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Abstract

This paper studies trading in a two-sided market where firms strategically form a network.
In a networked market, manufacturers and suppliers must be connected by links for trading.
We show that if no contingent contract is available, then any pairwise Nash stable network is
inefficient. Each supplier under-invests in links (a hold-up problem). If a contract contingent
on direct links is available and link cost is low, then the under-investment problem solves. Fur-
thermore, the complete network resulting in the Walrasian outcome is uniquely pairwise Nash
stable. However, this outcome is also inefficient. A new hold-up problem, over-investment in
links, arises.

1 Introduction

We often observe that firms build bilateral connections only with specific partners. In many
industries, upstream firms and downstream firms invest in relation-specific assets such as the In-
ternet, electric power lines, and pipelines to distribute their resources.

Such a bilateral relationship is called a link, and a pattern of links between upstream firms and
downstream firms is called a network. Since each pair of firms must be linked for trading, architec-
ture of networks will play a central role in the networked market. This paper examines whether
decentralized trading in a manufacturer-supplier networked market with divisible goods achieves
efficient and the competitive trading, comparing to the standard competitive market theory.

Recently, the bueyr-seller networked market has attracted much attention (Corominas-Bosch
[4], Kranton and Minehart [9, 10]). For example, Kranton and Minehart [10] show that every efficient
network is an equilibrium outcome. However, they studies centralized trading. It is assumed that
an existence of centralized mechanisms; an auctioneer (Kranton and Minehart [10]) and a match-
maker (Corominas-Bosch [4]). These social planners can collect all messages and impose any trading
using predetermined mechanisms. In a manufacturer-supplier networked market, however, firms
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are not anonymous, price-taking, and match-taking. Therefore, no such centralized mechanisms
are available, and any trading is decentralized.

One of the seminal studies about the decentralized trading in a non-networked buyer-seller mar-
ket is Rubinstein and Wolinsky [11]. They find that the Walrasian equilibrium trading between
buyers and sellers is supported by a unique subgame perfect equilibrium if strategies for traders
are restricted to stationary strategies. Gale and Sabourian [6] extend this result to a market with
heterogeneous buyers and sellers. However, these studies cannot apply to the networked market
since they assume that any buyer can be paired with any seller through the random matching.

Furthermore, the above studies of buyer-seller market assume unit demands and unit supplies.
Each buyer demands one unit of (indivisible) goods and each seller owns one unit of goods. Thus,
goods have to be traded through a one-to-one matching. Gale [5] points out that in the one-to-
one matching market, it is difficult to examine whether the results support the competitive market
theory since the competitive outcome coincides with the monopolistic outcome.

Comparing to the buyers-seller market, it is natural that goods are traded through a many-to-
many matching in a manufacturer-supplier networked market. Each supplier usually sell goods
to multi manufacturers, and vice versa. Thus, we assume that divisible goods are traded by multi
firms in a manufacturer-supplier networked market.

Therefore, we study decentralized trading in a manufacturer-supplier networked market with
divisible goods. Our study focuses on two points to discover how network architecture affects on
trading. The first is transaction cost. The competitive market theory assumes any trader can buy
or sell goods to any other trader with no transaction cost. Then, the Walrasian equilibrium is al-
ways efficient. However, any firm must bear transaction costs to establish links in the networked
manufacturer-supplier market. Then, the competitive market mechanism may implement an inef-
ficient allocation (Coase [3], Williamson [13]). The second is to find a role of side-payment contracts
for decentralized trading in the networked market. We compare a case where no side-payment con-
tracts is available with a case where simple side-payment contracts contingent on links are available.

We first analyses a networked market consisting of two heterogeneous manufacturers, two het-
erogeneous suppliers, and one type of divisible goods. It is a minimal economy where any firm
in each side is competitive. It is shown that in this small networked market, any stable outcome
is inefficient, regardless of the presence of side-payment contracts. When all firms are symmetric,
we further show that the result holds in a large networked market consisting of n manufacturers
and n suppliers (n ≥ 3). The origin of the inefficiency is an under-investment problem if no side-
payment contract is available. In contrast, it is an over-investment problem if side-payment contracts
are available.

The rest of the paper is organized as follows. Section 2 gives a formal definition of the net-
worked market with divisible goods. Section 3 analyses the networked market by the competitive
market theory as a benchmark. We introduce the notions of the competitive market theory into the
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networked market; the g-competitive equilibrium and the g-efficient allocation. We then show a
version of the first fundamental theorem of welfare economics, i.e. any g-competitive equilibrium
allocation is g-efficient.

Next, we construct a strategic trading game. The game has two stages, a network formation
stage and a bargaining stage. Manufacturers and suppliers establish a network in the first stage and
they trade on that network in the second stage. Section 4 constructs the bargaining game on a given
network. We show that the unique linear subgame perfect equilibrium allocation is g-efficient for
all g, but it is g-competitive if and only if the network is complete. If a supplier links with multi
manufacturers then he obtain their surplus, otherwise he obtains no surplus.

Section 5 constructs a network formation game. All firms announce the set of partners with
whom they want to link. Bilateral investments of a manufacturer and a supplier in relationship-
specific assets enable them to trade. Thus, any link in networks is established if and only if both a
manufacturer and a supplier bilaterally agree to form it. We show that, in this link-announcement
game, an empty and a supplier-monopolized network are pairwise Nash stable and any efficient
network is not Nash stable.

Section 6 extends the link announcement game. Manufacturers and suppliers often contract
with side-payments contingent on their links. Each firm can offer a contingent contract that (s)he
pays transfer if a partner agrees with forming a link. When cost of forming a link is low, the complete
networked market is pairwise Nash stable in this network formation game with direct transfer. In
the complete networked market, however, the stable trading is inefficient since firms over-invest in
links.

Section 7 analyses a large economy where there are n symmetric manufacturers and n symmet-
ric suppliers. We show that any pairwise Nash stable outcome is inefficient in the large market.
Section 8 concludes with several remarks.

2 Networked Market

This section introduces a two-sided networked market. There are n manufacturers I (indexed
by i = 1, 2, ..., n), n suppliers J (indexed by j = 1, 2, ..., n), one type of resources (or intermediate
goods) x ∈ R, and money. We assume that their payoff functions are quasi-linear. Each supplier j
owns his endowment of resources ωj > 0, and has no valuation over resources x.Each manufacturer
i has the following profit function f i : R → R.1

Assumption 1. For all i ∈ I, profit function f i is twice differentiable and

1.1 f i(0) = 0 and d f i

dxi (0) = +∞,

1.2 f i is strictly increasing; d f i

dxi > 0, and

1We can alternatively interpret each manufacturer i and each supplier j as a final consumer and a retailer, respec-
tively. In this case, f i is i’s utility function.
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Figure 1: Feasible architecture of the 2× 2 networked market. Manufacturers are in upper row and
suppliers are in lower row.

1.3 f i is strictly concave; d2 f i

d(xi)2 < 0.

A networked market is given by ( f i, ωj, g)i∈I,j∈J . Trading in a networked market is restricted
by network g ⊂ {ij}i∈I,j∈J which is a non-directed bipartite graph, where ij is a non-directed
link between manufacturer i and supplier j. Figure 1 illustrates the set of all feasible types of net-
works G when n = 2. Let ηi(g), ηj(g) be the number of links of manufacturer i, supplier j, and
Li(g), Lj(g) be the set of agents linked with manufacturer i, supplier j, respectively. We denote
the empty network (∑s

j=1 ηj(ge) = 0) by ge, and the complete network (ηj(gc) = 2 for all j) by gc.
Each manufacturer i can buy resources from supplier j if and only if they are linked (j ∈ Li(g)). In
what follows, we abbreviate networked market ( f i, ωj, g)i∈I,j∈J as g whenever no confusion arises.

3 Benchmark: g-Competitive Equilibrium

This section applies the competitive market mechanism to the networked market. We first define
the competitive equilibrium in networked market g. Let pi

j(g) be a price when i buys resource from
j in g, and p(g) = (p1

1(g), p1
2(g), p2

1(g), ..., pn
n(g)).

Definition 1. An outcome ( p̃(g), x̃(g)) is competitive relative to g (g-competitive) if

(i) for i ∈ I, (x̃i
1(g), ..., x̃i

n(g)) ∈ arg max f i(∑j xi
j) − ∑j p̃i

j(g)xi
j subject to xi

j = 0 for any
ij /∈ g, and

(ii) for j ∈ J, (x̃1
j (g), ..., x̃n

j (g)) ∈ arg max ∑i p̃i
j(g)xi

j subject to ∑i xi
j ≤ ωj and xi

j = 0 for any
ij /∈ g.

The gc-competitive equilibrium is the Walrasian equilibrium.
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We make two remarks. First, x̃i
j(g) can be negative. If x̃i

j(g) < 0, manufacturer i sells resources
to supplier j. However, ∑j x̃i

j(g) > 0 for any i with ηi(g) ≥ 1 and any g since any i has zero
endowments. Thus, any manufacturer i can sell resources if i has more than two links and buy
resources from other suppliers.

Second, a non-uniform price vector conditional on links are allowed in g. However, any g-
competitive equilibrium ( p̃(g), x̃(g)) satisfies a uniform price among (directly or indirectly) con-
nected agents. If it does not hold, then there is a firm who can arbitrage.

Let p̃j(g) be the competitive price for agents connected to supplier j. Thus, d f i

dxi
j
(∑k x̃i

k(g)) =

p̃j(g) for any i ∈ Lj(g). We next show a version of the first fundamental theorem of welfare
economics, i.e. any g-competitive equilibrium allocation is constrained efficient for all g ∈ G.

Definition 2. Let denote a (Pareto-)efficient allocation relative to g (g-efficient allocation) by x̂(g) =

(x̂1
1(g), x̂1

2(g), x̂2
1(g), ..., x̂n

n(g)). It is a solution of the following maximization problem:

max
x ∑

i∈I
f i(∑

j
xi

j)

subject to ∑
i

xi
j ≤ ωj for j ∈ J,

xi
j = 0 for all ij /∈ g.

The solution x̂(g) is not unique generally. However, (∑j x̂1
j (g), ..., ∑j x̂n

j (g)) is unique by con-
cavity of f i. We denote the corresponding social welfare for g by Π̂(g) = ∑i f i(x̂i(g)). For all
g, g′ ∈ G, if g ⊃ g′ then Π̂(g) ≥ Π̂(g′).

Proposition 1. Any g-competitive equilibrium allocation is g-efficient.

Proof. For any ij /∈ g, xi
j(g) = 0. Thus, if Lj(g) = ∅, then x̃j(g) = x̂j(g) = (0, ..., 0) for any j ∈ J.

Next, we consider the case where Lj(g) ̸= ∅. Then, ∑i x̃i
j(g) = ωj by condition (ii). Sup-

pose that there is an allocation y that (Pareto-)dominates g-competitive equilibrium allocation x̃(g).
Then, y is infeasible since ∑i yi

j > ∑i x̃i
j(g) = ωj for some j by strict monotonicity of f i. Therefore,

any g-competitive equilibrium allocation is g-efficient.

Next, we define Consumer Surplus (CS) and Producer Surplus (PS) in the standard manner. For
manufacturer i ∈ I, CS relative to g for i is given by

CSi(g) = f i(∑
j

x̂i
j(g))− ∑

j
p̃j(g)x̂i

j(g),

and for supplier j ∈ J, PS relative to g for j is given by

PSj(g) = p̃j(g)∑
i

x̂i
j(g) = p̃j(g)ωj.
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In the g-competitive equilibrium, each manufacturer i obtains CSi(g) and each supplier j obtains
PSj(g). Note that CSi(g) ≥ CSi(g \ {ij}) for any g since ∑l∈J x̂i

l(g) ≥ ∑l∈J\{ j } x̂i
l(g \ {ij}),

and PSj(g) ≥ PSj(g \ {ij}) for any g since p̃(g) ≥ p̃(g \ {ij}).
The game proceeds as follows: Manufacturers and suppliers form a trading network in the first

stage (Network formation game). Then, they allocate resources and money given a network in the
second stage (Bargaining game). We solve the game by backward induction.

4 Bargaining Game in Networked Market

We first analyses a small networked market with n = 2.2 An economy is a bilateral duopoly,
which is a minimal economy where any firm in each side is competitive. The set of feasible archi-
tecture of networks is given in Figure 1. For g ∈ G \ { g4 }, the g-competitive price is uniform and
unique among all connected firms, given by p̃(g). Thus, p̃(g) = d f i

dxi
j
(∑k x̃i

k(g)) for i, j = 1, 2.

Protocol First, we formulate a bargaining protocol after network g is formed. Given a network
g ∈ G, each manufacturer i proposes a payment schedule to supplier j with j ∈ Li(g) contingent
on an allotment from j to i, xi

j. A bargaining protocol is given by the following non-linear price
competition:

Step 1: Every manufacturer i bids payment schedule ti
j(xi

j) to supplier j for all j ∈ Li(g).

Step 2: Given a schedule profile, supplier j allocate its endowment to manufacturers xj(t) = (x1
j (t), x2

j (t)).
An allocation xj(t) is feasible if ∑i xi

j(t) ≤ ωj, and xi
j(t) ≡ 0 for all i /∈ Lj(g).

In Step 2, independently of the other supplier, given g and (t1
j , t2

j ), each supplier j maximizes
his payoff function

Πj(x1
j , x2

j ) = ∑
i∈I

ti
j(xi

j(t)). (1)

Let x∗j (t) = (x1∗
j (t), x2∗

j (t)) ∈ arg max Πj(x1
j , x2

j ). Then, a payoff function for manufacturer i is
given by

Πi(t) = f i(xi∗
1 (t) + xi∗

2 (t))− ∑
j∈J

ti
j(xi∗

j (t)). (2)

Linear bidding and Equilibrium We focus on linear subgame perfect equilibria (linear SPEs), whereas
the strategy space includes all non-linear bidding. A linear bidding strategy is defined as follows:

Definition 3 (Linear Bidding). A payment schedule from i to j, ti
j(xi

j), is linear if ti
j(xi

j) satisfies for

2Let −i and −j be a manufacturer who is not i and a supplier who is not j, respectively.
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price pi
j,

ti
j(xi

j) = pi
jx

i
j.

A strategy for manufacturer i is linear bidding strategy if ti
j(xi

j) is linear for all j ∈ Li(g), and a
strategy profile is a linear SPE if the profile is a SPE in which all manufacturers adopt linear bidding
strategies.

The linear SPEs are characterized as follows.

Proposition 2. For each g ∈ G, there exists a linear SPE with price vector p∗ such that for all i,

pi∗
j (g) =


0 if ηj(g) = 0, 1

p̃(g) if ηj(g) = 2.

The corresponding linear SPE payoff vector Π∗(g) is given by for all i,

Π1∗(g) = CSi(g) + ∑
j∈Li(g), ηj(g)=1

PSj(g)

and for all j,

Π∗
j (g) =


0 if ηj = 0, 1

PSj(g) if ηj = 2.

Proof. When ηj(g) ≤ 1 for all j (i.e. g ∈ { g1, g2, g4 } ), the bargaining game is the standard
ultimatum bargaining. Thus, pi∗

j (g) = 0. Each supplier j allocates all endowments to the linked
manufacturer, and each manufacturer obtains all profits in any linear SPE.

We then show that for any g and any supplier j with ηj(g) = 2, p1∗
j (g) = p2∗

j (g) in any
linear SPE. Suppose p1∗

j (g) > p2∗
j (g). Then, manufacturer 1 can deviates to decrease p1

j (g) =

p1∗
j (g)− ϵ for sufficiently small ϵ > 0.

When g3 is given, there are two manufacturers and one supplier in the market. Consider a linear
bidding strategy profile t∗2 = (t1∗

2 , t2∗
2 ) such that for any manufacturer i = 1, 2,

pi∗
2 = p̃(g3) =

d f i

dxi (x̂i(g3)),

and supplier 2 chooses x∗2 = (x̃1
2(g3), x̃2

2(g3)). In this profile, (x̃1
2(g3), x̃2

2(g3)), (ω2, 0), and
(0, ω2) are best replies for supplier 2. If manufacturer 1 deviates to p1∗

2 + ϵ then supplier 2 chooses
(x1

2, x2
2) = (ω2, 0) and deviates to p1∗

2 − ϵ then supplier 2 chooses (x1
2, x2

2) = (0, ω2) for any
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ϵ > 0. Both are not profitable since (p1∗
2 , x1∗

2 ) = ( p̃1
2(g3), x̃1

2(g3)). Thus, this strategy profile
constitutes a SPE, and the corresponding SPE payoff vector is Π∗(g3).

When g5 is given, there are two manufacturers and two suppliers in the market. Consider an
linear strategy profile ((t1∗

1 , t1∗
2 ), t2∗

2 ) such that for manufacturer 1,

p1∗
1 = 0

p1∗
2 = p̃(g5) =

d f 1

dx1 (x̃1(g5))

and for manufacturer 2,

p2∗
2 = p̃(g5) =

d f 2

dx2 (x̃2(g5)).

Linear bidding t1∗
1 (x1

1) is optimal by L1(g5) = {1}, and (t1∗
2 , t2∗

2 ) constitutes a linear SPE since it
is a linear SPE of g3 given x1

1 = ω1 . Hence, this profile constitutes a linear SPE and generates a
payoff vector Π∗(g5).

When gc is given, consider a linear strategy profile ((t1∗
1 , t1∗

2 ), (t2∗
1 , t2∗

2 )) such that for manufac-
turer i = 1, 2 and supplier j = 1, 2,

pi∗
j = p̃(gc) =

d f i

dxi (x̃i(gc)),

and (x1
j (t

∗), x2
j (t

∗)) = (x̃1
j (gc), x̃2

j (gc)) for supplier j = 1, 2. In this profile, (x̃1
j (gc), x̃2

j (gc)) is a
best reply for all j and each supplier j is indifferent to choose (x̃1

j (gc), x̃2
j (gc)), (0, ωj), and (ωj, 0).

Thus, this strategy profile constitutes a linear SPE and generates a payoff vector Π∗(gc).

The above linear SPE is not a unique SPE, but the unique linear SPE.

Proposition 3. (p∗, x∗) is the unique linear SPE.

Proof. Obviously, if ηj(g) = 1, then pi∗
j = 0 and xi∗

j = ωj for all i, j in any linear SPE. Thus, when
g1, g2, or g4 is given, there is a unique SPE.

Consider any j with ηj(g) = 2. Then, since g ∈ { g3, g5, gc }, p∗j (g) = p̃(g). Suppose that
there is a linear SPE t = (p(g), x(g)) with p1

j (g) = p2
j (g) > p̃(g) for some g and j. Consider a

non-linear bidding t̄i
j such that for some pair ( p̄i

j, ȳi
j),

t̄i
j(xi

j) =


p̄i

jx
i
j if xi

j ≤ ȳi
j

p̄i
jȳ

i
j if xi

j > ȳi
j.

By ωj = ∑i xi
j(g) = ∑i x̃i

j(g), we obtain xi∗
j (t) ≥ x̃i

j(g) for some i. Since pi
j(g) > p̃(g), it is

profitable for such manufacturer i to deviate t̄i
j with ( p̄i

j, ȳi
j) = (pi

j(g), xi
j(g)− ϵ) for some ϵ > 0.
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Next, suppose that there is a linear SPE t = (p(g), x(g)) with p1
j (g) = p2

j (g) < p̃(g) for
some g and some j. Since p̃(g) > pi

j(g) for some i, it is profitable for such i to deviate a non-linear

schedule t̄i
j with p̄i

j = pi
j + ϵ and ȳi

j such that d f i

dxi (ȳi
j + xi

−j(g)) = p̄i
j. Therefore, pi∗

j = d f i

dxi (x̃i(g))
for all j with Lj(g) = {1, 2} in any linear SPE.

Suppose that (x1∗
j (t), x2∗

j (t)) ̸= (x̃1
j (g), x̃2

j (g)). Then, there is a manufacturer with xi∗
j (t) >

x̃i
j(g). For such manufacturer i, it is a profitable to deviate t̄i

j with ȳi
j = x̃i

j(g). Hence, x∗j (t) =

(x̃1
j (g), x̃2

j (g)) in any linear SPE.

By Proposition 2 and 3, we obtain the following corollaries, straightforwardly.

Corollary 1. The linear SPE allocation x∗(g) is g-efficient for all g ∈ G.

Corollary 2. The linear SPE (p∗(g), x∗(g)) is g-competitive if and only if g = gc.

When gc is given, the set of feasible trading is the same as the set of feasible allocation in the non-
networked market since all manufacturers can trade with all suppliers. In addition, manufacturers
and suppliers are competitive since any manufacturer and any supplier have two links. Thus, the
equilibrium allocation coincides with the Walrasian allocation. For any g ∈ G \ { gc }, however,
there always exists a supplier who has only one link. That supplier sells resources at price 0 in the
linear SPE. Thus, the linear SPE is not g-competitive.

5 Formation of Networked Market

We have studied trading in the bargaining stage (the subgame after a network is formed). Next,
we study a network formation game. We first introduce transaction cost to form links. Let li(g) and
lj(g) denote cost functions to form network g for manufacturer i and supplier j respectively.

Assumption 2. Each link cost function li and lj satisfy the following for all i ∈ I and j ∈ J:

2.1 li(g) = lηi(g) and lj(g) = lηj(g), where l > 0 is a constant.

2.2 CSi(g)− lηi(g) > 0 if Li(g) ̸= ∅ and PSj(g)− lηj(g) > 0 if Lj(g) ̸= ∅ for all g.

2.3 SW(g5) > max { SW(g2), SW(g3) }.

Assumption 2.1 is the standard linearity assumption of link cost function. Each link ij is formed
at strictly positive cost l for both manufacturer i and supplier j. By Assumption 2.2, the g-competitive
allocation is more profitable than no trading for any firms and any network. This assumption im-
plies that SW(ge) < SW(g1) < SW(g4). Assumption 2.3 implies that g is inefficient when there
is an agent who does not participate the networked market.

Then, we define a social welfare function as

SW(g) = ∑
i
[Πi∗(g)− lηi(g)] + ∑

j
[Π∗

j (g)− lηj(g)].

9



The efficient network is ĝ ∈ arg maxg SW(g), and the efficient allocation of resources is x̂(ĝ).
If g = gc, then there is an efficient allocation x̂(gc) such that there is at least one link ij with

x̂i
j(gc) = 0. Thus, at least one type of g5 satisfies x̂i

j(gc) = x̂i
j(g5) for any link ij ∈ gc. For such g5,

SW(gc) < SW(g5). Therefore, for any economy ( f 1, f 2, ω1, ω2),

ĝ ∈ {g4, g5}. (3)

In particular, if all manufacturers and suppliers are symmetric ( f 1 = f 2 and ω1 = ω2), then
g4 = ĝ.

5.1 Link-Announcement Game

We adopt the link-announcement game (Jackson [8]) as a network formation game. All manufac-
turers and suppliers announce a set of agents with whom they want to form links simultaneously.
We denote a (pure) strategy of manufacturer i by si = (sij)j∈S, and a strategy of supplier j by
sj = (sij)i∈B, where sij, sij ∈ {+,−}. If sij = + then manufacturer i wants to link with sup-
plier j and if sij = + then supplier j wants to link with manufacturer i. A link ij is formed if and
only if both manufacturer i and supplier j agree with forming link ij, i.e. ij ∈ g(s) if and only if
sij = sij = +.

Thus, payoffs of manufacturer i and supplier j are given by

ϕi(g(s)) = Πi(t(g(s)), x(g(s)))− lηi(g(s)) (4)

ϕj(g(s)) = Πj(t(g(s)), x(g(s)))− lηj(g(s)). (5)

We assume that all agents play a linear SPE after any network is formed. A profile (s, t(g), x(g)) is
a Nash equilibrium if (t(g), x(g)) is a linear SPE in the bargaining game for all g, and for all i and
j,

ϕi(g(s)) ≥ ϕi(g(s′i, s−i)),

ϕj(g(s)) ≥ ϕj(g(s′j, s−j)).

A network g is Nash stable (NS) if there exists a Nash equilibrium with g(s) = g.
It is well-known that the Nash stability is a weak concept for bilateral network formation games.

There are many NS networks (e.g. the empty network is always Nash stable for all network for-
mation games). A standard refinement of Nash stability proposed by Bloch and Jackson [1] is the
pairwise Nash stability (PNS). In addition to the Nash stability, we demands that there is no profitable
pairwise deviation.

Definition 4. A network g is pairwise Nash stable if it is Nash stable and there does not exist a link
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ij /∈ g(s) such that

ϕi(g(s) ∪ {ij}) ≥ ϕi(g(s))

ϕj(g(s) ∪ {ij}) ≥ ϕj(g(s))

with strict inequality for one of two agents.

5.2 Stable Market Structure

First, suppose that l = 0 instead of Assumption 2.1. Then, Proposition 2 implies that the com-
plete network gc is the unique PNS network since forming any link ij is profitable for i and j, i.e.
Πi∗(g ∪ {ij}) ≥ Πi∗(g) and Π∗

j (g ∪ {ij}) ≥ Π∗
j (g) with strict inequality one of two agents for

all g and ij /∈ g. Therefore, if there is no transaction cost, the unique stable market structure is the
complete networked market resulting in the Walrasian outcome.

Hereafter, we assume that l > 0. The next proposition shows that any efficient network and the
complete network are not Nash stable.

Proposition 4. In the link-announcement game,

(i) The network ge and g3 are PNS.

(ii) The other networks g1, g2, g4, g5, and gc are not NS.

Proof. Part i: By Proposition 2, Π∗
j (ge ∪{ij}) = 0 for any ij and j. Then, there is no link ij satisfying

ϕj(ge ∪ {ij})− ϕj(ge) = −l ≥ 0. Hence, ge is PNS.
For g3, since all manufacturers obtain non-negative payoffs and have only one link, there is no

incentive to cut a link for manufacturers. If supplier 2 who obtain non-negative payoff cut any one
of links then 2’s payoff is −l and if supplier 2 cut both then 2’s payoff is 0. Hence, supplier 2 also
has no incentive to cut links. By Proposition 2, Π∗

1(g3 ∪ {11}) = Π∗
1(g5) = Π∗

1(g3) = 0. Then,
supplier 1 has no incentive to form link 11 since ϕ1(g3 ∪ {11})− ϕ1(g3) = −l < 0.

Part ii: If CSi(gc) − 2l ≥ CSi(gc \ {ij}) − l ≥ 0 holds for all i, j, there is no incentive for
manufacturer i to cut any links in Li(gc). However, there is an efficient allocation with x̂i

j(gc) = 0
for some ij. Let x̂2

1(gc) = 0. This implies that Π2∗(gc) = Π2∗(g5). Hence, cutting the link 21 is
profitable for the manufacturer 2.

Similarly, for other networks g1, g2, g4, or g5, supplier 1 obtains no profit. Thus, supplier 1
deviates by cutting a link.

An under-investment problem Networks ge, g3 never become efficient network by (3). This inef-
ficiency is caused by a hold-up problem (Hart and Moore [7]). When a pair of a manufacturer and
a supplier jointly invest in a link (a relation-specific asset), cost of forming link is not contractible
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and sunk in the bargaining stage. Thus, under-investment arises for suppliers since they have less
bargaining power.

6 Side-payment Contracts

In the previous section, we assume that no side-payment contract contingent on links is avail-
able for all firms. They sometimes, however, can write some simple contingent contract with side-
payments. This section studies a network formation game with direct side-payments.

Network Formation Game with Direct Side-Payments Bloch and Jackson [2] propose a network
formation game which allows direct side-payments when agents form a network. In their network
formation game with direct side-payments, every manufacturer i and supplier j simultaneously
announce a vector of transfers τi ∈ Rs, τj ∈ Rb. All manufacturers and suppliers can only transfer
to form links with which they involved. We denote the element of τi by τij ∈ R, which represents
transfer that manufacturer i proposes to form link ij and τj by τij ∈ R, which represents transfer
that supplier j proposes to form link ij. Link ij is formed if and only if τij + τij ≥ 0. A network
g(τ) = {ij|τij + τij ≥ 0}, where τ = (τ1, τ2, τ1, τ2) is a profile of announced vectors of transfers.

The payoffs for manufacturer i and supplier j are defined by

Φi(g(τ)) = ϕi(g(τ))− ∑
im∈g(τ)

τim

Φj(g(τ)) = ϕj(g(τ))− ∑
jk∈g(τ)

τjk.

Given τ, let τ−ij indicate the profile of transfers found simply by deleting τij and τij. The stability
concepts in the network formation game with direct transfer are defined in the same manner.

Definition 5. A strategy profile (τ, t(g), x(g)) is a Nash equilibrium if (t(g), x(g)) is a linear SPE
in the bargaining game for all g, and for all i and j,

Φi(g(τ)) ≥ Φi(g(τ′i, τ−i))

Φj(g(τ)) ≥ Φj(g(τ′
j , τ−j)).

A network g is Nash stable with direct transfer (NSd) if there is a Nash equilibrium with g(τ) = g.
A network g is pairwise Nash stable with direct transfer (PNSd) if it is NSd and there exists no
ij /∈ g(τ) such that for all τ′ij, τ′

ij,

Φi(g(τ−ij, τ′ij, τ′
ij)) + Φj(g(τ−ij, τ′ij, τ′

ij)) > Φi(g(τ)) + Φj(g(τ)).

Lemma 1. In the network formation game with direct transfer, any efficient network ĝ is NSd but not PNSd.
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Furthermore, the set of PNSd networks is empty or {gc}.

Proof. First note that ĝ ∈ {g4, g5}. Suppose ĝ = g4. Since CSi({ij}) + PSj({ij}) ≥ 2l for all
i, j, there is a profile τ such that no deviation to cut any link is profitable. Hence, there is a Nash
equilibrium τ such that g(τ) = g4. Thus, g4 is NSd when ĝ = g4.

Next, suppose ĝ = g5. Then, CSi(g5) = CSi(gc) and PSj(g5) = PSj(gc) since x̂(g5) = x̂(gc)

for all i and j. Consider any profile τ satisfying τ11 = −τ11 = l, τ12 = −τ12 = −l, τ21 + τ21 < 0,
and τ22 = −τ22 = CS2(g5)− l. Then, g(τ) = g5. Since Φ2(g(τ)) = Φ1(g(τ)) = 0, there is no
profitable deviation for manufacturer 2 and supplier 1. Furthermore, manufacturer 1 and supplier
2 have no profitable deviation since

CS1(gc) + PS1(gc)− 2l ≥ max[CS1(g3), CS1(g4) + PS1(g4)− 2l]

CS2(gc) + PS2(gc)− 4l ≥ CS2(gc)− 2l

Hence, g5 is NSd.
However, since Π1∗(g5)+Π∗

2(g5)−Π1∗(g4)−Π∗
2(g4) = CS1(g5)+∑j PSj(g5)−CS1(g4)−

PS1(g4) > 2l and Π2∗(gc) + Π∗
1(gc)− Π2∗(g5)− Π∗

1(g5) = CS2(gc) + PS1(gc)− CS2(g5) >

2l by Assumption 2.2, g4 and g5 are not pairwise Nash stable. Hence, any efficient network is not
pairwise Nash stable. By the same procedure, we can show that ge, g1, g2, and g3 are not pairwise
Nash stable.

Next, we show that the competitive outcome in the complete networked market gc (the Wal-
rasian outcome) is the unique pairwise Nash stable outcome when the link cost l is small.

Proposition 5. Suppose that PSj(gc) ≥ 4l for all j. In the network formation game with direct side-payments,
the complete network gc is the unique PNSd network.

Proof. First, we construct τ with g(τ) = gc such that there is no incentive to cut any link. Consider
a profile τ such that τij = −τij = −l for all ij. Then the manufacturer i has no incentive to cut
any link since CSi(gc) ≥ CSi(gc \ {ij}) for all ij and i’s transfer from j, −τij, is equal to cost of
maintaining link. Also, the supplier j has no incentive to cut any link since Π∗

j (gc)− 2l − ∑ τij =

PSj(gc)− 4l ≥ 0. Hence, gc is a PNSd network. By Lemma 1, it is the unique PNSd network.

In constrast, when l is high, there is no pairwise Nash equilibrium with direct side-payments
for some economy ( f 1, f 2, ω1, ω2). There is a supplier who deviates to cut a link in the complete
network. We consider a symmetric economy ( f 1, f 2, ω1, ω2) where f 1 = f 2 and ω1 = ω2.

Proposition 6. Suppose that an economy is symmetric and PS(gc) < 4l. Then, gc is not NSd, and there is
no PNSd network.

Proof. When all agents are symmetric, CSi(gc) = CSi(g5) for any i and any type of g5. Thus, in gc,
there is no incentive for any manufacturer i to cut link ij if and only if τij ≤ −l for all j. However,
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since PS(gc) < 4l, such transfer (τ1j, τ2j) is not profitable for any supplier j. Hence, each supplier
has an incentive to cut a link, and gc is not NSd. Since any other network is not pairwise Nash stable
by Lemma 1, there is no PNSd network.

An over-investment problem A new hold-up problem arises in the network formation with di-
rect side-payments. Suppose that link cost is low. By Lemma 1, the complete networked market
is uniquely pairwise Nash stable. Each suppliers j has an incentive to form two links 1j and 2j by
transferring link cost l to both manufacturers for j’s surplus PSj when 4l < PSj. Since the Walrasian
outcome is an equilibrium outcome in the bargaining subgame when the market is completely net-
worked, it is supported by the network formation game with direct side-payments. However, it is
not efficient by (3). There is a link ij in which there is no trading in the complete networked market
(x̂i

j(gc) = 0). Therefore, there is an over-investment problem due to excess link formation.

7 Large Economy

We have shown that the stable allocation is inefficient in the small networked market consisting
of two manufacturers and two suppliers. This section studies a large symmetric networked mar-
ket. Suppose that an economy consists of n symmetric manufacturers and n symmetric suppliers
(n ≥ 3). All manufacturers have the same profit function f and all suppliers have the same endow-
ment ω. Then, any efficient network has the same architecture as ĝ = {11, 22, ..., nn}. We first
characterize linear SPEs in Stage 2.

Lemma 2. Fix g. In any linear SPE (p∗(g), x∗(g)), price vector p∗(g) is given by for any j,

max
i∈Lj(g)

pi∗
j (g) =


0 if ηj(g) = 0, 1

p̃j(g) if ηj(g) ≥ 2.

Proof. It is obvious that pi∗
j (g) = 0 for all j with ηj(g) ≤ 1.

Suppose that maxi∈Lj(g) pi∗
j (g) > p̃j(g) for some j. Then, there is a manufacturer i with

xi∗
j (g) ≥ x̃i

j(g) > 0 since ∑i xi∗
j (g) = ∑i x̃i

j(g) = ωj. By condition (i) in Definition 1, it is
profitable for such i to bid a non-linear schedule t̄ such that for ϵ > 0,

t̄i
j(xi

j) =


pi∗

j (g)xi
j if xi

j ≤ xi∗
j (g)− ϵ

pi∗
j (g)(xi∗

j (g)− ϵ) if xi
j > xi∗

j (g)− ϵ.

Suppose that maxi∈Lj(g) pi∗
j (g) < p̃j(g) for some j. Then, there is a manufacturer i who deviate
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to non-linear schedule such that for ϵ > 0 and ȳi
j such that d f i

dxi (ȳi
j + xi

−j(g)) = pi∗
j + ϵ,

t̄i
j(xi

j) =


(pi∗

j (g) + ϵ)xi
j if xi

j ≤ ȳi
j

(pi∗
j (g) + ϵ)(xi∗

j (g)− ϵ) if xi
j > ȳi

j.

Obviously, if no side-payment is available, then the efficient network ĝ is not pairwise Nash
stable. Since any supplier j has only one link, it is profitable for j to cut his link. Even if simple
contingent contracts are available, the efficient network ĝ is not pairwise Nash stable.

Proposition 7. Any efficient network ĝ is not PNSd in either the link announcement game and the network
formation game with direct side-payments.

Proof. First, consider the link announcement game. Then, pi∗
j (ĝ) = 0 for all j. Thus, it is profitable

to cut j’s link for any j .
Second, consider the network formation game with the direct side-payments. When g(τ) = ĝ,

pi∗
j (g(τ)) = 0. Since PSj(g) ≥ 2l for all j, it is profitable to deviates to form a new link ij /∈ ĝ by

transferring l to manufacturer i for any supplier j.

Therefore, efficient trading is not pairwise Nash stable in the large market. The origins are the
same as n = 2: When no side-payments are available, the under-investment for suppliers arises.
When side-payments are available, the inefficiency is caused by the over-investment problem.

When n = 2 and link cost l is low, the complete network is PNSd. However, the complete
network is not PNSd whenever l > 0 in the large market with n ≥ 3. For any j and any g with
ηj(g) ≥ 2, maxi pi∗

j (g) = p̃j(g). By symmetry, p̃j(gc) = p̃j(gc \ { ij }) for any ij ∈ gc. Thus, any
j has an incentive to cut at least one link in gc when n ≥ 3.

8 Concluding Remarks

We have studied decentralized trading in the strategically formed networked market between
manufacturers and suppliers. In contrast to the centralized trading in a buyer-seller networked mar-
ket, we show that any efficient network is not pairwise Nash stable, regardless of the presence of
the side-payment contracts. When no side-payment contract is available, suppliers under-invest in
links. When side-payments are available, the complete network resulting in the Walrasian equilib-
rium outcome is the unique pairwise Nash stable network if link cost is low. However, it is not
efficient since the firms over-invest in links. Therefore, the efficient trading does not occur when
firms strategically form a trading network.

The study has two limitations. First, it is not known whether the same results holds in a large
market with heterogeneous firms. Shirata [12] further studies an allocation problem in a two-sided
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networked market with asymmetric multi firms given a network. Second, we only consider a no-
side-payment contract and a simple side-payment contract. Some complex or complete contracts
may solve the inefficiency in the networked market.
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