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Space-time analysis of GDP disparities among European

regions: A Markov chains approach

Abstract

The purpose of this paper is to study the evolution of the disparities between 138

European regions over the 1980-1995 period. We characterize the regional per capita GDP

cross-sectional distribution by means of nonparametric estimations of density functions and

we model the growth process as a first-order stationary Markov chain. Spatial effects are

then introduced within the Markov chain framework using regional conditioning and spatial

Markov chains. The results of the analysis indicate the persistence of regional disparities, a

progressive bias toward a poverty trap and the importance of geography to explain growth

and convergence processes.
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Introduction

Numerous recent studies1 have reported the persistence of per capita Gross Domestic

Product (GDP) or income disparities among European regions, despite the high degree of openness

between these regions and in contradiction with the predictions of the neoclassical growth model.

From an empirical point of view, the analysis of economic disparities is often linked to two concepts

of convergence, called, respectively β- and σ-convergence (Barro and Sala-I-Martin, 1995).

Empirical evidence on β-convergence has usually been investigated by regressing growth

rates of GDP on initial levels, sometimes after other variables maintaining constant the steady-state of

each region have been added (conditional β-convergence). A negative regression coefficient is

interpreted as an indication of β-convergence, which implies that poor regions tend to grow faster

than rich regions, so that the poor regions catch up in the long run the level of per capita GDP of the

rich regions. σ-convergence refers to a reduction of the dispersion within the per capita GDP cross-

sectional distribution over time. However, both coefficients raise several problems. In particular,

Friedman (1992) and Quah (1993b) show that an increase of the dispersion (i.e. no σ-convergence)

is consistent with a negative β-convergence regression coefficient. Furthermore, Quah (1993a,b)

argues that dispersion indicators do not provide any information on the behavior of the entire regional

per capita GDP distribution.

In addition, a common problem to all these methods concerns the role of space. At the

regional scale, spatial effects and particularly spatial autocorrelation cannot be neglected for the

analysis of convergence processes. Indeed, several factors, like trade between regions, technology

                                                                
1 Empirical studies are numerous. See among others Baumol (1986), Barro (1991), Barro and Sala-i-Martin (1991,
1995), Armstrong and Vickerman (1995), Sala-i-Martin (1996), Beine and Docquier (2000).
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and knowledge diffusion and more generally regional externalities and spillovers, lead to

geographically dependent regions. Because of spatial interactions between regions, the geographical

location plays an important role for explaining the economic performances of the regions. Despite

their importance, the role of spatial effects in convergence processes has only recently been

examined using appropriate spatial statistics and spatial econometric methods (Armstrong, 1995;

Moreno and Trehan, 1997; López-Bazo et al. 1999; Fingleton, 1999; Rey and Montouri, 1999; Le

Gallo and Ertur, 2000; Baumont et al., 2001).

This paper is related to the work of Quah (1993a, b) and deals with an alternative form of

convergence, which is then measured from the evolution of the shape of the per capita GDP cross-

sectional distribution and from the changes of the regions' relative positions inside this distribution2.

Based on a sample of 138 European regions over the 1980-1995 period, the paper is run in two

steps.

First, we characterize the evolution of the disparities between the European regions by

examining the per capita GDP cross-sectional distribution over the 1980-1995 period. In that

purpose, we use the tools developed by Quah (1993a, b, 1996a-c), i.e. non-parametric estimation

of density functions and modeling of the growth process as a stationary first-order Markov chain.

Second, the spatial dimension is explicitly considered within the Markov chain framework using

regional conditioning (Quah, 1996b) and spatial Markov chains (Rey, 2001). These tools allow

studying how the economic performances of a region can be explained by its geographical

                                                                
2 This kind of study may lead to the identification of convergence clubs and has been applied to various groups
of regions or countries (Bianchi, 1997; Desdoigts, 1999; Paap and Van Dijk, 1998; or Johnson, 2000).
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environment, the extent to which this environment influences the regions' relative position inside the

GDP cross-sectional distribution and the role of space in the constitution of convergence clubs.

1. The evolution of the per capita GDP distribution

The analysis of the evolution of the regional GDP distribution is carried out on the Europe-

relative GDP distribution over the 1980-1995 period. The Europe-relative GDP is defined as the

ratio of the regional GDP to the European wide average GDP. It is preferable to work on relative

GDP, opposed to absolute GDP, so that co-movements due to the European wide business cycle

and trends in the average regional GDP are removed.

The analysis of the Europe-relative regional GDP distribution is based on two main lines.

First, non-parametric density estimation methods allow studying the external shape of the GDP

distribution for each year, as well as the changes in this shape during the period. Second, the

temporal dynamics within the GDP distribution is examined with the estimation of probability

transition matrices (or Markov chains) and the associated long-run distributions.

 The data are extracted from the EUROSTAT-REGIO databank3. The sample includes 138

regions for 11 countries (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium,

Spain, France, Germany, Greece, Italy, Netherlands and Portugal in NUTS2 level) over the 1980-

1995 period4.

11. The evolution of the shape of the per capita GDP distribution

                                                                
3 Series E2GDP measured in Ecu_hab units.
4 We exclude Groningen in the Netherlands from the sample due to some anomalies related to North Sea Oil
revenues, which increase notably its per capita GDP. We exclude also Canary Islands and Ceuta y Mellila, which
are geographically isolated. Corse, Austria, Finland, Ireland and Sweeden are excluded due to data non-
availability over the 1980-1995 period in the EUROSTAT-REGIO databank. Berlin and East Germany are also
excluded due to well-known historical and political reasons.
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In cross-country studies, a polarization or stratification process in several "convergence

clubs" is often observed (Quah, 1996c; Bianchi, 1997; Desdoigts, 1999). These convergence clubs

mean an increase in the homogeneity within regions or countries of the same groups, and also an

increase in the differences between groups. A first technique aimed at detecting such convergence

clubs is the estimation of the density function for the regional per capita GDP distribution and the

analysis of its mono- or multimodality characteristics. Quah (1993b, 1996c) and Bianchi (1997)

detect bimodality for international income distribution, i.e. the existence of two convergence clubs,

but Quah (1996b) obtains no evidence of it for a subsample of European regions in per capita GDP.

In order to characterize the evolution of regional GDP, we have examined the per capita

GDP distribution (relative to the European average) in 1980 and the way this distribution has

changed in time until 1995. Figure 1 plots two estimated density functions for regional relative GDP

for the initial year 1980 and the final year 19955. These density plots can be interpreted as the

continuous equivalent of a histogram, in which the number of intervals has been let to infinity and then

to the continuum. By definition of the data, 1 on the horizontal axis indicates the European average

GDP, 2 indicates twice this average, and so on.

[Figure 1 about here]

Compared to 1980, more regions have regional GDP less than the European average or

twice the European average in 1995. Moreover, besides the main mode, a second persistent mode is

situated around 50% of the European average. This may reflect the existence of an important group

                                                                
5 All densities are calculated nonparametrically using a Gaussian kernel with bandwith set as proposed in
Silverman (1986, section 3.4.2.).
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of regions, with per capita GDP levels below the average, and which converge towards a lower

GDP level than the rest of the regions. This result contradicts those in Quah (1996b) but is similar to

those in López-Bazo et al. (1999). This difference may be explained by the samples used in this

study and in López-Bazo et al. (1999), where all poor regions of Portugal and Greece are included.

On the contrary, the sample used in Quah (1996b), does not include these poor regions (78 regions

from 1980 to 1989). Let us note as well that the distance between the two modes in our case is far

below that the distance detected between the two peaks in the cross-country distribution. Finally, the

little peak, situated around 200% of the European average on the 1995 density plot, fluctuates over

the period. Therefore it is not possible to surely identify a third mode concerning the very rich

regions.

The density plots suggest a persistent polarization of European regional GDP. However the

density plots alone cannot support this interpretation. It is true that there are more very rich or very

poor regions in 1995 compared to 1980, but we could wonder as well what were their relative

positions in previous years. In other words, these density functions do not inform if the right tail of the

initial distribution (1980) contains the same regions that the right tail in the final distribution (1995).

Finally, while these functions allow characterizing the evolution of the global distribution, they do not

provide any information on the movements of the regions inside this distribution.

12. Markov chains

A possible way to answer these questions is to track the evolution of each region's relative

GDP over time by constructing transition probability matrices or Markov chains6. In the case of the

                                                                
6 Presentations of Markov chains can be found in Chung (1960), Kemeny and Snell (1976).
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European regions, different studies, based on different samples have been carried out: Neven and

Gouyette (1995), Quah (1996a-c), Fingleton (1997, 1999), López-Bazo et al. (1999), Magrini

(1999).

Denote Ft the cross-sectional distribution of regional per capita GDP at time t relative to the

European average. Define a set of K different GDP classes, which provide a discrete approximation

of the per capita GDP distribution.

We suppose that the frequency of the distribution follows a first-order stationary Markov

process. In this case, the evolution of the regional GDP distribution is represented by a transition

probability matrix, M, in which each element (i,j) indicates the probability that a region that was in

state i in time period t ends up in state j the following period.

The (K,1) vector Ft, indicating the frequency of the regions in each class in time t, is

described by the following equation:

tt MFF =+1     [1]

where M is the (K,K) transition probability matrix representing the transition between the two

distributions.

If the transition probabilities are stationary, i.e. if the probabilities between two classes are

time-invariant, then:

t
s

st FMF =+     [2]
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The transition probability matrix has a number of properties that can be exploited to study

the evolution of regional income distributions.

1/ The first property is the propensity of the regions in each class to move in other classes and

the average time required for a region to move between any pair of states i and j. These information

are provided by the estimation of transition probabilities for our sample and by the determination of

mean first time passage matrix (cf below: empirical results).

2/ The second property is the determination of the ergodic distribution (or the long-term

distribution) of Ft, characterized when s tends to infinity in [2]. Such a distribution exists if the

Markov chain is regular, i.e. if and only if for some N, MN has no zero entries. In this case, the

transition probability matrix converges to limiting matrix M* of rank 1:

** MM T =        [3]

where T* is the number of years required to reach this steady state. The existence of an ergodic

distribution, F* is then characterized when:

** FMF =     [4]

Each row of tM  tends to the limit distribution as ∞→t . According to [4], this limit distribution is

therefore given by the eigenvector associated to the unit eigenvalue of M.

3/ Finally, the second eigenvalue (in absolute value) of M, λ2, is a measure of mobility and

allows characterizing the speed with which the steady-state is approached. The half-life, which is the
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amount of time taken to cover half the distance from the stationary distribution, is defined as

(Shorrocks, 1978):

2log

2log

λ
−=dm     [5]

This indicator ranges between infinity –when the second eigenvalue is equal to 1 and a stationary

distribution does not exist- and 0- when λ2 is equal to 0 and the system has already reached its

stationary equilibrium.

13. Empirical results

We distinguish between five different states: 1/ less than 65% of the European average 2/

between 65% and 95% of the European average 3/ between 95% and 110% of the European

average 4/ between 110% and 125% of the European average 5/ more than 125% of the European

average. As advised by Quah (1993a), followed by López-Bazo et al. (1999) or Neven and

Gouyette (1995), the discretization has been chosen so that the initial classes include a similar

number of individuals. Markov chains with other grid points and other number of states have also

been estimated but the main results found in this paper are qualitatively the same with a different

discretization.

Table 1 contains the transition probability matrix between 1980 and 1995 with the maximum

likelihood estimates of the transition probabilities. The estimation of any element pij, is the total

number of regions moving from class i in year t to class j in year t + 1 over all 15 years of transitions

divided by the total sum of regions ever in i over the 15 years. For example, during the 15-year-

period, there were 416 instances of a region having a GDP lower than 65% of the European
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average. The majority of these regions (95.9%) remained in that GDP class at the end of the year,

while 4.1% moved up one class by the end of the year.

[Table 1 about here]

López-Bazo et al. (1999) and Neven and Gouyette (1995) compute Markov chains for two

sub-periods due to the changes in the convergence process over time detected in other works7. On

the contrary, in this paper, stationarity of transition probabilities is formally tested against non-

stationarity (different year-to-year probabilities) for the whole period 1980-1995 and also for two

subtime periods 1980-1985 and 1985-1995. The tests indicate that the null hypothesis of stationary

transition probabilities cannot be rejected in both cases. Therefore, the reliability of all subsequent

interpretations is strengthened and in the remainder of the paper, we will analyze the convergence

process for the whole period8.

Several comments can be made about this matrix.

1/ First, the transition probabilities on the main diagonal are relatively high. Indeed, if a region is

in the ith class, the probability of being in this same class the year after is at least 79,6%. Since the

diagonal elements dominate, especially among the extreme classes, these results indicate that the

poorest and the richest regions do not seem to modify their relative position over time. Furthermore,

                                                                
7 Subperiods (1980-1985) and (1985-1992) for López-Bazo et al. (1999), subperiods (1980-1985) and (1985-1989) for
Neven and Gouyette (1995).

8 The χ2 statistic is (Anderson et Goodman, 1957 ; Kullback et al., 1962):
























− ∏ ∏ ∏t j j

tM

ij

ij
ij

tp

p
)(

)(ˆ

ˆ
log2

with (T –1)K(K-1) degrees of freedom. ijp̂  is the stationary estimate; )(ˆ tpij  are the year-to-year estimates;  mij(t)

is the number of regions moving from i to j in year t, T is the total number of years and K is the number of cells in
the distribution. The test has been computed for the whole period and for two subperiods. The p-value is 0,99 in
the first case and 0,91 in the second case.
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there is no spectacular move from year to year as strictly positive elements are only observed around

the diagonal.

Movements average 8%. The second eigenvalue of the transition matrix is close to unity

(0,97) and implies a half-life of 22 years. All these elements indicate a very low inter-class mobility

and an important persistence of the regions within each class.

2/ In order to precise the speed with which the regions move in the distribution, we consider

mean first passage time, for a process starting at time zero. If t
jkp  is the probability that a city in state

j first visits t periods later the state k, then the mean first passage time jkmp  from j to k is:

∑
∞

=

=
1t

t
jkjk tpmp  [6]

Table 2 shows the matrix of mean first time passage that allows examining the issue of fluidity9. The

diagonal transition probabilities are mean first return times, where first return means staying in the

own cell for one year or first returning to that cell if a region leaves it in the first period.

If we concentrate on the elements outside the main diagonal, it seems that the transitions are

relatively high. Indeed, the lower passage time is 13,7 year and the higher is 162,7 years. Globally,

movements up are slower than movements down.

 [Table 2 about here]

3/ The ergodic distribution can be interpreted as the long run equilibrium regional GDP

distribution in the regional system. If the distribution collapses into a single class, there is

convergence. Returning to the density functions, this case corresponds to an unimodal per capita

                                                                
9 See Kemeny and Snell (1976) for the computation of this matrix by means of the so-called fundamental matrix for
regular Markov chains (chap.4).



13

GDP distribution. However, a concentration of the regions in some of the classes, i.e. a multimodal

limit distribution, can be interpreted as a tendency towards stratification in different convergence

clubs. Finally, a dispersion of this distribution is interpreted as divergence.

Here (table 1), the characteristics of the ergodic distribution indicate a poverty trap: the

probability that a region leaves the poorer class increases relative to the initial distribution. Combined

with the very weak mobility observed, we can conclude that the poorer regions will probably remain

poor. On the other side of the distribution, the two big classes are less important.

 Finally, if these observed tendencies remain, the per capita GDP distribution will

progressively be biased towards the relative poor regions. Globally, the situation is remarkably stable

and persistent: there is neither important changes for the external shapes of the distribution, nor

important intra-distribution mobility.

2. Integrating the spatial dimension in Markov chains

The data used in this study are spatial data, which combine attribute information with

locational information. Spatial data often have special properties, and need to be analyzed in different

ways from aspatial data. However, this spatial dimension has not been taken into account in the

previous analysis even though some recent papers, dealing with regional GDP patterns, have

recognized the need to consider spatial effects when growth and convergence processes are

analyzed (Armstrong, 1995; Fingleton, 1999; Lopez-Bazo et al.; Rey and Montouri, 1999; Le Gallo
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and Ertur, 2000; Baumont et al., 2001). This section is therefore devoted to the integration of the

spatial dimension of the data in Markov chain analysis.

21. Geographic patterns of the transitions

Spatial data are often characterized by spatial autocorrelation, which can be defined as the

coincidence of value similarity with locational similarity (Anselin, 2000). Therefore there is positive

spatial autocorrelation when high or low values of a random variable tend to cluster in space and

there is negative spatial autocorrelation when geographical areas tend to be surrounded by neighbors

with very dissimilar values.

To illustrate the potential importance of space in the explanation of convergence patterns, we

examine the extent to which the regions that have moved up or down in the distribution are

geographically concentrated. In other words, we study the level of spatial autocorrelation in per

capita GDP transitions10. Figure 2 displays the regions' upward or downward moves between 1980

and 1995.

[Figure 2 about here]

Movements up (12 regions) are located in south Germany whereas movements down mainly

concern French or English regions. Let us underline that these regions correspond to spatial clusters

detected by Le Gallo and Ertur (2000) having respectively high and low growth rates. This visual

impression of positive spatial autocorrelation of these transitions must be confirmed by a formal

spatial autocorrelation test.

                                                                
10 Rey (2001) performed a similar analysis for the United States.
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Denote W*, the spatial weight matrix of dimension (138, 138). This matrix contains the

information about the relative spatial dependence between the 138 regions i. The elements *
iiw  on

the diagonal are set to zero whereas the elements *
ijw  indicate the way region i is spatially connected

to the region j. In this study, we define the elements of W* in the following way:

*
ijw  =










>

<

=
−

dd

ddd

ji

ij

ijij

  if 0

  if 

   if             0
2     [7]

where ijd is the great circle distance between the centroids of region i and region j and d  is the

cutoff, equal to the lower quartile of the great circle distance distribution (321 miles)11. The spatial

weight matrix is row-standardized such that the elements in each row sum up to one:

∑=
j ijijij www ** / . This particular weight matrix has been preferred to a simple contiguity matrix,

which is not really appropriate for our sample of European regions for two reasons. First, the islands

would be isolated and unconnected with the other regions12. Second, a contiguity indicator may

imply a block-diagonal pattern if some regions do not share a common border with any other region

in the sample considered (it is indeed the case of Great-Britain and Greece).

Using this distance-based weight matrix, spatial autocorrelation of upward transitions

between 1980 and 1995 is formally evaluated using the following joint-count test (Cliff et Ord,

1981):

∑∑=
i j

jiijwNN )(
2

1 δδ     [8]

                                                                
11 This cutoff has been determined with a correlogram in order to maximise the level of spatial autocorrelation.



16

where wij is the element of the weight matrix, 1=iδ  if region i experiences an upward move in the

distribution, otherwise 0=iδ . The NN statistic is a count of the number of joins for which two

neighboring regions both experienced upward moves in the GDP distribution (the neighborhood is

defined by the weight matrix). Similarly, to test for spatial autocorrelation for downward transitions,

we define 1=iδ  if region i experiences a downward move in the distribution, otherwise 0=iδ .

Statistical inference is based on random permutations of the regions on the map13. For both

upward and downward moves, the null hypothesis of spatial autocorrelation is always rejected (p-

values are respectively 0.001 and 0.005). It is therefore unjustified to consider each region and its

transitions in the different GDP classes as if the regions were geographically independent.

Consequently, the spatial dimension in the analysis of regional GDP transition dynamics should

explicitly be taken into account so that the role of spatial effects in growth and convergence

processes can be examined.

22. Spatial conditioning

To determine the factors explaining some of the features of the density plots and of the

probability transition matrix, Quah (1996b) has suggested to "condition" the per capita GDP

distribution. The general idea of this approach is to study how closely the evolution of each region's

GDP has followed that of some group of regions, which are expected to behave similarly. Quah

(1996b) considered two kinds of references, either the neighboring regions (geographical criterion),

                                                                                                                                                                                                          
12 Consequently, the rows and columns in the weight matrix corresponding to these observations would consist
of zero values.
13 In this approach, it is assumed that, under the null hypothesis, each observed value could have occurred at all
locations with equal likelihood. But instead of using the theoretical mean and standard deviation (given by Cliff
and Ord 1981), a reference distribution is empirically generated for NN, from which the mean and standard
deviation are computed. In practice this is carried out by permuting the observed values over all locations and by
re-computing NN for each new sample. The mean and standard deviation for NN are then the computed moments
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or the regions belonging to the same country (national criterion). The results of his work suggest that

physical location factors seem to matter more than do macro national factors for explaining regional

GDP inequality in Europe.

Consequently, we group the regions by the geographic criterion. In this purpose, we

construct now a new GDP series: neighbor-relative per capita GDP where each region's per

capita GDP is normalized by the average per capita GDP of the neighboring regions. Denote y the

vector containing the regions' per capita GDP. Since W is a standardized weight matrix, the weighted

average of the neighboring regions' GDP is given by the vector Wy, which is usually called the spatial

lag in the spatial statistical/econometric literature. Quah suggests that the neighbor-relative per capita

GDP can be interpreted as the part unexplained by physical-location factors. Consequently, if the

physical location explains everything, what is left over vanishes, or is small. If, on the other hand,

physical location explains nothing, what is left over is what we begin with. Conditional density

functions and conditional probability matrices can now be constructed with this new GDP relative

distribution.

Figure 3 plots two density functions for neighbor-relative per capita GDP distribution, one

for the initial year 1980 and the other for the final year 1995. Comparing these densities to the

formerly computed Europe-relative GDPs density functions (figure 1) indicate that the second mode,

which was situated at around 50% of the European average, has disappeared and that the majority

of the density is symmetrically much more concentrated around the mean. The economic

                                                                                                                                                                                                          
for the reference distribution for all permutations. This test has been computed using the software Spacestat 1.90
(Anselin, 1999).
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performance of the regions is consequently well explained by the neighboring regions' performances,

except maybe for regions with very high per capita GDP.

 [Figure 3 about here]

Consider now the conditional transition probability matrix (table 3). This matrix contains the

transitions between the Europe-relative GDP distribution and the neighbor-relative GDP distribution

for a given year. Compared to the previous Markov chain (table 1), where we established the

transitions between the same distribution for two points in time, we establish in this conditional matrix

the transitions between two different distributions at the same moment in time. Therefore, as pointed

out by Quah (1996b), these transition probabilities do not describe transitions over time, but rather

quantify the effects of conditioning.

For example, there were 450 instances of a region having a GDP below than 65% of the

European average but only 22% of these same regions had a GDP below than 65% of their

neighbors' average GDP for the same year. If the regional context did not matter, each region could

be considered as an island independent of its neighbors: "If conditioning explained nothing (…), these

transition probability matrices should be the identity matrix: the distributions are invariant and, in

addition, no intra-distribution movements occurs" (Quah, 1996b). On the other hand, if regional

conditioning explained all the regional GDP variations, then all the elements of the column for the

interval containing 100% should be equal to 1 (third class).

Here, none of these two extreme cases is relevant. Indeed, all diagonal elements are below

or equal to approximately 50%. The regional conditioning accounts therefore for a large part of the
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observed regional inequality. This result conforms to Quah's study (1996b) and geographic spillovers

seem to be an important factor of the regional inequality dynamics in Europe.

 [Table 3 about here]

The regional conditioning allows capturing the geographical dimension in regional GDP

variation. However, let us note again that these transitions do not represent transitions over time, but

transitions between two different GDP distributions for a given year. On the contrary, the Markov

chains presented in the following section explicitly take into account space without losing the

temporal dynamics of the regional GDP evolution in Europe.

23. Temporal and spatial dynamics

1/ The first way to study explicitly the role of space while keeping an information on the

temporal dynamics of the transition is to estimate a transition probability matrix similar to the

traditional matrix (table 1), where the GDP is not Europe-relative anymore but neighbor-relative.

Table 4 reports this matrix for our sample. For example, there were 43 instances of a region having a

GDP lower than 65% of its neighbors' average at the beginning of the year. The majority of these

regions (83,7%) remained in the same GDP class at the end of the year (their GDP was still below

65% of their neighbors' average), while 16,3% of the regions had a GDP between 65% and 95% of

their neighbors' average.

Compared with the first matrix with European conditioning, it turns out that for the same grid

points, the tails of the distribution have become much smaller, for example 416 rich and 438 poor

with European conditioning compared to 43 poor and 159 rich for regional conditioning.

Furthermore, middle GDP classes are much more important and concentrate almost all the regions.
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This result suggests that neighboring regions evolve in the same way and do not differentiate from

each other. In other words, there is an important positive spatial autocorrelation phenomenon

between European regions. The exceptions to this general feature are the regions that stay a lot

poorer than their neighbors over the whole period, i.e. regions in the first cell (1,1) of the transition

probability matrix. These regions are Vlaams Brabant from 1980 to 1989, the German region

Lüneburg for all the years, the Portuguese regions Norte from 1980 to 1985, Centro and Alentejo

from 87 to 89. The other exceptions are the regions that stay much richer than their neighbors over

the period (cell (5,5)). These regions are mainly the capital-regions (Bruxelles, Ile de France,

Lisbonne over the period and Madrid from 85) and some German regions (Oberbayern, Bremen,

Hamburg, Darmstadt over the whole period).

[Table 4 about here]

At first look, regional conditioning seems therefore to point towards a more important

convergence than does conditioning on the European average. However, it is worth mentioning than

conditioning on the neighbor average only provide information on local or intraregional

convergence, i.e. the way regions catch up with their geographical neighbors. Consequently, this

method considers the role of space but doesn't allow anymore studying the regions' position in the

entire cross-sectional distribution, i.e. the analysis of interregional convergence.

2/ The second way of simultaneously considering spatial and temporal dynamics has been

proposed by Rey (2001) and applied to US data. The spatial Markov chain estimated in his study

provides insights to the role of spatial clustering in the dynamics of the GDP distribution over time
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and furthermore addresses the issue of interregional convergence (and not intraregional convergence

like in the previous matrix).

The traditional Markov matrix (table 1) is modified in such a way that the transition

probabilities of a region are conditioned on the initial GDP class of its spatial lag (i.e. GDP class in

1980). This particular conditioning implies a spatial transition matrix, which is a traditional (K,K)

matrix decomposed in K conditional matrices of dimension (K,K)14. Therefore, if we consider the k th

of these conditional matrices, then an element mi,jk of this matrix is the probability that a region in

class i at the time period t goes in j at the end of the period, given that the spatial lag was in class k in

1980.

The spatial Markov matrix allows examining the positive or negative influence of the

neighbors on the transitions of a region. Indeed, the influence of spatial dependence is reflected in the

differences existing between the initial transition values (not conditioned) computed in the first section

(table 1), and the various conditional transition values. In our example with five classes, the first class

contains poor regions, the third class contains the median GDP regions and the final class contains

the rich regions. Therefore, if m35 > m351, then median GDP regions with poor neighbors have a

lower probability of moving upwards than median GDP regions on average. Conversely, if m13 <

m135, then poor regions with rich neighbors have a higher probability of moving upwards than poor

regions on average. Formally, if regional context did not matter for transition probabilities, then the

conditional probabilities should be equal to the initial probabilities:

5,...1     5,...1     ...
521

==∀==== jimmmm ijijijij
    [9]

                                                                
14 Here K = 5.
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This spatial Markov chain does not contain the same information that the conditional matrices

in Quah (1996b): it gives the probability for a region to experience upward or downward moves in

the distribution, conditional to the past or present movements of its neighbors and therefore it allows

studying the possible correlation between the direction and probability of the transition of a region

and the regional context faced by each region.

 [Table 5 about here]

Table 5 reports the spatial Markov matrix for our sample of European regions. It turns out

that the spatial lag of a region influences the transitions over time of this region. For example, the

richest regions are negatively affected when poorer regions surround them. Indeed, the probability of

moving down one class increases as the GDP level of the neighbors decreases. On average, the

richest regions move down one class with a probability of 7,3% (cell (5,4) of table 1). If other rich

regions (class 5) surround these regions, the probability of moving down is only 5,7% but if the

neighboring regions are poorer (class 4), the probability increases to 9,2% and reaches 12,5% if the

neighboring regions are in the middle class. The poorest regions are also negatively affected when

they are surrounded by other poor regions. For example, on average, the probability that a poor

region moves up one class is 4.1% (cell (1,2) of table 1). If these regions are surrounded by other

poor regions (class 1), the probability drops to 2.3% whereas it reaches 40% if these regions are

surrounded by richer regions.

For each conditional matrix, an ergodic distribution has been computed. Like the initial

distributions, the long-run distributions are strongly biased. Indeed, when the economies are

surrounded by richer regions, the final distribution is more and more skewed upwards: the probability
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of staying or remaining rich on the long run is strong. Alternatively when the economies are

surrounded by poorer regions, the ergodic distribution is more and more negatively skewed: the

probability of staying or becoming poor is very strong.

Finally, in order to summarize all the information contained in the spatial Markov chain, we

study the relationship between the direction of a region's transition in the GDP distribution and its

spatial lag by computing the probability of a particular transition (down, none or up) conditioned on

the GDPs of the region's neighbors in 1980 (table 6), as suggested by Rey (2001). As expected, the

regional context has a strong influence on the probability of moving downward or upwards. For

example, the probability of moving down is twice as large when the regions are surrounded by

poorer regions than richer regions (12,8% vs 6%). Alternatively, the probability of a region moving

to a higher GDP class is 11,4% if the region is surrounded by richer regions, but it is only 2,2% if the

neighbors are poorer. These probabilities indicate the long-run influence of the neighbors on a

region's transitions in the GDP distribution. Alternatively, instead of conditioning on the initial spatial

lag, we could condition on the spatial lag at the beginning of each year, so that the short-run influence

of the regional context is captured. The probabilities of a particular transition conditioned on the

GDP of the region's neighbor at the beginning of each year are reported in table 7. We can see that

results are very similar15.

All these results therefore highlight the strong spatial dimension associated to the features

detected in the (aspatial) analysis of interregional convergence conducted in the first section. For

example, the progressive bias towards the poverty trap mainly has a spatial explanation since poor

regions are negatively influenced by being surrounded by other poor regions and since the long-run
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distribution is negatively skewed downwards when the neighbors are poor. Also, the relative

absence of intra-distribution mobility can be explained by  persistent spatial clusters of high and low

GDP regions over the period.  More generally, from an interregional convergence perspective,

spatial Markov chains indicate that the changes of the relative position of a region in the cross-

sectional distribution are highly constrained by its geographical environment.

[Table 6 and table 7 about here]

                                                                                                                                                                                                          
15 In both cases, a χ² test for the independence of direction of move and neighbor's GDP has been computed and
the null hypothesis is always rejected at p < 0.01: the type of the transition experienced by a region is dependent
with its geographical environment.
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Conclusion

The aim of this paper is to analyze the evolution of regional GDP disparities and the

convergence process among European regions over the 1980-1995 period. The methodology

adopted here follows Quah's methodology: convergence is measured from the evolution of the shape

of the per capita GDP cross-sectional distribution and from the changes of the regions' relative

positions inside this distribution. In order to study the entire GDP cross-sectional distribution,

nonparametric estimation of density functions are computed, the growth process is modeled as a

first-order stationary Markov chain and the role of space is explicitly considered, using Quah's

regional conditioning and spatial Markov chains.

The results of the analysis, based on a data set for 138 European regions over the 1980-

1995 period, suggest that the process of economic growth at work in the European Union during this

period has globally been characterized by the persistence of regional disparities, a relative absence of

mobility of the regions in the GDP distribution as well as a progressive bias toward a poverty trap.

Regional conditioning and spatial Markov chains clearly indicate that location and physical geography

still matter in the European Union to explain growth and convergence processes. Indeed,

intraregional convergence is very strong and, from an interregional convergence perspective, the

changes of the relative position of a region in the cross-sectional distribution are highly constrained by

its geographical environment.
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        Europe-relative GDP 1980                                                      Europe-relative GDP 1995

Fig.1. Densities of Europe-relative regional GDP
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Fig.2. Region GDP class transitions 1980-1995
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       Neighbor-relative GDP 1980                                          Neighbor -relative GDP 1995

Fig.3. Densities of neighbor-relative regional GDP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0



29

Tab.1. Probability transition matrix 1980-1995; Europe-relative per-capita GDP

Tab.2. Mean first passage time matrix

Tab.3. Regional conditioning

Number of
1 2 3 4 5 observations

<65% <95% <110% <125% >125%
1 0,959 0,041 0,000 0,000 0,000 416
2 0,047 0,865 0,087 0,000 0,000 401
3 0,000 0,095 0,822 0,083 0,000 433
4 0,000 0,000 0,123 0,796 0,081 382
5 0,000 0,000 0,000 0,073 0,927 438

0,201 0,194 0,209 0,185 0,212
0,264 0,227 0,210 0,142 0,157

Initial dist. 
Ergodic dist.

Europe-relative
   

 E
u

ro
p

e
   

re
la

ti
v

e
it

1+it

(3,788) 24,456 49,006 89,000 162,720
68,146 (4,405) 24,655 64,604 138,161
93,501 25,579 (4,762) 40,099 113,648

110,547 42,777 17,123 (7,042) 73,459
124,162 56,512 30,800 13,702 (6,369)

Number of 
1 2 3 4 5 observations

<65% <95% <110% <125% >125%
1 0,837 0,163 0,000 0,000 0,000 43
2 0,005 0,924 0,072 0,000 0,000 878
3 0,000 0,085 0,878 0,038 0,000 800
4 0,000 0,000 0,153 0,805 0,042 190
5 0,000 0,000 0,000 0,050 0,950 159

0,021 0,424 0,386 0,092 0,077
0,012 0,444 0,375 0,092 0,077

Initial dist.
Ergodic dist.

Neighbor-relative

  N
ei

g
h

b
o

r
   

re
la

ti
v

e

it

1+it

Number of 
1 2 3 4 5 observations

<65% <95% <110% <125% >125%
1 0,038 0,498 0,347 0,076 0,042 450
2 0,031 0,533 0,336 0,061 0,040 426
3 0,030 0,652 0,286 0,026 0,006 465
4 0,000 0,428 0,504 0,043 0,025 397
5 0,000 0,049 0,451 0,245 0,255 470

Neighbor-relative

   
  E

u
ro

p
e

   
 r

el
at

iv
e

it

it
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Tab.4. Probability transition matrix 1980-1995; Neighbor-relative per-capita GDP
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Tab.5. Spatial Markov chain; conditioning on the spatial lag in 1980

Tab.6. Transition probabilities conditioned on the spatial lag of GDP in 1980

Tab.7. Transition probabilities conditioned on the spatial lag of GDP at the beginning of each year

Spatial Number of
lag 1 2 3 4 5 observations

<65% <95% <110% <125% >125%
1 0,977 0,023 0,000 0,000 0,000 390
2 0,164 0,821 0,015 0,000 0,000 58
3 0,000 0,500 0,500 0,000 0,000 2

1 4 0,000 0,000 0,000 0,000 0,000 0
5 0,000 0,000 0,000 0,000 0,000 0

Initial dist. 0,852 0,144 0,004 0,000 0,000
Ergodic dist. 0,875 0,121 0,004 0,000 0,000

1 0,600 0,400 0,000 0,000 0,000 26
2 0,044 0,918 0,038 0,000 0,000 167
3 0,000 0,167 0,771 0,063 0,000 48

2 4 0,000 0,000 0,200 0,800 0,000 29
5 0,000 0,000 0,000 0,000 0,000 0

Initial dist. 0,074 0,674 0,178 0,074 0,000
Ergodic dist. 0,078 0,708 0,163 0,051 0,000

1 0,000 0,000 0,000 0,000 0,000 0
2 0,000 0,803 0,197 0,000 0,000 85
3 0,000 0,171 0,768 0,061 0,000 82

3 4 0,000 0,000 0,100 0,820 0,080 44
5 0,000 0,000 0,000 0,125 0,875 29

Initial dist. 0,000 0,271 0,364 0,222 0,142
Ergodic dist. 0,000 0,303 0,349 0,213 0,136

1 0,000 0,000 0,000 0,000 0,000 0
2 0,000 0,795 0,205 0,000 0,000 50
3 0,000 0,072 0,878 0,050 0,000 165

4 4 0,000 0,000 0,163 0,721 0,116 82
5 0,000 0,000 0,000 0,092 0,908 123

Initial dist. 0,000 0,096 0,343 0,212 0,348
Ergodic dist. 0,000 0,171 0,488 0,151 0,190

1 0,000 0,000 0,000 0,000 0,000 0
2 0,000 0,865 0,135 0,000 0,000 41
3 0,000 0,049 0,821 0,130 0,000 136

5 4 0,000 0,000 0,106 0,819 0,075 227
5 0,000 0,000 0,000 0,057 0,943 286

Initial dist. 0,000 0,074 0,230 0,321 0,376
Ergodic dist. 0,000 0,087 0,238 0,290 0,385

Europe-relative

it

1+it

Movement
Spatial lag N Down None Up

poorer 360 0,128 0,850 0,022
same 1011 0,050 0,919 0,031
richer 699 0,060 0,825 0,114

Movement
Spatial lag N Down None Up

poorer 277 0,119 0,866 0,014
same 1202 0,065 0,909 0,026
richer 591 0,047 0,810 0,142
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