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Abstract

We study how learning a¤ects an uninformed monopolist�s supply and investment decisions

under multiplicative uncertainty in demand. The monopolist is uninformed because it does

not know one of the parameters de�ning the distribution of the random demand. Observing

prices reveals this information slowly. We �rst show how to incorporate Bayesian learning

into dynamic programming by focusing on su¢ cient statistics and conjugate families of dis-

tributions. We show their necessity in dynamic programming to be able to solve dynamic

programs either analytically or numerically. This is important since it is not true that a so-

lution to the in�nite-horizon program can be found either analytically or numerically for any

kinds of distributions. We then use speci�c distributions to study the monopolist�s behavior.

Speci�cally, we rely on the fact that the family of normal distributions with an unknown

mean is a conjugate family for samples from a normal distribution to obtain closed-form

solutions for the optimal supply and investment decisions. This enables us to study the

e¤ect of learning on supply and investment decisions, as well as the steady state level of

capital. Our �ndings are as follows. Learning a¤ects the monopolist�s behavior. The higher

the expected mean of the demand shock given its beliefs, the higher the supply and the lower

the investment. Although learning does not a¤ect the steady state level of capital since the

uninformed monopolist becomes informed in the limit, it reduces the speed of convergence

to the steady state.



1 Introduction

The evolution of capital speci�c to a �rm plays a key role in how it develops over time as well

as its optimal supply and investment decisions. Taking the price of capital used by a �rm

as given, as if the �rm was a perfect competitor in the capital market, misses the fact that

there is capital speci�c to a �rm that can only be moved between �rms at a nonlinear cost.

Both human and physical capital have this property. Moreover, how well-informed a �rm is

about the structure of demand or the production process plays a crucial role in the dynamic

analysis of the �rm. For instance, a �rm might be uninformed about the distribution of the

random demand or the random production process. In that case, it has the opportunity

to learn through experience. In other words, there is a relationship between the evolution

of a �rm through capital accumulation and information acquisition about the structure of

demand or the production process.

The issue of investment under uncertainty without learning has been studied extensively

in optimal growth. In the early literature on optimal growth, the dynamic equation governing

capital formation was deterministic, see Cass [5] and Koopmans [21]. This was a natural place

to begin the study of optimal growth since growth had already been studied in a deterministic

environment by Ramsey [29] and the technology for studying the problem in a more general,

stochastic, environment had not yet been fully developed. This was changed by the optimal

growth model of Brock and Mirman [4] which built on earlier studies of positive growth under

uncertainty [26, 27]. The motivation for studying stochastic rather than deterministic growth

models was to reduce the information available to the economic agents in order to provide

more realistic results. Indeed, in deterministic models, the economic agents are assumed to

have perfect foresight in understanding the e¤ect of their decisions on the future evolution of

the dynamic system. Adding uncertainty in the dynamics means that the economic agents

need not know precisely every outcome of their investment decisions, i.e., they need not

know with certainty the e¤ect of their investment decisions on the future path of the system.

Although the assumption of stochastic growth is less restrictive than the original one of

deterministic dynamics, it is still quite restrictive since it requires that the economic agents
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know precisely the stochastic e¤ect of their investment decisions on the future evolution of the

dynamic system, i.e., perfect foresight is replaced by rational expectations. It would be even

more useful and realistic to study models in which the future outcome of present decisions is

even murkier by assuming that the economic agents do not have complete knowledge of the

distribution of future stochastic outcomes. For instance, suppose that the economic agents

do not know about a parameter characterizing the distribution. They would then have to

learn about the environment they face. Rational expectations would then be applied not only

on the stochastic variables as in the economic growth literature but also on the stochastic

learning process. This change in modeling would lead to a better understanding of the e¤ect

of optimal decisions on the dynamics of the economy and yield a more precise understanding

of optimal saving and consumption than is currently available in economic growth models.

It is natural to expect that the ideas from the growth literature play an important role as

well in the study of �rms faced with dynamic output decisions through the accumulation of

speci�c capital.

There is an emerging literature studying the e¤ect of learning in dynamic models of

economic growth as well as more general dynamic models, beginning with the paper of

Freixas [15], but also including the works of El-Gamal and Sundaram [12], Bertocchi and

Spagat [3], and Datta et al. [7]. These studies are, in turn, based on the models of learning

in which the only link between periods is beliefs. See Prescott [28], Grossman et al. [18],

Easley and Kiefer [10; 11], Balvers and Cosimano [2], Aghion et al. [1], Fusselman and

Mirman [16], Mirman et al. [25], Tre�er [33], Creane [6], Fishman and Gandal [13], and

Keller and Rady [19]. In these models, there is no natural dynamics and thus no possibility

to study investment. To the issues studied in these nondynamic models, the introduction

of a natural dynamics adds a rich and complicated set of questions and issues that have

either been studied super�cially in the literature or have not yet been addressed. In fact,

there are many aspects that must be considered when studying the e¤ect of learning and

experimentation in dynamic models. For instance, the unknown parameter could be in the

objective function, in the dynamic equation, or in both.

Although learning may be studied in the context of economic growth models, we focus
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on industrial organization. Speci�cally, we study how learning a¤ects the behavior of an

uninformed monopolist in a dynamic model with capital that is speci�c to the �rm, along

the lines studied in Koulovatianos and Mirman [22]. The monopolist faces multiplicative

uncertainty in demand and is uninformed because he does not know one of the parameters

de�ning the distribution of the random demand. There is no uncertainty or learning from the

production process for capital. Observing prices reveals this information slowly. Both active

or passive learning can be studied in our model depending on the parameter unknown to the

monopolist. Active learning arises when the monopolist�s decisions a¤ect the information

used to learn about the unknown parameter while passive learning arises when the monop-

olist�s decisions do not a¤ect the information used to learn about the unknown parameter.

It is the purpose of this paper to study the case of passive learning.

Incorporating learning into dynamic program brings another di¢ culty. It is that of

modeling appropriately the distribution of the random demand along with the distribution

that characterizes the prior belief about the unknown parameter of the distribution of the

random demand. We discuss su¢ cient statistics and conjugate families of distributions and

show their necessity in dynamic programming to be able to solve dynamic programs either

analytically or numerically. This is important since it is not true that a solution to the

in�nite-horizon program can be found either analytically or numerically for any kinds of

distributions. See [23] for an exception.

We then use speci�c distributions to study the monopolist�s behavior. Speci�cally, we

rely on the fact the family of normal distributions with an unknown mean is a conjugate

family for samples from a normal distribution to obtain closed-form solution for optimal

supply and investment decisions. This enables us to study the e¤ect of learning on supply

and investment decisions, as well as the steady state level of capital. In fact, we show that

learning plays an important role in the optimal supply and investment decision of the �rm.

In our model, the demand shock is multiplicative in demand so that learning has no e¤ect on

the monopolist�s behavior if there is no cost function. When there is a cost function, learning

a¤ects the monopolist�s behavior. The higher the expected mean of the demand shock given

its beliefs, the higher the supply and the lower the investment. Although learning does not
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a¤ect the steady state level of capital since the uninformed monopolist becomes informed in

the limit, it reduces the speed of convergence to the steady state.

The paper is organized as follows. Section 2 introduces the general model. We �rst

discuss the dynamic framework in section 2.1, then the learning framework in section 2.2.

The dynamic framework is combined with the passive learning framework in section 2.3.

Bayesian statistics and techniques are discussed in section 3. The e¤ect of learning is studied

in section 4. All proofs are relegated to section 5.

2 The General Model

2.1 The Dynamic Framework

Consider an in�nitely-lived monopolist who makes supply and investment decisions under

uncertainty in demand in order to maximize the sum of discounted expected pro�ts subject to

a deterministic law of motion for capital. The monopolist supplies J � 1 exclusive markets.

In period t, the monopolist is endowed with a stock of capital kt yielding output f (kt), from

which qjt � 0 is supplied to market j; j = 1; :::; J , and

kt+1 = f (kt)� �
JX
j=1

qjt � 0 (1)

is invested. Here, � > 0 characterizes the impact of extraction on the stock of capital in

period t+1. The total cost of supplying
PJ

j=1 qjt � f (kt) across J markets is c
�
kt; fqjtgJj=1

�
:

The monopolist faces uncertainty in demand: the price Pjt is a realization of the random

price ~Pjt in market j with ~Pjt = g (qjt; ; ~"jt), @g=@qjt < 0, where  2 � is a parameter

(possibly in�nitely-dimensioned) and ~"jt is a market and time-speci�c demand shock. Let

f~"jtgJj=1 be i.i.d. across markets and periods with p.d.f. �" ("jt j� ) > 0, "jt 2 
", depending

on a parameter � 2 �, possibly in�nitely-dimensioned. Hence, the distribution of ~Pjt depends

on the quantity qjt supplied to market j in period t, but not on the quantity qsr supplied

to market s in period r, s 6= j; r 6= t. Since f~"jtgJj=1 are i.i.d. across markets and periods,
~Pjt jqjt , j = 1; :::; J , t = 1; :::, are independently and identically distributed across markets
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and periods.

The monopolist�s dynamic program is

max
ffqjtgJj=1;kt+1g1t=0

E0

" 1X
t=0

�t

 
JX
j=1

g (qjt; ; ~"jt) qjt � c
�
kt; fqjtgJj=1

�!#
(2)

where � 2 [0; 1] is the discount factor, subject to the law of motion (1) for capital.

2.2 The Learning Framework

Including parameters  and � in the model allows us to study the e¤ect of learning in economic

models. Three cases are distinguished. First, the monopolist is uninformed only about the

value of �. Second, it is uninformed only about the value of . Third, it is uninformed

about the values of both  and �. There is a di¤erence between learning about the value

of  and learning about the value of �, namely, the di¤erence between active and passive

learning.1 Loosely speaking, under active learning, the monopolist�s supply and investment

decisions a¤ect the learning process while they do not under passive learning. While it is

the purpose of this paper to focus on the case of passive learning, i.e., the monopolist is only

uninformed about the value of � = �� 2 �, we �rst discuss the di¤erence between passive and

active learning. We assume throughout this paper that the monopolist is a Bayesian learner,

i.e., Bayesian methods are used to learn about the environment. In Bayesian analysis, the

monopolist begins with prior knowledge expressed as a distribution on the parameter space

and updates its beliefs, given the data.

The monopolist is justi�ed using Bayesian methods if the updated beliefs becomes more

accurate and precise as more data points are collected. This property is called consistency

of the posterior distribution. Consistency implies that the monopolist eventually learns the

true value of the unknown parameter. When the parameter space is �nitely-dimensioned,

consistency of the posterior distribution is obtained if and only if the value of the unknown

parameter lies in the support of the parameter, see Freedman [14] and Schwartz [31]. How-

1The third case in which both values of  and � are unknown is a combination of the �rst two cases.
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ever, inconsistency of Bayesian procedures is quite general in non-parametric cases, e.g., if the

parameter space is in�nitely-dimensioned. A classical example of inconsistency is found in

Freedman [14]. The issue of consistency in nonparametrics is far from resolved. See chapter

4 in Gosh and Ramamoorthi [17] for a discussion on the consistency of Bayes procedures in

the nonparametrics case. To avoid issues of convergence of the posterior distribution to the

true values of the unknown parameters, we assume that � and � are �nitely-dimensioned.

However, incomplete learning can still arise in economic models. For example, incomplete

learning occurs if actions and beliefs are intertwined, such as n-armed bandit problems,

confounding action problems, and problems in which learning the exact state of the world

has no economic value. See Rothschild [30], Kihlstrom et al. [20], McLennan [24], Easley and

Kiefer [10], and Smith and S/orensen [32], among others. This type of incomplete learning

does not arise in our class of models.

2.2.1 Active Learning

Active learning, or experimentation, arises when the monopolist�s decisions a¤ect the infor-

mation used to learn about the unknown parameter.2 ;3 In our model, this is the case when

the value of  is unknown. Let the unknown value of parameter  be � 2 �. The monopolist

begins period t with prior beliefs about � characterized by the prior p.d.f. �t on �. That

is, for any X � �, the monopolist�s prior probability that � 2 X in period t is

Z
X

�t ()d.

After supplying
PJ

j=1 qjt, the monopolist observes a random sample of J prices fPjtgJj=1,

where Pjt is a realization of the random price ~Pjt in market j, j = 1; :::; J , in period t. Let

2Active learning has been studied in models in which the only link between periods is beliefs. See Prescott
[28], Grossman et al. [18], Easley and Kiefer [10; 11], Balvers and Cosimano [2], Aghion et al. [1], Fusselman
and Mirman [16], Mirman et al. [25], Tre�er [33], Creane [6], Fishman and Gandal [13], and Keller and Rady
[19].

3There is an emerging literature on the e¤ect of active learning in dynamic models of economic growth as
well as more general dynamic models, beginning with the paper of Freixas [15], but also including the works
of El-Gamal and Sundaram [12], Bertocchi and Spagat [3], and Datta et al. [7].
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�P (Pjt jqjt;  ), Pjt 2 
P , be the p.d.f. of Pjt, for each j and t.4 By Bayes�theorem, the

uninformed monopolist�s posterior beliefs for period t+ 1 are characterized by the posterior

p.d.f.

�t+1

�

���fPjtgJj=1 ; fqjtgJj=1� = LtU

�
fPjgJj=1

���fqjgJj=1 ; � �t ()R
y2�

LtU

�
fPjtgJj=1

���fqjtgJj=1 ; y� �t (y)dy ; (3)

where

LtU

�
fPjtgJj=1

���fqjtgJj=1 ; � = JY
j=1

�P (Pjt jqjt;  )

is the likelihood function of the random sample fPjtgJj=1 in period t, for given fqjtg
J
j=1 and

 2 �. Notice, that the monopolist�s supply decisions a¤ect the posterior p.d.f. (3) of .

Hence, active learning or experimentation is implied. Intuitively, the monopolist�s supply

decisions may be adjusted to spread apart the distributions from which the prices are drawn,

thus making the price more informative signals of the true distribution.5

2.2.2 Passive Learning

Passive learning arises when the monopolist�s decisions do not a¤ect the information used to

learn about the unknown parameter.6 This is the case when the value of � is unknown. In

our model, let the unknown value of parameter � be �� 2 �. The monopolist begins period

t with prior beliefs about �� characterized by the prior p.d.f. �t�. That is, for any X � �,

the monopolist�s subjective prior probability that �� 2 X is

Z
X

�� (�)d�.

4The distribution of ~Pjt is derived from the distribution of ~"jt, that is, the p.d.f. of ~Pjt is

�P (Pjt jqjt;  ) = �" ("jt j� )
����@g (qjt; ; "jt)@"jt

�����1
for Pjt = q

� 1


jt "jt 2 
P .
5The e¤ect of active learning is studied in a dynamic monopoly without investment in Mirman et al. [25].
6Demers [9] studies the investment decision of a perfectly competitive �rm facing a random demand with

an unknown mean. The �rm is a passive learner not because of the structure of demand as in our class of
models, but because the �rm is a perfect competitor. The �rm has no impact on the demand and, thus,
cannot a¤ect the information, regardless of the demand structure.

7



After supplying
PJ

j=1 qjt, the monopolist observes a random sample of J prices fPjtgJj=1,

where Pjt is a realization of the random price ~Pjt in market j, j = 1; :::; J , in period t. It then

solves for f"jt = G (Pjt; qjt; )gJj=1 in order to form posterior beliefs about ��.7 By Bayes�

theorem, the uninformed monopolist�s posterior beliefs are characterized by the posterior

p.d.f.

�t+1�

�
�
���f"jgJj=1� = LtU

�
f"jtgJj=1 j�

�
�t� (�)R

y2�
LtU

�
f"jtgJj=1 jy

�
�t� (y)dy

; (4)

where

LtU

�
f"jtgJj=1 j�

�
=

JY
j=1

�" ("jt j� )

is the likelihood function of random sample f"jtgJj=1 in period t, for � 2 �. Notice that the

monopolist�s supply decisions cannot a¤ect the posterior p.d.f. (4). That is, there is passive

learning.

2.3 Only � is Unknown

We now concentrate on incorporating the passive learning framework into the dynamic model

of the �rm. Suppose the monopolist does not know that the value of � is �� 2 �; but knows

the value of . Incorporating passive learning into the monopolist�s dynamic program (2)

adds a stochastic law of motion for beliefs characterized by the posterior p.d.f. (4) ; along

with the deterministic law of motion for capital (1). Note that the law of motion for beliefs

(4) is autonomous, in the sense that no action of the uninformed monopolist can in�uence

its learning.

7We assume that @g=@"jt > 0 for "jt 2 
" so that Pjt = g (qjt; ; "jt) is uniquely solvable for "jt as a
function of Pjt and qjt, i.e., there exists a function G such that "jt = G (Pjt; qjt; ) for each Pjt 2 
P and
 2 �.
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The uninformed monopolist�s dynamic program is summarized by the Bellman equation:8

VU (k; �� (�) ; � 2 �) = max
fqj�0gJj=1

(
Ef~"jgJj=1j�

"
JX
j=1

g (qj; ; ~"j) qj � c
�
k; fqjgJj=1

�
+�VU

�
k̂; �̂�

�
�
���f~"jgJj=1� ; � 2 ��io ;

= max
fqj�0gJj=1

(Z
� � �
Z

J"

"
JX
j=1

g (qj; ; "j) qj � c
�
k; fqjgJj=1

�
+�VU

 
f (k)� �

JX
j=1

qj; �̂�

�
�
���f"jgJj=1� ; � 2 �

!#

�L�U
�
f"jgJj=1

� JY
j=1

d"j

)
; (5)

where Ef~"jgJj=1j� is the expectation operator over f~"jg
J
j=1 conditional on the prior p.d.f. ��

and

L�U

�
f"jgJj=1

�
=

Z
�

LU

�
f"jgJj=1 j�

�
� (�)d�

is the joint p.d.f. of f~"jgJj=1, given the prior p.d.f. ��.9

3 Bayesian Statistics and Techniques

In general, dynamic programs with passive learning such as (5) are intractable, i.e., they

are not solvable either analytically or numerically.10 There are two main issues that need

to be addressed. First, the value function V in expression (5) depends on the variable k

and the function �� (�), � 2 �. Unless the space � contains a �nite number of elements,

the state space (k; �� (�) ; � 2 �) is in�nitely-dimensioned and it is impossible to tract the

evolution of beliefs via the p.d.f. �� (�). Second, the law of motion for beliefs characterized

by the posterior p.d.f. (4) of �; does not prevent the prior and posterior p.d.f.�s �� and �̂�

8We remove the time subscipt t since the model is time-consistent. Variables in the subsequent period
are denoted by ^.

9The p.d.f. L�U
�
f"jgJj=1

�
is also called the marginal likelihood function of f~"jgJj=1.

10The problem is not whether a solution exists but whether one can characterize the solution and study
it.
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from belonging to di¤erent families of distributions. This would render the dynamic program

intractable. As observed in the stochastic law of motion (4) for beliefs, the distributional

assumption of f~"jgJj=1 a¤ects the posterior distribution �̂�. Therefore, �� and �̂� may not

belong to the same family of distributions for any likelihood function L of f~"jgJj=1. In fact,

most likelihood functions L of f~"jgJj=1 yield a posterior p.d.f. �̂� that is not in the family of

distributions to which �� belongs. For instance, suppose that the prior p.d.f. of parameter

~� is normal with mean � and variance �2. For most likelihood functions L of f~"jgJj=1, the

posterior p.d.f. of ~� given f"jgJj=1 is not normally distributed and the characterization of the

posterior p.d.f. is, in general, intractable.

We therefore make speci�c assumptions about the distributions of the random sample

f~"jgJj=1 and the prior distribution �� so that the state space (k; �� (�) ; � 2 �) is �nitely-

dimensioned and the prior and posterior beliefs belong to the same family of distributions.

To that end, we focus on the class of distributions of random sample f~"jgJj=1 that have a

�xed number s � 1 of su¢ cient statistics. We �rst de�ne the notion of su¢ cient statistics

and present a result that asserts that if L has a su¢ cient statistic, then there exists a prior

p.d.f. �� such that �� and �̂� belong to the same family. Focusing on the class of distributions

of random sample f~"jgJj=1 that have a �xed number s � 1 of su¢ cient statistics addresses

the issues of tractability as well as ensuring that the prior and posterior p.d.f.�s of � are in

the same family of distributions.

3.1 Su¢ cient Statistics

The treatment of the data is simpli�ed if a few numerical values, or statistics, summarize the

relevant information of the data. Such summaries are known as su¢ cient statistics. Loosely

speaking, a statistic TJ is called a su¢ cient statistic if, for any prior distribution of ~�, its

posterior distribution depends on the random sample f~"jgJj=1, only through the statistic

TJ

�
f~"jgJj=1

�
. Formally,

De�nition 1 A statistic TJ is a su¢ cient statistic for the family of likelihood functions

10



n
L
�
f~"jgJj=1 j�

�
; � 2 �

o
if

�̂�

�
�
����"1j	Jj=1� = �̂� �� ����"2j	Jj=1�

for any prior �� (�) and any two data sets
�
"1j
	J
j=1

and
�
"2j
	J
j=1
, such that TJ

��
"1j
	J
j=1

�
=

TJ

��
"2j
	J
j=1

�
.

Thus, TJ
�
f"jgJj=1

�
is su¢ cient to compute the posterior distribution of ~� from any prior

distribution and any data set f"jgJj=1.

3.2 Conjugate Prior Distributions

If the random sample f~"jgJj=1 is drawn from a family of distributions for which there is a

su¢ cient statistic of �xed dimension, then there exists a family of distributions of ~� that

is closed under sampling. That is, if the prior distribution of ~� belongs to a family of

distributions, then for any sample size J and any values of the observations f~"jgJj=1, the

posterior distribution of ~� also belongs to the same family. This family of distributions

is also called a conjugate family of distributions because of the special relationship that

exists between this family of distributions of the unknown parameter ~� and the family of

distributions of the observations f~"jgJj=1. Formally,

Remark 2 Whenever a family of likelihood functions
n
L
�
f~"jgJj=1 j�

�
; � 2 �

o
has a su¢ -

cient statistic TJ
�
f~"jgJj=1

�
of �xed dimension s � 1 for every sample size J , there exists a

conjugate family of distributions for the unknown parameter ~�.

Proof. See DeGroot [8], p. 163.

Many families of likelihood functions have a su¢ cient statistic of �xed dimensions s � 1,

for every sample size J . For instance, the exponential family of distributions has a su¢ cient

statistic of �xed dimension s � 1, independent of the size J .11

11See chapter 9 �Conjugate Prior Distributions� in DeGroot [8] for a detailed discussion on conjugate
families of distributions.
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Focusing on the family of likelihood functions that have a su¢ cient statistic of �xed

dimensions s � 1 for every sample size J ensures not only that there exists a prior p.d.f. ��
such that �� and �̂� belong the same family but also that �� and �̂� can be characterized by a

�nite number N � 1 of variables that are functions of the s � 1 statistics TJ . Speci�cally, let

fbngNn=1 and
n
b̂n

�
f"jgJj=1

�oN
n=1

be N variables characterizing the prior and posterior p.d.f.

of ~�, respectively.12 Assuming a family of likelihood functions that have a su¢ cient statistic

of �xed dimensions s � 1 for every sample size J allows us to rewrite dynamic program (5)

for the uninformed monopolist as

VU

�
k; fbngNn=1

�
= max

fqj�0gJj=1

(Z
� � �
Z

J"

"
JX
j=1

g (qj; ; "j) qj � c
�
k; fqjgJj=1

�
+�VU

 
f (k)� �

JX
j=1

qj;
n
b̂n

�
f"jgJj=1

�oN
n=1

!#

�L�U
�
f"jgJj=1

� JY
j=1

d"j

)
: (6)

4 The E¤ect of Learning

4.1 Assumptions

In order to study the maximization problem of the monopolist, we postulate the demand

function ~Pj = q
� 1


j ~"j in market j, where  > 1 is the elasticity of demand and ln ~"j �

N (�; 1=r). Since the family of lognormal distributions for the random sample f~"jgJj=1 belongs

to the exponential family of distributions, there exists a conjugate family of distributions for

the unknown parameter ~�. The conjugate family of distributions for ~� is normal with mean

� and precision � > 0. Using (4), the posterior beliefs about ~� are normally distributed, i.e.,

12For instance, if the prior p.d.f. of ~� is normal with mean � and variance �2, then fbjg2j=1=
�
�; �2

	
andn

b̂n

�
f"jgJj=1

�o2
n=1

=
n
�̂
�
f"jgJj=1

�
; �̂2

�
f"jgJj=1

�o
:
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~� � N (�̂; 1= (� + Jr)), where

�̂ � �̂
�
f"jgJj=1

�
=
��+ Jr"J
� + Jr

; (7)

is the posterior mean. The posterior mean (7) is a weighted average of the prior mean �

and the sample mean "J = (1=J)
PJ

j=1 ln "j. The weights of � and "J are proportional to

� and Jr, respectively. The higher the precision of the prior distribution of ~�, the greater

the weight that is given to the prior mean �, while the greater the size of the data set J

or the higher the precision of the data-generating process r, the greater the weight that is

given to the sample mean "J . Note also that the variance of the posterior distribution of

~� is decreasing in J . More price observations reveal more information about the unknown

parameter �. Note also that under our distributional assumptions, the posterior mean (7) is

a consistent estimate of E [ln ~"jt] = �
�, implying that the Bayesian estimate of E [~"jt] is also

consistent. Formally,

Proposition 3 Under our distributional assumptions, �̂
�
f~"jgJj=1

�
converges in probability

to ��, i.e., �̂
�
f~"jgJj=1

�
P! ��.

Proof. Use Kolmogorov�s strong law of large number on the posterior mean (7).

Therefore, the uninformed monopolist�s beliefs about parameter � converges in prob-

ability to the true value ��, implying that the Bayesian estimate on ~"j also converges to

e�
�+1=2r. Without consistency of the Bayes procedure, using Bayesian methods does not lead

to learning about the environment.

Further assumptions are needed to study the e¤ect of learning in this model. The mo-

nopolist faces the production function f (k) =
�
�k1�

1
 + (1� �)�

� 
�1
, � 2 (0; 1], � � 0,13

and incurs a total cost of

c
�
k; fqjgJj=1

�
= �f (k)��

 
JX
j=1

q�j

!�
;

13If � = 1, then f (k) = k; which corresponds to a market trading a nonrenewable resource.
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� � 0, � > 0, �; � � 1, and

�� � � = 1� 1= > 0; (8)

 > 1.14 ;15

14The restriction �� � � = 1 � 1= serves two purposes. First, it yields closed-form solutions of the
monopolist�s optimal supply and investment decisions. Second, it is a su¢ cient condition ensuring that
an interior solution always exists with strictly positive pro�ts. That is, the restriction rules out any exit
strategy. Suppose that

�� < 1� 1=;

then it is possible that the monopolist exits permanently.
15The cost function we use is very general and admits di¤erent scenarios. Consider three of them.

1. The case of � = 1 and � > 1. Here, the monopolist employs lj workers to produce qj for market j,
e.g., the monopolist employs lj �shermen in market j to extract the stock of �sh k. The �nal-output
production is of the form

qj = f (k)
�
l�j

and the cost function for labor lj is �l
 
j , then

c
�
k; fqjgJj=1

�
= �

JX
j=1

f (k)
�� 

� q
 
�
j ;

� �f (k)
��

JX
j=1

q�j ;

where � � � =� and � �  =�.

2. The case of � > 1 and � = 1. The monopolist centralizes production. The �nal-output production is
of the form

q = f (k)
�

0@ JX
j=1

lj

1A�

and the cost function for labor l is �l, then

c
�
k; fqjgJj=1

�
= �f (k)

�� 
�

0@ JX
j=1

qj

1A
 
�

;

� �f (k)
��

0@ JX
j=1

qj

1A�

;

where � � � =� and � �  =�.

3. The case of � > 1; � > 1. The monopolist hires workers in market j but assembles the �nal output in
one central location.

14



Therefore, the dynamic program (6) for the uninformed monopolist is rewritten as

VU (k; �; �) = max
fqj>0gJj=1

(Z
� � �
Z

J"

"
JX
j=1

"jq
1� 1



j � �f (k)��
 

JX
j=1

q�j

!�
+

�VU

 
f (k)� �

JX
j=1

qj; �̂
�
f"jgJj=1

�
; � + Jr

!#
L�U

�
f"jgJj=1

� JY
j=1

d"j

)
; (9)

= max
fqj>0gJj=1

("
JX
j=1

e�+
r+�
2r� q

1� 1


j � �f (k)��
 

JX
j=1

q�j

!�
+

�

Z
� � �
Z

J"

VU

 
f (k)� �

JX
j=1

qj; �̂
�
f"jgJj=1

�
; � + Jr

!#

�L�U
�
f"jgJj=1

� JY
j=1

d"j

)
; (10)

where the pair fbng2n=1 � (�; �) and

n
b̂n

�
f"jgJj=1

�o2
n=1

�
n
�̂
�
f"jgJj=1

�
; � + Jr

o
characterize the evolution of beliefs. Here, L�U

�
f"jgJj=1

�
is the joint p.d.f. of f~"jgJj=1 given

the uninformed monopolist�s beliefs about �.

4.2 The Benchmark Model

In order to measure the e¤ect of learning on the monopolist�s behavior, we solve the dynamic

program for the informed monopolist, i.e., the value of � is �� 2 �. Then, the informed

monopolist�s dynamic program is

VI (k) = max
fqj>0gJj=1

(Z
� � �
Z

J"

"
JX
j=1

"jq
1� 1



j � �f (k)��
 

JX
j=1

q�j

!�
+ �VI

 
f (k)� �

JX
j=1

qj

!#

�L�I
�
f"jgJj=1

� JY
j=1

d"j

)
;

= max
fqj>0gJj=1

(
JX
j=1

e�
�+ 1

2r q
1� 1



j � �f (k)��
 

JX
j=1

q�j

!�
+ �VI

 
f (k)� �

JX
j=1

qj

!)
; (11)
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where ln ~"j � iidN (��; 1=r). Here, L�I
�
f"jgJj=1

�
is the joint p.d.f. of f~"jgJj=1 given the

information of the informed monopolist about �. Note that the stock of capital is the only

state variable for the informed monopolist�s dynamic program.

4.3 The Supply and Investment Strategies

The next two propositions present the optimal supply and investment strategies of the un-

informed and informed monopolists, respectively.

Proposition 4 If the monopolist is uninformed, i.e., dynamic program (10), then QU =

!U (�; �) f (k) is supplied to market j and K̂U = (1� �J!U (�; �)) f (k) is invested. Here,

!U (�; �) 2

0@0;min
8<:(�J)�1 ;

 
e�+

r+�
2r�

vJ��1

!1=�9=;
1A

is unique and characterized implicitly by

�
1� 1



�
e�+

r+�
2r� � ���J��1!�U

e�+
r+�
2r� � �J��1!�U

=
��
�
1� 1



�
�J!U

(1� �J!U)
1
 � �� (1� �J!U)

; (12)

where !U � !U (�; �).

Proposition 5 If the monopolist is informed, i.e., dynamic program (11), then QI = !If (k)

is supplied to market j and K̂I = (1� �J!I) f (k) is invested. Here,

!I 2

0@0;min
8<:(�J)�1 ;

 
e�

�+ 1
2r

vJ��1

!1=�9=;
1A

is unique and characterized implicitly by

�
1� 1



�
e�

�+ 1
2r � ���J��1!�I

e�
�+ 1

2r � �J��1!�I
=

��
�
1� 1



�
�J!I

(1� �J!I)
1
 � �� (1� �J!I)

: (13)

Note that !U (�; �) and !I are similar since expressions (12) and (13) have the same

structure. The only di¤erence between expressions (12) and (13) is the expectation of the

16



demand shock given the information available to the monopolist. The uninformed monopo-

list�s expected mean of the demand shock is e�+
r+�
2r� while the informed monopolist�s is e�

�+ 1
2r .

Therefore, the other structural parameters , �, �, �, J , �, �, �, and � a¤ect the supply

and investment decisions in the same direction, whether the monopolist is uninformed or

informed. They only di¤er in magnitude because of di¤erences on the expectation of the

demand shock.

Note also that the uninformed monopolist�s share of output to each market !U (�; �)

evolves over time as beliefs are updated after each period since � and � are two state variables

with the autonomous laws of motion (7) and �̂ = � + Jr. This does not happen with the

informed monopolist since !I is �xed over time.

The Cost Function. The presence of a cost function is essential in our model for

learning to a¤ect behavior. Formally,

Proposition 6 If there is no cost, i.e., � = 0, then learning does not a¤ect the monopolist�s

behavior, i.e., whether or not the monopolist knows that the value of � is ��,

QU = QI =
1� ��

�J
f (k)

is supplied to market j and

K̂U = K̂I = �
�f (k)

is invested.

When there is no cost, � = 0, the uncertainty in demand is multiplicative. Therefore,

the information about the distribution of the demand shock does not a¤ect the monopolist�s

behavior. When � > 0, the uncertainty is no longer multiplicative and it follows that

Proposition 7 If there is a cost, i.e., � > 0, then learning a¤ects the monopolist�s behavior.

1. If e�+
r+�
2r� > e�

�+ 1
2r , then QU > QI and K̂U < K̂I :

2. If e�+
r+�
2r� < e�

�+ 1
2r , then QU < QI and K̂U > K̂I :

17



3. If e�+
r+�
2r� = e�

�+ 1
2r , then QU = QI and K̂U = K̂I :

In other words, from Proposition 7, beliefs about the demand shock a¤ect the �rm�s

behavior. When the uninformed monopolist has more pessimistic beliefs about the mean

of the demand shock than the informed monopolist, i.e., e�+
r+�
2r� < e�

�+ 1
2r , then learning

decreases supply and increases investment. When the uninformed monopolist has more

optimistic beliefs about the mean of the demand shock than the informed monopolist, i.e.,

e�+
r+�
2r� > e�

�+ 1
2r , then learning increases supply and decreases investment.

It is worth noting that a higher precision of the beliefs, i.e., a higher � , decreases the

expectation of the demand shock, i.e., e�+
r+�
2r� is negatively related to the precision � of beliefs.

This means that @QU=@� < 0. This is due to the lognormality of the demand shock that

makes the precision � part of the mean of the demand shock.

Correct Beliefs. Suppose now that the uninformed monopolist has correct beliefs about

the value of � but remains uninformed. Two cases are studied. First, suppose that � = ��,

then

Proposition 8 If there is a cost, i.e., � > 0, and � = ��, then e�+
r+�
2r� > e�

�+ 1
2r and QU > QI

and K̂U < K̂I :

In other words, from Proposition 8, the uninformed monopolist supplie s more than

the informed monopolist when � = ��. Although the uninformed monopolist faces more

uncertainty than the informed monopolist since � < +1 and, has a higher expectation of

the demand shock, since e�+
r+�
2r� > e�

�+ 1
2r . Therefore, the uninformed monopolist supplies

more and invests less.

Second, suppose that the uninformed monopolist incorrect beliefs about the value of �;

but has correct beliefs about the expectation of the demand shocks, i.e., � = �� � 1=� and

thus e�+
r+�
2r� = e�

�+ 1
2r , then

Proposition 9 If there is a cost, i.e., � > 0, and � = �� � 1=� , then e�+ r+�
2r� = e�

�+ 1
2r and

QU = QI and K̂U = K̂I :
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In other words, from Proposition 9, learning has no e¤ect on the monopolist�s supply

and investment decisions when the expectation on the demand shock is the same for both

the uninformed and informed monopolists. In our class of models, if e�+
r+�
2r� = e�

�+ 1
2r , then

QU = QI . We now investigate whether this is always true in a more general setting.

Consider the expression

Z

"

"
JX
j=1

g (qj; ; "j) qj

#
L�U

�
f"jgJj=1

� JY
j=1

d"j =
Z

"

"
JX
j=1

g (qj; ; "j) qj

#
L�I

�
f"jgJj=1

� JY
j=1

d"j;

(14)

where L�U is the likelihood function of the uninformed monopolist, given its beliefs about �

while L�I is the likelihood function of the informed monopolist, given that � = �
� is known.

In the static case, under expression (14), QU = QI , since the uninformed and informed

monopolists maximize the same objective function. In our class of models, expression (14)

is equivalent to e�+
r+�
2r� = e�

�+ 1
2r , resulting in QU = QI .

In general, the uninformed monopolist�s dynamic program is

VU

�
k; fbngNn=1

�
= max

fqj�0gJj=1

(Z
� � �
Z

J"

"
JX
j=1

g (qj; ; "j) qj

#
L�U

�
f"jgJj=1

� JY
j=1

d"j � c
�
k; fqjgJj=1

�
+�

Z
� � �
Z

J"

VU

�
k̂;
n
b̂n

�
f"jgJj=1

�oN
n=1

�
L�U

�
f"jgJj=1

� JY
j=1

d"j

)
:

while the informed monopolist�s dynamic program is

VI (k) = max
fqj>0gJj=1

8<:
Z

"

"
JX
j=1

g (qj; ; "j) qj

#
L�I

�
f"jgJj=1

� JY
j=1

d"j � c
�
k; fqjgJj=1

�
+ �VI

�
k̂
�9=; :

When the uncertainty is multiplicative in demand, expression (14) holds if and only if

e�+
r+�
2r� = e�

�+ 1
2r , and QU = QI and the value function is of the form

VU

�
k; fbngNn=1

�
= Z1

�
fbngNn=1

�
W (k) + Z2

�
fbngNn=1

�
; (15)
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where Z1, W , and Z2 are functions, so that the updated value function is

VU

�
k; b̂n

�
f"jgJj=1

��
= Z1

�
b̂n

�
f"jgJj=1

��
W
�
k̂
�
+ Z3

�
b̂n

�
f"jgJj=1

��
and its expectation is

EVU

�
k̂; b̂n

�
f"jgJj=1

��
=

Z

"

Z1

�n
b̂n

�
f"jgJj=1

�oN
n=1

�
W
�
k̂
�
+ Z2

�n
b̂n

�
f"jgJj=1

�oN
n=1

�
24Z
�

JY
j=1

� ("j jy ) � (y)dy

35 JY
j=1

d"j;

= z1W
�
k̂
�
+ z2; (16)

where

z1 =

Z

"

Z1

�n
b̂n

�
f"jgJj=1

�oN
n=1

�24Z
�

JY
j=1

� ("j jy ) � (y)dy

35 JY
j=1

d"j;

z2 =

Z

"

Z2

�n
b̂n

�
f"jgJj=1

�oN
n=1

�24Z
�

JY
j=1

� ("j jy ) � (y)dy

35 JY
j=1

d"j:

Otherwise, it is not necessarily the case that the expected continuation of the value function

is of the form (16) and QU = QI when expression (14) holds regardless of the demand

structure.

4.4 The Steady State Levels of Supply and Capital

Although learning a¤ects the monopolist�s supply and investment decisions, it does not

change the steady state levels of supply and capital because the uninformed monopolist

becomes informed about the value of the unknown parameter � in the limit. Incomplete

learning cannot occur in our model since the Bayes procedure is consistent. In other words,

e�+
r+�
2r�

P! e�
�+ 1

2r
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since � P! �� and � ! 1. However, learning a¤ects the rate of convergence to the steady

state. In particular, if the uninformed monopolist is more optimistic than the informed

monopolist, i.e., e�+
r+�
2r� > e�

�+ 1
2r , then QU > QI . As a result, learning slows down the

convergence rate toward the steady state if and only if k < K, where K the steady state

level of capital. On the other hand, if the uninformed monopolist is less optimistic than the

informed monopolist, i.e., e�+
r+�
2r� < e�

�+ 1
2r , then QU < QI . As a result, learning speeds up

the convergence rate toward the steady state if and only of k < K.

5 Appendix

5.1 Proof of Proposition 4

We �rst show that the instantaneous pro�t function

JX
j=1

e�+
r+�
2r� q

1� 1


j � �f (k)��
 

JX
j=1

q�j

!�
(17)

is strictly concave. Then, we show that the value function is of the form

VU (k; �; �) = Z1 (�; �) k
1� 1

� + Z2 (�; �) ; (18)

where Z1 (�; �) ; Z2 (�; �) > 0 are functions of � and � , but not k, and that the optimal

quantity supplied is symmetric across markets, unique, and of the form QU = !U (�; �) f (k),

where

!U (�; �) 2

0@0;min
8<:(�J)�1 ;

 
e�+

r+�
2r�

vJ��1

!1=�9=;
1A :

Note that !U (�; �) < (�J)�1 implies that some output is invested for next period, i.e.,

k̂ = f (k)� �JQU > 0. Note also that

!U (�; �) <

 
e�+

r+�
2r�

vJ��1

!1=�
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implies that the instantaneous pro�t function (17) is strictly positive in equilibrium.

1. Recall that the restrictions on the values of the parameters are  > 1, � > 0, � > 0,

�; � � 1, � 2 [0; 1], � > 0, and

�� � � = 1� 1=:

The Hessian H of expression (17) evaluated at the symmetric optimal quantity sup-

plied, qj = QU 2
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=��
f (k)

�
for all j, has elements

Hjj = �
�
1



�
1� 1



�
e�+

r+�
2r� Q

� 1

�1

U + ���J��2 ((� � 1)�+ (�� 1) J)Q���2U

�
;

and

Hjm = ����J��2 (� � 1)�Q���2U ;

j 6= m, j;m = 1; :::; J . Given the restrictions on the values of the parameters,

Hjj < Hjm < 0, and Hjm = H|̂m̂, for all j;m; |̂; m̂ = 1; :::; J . Therefore, the

determinants of the principal minors are of the right sign and H is negative def-

inite. It follows that the instantaneous pro�t function (17) is strictly concave for

QU 2
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=��
f (k)

�
.

2. Updating the value function (18) and plugging it into value function (10) yields

VU (k; �; �) = max
fqj>0gJj=1

(
JX
j=1

 
e�+

r+�
2r� q

1� 1


j � �f (k)��
 

JX
j=1

q�j

!�!

+�z1

 
f (k)� �

JX
j=1

qj

!1� 1


+ �z2

9=; ; (19)
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where

z1 =

Z
� � �
Z

J"

Z1

�
�̂
�
f"jgJj=1

�
; � + Jr

�
L�U

�
f"jgJj=1

� JY
j=1

d"j;

z2 =

Z
� � �
Z

J"

Z2

�
�̂
�
f"jgJj=1

�
; � + Jr

�
L�U

�
f"jgJj=1

� JY
j=1

d"j (20)

are functions of � and � . The �rst-order conditions are

qj : e
�+ r+�

2r�

�
1� 1



�
q�

1
����f (k)��

 
JX
j=1

q�j

!��1
q��1j ���

�
1� 1



�
z1

 
f (k)� �

JX
j=1

qj

!� 1


= 0;

(21)

j = 1; :::; J . Considering a symmetric optimal supply function of the form QU =

!U (�; �) f (k), where !U (�; �) is a function of the state variables � and � , the �rst-

order conditions (21) become

qj : e
�+ r+�

2r�

�
1� 1



�
!
� 1


U � ���J��1!���1U � ��
�
1� 1



�
z1 (1� �J!U)�

1
 = 0; (22)

for all j, since ���� = 1�1=.16 Using the fact that QU = !Uf (k), the value function

for the uninformed monopolist (19) is

VU (k; �; �) =

�
e�+

r+�
2r� J!

1� 1


U � �J�!��U + �z1 (1� �J!U)1�
1


�
f (k)1�

1
 + �z2;

=

�
e�+

r+�
2r� J!

1� 1


U � �J�!��U + �z1 (1� �J!U)1�
1


�
�k1�

1


+

�
e�+

r+�
2r� J!

1� 1


U � �J�!��U + �z1 (1� �J!U)1�
1


�
(1� �)�+ �z2;

� Z1 (�; �) k
1� 1

� + Z2 (�; �) ;

so that

Z1 (�; �) �
�

�
e�+

r+�
2r� J!

1� 1


U � �J�!��U
�

1� �� (1� �J!U)1�
1


(23)

16We write !U instead of !U (�; �) to simplify notation.
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and

Z2 (�; �) =
Z1 (�; �) (1� �)�

�
+ �z2;

for !U 2
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=���
, and where z2 is de�ned in expression (20).

Plugging expression (23) into the �rst-order condition (22), using assumption (8), and

rearranging terms yields the implicit characterization of !U ,

g
�
!U ; e

�+ r+�
2r�

�
�

�
1� 1



�
e�+

r+�
2r� � ���J��1!�U

e�+
r+�
2r� � �J��1!�U

=
��
�
1� 1



�
�J!U

(1� �J!U)
1
 � �� (1� �J!U)

� h (!U) :

(24)

In expression (24), the left-hand side is g
�
!U ; e

�+ r+�
2r�

�
while the right-hand side is

h (!U). We now show that !U 2
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=���
.

(a) The properties of g
�
!U ; e

�+ r+�
2r�

�
are

i.

g
�
0; e�+

r+�
2r�

�
= 1� 1


> 0: (25)

ii.
@g
�
!U ; e

�+ r+�
2r�

�
@!U

=
��e�+ r+�

2r� �J��1!��1U

�
1� 1


� ��

�
�
e�+

r+�
2r� � �J��1!�U

�2 < 0; (26)

which is strictly negative for !U 2
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=���
, since

assumption (8) and � > 1 implies that

1� 1


� �� = �� < 0:

iii. If (�J)�1 <
�
e�+

r+�
2r�

vJ��1

�1=�
, then

g
�
(�J)�1=� ; e�+

r+�
2r�

�
=
��e�+ r+�

2r� �J������+1
�
1� 1


� ��

�
�
e�+

r+�
2r� � �J��1 (�J)��

�2 > 0 (27)
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If (�J)�1 >
�
e�+

r+�
2r�

vJ��1

�1=�
, then

g

0@ e�+ r+�
2r�

vJ��1

!1=�
; e�+

r+�
2r�

1A = �1: (28)

(b) The properties of h (!U) are

i.

h (0) = 0: (29)

ii.

h0 (!U) = ��

�
1� 1



�
�J

1�(1� 1
 )�J!U

(1��J!U )
1� 1


� ��

(1� �J!U)
1
 � �� (1� �J!U)

> 0; (30)

which is strictly positive for !U 2
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=���
, since

1�
�
1� 1



�
�J!U

(1� �J!U)1�
1


> 1

and (1� �J!U)
1
 > �� (1� �J!U) for !U 2

�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=���
.

iii. If (�J)�1 <
�
e�+

r+�
2r�

vJ��1

�1=�
, then

h
�
(�J)�1

�
=1: (31)

If (�J)�1 >
�
e�+

r+�
2r�

vJ��1

�1=�
, then

h

0@ e�+ r+�
2r�

vJ��1

!1=�1A =
��
�
1� 1



�
�J
�
e�+

r+�
2r�

vJ��1

�1=�
�
1� �J

�
e�+

r+�
2r�

vJ��1

�1=�� 1


� ��
�
1� �J

�
e�+

r+�
2r�

vJ��1

�1=�� > 0:
(32)

3. Therefore, given the parametric assumptions and combining properties (25), (26), (27),
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(28), (29), (30), (31), and (32), g
�
!U ; e

�+ r+�
2r�

�
and h (!U) cross at most once on

!U 2

0@0;min
8<:(�J)�1 ;

 
e�+

r+�
2r�

vJ��1

!1=�9=;
1A :

It follows that !U exists and is unique on
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=���
. Therefore,

0 < Z1 (�; �) ; Z2 (�; �) ; z1; z2 < 1 and are functions of � and � , but not k, and the

value function is bounded and of the form

VU (k; �; �) = Z1 (�; �) k
1� 1

 + Z2 (�; �) > 0:

Moreover, the instantaneous pro�t function (17) is strictly concave and the objective

function

JX
j=1

e�+
r+�
2r� q

1� 1


j � �f (k)��
 

JX
j=1

q�j

!�
+ �z1

 
f (k)� �

JX
j=1

qj

!1� 1


+ �z2

in (19) is also strictly concave. Therefore, QU = !U (�; �) f (k) is the unique maximizer

on
�
0;min

�
(�J)�1 ;

�
e�+

r+�
2r�

vJ��1

�1=��
f (k)

�
for the dynamic program (10).

5.2 Proof of Proposition 5

Proving proposition 5 involves similar steps to those in the proof of proposition 4. The

informed monopolist supplies QI = !If (k), where !I 2
�
0;min

�
(�J)�1 ;

�
e�
�+ 1

2r

vJ��1

�1=���
is

unique and implicitly characterized by

g
�
!I ; e

��+ 1
2r

�
�

�
1� 1



�
e�

�+ 1
2r � ���J��1!�I

e�
�+ 1

2r � �J��1!�I
=

��
�
1� 1



�
�J!I

(1� �J!I)
1
 � �� (1� �J!I)

� h (!I) :

(33)
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5.3 Proof of Propositions 7, 8, and 9

Recall that the uninformed monopolist supplies QU = !Uf (k), where !U is implicitly char-

acterized by

g
�
!U ; e

�+ r+�
2r�

�
�

�
1� 1



�
e�+

r+�
2r� � ���J��1!�U

e�+
r+�
2r� � �J��1!�U

=
��
�
1� 1



�
�J!U

(1� �J!U)
1
 � �� (1� �J!U)

� h (!U) ;

while the informed monopolist supplies QI = !If (k), where !I is implicitly characterized

by

g
�
!I ; e

��+ 1
2r

�
�

�
1� 1



�
e�

�+ 1
2r � ���J��1!�I

e�
�+ 1

2r � �J��1!�I
=

��
�
1� 1



�
�J!I

(1� �J!I)
1
 � �� (1� �J!I)

� h (!I) :

We know that

@g (!; x)

@x
=

�� �
�
1� 1



�
(x� �J��1!�)2

�J��1!� > 0

for ! 2
�
0;
�

x
vJ��1

�1=��
since �� � � = 1� 1= > 0 and � > 0. It follows that

e�+
r+�
2r� S e��+ 1

2r , g
�
!; e�+

r+�
2r�

�
S g

�
!; e�

�+ 1
2r

�
, !U S !I , QU S QI :

Propositions 7, 8, and 9 follow.
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