discrete 

models to address truncation and censoring. In particular, discrete models were used to 

predict the probability of participation while the continuous models were used to estimate 

the quantity demanded of the selected goods or services, given participation. Problems 

encountered in above attempts to address truncation and censoring along with the 

realization that demand for recreation trips can be modelled more parsimoniously as a 

non-negative integer valued variable, led researchers to employ count data models 

(Smith, Hellerstein and Mendelsohn). Since the early 1990s, researchers have routinely 
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used count data models such as the Poisson, negative binomial (denoted negbin hereafter) 

models to estimate the demand for recreational fishing  (Grogger and Carson, Woodward 

et al.), big game hunting (Creel and Loomis, 1990; Yen and Adamowicz, Offenbach and 

Goodwin, and Sarker and Surry, among others), water fowl hunting (Cooper, Cooper and 

Loomis), recreational boating (Ozuna and Gomez), canoeing (Hellerstein), hiking (Englin 

and Shonkwiler), whitewater rafting (Bowker et al.) and rock climbing (Shaw and Jakus).   

Along with the success and growing popularity of count data models in recreational 

demand analysis during the last decade, a number of their shortcomings became obvious 

to researchers. The major inadequacies relate to the problem of treating zeros, 

institutional constraints, visitation of multiple sites and over-dispersion adequately in 

count data models (Habb and McConnell; Creel and Loomis, 1992; and Hausman et al., 

1995).   

In a typical recreation demand application of the benchmark Poisson model, the 

estimated model underpredicts the true frequency of zeroes, overpredicts the true 

frequency of other small values and underpredicts the true frequency of large counts. A 

manifestation of this phenomenon is the existence of a variance larger than its mean. This 

is well recognized in the count data literature as overdispersion and is caused by some 

form of unobserved heterogeneity in population parameter. Three alternative approaches 

have been used to capture different forms of heterogeneity in the Poisson model by 

allowing the variance of the distribution to vary across counts. Following the parametric 

tradition, King, and Winkelmann and Zimmermann proposed generalized count data 

models developed by exploiting the properties of the Katz family of probability 
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distributions to tackle the problem of overdispersion. Note that these generalizations 

modify only the variance function but not the conditional mean. Recently, Cameron and 

Johansson proposed another parametric approach that simultaneously affects the 

specification of all conditional moments.  In particular, they consider generalisations of 

the Poisson count data model based on a squared polynomial series expansion which 

permits flexible modelling of conditional moments and allows us to escape the restrictive 

framework of commonly used parametric count data models. Developments in 

nonparametric and semi-parametric econometrics during the last decade have also made 

their way into count data models.  For example, Gurmu et al. proposed a specification in 

which the distribution of the variance is estimated non-parametrically using Laguerre 

series expansion estimators.  The Laguerre polynomials are useful for count data models 

because they are based on gamma random variables commonly used in parametric 

models.  Gurmu extends the methods proposed in Gurmu et al. to the case of hurdle count 

models.  Hurdle models are considered as refinements of models with truncation and 

censoring.  While parametric variants of hurdle count models have been very useful in 

empirical work for handling 'excess zero' problem, the treatment of unobserved 

heterogeneity has been problematic in this class of model.  Gurmu's analysis shows how 

one can incorporate additional functional form flexibility by using series expansions to 

model unobserved heterogeneity. The proposed method nests the Poisson and negative 

binomial hurdle models and permits non-Gamma distributions for unobservables.  

Finally, Cooper proposed two nonparametric approaches, the pool adjacent violators and 

the kernel smoothing, to travel cost analysis of recreation demand. 
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These developments in count data models are, indeed, exciting and have contributed to 

their growing popularity in recreation demand analysis. Despite these advances, however, 

one interesting issue has received little research attention. This is related to the fast decay 

process of the dependent variable and the associated long tail. This phenomenon is 

observed quite frequently in recreational demand studies; most recrationists make one or 

two trips while a few recreationists make exceedingly large number of trips1 This 

introduces an extreme form of overdispersion very difficult to address in popular count 

data models. The major objective of this paper is to investigate the issues related to 

proper modelling of the fast decay process and the associated long tails in recreation 

demand analysis.  Although nonparametric approach makes no precise assumptions about 

functional form and allows the data to 'speak for themselves', good estimates of a 

nonparametric model can be obtained only with a very large amount of data (Delgado and 

Robinson).  While semi-parametric approach provides a compromise between parametric 

and nonparametric approaches and can reduce the potential for misspecification, it 

requires complex and delicate modelling efforts and careful fitting to the data. Even with 

careful modelling, the interpretation of the results remains open (Creel).  Moreover, 

Cooper's empirical analysis of waterfowl hunting shows that with proper econometric 

specification the parametric approach generates more reliable results than the semi-

parametric or nonparametric approaches to recreation demand analysis.   

                                                                 
1 The fast decay phenomenon can be noted in the recreational data set used in the Ozuna and Gomez's 
study. The total number of trips for recreational boating range from zero to 88 while the frequency of trips 
(which totals 659) goes from a high 417 observations for zero trips to 68 and 38 respectively for one and 
two trips. A few receationists, however, took 8 or more boating trips.  As a result, the mean is equal to 2.34 
and its standard deviation is 6.29 
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In light of these observations and of the fact that the data sets available for recreation 

demand analysis are often small, we employ the parametric approach to address the fast 

decay process and the associated long tail of the distribution. To this end, we introduce 

three categories of alternative count data models. Included in the first category is a 

generalisation of the negative binomial regression model in which the variance is posited 

to be an increasing and non-linear function of its conditional mean. The second group 

includes four alternative count data models, each characterised by a single parameter.  

The final group includes three types of hybrid generalized Poisson models.  

 
The inadequacies of the conventional count data models to deal with the issues related to 

the fast decay process are highlighted in Section 2.  This section also focuses on 

appropriate generalisation of the negbin specifications to accommodate the fast decay 

process. The other alternative count data models capable of capturing the features of the 

fast decay process along with their basic properties are presented in Sections 3 and 4. 

Section 5 addresses various estimation issues and modelling questions (i.e., model 

performance and selection) encountered in the empirical implementation of these 

alternative count data models. Section 6 reports the results of an empirical application of 

proposed alternative count data models and discusses their policy implications. The final 

section of the paper summarizes the major findings of this study and offers some 

concluding remarks. 
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FAST DECAY PROCESS AND CONVENTIONAL COUNT DATA MODELS 
 
A common observation in recreation demand studies is that a vast majority of the 

participants make at least one or two trips and the number of recreational trips higher 

than two falls rapidly.  However, only a few overly enthusiastic recreationists make 

exceedingly large number of trips. Such idiosyncratic behaviour of recreationists 

generates trip data with some special features; the frequency of trips fall sharply after one 

or two trips but the distribution contains a long tail. This is called the fast decay process. 

As a result, the variance will be greater than the mean (over-dispersion) and is likely be 

an increasing (and possibly non-linear) function of its mean. We revisit the popular count 

data models - i.e. Poisson and the negbin models - and comment on their ability to 

capture the fast decay process and the associated over-dispersion. Then we examine a 

″generalized″ form of the negbin model that is capable of capturing the fast decay 

process.  

The most widely used single parameter count data model in recreational demand analysis 

is the Poisson distribution. The basic Poisson model assumes that Yi, the ith observation 

of the number of recreational trips follows a Poisson distribution given by 
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where  λ is the Poisson parameter to be estimated and  k = 0, 1, 2….n.  

A count data regression based on the Poisson distribution is specified by letting λ to vary 

over observations according to a specific function of a set of explanatory variables. The 

most commonly used specification for λ is λi = exp(X’iβ) where Xi is a matrix of 
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explanatory variables including a constant and β is a conformable vector of unknown 

parameters to be estimated. The basic Poisson model captures the discrete and 

nonnegative nature of the dependent variable and allows inference on the probability of 

trip occurrence. However, this specification also implies that the variance of the 

distribution is equal to its mean. This is a restrictive property not often met in reality.  In 

particular, when the dependent variable is characterised by a fast decay process, the so-

called equidispersion property of the Poisson distribution is flagrantly violated. If this is 

not recognised and accounted for in modelling demand for recreation, the estimated 

parameters will be biased and inconsistent (Grogger and Carson). The Poisson 

distribution admits the fast decay process only when the estimated value of the parameter 

λ is less than one. 

 An alternative to the Poisson model has been proposed about two decades ago by 

Hausman et al. (1984) to deal with over-dispersion in count data models. This alternative 

can be justified on the grounds that measurement errors and/or omission of explanatory 

variables could introduce additional heterogeneity and hence, over-dispersion in the data. 

Under these conditions, it can be assumed that the dependent variable is measured with a 

multiplicative error capturing unobserved heterogeneity and this error term is 

uncorrelated with the explanatory variables. If the error term, εi, follows a Gamma 

distribution, a two-parameter negative binomial model can be defined as: 
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The expected value and the variance of this distribution are λ and [λ+λ2/ν], respectively. 

The parameter ν is non-negative and called the precision parameter. Note also that the 

variance is a quadratic function of its mean. To make sure that the mean λ is non-

negative, the model is parameterised by assuming λi =exp(Xi
'β) where Xi is a vector of 

explanatory variables.  A wide range of model specifications can be generated by setting 

the parameter ν as a function of the explanatory variables, Xi, such that:  

[ ]m
i

m
i

i X )exp(
1)( 'β
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λ
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==   ∀  α > 0                            (3) 

where m is an arbitrary constant. By replacing νi in the variance by equation (3) results in 

a generalised form of the variance such as (Cameron and Trivedi, 1987):  

m
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The associated probability distribution is now a "generalised" density function given by 
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A closer look at expressions (4) and (5) reveals that different forms of overdispersion can 

be captured in this model depending on the values taken by the parameters m and α. 

Moreover, it provides a convenient formulation for nesting popular count data models 

through linking the conditional mean and variance of the dependent variable as discussed 

below. 

 
• A value of α  = 0 yields the Poisson model where variance and mean are equal. 
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• If m=1, Var(YiXi)=E[YiXi]•(1+α)=λi•(1+α). This specification is called 
negbin type I.  It assumes a constant relationship between conditional mean and 
variance. 
 
• When m = 0, the precision parameter νi is a constant and equals to 1/α. The 
variance of the distribution is equal to λ•(1+αλ). This specification is known as 
negbin type II. 
 
• A fast decay process is obtained when the parameter α assumes values greater 
than or equal to one.  
 
• When m ≠1 and/or ≠ 0, we have several types of specification to represent over-
dispersion. For example, when m < 1, the conditional variance increases with the 
mean at an increasing rate. On the other hand, when 1 < m < 2, the variance 
increases with the mean but at a decreasing rate. When m > 2, the derivative of 
Var(YiXi) with respect to the conditional mean becomes negative2 and the 
conditional variance becomes a decreasing function of  the mean E(YiXi).  
 

From the above, it can be seen that a fast decay process can be captured in a negbin 

binomial model with α ≥ 1 and m < 1. This explains why the negbin II specification 

provides a better representation of over-dispersion than negbin I and has been extensively 

used for modelling the demand for recreational activities.  However, the "generalized" 

version of this model presented in equation (5) is yet to receive wide application because 

its probability distribution and the associated likelihood function are both highly non-

linear with respect to the parameters.  Such nonlinearities make it difficult to obtain 

convergent estimates of parameters from this model (Saha and Dong). 

  
ALTERNATIVE COUNT DATA MODELS AND ONE-PARAMETER 
PROBABILITY DISTRIBUTIONS   

 
A set of four alternative count data models and their basic features are presented in this 

section.  Each model is characterized by one-parameter probability distribution and is 

suitable for representing the fast decay process and the long tail. These models are 
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presented in the same spirit as the original introduction of count data models in 

recreational demand analysis. 

The geometric distribution: 

The geometric probability distribution is characterised by the parameter λ assumed to be 

positive and can be adopted to analyse recreational demand (Mullahy). Its density 

function can be obtained as a special case of expression (2) because it is equivalent to the 

negbin probability distribution when the its precision parameter ν is equal to one. The 

mean and variance of this distribution are λ and λ•(1+λ), respectively (see Appendix 1). 

Since the variance is a quadratic function of the mean, the geometric distribution allows 

for over dispersion in data and can represent the fast decay process. The left-truncated 

geometric model can be specified as:  
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The geometric distribution is unimodal for k = 0. The model is parameterised as 

λi=exp(Xi'β), where Xi is the matrix of explanatory variables. 

Borel distribution:  

Another count data model capable of capturing the fast decay process is the Borel 

distribution (see Appendix 1). It was originally developed in the context of queuing 

theory3. The Borel distribution cannot be used in its original form to model the demand 

                                                                 
3 Conceptualised first by Borel and then extended by Tanner, this probability distribution described the 
distribution of the total number of customers served before a queue vanishes given a simple queue with 
random arrival times of customers  (at constant rate) and a constant time occupied in serving each customer  
(Johnson et al.). To the best of our knowledge, none has previously applied the Borel distribution in 
recreational demand analysis. 
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for recreational trips because it admits only positive values for the random variable (i.e., 

the number of trips) and thus excludes zeroes. This could be overcome by shifting the 

Borel distribution to the left so that it supports 0, 1, 2…(i.e. by obtaining Z = Y-1). The 

resulting probability distribution can be called a modified Borel distribution and defined 

as follows:   
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where the parameter λ is positive and smaller than one. The modified Borel probablity 

distribution is unimodal for k = 0.  The left-truncated modified Borel distribution is as 

follows:  
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The mean µ of this distribution is λ/(1-λ), while the variance is equal to λ/(1-λ)3. or to 

µ(1+µ)2 when expressed in terms of µ. The variance of the modified Borel distribution is 

then a polynomial of degree three of its mean and thus it can allow a richer kind of over-

dispersion and a better representation of the fast decay process than the geometric model. 

To model the recreational demand for trips, a modified Borel regression can be 

parameterised such that λ=1/(1+exp(-X'β)) where X is a matrix of explanatory variables.  

The logarithmic distribution: 

The third alternative is based on the logarithmic distribution developed by Fisher et al.. 

The density function and the basic characteristics of this distribution are presented in 

Appendix 1. The logarithmic distribution is unimodal for Y = 1 and it is the limiting 
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distribution of a left-truncated negative binomial distribution when the precision 

parameter v approaches 0 (or α tends to +∝). In its original form, this distribution also 

excludes zero values. Consequently, it cannot be used for modelling the demand for 

recreational activities. For the purpose of this paper, we use a random variable, Z = Y - 1, 

and develop a modified logarithmic distribution, which can be written as: 
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where, λ is the parameter of this distribution. It is positive but smaller than one.  

The mean of the modified logarithmic distribution, E(Z) is given by   
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while the variance is linked to its mean through the following non-linear relationship: 

E(Z)= [E(Z)+1]2*[-ln(1-λ)-1]                (11) 

Unlike its original form, the modified logarithmic distribution is characterised by a 

variance that is always greater than the mean regardless of the values taken by λ over the 

range [0, 1]. The left-truncated probability density for the modified logarithmic model 

can be defined as:  
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While the logarithmic distribution can handle both under- and over-dispersed data 

generating processes, the over-dispersion is satisfied only when the variance to mean 
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ratio is greater than unity. The later condition is readily satisfied by the modified 

logarithmic distribution.  

Assuming that the parameter of the distribution λ is a logistic function of the explanatory 

variables, the mean of the modified logarithmic distribution can be derived as  

[ ] 1
)'exp(1log
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The Yule distribution: 
 
The last one-parameter count data model suggested in this paper is based on the Yule 

distribution (see Appendix 1). Like the Borel and logarithmic probability distributions, 

the Yule distribution in its original form does not accommodate zero values and hence 

cannot be employed to analyse the demand for recreational trips. To overcome this 

problem, we shift the Yule distribution to the left so that it has support 0, 1, 2,..n (i.e. by 

obtaining Z = Y-1). The resulting probability distribution is a modified Yule distribution 

defined as  
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Where, Β(.) and Γ(.) are the Beta and Gamma functions, respectively and the parameter η 

is greater than one. The modified Yule distribution is unimodal for k = 0 (Johnson et al.). 

The mean is now equal to E(Z)=1/(η-1) while its variance is linked to its mean as 

follows: 
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It can be seen from equation (15) that the variance exists only if the mean is smaller than 

one4. This property of the modified Yule distribution can be viewed as a weakness in case 

of recreational demand analysis because the average number of trips is usually greater 

than 1. To model the recreational demand for trips, a modified Yule regression can be 

parameterised such that the distribution parameter5 η is equal to exp(-X'β)+1 where X is 

the matrix of explanatory variables. 

Although the Borel, logarithmic and Yule distributions have been modified to capture 

zero counts, these distributions can also be used in their original form to estimate the 

demand for recreational activities. If the recreation decisions can be viewed as an 

outcome of a two-stage decision making process where the consumer decides first 

whether or not to participate and then decides how many trips to take. Following Haab 

and McConnell, such a decision making process can be modelled as: 
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where wi is an indicator that represents the participation decision; wi is a function of the 

variables affecting the participation decision and its domain lies between zero and one. 

The density function g(k) can be approximated by a Borel, logarithmic or a Yule 

distribution. The expected value of Y is then (1-wi)E(Y). The above model can also be 

viewed as a Borel, logarithmic or Yule probability distribution with added zeroes and wi 

is a varying parameter of some of the explanatory variables. 

                                                                 
4 See also the Cauchy probability distribution for which the variance is not also defined. 
5 We implicitly assume that the parameter η is equal to the inverse of the logistic function of the 
explanatory variables. 
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Each of the four count data models presented above captures over-dispersion through a 

variance that is an increasing function of the mean. Note, however, the relationship 

between the mean values and the variance differs across the models. A simple numerical 

simulation was performed to obtain the probability distributions associated with each of 

the four count data models presented above. Figure 1 provides a pictorial view of the 

results on a linear scale while Table 2 reports some useful indicators defining the shape 

of each probability distribution. A number of interesting features emerge from Figure 1 

and Table 1. First, irrespective of the mean values, the modified Yule has the highest 

mode, followed by the modified Borel, modified logarithmic and geometric distributions.  

Second, the nature of the decay process is more pronounced in case of modified Borel, 

logarithmic and Yule distributions than in case of a geometric distribution.  

It is not difficult to implement the four count data models for studying recreational 

demand and it is also relatively easy to generate the estimates of consumers' surplus per 

trip for the geometric, modified Borel and modified Yule models.  Due to specific 

parameterisation of the regression models, each yields a semi-logarithmic demand 

function. The associated consumer surplus per trip is equal to -1/price coefficient. 

However, the derivation of the consumer surplus for the modified logarithmic count data  

model involves a more complicated procedure6. 

                                                                 
6 For this model, expression (14) defining the demand for recreational activities is quite complex at first 
sight because it involves a ratio of an exponential function over a logarithmic function. The computation of 
the consumer surplus, therefore, requires some special treatment using the LogIntegral  function.  For this 
purpose, we derive the following expression of consumer surplus for this distribution 
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THE GENERALISED POISSON DISTRIBUTION AS AN ALTERNATIVE 
COUNT: 
  
An assumption implicit in most count data analysis is that the occurrence of one count is 

independent of the occurrence of another count.  While this may be a reasonable 

assumption for modelling many physical processes, it is not so in social sciences. For 

example, the independent occurrence assumption may not be plausible when one is 

dealing with the number of visits to a doctor (Pohlmeier and Ulrich) or the number of 

trips to a recreation site (Creel and Loomis, 1990; Grogger and Carson). Since the 

generalised Poisson distribution allows for the probability of an event to depend on the 

number of events already occurred (Consul and Shoukri), this distribution may be 

particularly useful in recreational demand analysis. Introduced by Consul and Jain 

(1973a, 1973b), the generalised Poisson distribution has recently been used in a 

regression context by Consul and Famoye, 1992; Famoye and Santos Silva. We 

concentrate on only those aspects of the generalised Poisson (GP) distribution relevant 

for recreational demand analysis. 

Following Consul, the generalised Poisson distribution can be defined as: 

Prob(Y = k; k = 0, 1, 2…..n)   =  
[ ]

 
whenmyfor
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6(continued) where Pch is the choke price defined as the price at which the quantity demanded approaches 
zero. LogIntegral is defined as follows:  

∫= z

tLog
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zlLogIntegra
0 )(

)(  

The consumer surplus per trip is then obtained by dividing CS(Pi) by the expected number of trips. 
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where, λ > 0, max (-1, -λ/m) < δ  < 1 and m ≥ 4 is the largest positive integer for which λ 

+ δ m > 0 when δ is negative. The mean and variance of the generalised Poisson 

distribution are µ = E(Y) = λ/(1-δ) and σ2  = V(Y) = λ/(1-δ )3 = µ/(1-δ )2, respectively. 

Note that the variance is greater than, equal to, or less than the mean if δ is positive, zero 

or negative. Moreover, when δ is positive, both the mean and variance increase as the 

value of δ increases.  However, the variance increases faster than the mean. This property 

is very useful in recreational demand studies where the dependent variable is 

characterised by over-dispersion. The GP distribution also admits under-dispersion and 

equidispersion. 

Using the fact that µ = λ/(1-δ) = λρ, it is also possible to express the GP distribution as a 

function if its mean. The resulting distribution is as follows: 
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where, ρ ≥ max (1/2, 1-µ/4) and m is the largest positive integer for which µ+m (ρ-1) > 0 

when ρ is less than one. The variance is given by σ2 = V(Y) = ρ2•µ. When ρ = 1, the GP 

is equivalent to the Poisson model while the modified Borel probability distribution is 

obtained if ρ = 1/(1-λ) or if  ρ = (1+µ). Any values of ρ > 1 represents count data process 

with over-dispersion and 0.5 ≤ ρ < 1 characterises count data with under-dispersion when 

µ > 2. Note that, the variance is proportional to its mean, thus implying a constant 
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variance to mean ratio (like in the case of negbin I). This is not a desirable property for a 

model to capture the fast decay process. 

To gain additional insights about the ability of the GP model to capture over-dispersion 

associated with the fast decay process, a simulation exercise was performed for the one-

parameter GP probability distribution using different values of the mean, µ and of the 

parameter ρ ≥ 1. Figure 2 presents a graphical representation of these results. As 

expected, the unimodality of the GPD is preserved for a value of ρ equal to one and a 

mean, µ ≤ 0.5.  This result is not surprising because this case corresponds to the standard 

Poisson distribution.  Secondly, the graphical results show that the L-shaped distribution 

is well represented for µ =0.5 and ρ ≥1. It appears from this simulation exercise that the 

GP Poisson distribution admits a fast decay process only under some restrictive 

conditions7. 

To overcome this problem, a restricted version of the generalised Poisson (denoted RGP 

hereafter) distribution can be formulated by making the parameter δ proportional to λ, 

such that δ = αλ. Substituting this expression for δ in expression (17) yields the 

following RGP distribution:  

[ ]
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7 As demonstrated by Consul and Famoye (1986), the GP distribution is unimodal for all values of ρ  at k=0 
if µ < ρ  exp[(ρ-1)/ρ]. This condition is satisfied in terms of the original parameters of the GP distributon if 
λ < exp(-δ). 
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The domain of the parameter α is given by max (-λ-1, -1/4) ≤ α  ≤ λ-1 (Famoye). If α = 0, 

the RGP distribution reduces to the Poisson distribution while for α = 1 and λ < 1, we get 

a modified Borel distribution.  The mean and variance associated with the RGP 

distribution are: µ = E(Y)= λ/(1-αλ) and σ2= V (Y)= λ/(1-αλ)3 = µ•[1 + α µ]2  

respectively. 

An alternative specification of the RGP distribution can also be obtained if the parameter 

λ is expressed as a function of the mean (µ). This yields a one-parameter probability 

distribution such as:  
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where αµ
µ

+
=

1
A  .  

Over-dispersion is obtained when α > 0. It is interesting to note that the variance of this 

model is a third degree polynomial function of its mean. This permits a richer type of 

over-dispersion and is likely to model the fast decay process efficiently. Figure 3 

provides a graphical representation of the one-parameter RGP distribution for a wide 

range of values of the mean µ and the parameterα. Clearly, we obtain well-defined L-

shaped distribution regardless of the values of the mean, µ and the parameter α. 

Therefore, the restricted generalised Poisson distribution can represent the fast decay 

process.  

If we assume that the mean, µ is an exponential function of the explanatory variables so 

that µi =exp(Xi'β), then it is possible to define generalised Poisson regression models 
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which can be estimated either in restricted or unrestricted forms (Consul and Famoye, 

1992; Famoye). Santos Silva has shown that the two (restricted and unrestricted) forms of 

the GP regression model can be nested through a hybrid generalised Poisson model. To 

do so, the parameter α is linked to the covariates Xi, so that αi = αi(Xi, θ, β)= θ0 exp[θ1 

(X′β)] and that µi =exp(Xi'β). Incorporating these expressions in equation (20), a hybrid 

generalised Poisson (denoted HGPI) regression model can be defined as: 

[ ] [ ] [ ]
!

)),,(1(),,(exp),,(1),,(),...1,0;(Pr
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where A(X,β, θ) is now equal to
( )
( )( )[ ]βθθ
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A closer look at expression (21) reveals that, depending upon the form taken by the 

function α(X,θ,β), the following model specifications can be obtained as special cases.  

• When αi(Xi, θ, β) is a constant (when θ1 = 0), one obtains the restricted GP 
model(denoted HGPII)8. In addition, if θ0 =1, the model is reduced to the modified 
Borel regression model.  
 
• If αi(Xi, θ, β) is proportional to exp(-Xi'β) (which is obtained when θ1 = -1), we 
obtain the GP regression model(denoted HGPIII)9. 
  
• Finally, if αi(Xi, θ, β) is equal to zero (which is obtained when θ0 = 0), we obtain 
the standard Poisson regression model. 
 

A left- truncated HGP model could also be defined by adjusting expression (21) with the 

prob(Yi > 0) setting equal to 1-exp[-A(X,β, θ)]. The resulting left- truncated HGP model 

is: 

[ ] [ ] [ ]
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8 θ0 is then equal to the parameter α in expression (20). 
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HGP demand models for recreational activities are obtained through µ = exp(X’β) with 

the covariates X including price (i.e., travel costs). It is also interesting to note that the 

consumer surplus per trip obtained from this HGP model is equal to -1/(price coefficient). 

This is a major advantage of the HGP models. 

 
ESTIMATION ISSUES AND MODEL EVALUATION 
 
This section deals with two important aspects of practical application of alternative count 

data models. First, how to obtain coefficient estimates from each model that are 

consistent and unique. Second, how to evaluate the performance of one model relative to 

others.  

The first issue is related to whether or not a closed form and well-behaved (log) 

likelihood function can be obtained for each model. These in turn, depend on if the log 

likelihood function is globally optimal for each model.  A cursory look at the 

mathematical expressions of the log likelihood functions of alternative count data models 

presented in appendix 2 seem to suggest that obtaining globally optimum parameter 

estimates for some models may not be possible because their log likelihood functions are 

highly non-linear. However, this impression must be tempered because most of these 

models have been studied thoroughly by statisticians. For example, Consul and Famoye 

(1992), Famoye and Santo da Silva addressed these estimation issues for the unrestricted 

and restricted versions of the generalised Poisson model and found that the maximum 

likelihood estimation (ML) estimation procedure yields efficient parameter estimates. 

The results also hold for the modified Borel regression specification because it is nested 

                                                                                                                                                                                                 
9 In this case, θ0 is equal to ρ-1 and replacing it in (21) yields expression (18). 
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in the generalized Poisson model. The ML estimation of the geometric model is also 

straightforward since it is nested in negbin model for which the ML estimator has been 

extensively studied in the econometric literature10 To obtain global convergence of the 

log likelihood function of the modified logarithmic regression models we relied on 

Johnson et al. (p. 294). For the modified Yule regression model, the first and second 

derivatives of the log likelihood function with respect to β produced highly non-linear 

expressions that required to be solved through the Newton-Raphson gradient algorithm. 

Once the ML estimates of the parameters are obtained, negative inverse of the matrix of 

second derivatives of the log likelihood function with respect to the parameters can be 

used to estimate the asymptotic variance-covariance matrix of the parameters. These 

estimates can be used to form Wald (W) or likelihood ratio (LR) tests for testing relevant 

                                                                 
10 As pointed out earlier; due to high nonlinearities, estimating the ″generalised″ negbin model is frown 
with difficulties. However, adopting the iterative procedure suggested by Dong and Saha eased somewhat 
this task, allowing to obtain global convergence of the underlying maximum likelihood function and to 
generate ML estimates of parameters associated with the ″generalised″ negbin model. This procedure 
consists of the following steps (Dong and Saha, p. 426):  
 
i) obtain estimated values of the parameters α and m in expressions  (4) and (5) by running the following 
equation using non linear least squares :  
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where )ˆ'exp(ˆ βλ X= with β̂  being the estimate of  β  from the Poisson model, yi is the observed number of 
trips while ui is the error term. The estimates of α and m are used as starting values in maximising the log 
likelihood function of the″generalised″ negbin model .   
ii)holding the parameters α and m at their estimated values, optimise the log likelihood function of 
the″generalised″ negbin model with respect to the parameters β  and obtain estimated  values of  β , denoted 

by β̂ . 

iii) using β̂ , re-estimate expression (4) generating new values for α and m. Use these new estimates of α 

and m and  β̂ as starting values to maximise the log likelihood function of the″generalised″ negbin model . 
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hypotheses. Econometric implementation of all the count data models has been conducted 

using the TSP program (Hall and Cummins). 

The performance of all count data models proposed in this paper is evaluated using 

several indicators ranging from pseudo-R2 to information-based statistics. Cameron and 

Trivedi (1997) provide a good overview of such indicators. The choice of indicators in 

this research has been influenced by two considerations; how each count data model fit 

individual observations (frequencies) and more importantly, how well each model the fast 

decay process.  The overall goodness of fit of each model has been evaluated using the 

Chi-square test as well pseudo-R2 . The Chi-square goodness-of-fit test is given by  

( )
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ˆ

ˆ(2
2

χ               (23)    

 
where J is the number of cells, n is the number of  observations, jp  is the observed 

relative frequency, and jp̂ is the estimated relative frequency (probability) of cell j. The 

pseudo-R2 we use is the 2
LRTR  measure proposed by Maddala (1983) and Magee (1990) 

and defined as follows:  

)/exp(12 nLRTRLRT −−=               (24) 

where, n is the total number of observations and LRT is the likelihood ratio test statistic 

for the joint significance of slope parameters. This measure takes values between 0 and 1 

and is invariant to units of measurement. It becomes larger as the goodness of fit of the 

model improves.  It is also a more general goodness-of-fit measure in the sense that 2
LRTR  

is equal to 2
OLSR  in a linear model (Cameron and Windmeijer, 1997). 
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AN EMPIRICAL APPLICATION OF ALTERNATIVE COUNT DATA MODELS: 

THE DEMAND FOR MOOSE HUNTING IN NORTHERN ONTARIO 

 
The data used in the illustrative applications of various count data models discussed 

earlier in this paper relate to the 1992 moose hunting season at the wildlife management 

Unit (WMU) #21A located in Northern Ontario. It is a popular WMU for moose hunting 

because of its remoteness and moose population density.  During the 1992 season some 

1286 hunters received moose validation tags to hunt an adult moose at this site and about 

99% of these hunters were from Ontario11. Most of the data came from the Ontario 

Ministry of Natural Resources. Data include the number of moose hunting trips made by 

each hunter to the WMU #21A and the travel cost per hunter (which includes vehicle 

related costs, a licence fee of $26.50 per hunter per season, equipment costs, costs of food 

and lodging and time cost). The income variable consists of 1991 average employment 

income and other income at the Enumeration Area (EA) level.  This information is based 

on 1991 census data and was adjusted to 1992 level using consumer price index (CPI). 

Further details on this data set can be found in Appendix 3. 

The general specification of the travel cost model adopted for the ith moose hunter is:  

Yi  =  exp (β0 + β1 COSTi + β2 INCOMEi)            (25) 

where the βi’s are parameters to estimate,  COST and INCOME represent respectively the 

travel cost (price) and income of moose hunter i. It is expected that β1 < 0 and  β2 >0.  

The dependent variable is the number of moose hunting trips taken to WMU21A and is 

                                                                 
11 About 200 hunters gave information on the number of hunting trips made to the WMU21A, duration of 
each trip, number of hunters in each group and the number of moose hunted.  Several inconsistent 
responses were dropped annd the final sample includes 194 hunters 
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truncated at zero. During the 1992 hunting season, hunters in Ontario made 2.35 moose 

hunting trips on an average to the WMU21A.  Note that the data exhibit a quick decay 

process; about 78% of the sample hunters made only one trip during this season and the 

number of trips higher than one falls rapidly. Hence, the ratios of the frequency of one 

trip over two and three trips are equal to 15.2 and 50.68, respectively. However, a few 

hunters made more than 10 trips to this hunting site.  Moreover, the variance of the 

dependent variable is 12.89. Clearly, the equidispersion property of the Poisson 

distribution is not satisfied.  

The results for recreational moose hunting trips in Ontario for all alternative left-

truncated count data models proposed in this paper are presented in Table 2. In addition, 

Poisson and negbin II models have been estimated for comparative purposes. The 

standard errors of the coefficients were estimated using the Eicker-White procedure. This 

procedure generates heteroskedasticity-consistent variance-covariance matrix when the 

heteroskedasticity is of unknown form (White). 

The econometric results indicate that in terms of explanatory power and/or goodness of 

fit all count data models proposed in this paper perform at least as well as the negbin II 

model. Thus, based on estimated values of 2
LRTR , the modified Borel model provides the 

best fit followed by the geometric and the two negative binomial models. The other 

alternative count data models have 2
LRTR  ranging from 0.64 for the modified Yule model 

to 0.77 for HGPI model.  

Based on the Chi-squared goodness-of-fit test, the null hypothesis that the demand for 

moose hunting in northern Ontario is represented by Borel and Yule regression models is 
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rejected at 5% and 10% levels of error probability (Table 3). The null hypothesis is also 

rejected for the Poisson specification.  On the other hand, test results confirm that two 

negative binomial, geometric and modified logarithmic specifications fit the data well.  

Only the HGPI and HGPII specifications could not be rejected at 10% level of 

significance. 

The estimated price coefficients (β1) have expected signs and are statistically significant 

in all cases. However, there is no uniformity in terms of its magnitude across alternative 

count data models. While the ″generalised″ negative binomial, geometric, modified 

logarithmic, HGPI and HGPII models have an estimated price coefficient similar in value 

to the one estimated for the negbin II specification, the estimated price coefficients are 

very different for the three remaining alternative count data models (Modified Borel, 

modified Yule and HGPIII). The estimated income coefficients (β2) are not statistically 

significant at a 5% level of significance regardless of model specification and two of 

them even have the wrong signs.  

An attractive feature of alternative count data models is that some of them can be nested 

with the others enabling us to test them using a LR ratio test or Wald test. A Wald test 

applied to the negbin II model shows that the estimated precision parameter (α) is not 

significantly different form one, indicating that the geometric and negbin II specifications 

yield similar results for this sample. Similarly, a Wald and/or LR ratio tests applied to the 

″generalised″ negbin model reveals that the estimated parameters m and α are not 

significantly different from zero and one, respectively. This confirms the former result 

that we can accept a geometric model specification at the expense of the negbin II or its 
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″generalised″ version.  LR tests applied to the HGP and Poisson models indicate that we 

can safely reject the HGPIII and Poisson specifications. On the other hand, we cannot 

reject the null hypothesis of an admissible restricted HGPII model (corresponding to the 

case where θ1  = -1). Similarly, we cannot accept the null hypothesis that the restrictive 

HGPII specification is a modified Borel model. The results of these tests suggest that the 

geometric and the restricted generalised Poisson regression (HGPII) models are viable 

alternatives for capturing the fast decay process in the demand for moose hunting in 

Northern Ontario. 

Finally, the reliability of alternative count data models can also be judged by looking at 

the estimated benefits they generate. For this purpose, estimated consumer surplus (CS) 

per moose hunting trip along with their standard errors and 95% confidence intervals 

computed for left-truncated count data models and reported in Table 4. The results 

indicate that for five out of eight alternative count data models the estimated consumer 

surplus vary from $CDN 168 to $CDN 203 per moose hunting trip.  These values fall 

within the 95% confidence interval [$CDN 156  $CDN 216] obtained for the negbin II 

model.  Finally, the estimated consumer surplus values are smaller for the modified 

logarithmic, modified Borel and modified Yule specifications and are less reliable. 

CONCLUDING REMARKS: 

Our analysis in this paper was motivated by the fact that a vast majority of the 

participants in many recreational activities make at least one or two trips.  While the 

number of trips higher than two fall rapidly, a few overly enthusiastic recreationists make 

exceedingly large number of trips. Such behaviour of recreationists generates trip data 
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with some special features; the frequency of trips fall sharply after one or two trips but 

the distribution contain a long tail. Despite considerable progress in count data modelling 

of recreational demand activities during past two decades, this issue has eluded 

researchers. The objectives of this paper were to address the issue of fast decay process in 

recreational demand activities more formally and demonstrate how it can be represented 

through appropriate count data models. 

Although recent advances in semi- and nonparametric approaches could have been used 

to capture this phenomenon, we decided to investigate the issue through the parametric 

approach. Accordingly, we proposed a set of eight alternative count data models that can 

be used with some modifications to capture the fast decay process. Included in this set a 

generalisation of the negbin I and II regression models (in which the variance is an 

increasing and non-linear function of its conditional mean), geometric, Borel, logarithmic 

and Yule probability distributions and three different versions of the generalised Poisson 

distribution.  The characteristics of the probability distributions and the log likelihood 

functions for each of these count data models have been studied and their ability to 

capture the fast decay process investigated through some simulation exercises.  The 

results suggest that the alternative count data models mimic the fast decay process much 

better than conventional count data models. 

Finally, an illustrative application of alternative count data models proposed in this paper 

is presented. The empirical application concentrates on the demand for moose hunting 

trips in Northern Ontario. The results suggest a satisfactory performance of five out of 

eight alternative count data models (including the ″generalised″ negbin, geometric and 
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the three generalised Poisson specifications).  The estimated benefits (measured by 

consumer surplus per hunting trip) obtained from these specifications are more reliable 

and can be compared to those obtained from the standard negative binomial model. 

A number of directions for future research in this area can be suggested. First, it would be 

beneficial to apply these alternative count data models to other situations dealing with 

other recreational activities. Second, the performance of these models can be compared 

and contrasted to those of semi-parametric and non-parametric models.  Finally, research 

is needed to develop a generalised regression framework that could allow nesting of all 

alternative count data models along with the traditional count data models (Famoye, and 

Kaufman Jr.).  
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Appendix 1: Characteristics of the alternative probability distributions used in this study  
Designation Range of  

support values 
Probability distribution Expectation Variance Specific remarks 

Geometric 0, 1, 2, 3, …n )1()1()(Pr +−+== kkkYob λλ
  

λ 
 
 

λ(1+λ) 
 

bV(Y) =E(Y)*[1+E(Y)] 

 
Borel 

 

 
1,2,3,…….n 

)!1(
)(Pr

12

−
==

−−−

k
ek

kYob
kkk λλ                       

1/(1-λ) 
 

λ/(1-λ)3 
i) 0 < λ  < 1 
ii)V(Y)=[E(Y)]2*[E(Y)-1] 

 
Logarithmic 
 

 
1,2,3,…….n 

)1ln(
)(Pr

λ
λ
−

−
==

k
kYob

k
                       

 

)1ln()1( λλ
λ

−−
−  

22 ))1(ln()1(

))1(ln(

λλ

λλλ

−−

+−−
 i)0 < λ  < 1 

ii) 



 −

−
= )(

1
1

*)()( YEYEYV
λ

 

Yule 
 

 1,2,3,…….n 

 
)1(
)1()(

)1,()(Pr

++Γ
+ΓΓ

=

+Β==

η
ηη

ηη

k
k
kkYob

                         

 
 

 

1−η
η  

 

)2()1( 2

2

−− ηη
η  

i)η  > 1 for the existence  of 
the mean  
ii)η > 2  for the existence     
of the  variance 

iii) [ ] [ ]
)(2

1)()(
)(

2

YE
YEYE

YV
−

−
=  

Generalised 
Poisson  

 
0, 1, 2, 3, …n 

k!
e)k+(

 = k)=Prob(Y
k)+-(-1k δλδλλ

 
δ

λ
-1

 
)-(1 3δ

λ
 

 

i) ? > 0 and *d* < 1 
ii)δ = 0,  Poisson  
iii)? = d < 1, Modifed Borel   

Notes:  Β(η, k) and Γ(k) designates the Beta and Gamma functions, respectively. They are linked to each other by the following 
relationship: Β(η, k)  = Γ(η)Γ(k)/Γ(η+k). 
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Appendix  2: Log Likelihood  functions  associated with the alternative count data models  proposed  in this paper 
Designation Untruncated  cases  Left-truncated cases  Parameters of the 

distributions 
 
Geometric 
 
 

{ }∑
=

++−
n

i
ii kk

1
)1ln()1()ln( λλ  

 

{ }∑
=

+−−
n

i
ii kk

1
)1ln()ln()1( λλ  

 
λi= exp(Xi'β) 
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∑
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++−n

i i

i

kk
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1 )!ln()1(
)ln()1ln()1(
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( ) ( ) ( )
( ) ( ) ( )[ ]∑
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i ii

i
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kkk

1 exp1ln!ln1
ln1ln1
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( )
( )β

β
λ

'

'

exp1
exp

i

i
i X

X
+

=  
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Logarithmic 
 

∑
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+−+n

i i

i kk

1 ))1ln(ln(

)1ln()ln()1(

λ
λ

 

 

[ ][ ]{ }∑
=

+−−−+−+
n

i
iikkk

1
)1(lnln)1ln()ln()1( λλ  
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( )β

β
λ

'

'

exp1
exp

i

i
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X
+
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Modified  
Yule 
 

( ) ( )[ ]
[ ] ( )[ ]∑

= 



++Γ−++

+Γ+n

i ii

i

k

k

2ln1ln

1lnln

ηη

η

 
 

{ [ ] [ ]
[ ] }
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=

)1ln()2(ln

)1(ln)1(ln)ln(
1
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n

i
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k

k

ηη

ηη
 

 

( )
( )β

β
η

'

'

exp
exp1

i

i
i X

X+
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generalised 
Poisson  

( ) ( )
( ) ( ) 
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.

1 kkA

kkAk

ii

ii
n

i α
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+−+∑
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n

i
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kkAk

µα

α

exp(1ln!ln1

1ln)1()ln(
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       µi= exp(Xi'β) 
 

     αi =θ0*exp[θ1(Xi'β)]] 
 

( )
( )( )[ ]βθθ

β
'
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1exp1
exp

i

i
i X

X
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Note:  Γ(k) designates the Gamma function.                                    
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Appendix 3: The frequency distribution of the number of moose hunting trips 
Number of trips Frequency 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
13 
15 
20 

Total 
Mean 

Standard deviation 
Mode 

Median 
Ratio I 
Ratio II 

152 
10 
3 
6 
4 
2 
1 
0 
4 
1 
5 
4 
3 
3 

194 
2.35 
12.89 

                       152 
1 

15.2 
50.68 

Notes:   Ratio I is defined as the ratio of the frequeny of one trip over the frequency of 
two trips while Ration II is expressed as the ration of the frequency of one trip over 
the frequency of three trips. 
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Table 1:  On some characteristics of the one parameter probability distributions    

  
Geometric 

Modified  
Borel  

Modified 
logarithmic 

Modified  
Yule 

  Mode 
Means   0.5 

1 
2 
4 
8 

0.6667 
0.5000 
0.3333 
0.2000 
0.1111 

0.71653 
0.60653 
0.53134 
0.44933 
0.41111 

0.70191 
0.56934 
0.44700 
0.34852 
0.27892 

0.75000 
0.66667 
0.60000 
0.55556 
0.52941 

 Ratio I =  probability of zero count/ probability of one count  
Means   0.5 

1 
2 
4 
8 

3.00000 
2.00000 
1.50000 
1.25000 
1.12506 

4.18684 
3.29744 
2.92160 
2.78193 
2.73648 

3.77301 
2.79591 
2.35018 
2.15035 
2.06396 

5.00000 
4.00000 
3.50000 
3.25000 
3.12500 

 Ratio II = probability of zero count/ probability of two counts  
Means   0.5 

1 
2 
4 
8 

 9.00000 
4.00000 
2.25000 
1.56250 
1.26562 

 11.68640 
7.24875 
5.69050 
5.15941 
4.99221 

10.67670 
5.86284 
4.14250 
3.46801 
3.19495 

15.0000 
10.0000 
7.87500 
6.90625 
6.44531 
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Table 2 : Econometric results with truncated sample 
 
 

Conventional count 
data models 

 Alternative count data models 

  
 

  
 

    Hybrid generalised Poisson   
 
Parameters 
 

 
Poisson 

Negative 
binomial 

II 

 
Geometric 

Modified 
Logarith. 

Modified 
Borel 

Modified 
Yule 

Generalised 
negative 
binomial 

 
HGPI 

 

 
HGPII 

 
HGPIII 

β0 
 
 
β1 
  
 
β2 
 
 
ρ 
 
 
 
θ0 
 
 
θ1 
 
 
α 
 
 
m  
 

   3.507 
(10.300) 

 
-0.416 

(15.488) 
 

-0.127 
 (1.691) 

 
 

 
 
 
 

2.710 
(3.409) 

 
-0.554 

(11.609) 
 

0.137 
(0.660) 

 
 
 
 
 
 
 
 
 
 
 

1.366 
 (1.714) 
 

2.845 
(4.058) 

 
-0.533 
 (9.454) 

 
0.101 

(0.624) 
 
 
 

 

3.618  
(3.783) 

 
-0.674 
 (9.732) 

 
0.316 

(1.412) 
 

2.984 
(1.951) 

 
-0.861 
(3.514) 

 
0.646 

(1.772) 
 

 

5.103 
(1.690) 

 
-1.341 
(3.661) 

 
1.149 

(1.548) 
 

2.858 
(2.892) 

 
-0.585 

(12.108) 
 

0.116 
(0.516) 

 
  
 
 
 
 
 
 
 
 
 

1.571 
(1.590) 

 
0.106 

(0.999) 

3.011 
(3.359) 

 
-0.596 
(6.068) 

 
0.129 

(0.591) 
 
 
 
 
 

0.499 
(2.070) 

 
-0.223 
(1.226) 

 
 

2.720 
(3.515) 

 
-0.551 
(6.801) 

 
0.204 

(0.959) 
 
 
 
 
 

0.344 
(2.460) 

 
 

3.794 
(7.456) 

 
-0.493 
(9.435) 

 
-0.175 
(1.601) 

 
1.184 

(1.792) 

LogL 
 

2
LRTR  

 

-191.52 
 

  0.956 
 

-152.51 
 

0.782 
 

-152.68 
 

0.803 
 

-152.76 
 

0.740 
 

-155.56 
 

0.889 
 

-154.61 
 

0.640 
 

-152.39 
 

0.773 
 

-153.13 
 

0.768 
 

-153.75 
 

0.766 
 

-185.40 
 

0.676 
 The figures in parentheses are “t” values.  LogL designates the value of the likelihood function. 2

LRTR is Maddala’s pseudo-R2. 
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Table 3:  Recreational moose hunting trips in Ontario: actual and predicted numbers  using model specifications with left 
truncated sample 

Predicted values 
Conventional 
count data 

models  

Alternative count data models 

Hybrid Generalised 
Poisson (HGP) 

Counts Actual 
 values 

 
 

Poisso
n 

 
Negbin  

II 

 
 

Geom. 

 
Mod. 
log.. 

 
Mod. 
Borel 

 
Mod. 
Yule. 

 
Gen. 

negbin. HGPI HGPII HGPIII 

    Pearson χ2 Statistic 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
>12 

 
Total 

152 
10 
3 
6 
4 
2 
1 
0 
4 
1 
0 
5 
6 

------- 
194 

 
 

147 
11 
5 
4 
0 
4 
3 
0 
2 
17 
0 
0 
1 

------ 
194 

152 
6 
3 
3 
3 
2 
1 
4 
0 
0 
7 
1 
12 

------ 
194 

 

152 
6 
4 
2 
3 
2 
1 
4 
0 
0 
8 
10 
2 

------ 
194 

 

152 
6 
4 
2 
3 
2 
1 
4 
0 
0 
8 
10 
2 

------ 
194 

149 
4 
3 
3 
1 
0 
1 
0 
0 
0 
0 
1 
32 

------ 
194 

147 
4 
1 
0 
0 
0 
1 
1 
1 
0 
1 
0 
39 

------ 
194 

152 
7 
3 
2 
3 
2 
1 
4 
0 
0 
 8 
0 
12 

------ 
194 

 

152 
7 
2 
3 
3 
2 
0 
1 
4 
0 
0 
2 
18 

------ 
194 

 

150 
8 
3 
1 
2 
2 
3 
0 
1 
4 
0 
0 
20 

------ 
194 

150 
11 
6 
0 
3 
2 
2 
0 
17 
2 
0 
0 
1 

------ 
194 

 

     Poisson                          33.38 
 

     Negbin II                         8.63 
 

     Geometric                        8.63 
 

    Modified logarithmic       8.63 
 

     Modified Borel               26.32 
 

     Modified Yule                 61.28 
 
     Generalised negbin           8.95 

 
     HGPI                                 9.83 

 
     HGPII                              10.83 

 
     HGPIII                            11.93 
 

For all the model specifications but the modified Borel and Yule ones, the computation of the Pearson statistic has required to aggregate 
the various into six cells defined as follows: {1},{2},{3,4},{5,6,7}, {8,9,10} and {11,>11}. As a result, the critical χ2 value with five 
degrees of freedom is 11.07 for a significance level of 5% and 9.24 for a 10% significance level. In the case of the modified Borel and the 
modified Yule model specifications, the various counts have been aggregated into five cells defined as follows: {1}, {2}, {3,4}, {5,6,7} 
and {8, >8}. Consequently, the critical χ2 value with four degrees of freedom is 9.49 for a significance level of 5% and 7.78 for a 10% 
significance level. 
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Table 4 : Estimated Consumer surplus ($CDN) per moose hunting trip  
   CS/trip 

($CDN) 
 Standard 

error 
 95% confidence 

interval 
Conventional count data models 
 
Poisson 
 
Negbin II 

  
240.39 

 
180.40 

  
26.98 

 
15.82 

  
[199.3   301.4] 

 
[156.0    215.8] 

 
Alternative count data models 
 
Geometric 
 
Modified logarithmic 
 
Modified Borel 
 
Modified Yule 
 
Generalised negbin 
 
HGP1 
 
HGPII 
 
HGPIII 

  
 187.60 

 
145.53 

 
116.11 

 
77.98 

 
171.30 

 
167.87 

 
181.33 

 
202.62 

  
14.84 

 
11.77 

 
172.73 

 
48.34 

 
14.90 

 
17.11 

 
38.10 

 
22.21 

  
[163.4    221.8] 

 
[128.0    175.1] 

 
[67.7      383.7] 

 
[48.9      163.3] 

 
[145.9    204.2] 

  
[142.2    207.1] 

 
[134.3    271.9] 

 
[169.1    254.0] 

Estimated standard errors and 95% confidence intervals are based on the results of a 
Monte Carlo simulation involving 1000 replications. 
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Figure 1: probability distributions of four alternative single-parameter count data models 
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Figure 2 : Probability distributions of the generalised Poisson distribution 
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Figure 3: Probability distributions of the restricted generalized Poisson model 
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