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Abstract: This article proposes a new class of rating scale models, which merges advantages

and overcomes shortcomings of the traditional linear and ordered latent regression models.

Both parametric and semi-parametric estimation is considered. The insights of an empirical

application to satisfaction data are threefold. First, the methods are easily implementable

in standard statistical software. Second, the non-linear model allows for flexible marginal ef-

fects, and predicted means respect the boundaries of the dependent variable. Third, average

marginal effects are similar to ordinary least squares estimates.
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1 Introduction

Research using rating data has burgeoned in recent years. A rating variable represents the

extent to which a quality (e.g., health, risk aversion, approval with a policy or party) is

present, or absent, in a study unit. The rating is often, but not necessarily, coded on an

integer-valued scale. The smallest value (often a zero) represents the complete absence of

the quality, whereas the largest value represents its complete presence.

The objective of this paper is to introduce a new approach for estimating the effect of

explanatory variables on a rating by specifying and estimating a non-linear single index

regression model. As a key advantage, the new approach introduces an explicit and flexible

cardinalization, in contrast to so-called “ordered response” models, while avoiding the

shortcomings of the linear regression model, namely constant marginal effects, and possible

predictions outside the range of the dependent variable. The model is easy to implement;

extensions to panel data and instrumental variable estimation are feasible.

While the arguments developed in this paper apply to any regression with a rating

dependent variable, we concentrate on a specific application, namely that of the economic

determinants of self-rated well-being. Many household (panel) surveys include a single-

item 7-point or 11-point question on general life satisfaction, as well as on satisfaction with

various life domains (health, family, work etc.). To estimate the relationship between such

rating variables and their determinants, almost all of the existing literature has used either

the linear regression model or ordered latent models. Applications in happiness research

often report results from both type of models (e.g., Clark and Oswald, 1996; Ferrer-i-

Carbonell and Frijters, 2002; Frey and Stutzer, 2005).

While Kristoffersen (2010) offered a theoretical discussion of the modeling options in

general and cardinality respectively ordinality in particular, there remain some unresolved

methodological issues when these two estimation methods are applied to rating data. These

are presented in the next section of the paper. Section 3 discusses our theoretical framework

and introduces a new class of rating scale models (RSM). The new methodology is illus-
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trated in an application to the effect of time spent commuting to work on life satisfaction

in Section 4. Section 5 concludes.

2 Motivation

Textbook treatments of rating variables recommend the ordered probit and the ordered logit

models (e.g., Cameron and Trivedi, 2005). These can be derived from a latent linear model

with standard normally or logistically distributed errors, respectively, where a partition of

the real line is used to generate the observed discrete distribution of ordered outcomes.

The main advantage of ordered latent models is the implied conformity to the scaling of

the dependent rating variable. In particular, rating variables are bounded from below

and from above (and thus limited dependent variables). Ordered latent models preclude

nonsense predictions outside these boundaries. Moreover, latent models do not impose an

equidistance between answer categories of the discrete scale.

However, although the name “ordered latent model” suggests otherwise, the estimation

method has a cardinal foundation (van Praag and Ferrer-i-Carbonell, 2004). In particular,

the ordinalization of the cardinal latent model hinges on an arbitrary assumption, such

as that of a standard normally distributed error term in the latent model equation. The

cardinality of ordered models also shows up when the model is interpreted. For instance,

marginal probability effects are computed, or necessary changes in explanatory variables in

order to attain a different response category are quantified. These are cardinal effects, which

would not exist in a truly ordinal model. This raises the question, why a model with an

implicit cardinalization should be preferred over a model which makes the cardinalization

explicit.

In practice, these textbook models are therefore often abandoned in favor of the sim-

pler linear regression model. It offers a convenient interpretation of estimated coefficients

as marginal effects (although this interpretation is admittedly implausible since constant
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marginal effects stand in contradiction to the boundedness of the dependent variable).

Indeed, researchers on life satisfaction seem to have little discomfort in reporting mean sat-

isfaction levels (for instance by country, or group; see e.g., Stone et al., 2010 and Sacks et al.,

2010). If one follows these practitioners and accords plausibility to reported (conditional)

mean rating values, the only factors speaking against the use of the linear regression model

is indeed that it imposes constant marginal effects and can predict rating scores outside

the range of the rating scale.

The obvious remedy is to use a non-linear regression model that imposes bounds on

the predicted values. If the attention is restricted to the class of single index models,

the problem then becomes one of modeling the conditional expectation function E(y|x) =

G(x′β), where G is a twice differentiable monotonic function such that ymin ≤ G(x′β) ≤

ymax for all values of x and β. If y ∈ {0, 1} (the rating takes only two values), this model

has the form of standard binary response models. This similarity is deceiving, though,

because it is only in the binary response model that probability function and conditional

expectation function coincide. For more than two-valued rating scales, using the non-linear

CEF approach is truly different from that of ordered response models.

We discuss a number of such rating scale models that differ in the assumptions they make

regarding the G function. If a given parametric form is selected, estimation can proceed

by non-linear least squares or quasi-maximum likelihood (see Papke and Wooldridge, 1996,

for a closely related approach to fractional data). On the other hand, semiparametric

least squares (Ichimura, 1993) can be used in order to estimate the RSM without making

functional form assumptions.
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3 Econometric Rating Scale Models

3.1 Specification

A rating variable y has domain y ∈ [0, ymax] where we have normalized the lower bound

ymin = 0 for convenience. Thus the value “0” represents the complete absence of the quality,

whereas ymax represents its complete presence. Suppose that there are N observations, and

that yi, i = 1, . . . , N , is the rating for observation unit i.

The RSM is specified in terms of a conditional expectation as a non-linear mapping of

a single index:

E(yi|xi) = G(x′iβ) (1)

The vector xi is of dimension (k×1) and β is a conformable parameter vector. G(.) specifies

the non-linear relationship between the additive linear index x′iβ and the rating variable

yi. G(.) can take an arbitrary functional form. It is twice differentiable and accounts for

the boundedness of the rating scale by satisfying 0 ≤ G(.) ≤ ymax.

In a parametric rating scale model, a specific functional form is assumed for G(.). Two

possible specifications are a logit type model

G(x′iβ) = ymax
exp(x′iβ)

1 + exp(x′iβ)
(2)

and a probit type model

G(x′iβ) = ymaxΦ(x′iβ) (3)

where Φ(.) is the cumulative density function of the standard normal distribution. These

models imply that the transformed rating scale zi = yi/y
max has a logit- or probit-type

CEF, respectively.

Rating scale models (2) and (3) respect the boundaries of the dependent variable. They

also imply non-constant marginal effects. In the logit RSM

∂E(yi|xi)
∂xil

= ymax
exp(x′iβ)

(1 + exp(x′iβ))2
βl (4)
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In the probit RSM

∂E(yi|xi)
∂xil

= ymaxφ(x′iβ)βl (5)

The parameters of the model can be estimated by non-linear least squares or by quasi-

maximum likelihood, as explained in the next section. Alternatively, one can refrain from

specifying the functional form of G(.) and rather estimate it from data, together with the

parameters β. This is a standard semiparametric estimation problem, and we propose to

use the method of Ichimura (1993) for estimation.

3.2 Estimation

There are a number of possible ways for estimating the parameters of the parametric

RSMs defined by (2) and (3). We start with one that actually is to be avoided, namely

transforming the dependent variable in order to make the model linear in the parameters,

in which case a linear regression model can be used. This method has been proposed, in

the context of a scale bounded between 0 and 1, by Aitchison (1986). For a general rating

scale, we can write

log

(
yi/y

max

1− yi/ymax

)
= x′iβ + ηi where E(ηi|xi) = 0 (6)

At first glance, the re-specification is appealing because the logratio can take any real

value. The unknown parameters β can be estimated consistently by ordinary least squares.

However, there are two problems with this approach. First, yi cannot take the extreme

values of 0 or ymax. Second, it is impossible to recover the grandeurs of interest, especially

the conditional expectation of the dependent variable yi, since

E(yi|xi) = E

(
ymax

exp(x′iβ) · exp(ηi)

1 + exp(x′iβ) · exp(ηi)

∣∣∣∣xi) 6= ymax
exp(x′iβ)

1 + exp(x′iβ)

Thus, the model is substantially different from (2) and as a consequence, it is hard to

interpret β, the estimand in the linear regression model, other than saying that β measures
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the effect of x on the logratios. Transforming the rating scale to a real number is therefore

not attractive. A method is needed that directly specifies the conditional expectation of

the (untransformed) dependent rating variable.

3.2.1 Non-linear least squares

Non-linear least squares minimizes the sum of squared residuals of model (1). This is

equivalent to choosing β̂, which solves the following first order condition:

s(β; y, x) =
N∑
i=1

(yi −G(x′iβ))g(x′iβ)xi = 0 where g(x′iβ) =
∂G(x′iβ)

∂x′iβ
(7)

As a member of the family of extremum estimators, the NLS estimator is consistent,

if the sample is independent and identically distributed and if G(.) fulfills some regularity

conditions (e.g., Hayashi, 2000).

Asymptotic theory enables the computation of standard errors. Default options in sta-

tistical software packages assume a spherical error variance. However, due to the bound-

edness the variance of rating variables is heteroscedastic. Intuitively, the closer the rating

score moves to the boundaries the less dispersion is possible. The error term defined as

εi = yi − E(yi|x′iβ) inherits the heteroscedasticity of the rating variable. Therefore, a het-

eroscedastic consistent variance-covariance estimator for β̂, as proposed by Huber (1967)

and White (1980) is employed:

AVar(β̂) = n−1I−1(β)J(β)I−1(β)

where

I(β) = E[H(β; y, x)] = E
[
−g(x′iβ)2xix

′
i

]
and

J(β) = Var(s(β; y, x)) = E
[
(yi −G(x′iβ))2g(x′iβ)2xix

′
i

]
Replacing the population moments reported above by their sample analogs leads to a

consistent estimator of the heteroscedastic consistent variance-covariance matrix of β̂.
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3.2.2 Quasi-Maximum Likelihood Estimation

The parameters of the RSM (1) can be estimated consistently by embedding it in any mem-

ber distribution of the linear exponential family and using maximum likelihood. Available

distributions include, among others, the normal distribution, the Poisson distribution and

the Bernoulli distribution (Gourieroux et al., 1984). The only requirement for consistency

is that the CEF of the response scale model is correctly specified. This approach is referred

to as quasi-maximum likelihood estimation (QML).

For example, if the normal distribution is used, QML is equivalent to non-linear least

squares. If the Bernoulli distribution B(1, p) is used as a basis for estimation, one needs

to observe that 0 ≤ p ≤ 1, whereas the CEF of the RSM is bounded from above at ymax.

This problem can be solved by dividing both sides of equation (1) by ymax. The Bernoulli

QML estimator is obtained by setting pi = G(x′iβ)/ymax, and the first order conditions are:

N∑
i=1

yi −G(x′iβ)

ymax
g(x′iβ)

(1−G(x′iβ)/ymax)G(x′iβ)
xi = 0 where g(x′iβ) =

∂G(x′iβ)

∂x′iβ
(8)

The QML framework does not impose any restrictions on the second or any higher

moment of the dependent variable. In fact, the second moment is misspecified in the

Bernoulli QML framework. Hence, the maximum likelihood variance estimation, which

equals the inverse of the Hessian’s expectation, has to be replaced by the robust sandwich

variance estimator (Gourieroux et al. 1984).

3.2.3 Which estimator to choose

For a correctly specified CEF G(.), both NLS and Bernoulli QML are consistent estimators.

In small samples they may differ, since they use different weights wi for the sample analog

of the set of orthogonality conditions:

N∑
i=1

(yi −G(x′iβ)xiwi) = 0 (9)

On one hand, NLS weighs the orthogonality conditions with the standard normal or

the logistic probability density functions, respectively. On the other hand, the Bernoulli
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QML estimator weighs observations with the probability density divided by the variance of

a Bernoulli distributed variable. For the logistic model, these terms cancel and all elements

of the score vector are weighted equally. The optimal weighting scheme depends on the

true data generating process and its higher order moments. Since no such assumptions

were made in our rating scale model, estimation with equal weights appears like a good

starting point.

Both estimation methods are easy to implement in standard statistical software pack-

ages. In Stata (StataCorp., 2003), for example, the relevant model environment is given

by the generalized linear model (glm) command. It allows to define distribution as well as

link function. Choosing the normal distribution in conjunction with the logit link gives,

for example, the non-linear least squares estimators of the logit-type RSM. Choosing the

Bernoulli distribution instead results in the corresponding QML estimator. In either case,

all ratings have first to be divided by the upper bound ymax, and robust standard errors

need to be computed.

3.2.4 Semiparametric Least Squares

NLS and Bernoulli QML provide consistent parameter estimates for model (1) if the con-

ditional expectation is correctly specified. An alternative to assuming a specific functional

form for G(.) is to estimate its conditional expectation. This approach remains consistent

for β as long as the single index structure holds, regardless of the true G(.). Different semi-

parametric estimators can be used. This paper employs the one that is the most simple to

implement, namely semiparametric least squares (SLS) proposed by Ichimura (1993). SLS

minimizes the sum of squared residuals of model (1).

minβ

N∑
i=1

(yi − Ê(G(x′iβ)|x′iβ))2 (10)

Iterative methods with an initial guess on β̂ have to be applied in order to estimate both β

and E(G(x′iβ)|x′iβ). For the latter, the local constant estimator proposed by Watson (1964)
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and Nadaraya (1965) is used. The local constant estimator depends on a kernel function

and a bandwidth. If the choice of the kernel does not matter much, the bandwidth selection

is important. The most appropriate way to choose the optimal bandwidth used in kernel

regression is to apply cross validation (see e.g., Cameron and Trivedi, 2005).

Using an independent and identically distributed sample, a bandwidth sequence which

converges towards 0 as N increases and with some technical requirements on the param-

eter space and the kernel, the properties of consistency and asymptotic normality can be

established (Ichimura, 1993). Parameters are identified only up to location and scale. In

other words any additive and multiplicative shifts in the regressors are incorporated by

G(.). Therefore, xi does not include a constant term, and all remaining parameters are

normalized with respect to a continuous variable’s parameter. Marginal probability effects

can be recovered for all explanatory variables.

Ichimura (1993) proposed to use the properties of asymptotic normality in order to

compute standard errors of the parameters. However, the analytical derivation and im-

plementation is very cumbersome. Therefore, bootstrapping standard errors is in general

preferred.

The semiparametric RSM can be implemented conveniently using the non-parametric

package in R (Hayfield and Racine, 2008). The program routine chooses the optimal

bandwidth using cross validation and proposes as outputs estimates of the parameter vector,

marginal effects and bootstrapped standard errors for those estimates.

4 Empirical Application to Happiness Data

Interest in measures of subjective well-being is increasing. Beginning with Easterlin’s

(1974) seminal publication on the relationship between economic growth and happiness,

economists have been paying increasing interest to subjective well-being data. For a de-

tailed review of the literature, see Frey and Stutzer (2002). More recently, policy makers
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have become interested as well. In particular, the prime ministers of France and Great

Britain, Nicolas Sarkozy and David Cameron, promote new target functions, different from

the Gross Domestic Product, which measure the population’s well-being.1 There will be

more data available and more attention will be paid to subjective well-being measures in

the future. Therefore, subjective well-being data is important area of investigation for an

empirical application of the proposed estimation methods.

4.1 Replication of Stutzer and Frey (2008)

Stutzer and Frey (2008) analyzed in their paper ”Stress that doesn’t pay: The commuting

paradox” the effect of commuting time and distance on satisfaction. One of the regression

analysis of Stutzer and Frey will be replicated and re-estimated using the RSMs. In this

particular regression, the rating dependent variable “overall live satisfaction”, measured on

a discrete scale ranging from 0 to 10, was modeled. The authors were interested in the

effect of commuting time, which was reported in minutes to work for one way by survey

participants.2 Data from eight waves of the German Socio Economic Panel (GSOEP)

(1985, 1990, 1991, 1992, 1993, 1995, 1998, 2003) were used. The sample excluded people

with irregular commuting patterns. Commuting times for people working from home were

set to zero. The authors pooled all eight waves and estimated the model by OLS. Even

though the number of observations in the samples used in this replication and in the paper

of Stutzer and Frey differ by 707 observations, summary statistics, which are reported in

Table 3 in the appendix, and estimates are virtually the same.3

1The France commission’s homepage is: http://www.stiglitz-sen-fitoussi.fr/en/index.htm
A commentary about David Cameron’s decision can be found at:
http://www.economist.com/node/17578888

2Table 1 Column 3 in Stutzer and Frey (2008).
3We thank the authors for providing us with assistance in the replication of the paper.
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4.2 Application of Parametric RSMs

Table 1 shows estimates of the marginal effect of a one-minute increase in commuting time

on general life satisfaction scores.4 Standard errors of the average effects are in parentheses.

Every column shows a different set of estimates. Column 1 replicates the ordinary least

squares estimates found by Stutzer and Frey (2008). Column 2 to 5 report average marginal

effects of the parametric RSMs. In Columns 2 and 3 the Bernoulli QML estimates are

shown. NLS estimates are given in Columns 4 and 5, respectively.

OLS predicts the highest average reduction in happiness scores. A person commuting 60

minutes one-way is expected to have a 0.275 point lower satisfaction score than a comparable

person, who does not commute (Stutzer and Frey 2008). The average marginal probability

effect estimated by the logit-type Bernoulli QML estimates the lowest difference between

these two individuals, namely 0.269 point. Overall, average marginal effects vary only

slightly among regression models. The different weighting schemes of NLS and Bernoulli

QML discussed earlier appear not to matter much in this empirical application.

Table 1: Effect of Commuting Time on Satisfaction - Parametric RSMs

(1) (2) (3) (4) (5)
OLS QML-Logit QML-Probit NLS-Logit NLS-Probit

Commuting Time -0.00459 -0.00449 -0.00453 -0.00451 -0.00453
(0.00046) (0.00047) (0.00047) (0.00047) 0.00048

Individual characteristics Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes
Robust Standard Errors No Yes Yes Yes Yes

Observations 39747 39747 39747 39747 39747

· Standard errors reported in parentheses.
· Individual characteristics: sex, age, age2, 6 categories of years of education, 2 variables for the relationship to the

household head, 9 variables for marital status, 4 variables for number of children in the hh, square root of the number
of hh members, East German, foreigners with EU nationality, foreigners without EU nationality, self-employment

· Effects in columns (2), (3) and (4) represent average marginal probability effects.
· Column (1) corresponds to Column (3) of Table1 in Stutzer and Frey (2008).

The estimates of the effect of commuting time are found to be statistically significant

at common confidence levels in all regressions. In contrast to the OLS model, where

4The estimated parameter vectors for all variables are reported in Table 4 in the appendix.
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homoscedasticity of the error variance is assumed, the robust sandwich variance estimator

is used for computation of the standard errors for regression model 2 to 5.

In the light of the wide utilization and acceptance of OLS in the rating variable litera-

ture, it is appealing to find the parametric RSMs estimating very similar average marginal

effects. However, the non-linear specification of the conditional expectation differs from

OLS in two points. First, RSMs’ mean predictions are bounded. Second, RSMs’ marginal

effects are not constant. Two graphical illustrations make these differences apparent.

Figure 1: Predicted Satisfaction for Sample Members

Figure 1 plots the estimated conditional expectation, i.e. predicted satisfaction scores

for all sample members. The three graphs report the predictions obtained by OLS, Bernoulli

QML and NLS (from left to right). For the later two models the function G(.) is specified

using the logistic cumulative distribution function. For OLS the mean predictions equal

the linear index. In this application, OLS predictions for sample members do not hurt the

bounds of zero and ten. But, this need not hold in general. Moreover, it is always possible

to make OLS out-of-sample predictions that violate the bounds.

The Bernoulli QML and the NLS predictions are very similar. Both predict a locally

concave relationship between linear indexes and life satisfaction scores. Remembering the
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shape of the cumulative distribution function of the logistic distribution, it follows that the

sample predictions are centered around the upper flection. In this application the lower

flection would only play a role for out-of-sample predictions with a negative linear index.

In other words, the parametric assumption ensures the boundedness of (out-of-sample)

predictions.

Figure 2: Marginal Effect of Commuting Time on Life Satisfaction

Figure 2 plots the estimated marginal effects. For OLS the marginal effect is constant

among all individuals and represents an average effect. However, the boundedness of rating

variables preclude constant marginal effects. The individual specific marginal effects are

shown for the logit type Bernoulli QML and the NLS models in the second and third graph

from the left of Figure 2. The marginal effects depend on the local shape of the cumulative

distribution function. The shape of the predicted function G(x′iβ) therefore suggests, that

with an increasing linear index commuting time affects individuals less. This is plausible.

Very satisfied people, who feel themselves fully blessed with luck, weigh a one-minute

increase in commuting time less than people, who perceive their life as unsatisfactory. The

non-constant marginal effects provide therefore useful information, for instance for policy

makers, who want to focus only on certain subgroups of observations where the effects of
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an intervention can be expected to be particularly large.

4.3 Application of the Semiparametric RSM

We choose to implement the SLS estimator using a plug-in bandwidth for two reasons. First,

the huge sample and the big number of parameters make cross validation computationally

intensive. Second, cross validation resulted in a too small bandwidth, i.e in an under

smoothed estimate of the conditional expectation of the functional form. On one hand,

this might be due to the lack of independence among observations, as the sample is pooled

over time periods. On the other hand, the parameter of normalization (commuting time)

is relatively small. Hence, the range of linear indexes is wide. Different essays identified a

bandwidth of 10 to provide appropriate smoothing.5

Table 2: Effect of Commuting Time on Satisfaction -
Sempirametric RSM

(1) (2)
OLS SLS

Commuting Time -0.00459 -0.00479

Individual characteristics Yes Yes
Time fixed effects Yes Yes

Observations 39747 39747

· Individual characteristics: sex, age, age2, 6 categories of years of educa-
tion, 2 variables for the relationship to the household head, 9 variables for
marital status, 4 variables for number of children in the hh, square root of
the number of hh members, East German, foreigners with EU nationality,
foreigners without EU nationality, self-employment

· Effects in columns (2) are marginal probability effects evaluated at the
mean characteristics.

· Column (1) corresponds to Column (3) of Table 1 in Stutzer and Frey
(2008).

Table 2 reports ordinary least squares and semiparametric least squares estimates of

the marginal effect of commuting time on life satisfaction.6 The model is estimated with

5A Matlab (The MathWorks Inc., 2008) code implementing the SLS estimator can be found at
http://www.sts.uzh.ch/members/Studer/slsmatlabcode.pdf.

6SLS marginal effects are computed at the mean characteristics and not for each individual. This is
preferable as for individuals with a linear index closed to the bounds, marginal effects might be severely
biased when the local constant estimator is used for estimating the conditional expectation of G(.).
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the same set of explanatory variables as those listed in Table 1. SLS and OLS estimates

are very similar. A 30 minutes increase in one-way commuting time lowers life satisfaction

approximately by 0.144 respectively 0.138 point ceteris paribus. Table 5 in the appendix

shows that this finding generalizes to other variables. The marginal effects of all regressors

are similar between OLS and SLS.

Figure 3: Predicted Satisfaction for Sample Members

Figure 3 plots the SLS mean predictions. Two peculiarities deserve to be mentioned.

First, the estimated conditional expectation is decreasing in the linear index. This stands

in contradiction to the plotted predictions in Figure 2 and is due to the negative sign of the

normalization coefficient (the effect of commuting time). Hence, relative coefficients take

the opposite sign of the coefficients estimated in OLS or the parametric RSMs. Second, as

boundaries of the support data (x′iβ) are approached predictions are widespread. This is

an artifact of the local constant estimator, which suffers from an edge bias. In particular,

kernel estimates at the boundaries of x′iβ will be based on one sided observations only.

E(G(x′iβ)|x′iβ) estimated for an observation at the upper bound of the training data will be

underestimated, as G(.) is decreasing in the linear index. The local linear regression esti-

mator would overcome this source of bias. However, it is computationally more demanding

and can be instable (Racine, 2008). Moreover, consistency of the parameter estimates can
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still be established when using the local constant estimator for E(G(x′iβ)|x′iβ) (Ichimura,

1993).

Several remarks apply when comparing SLS to OLS and the fully parametric models.

First, the SLS estimates of marginal effects are very closed to OLS (and therefore to the

average marginal effects of the parametric RSMs). Second, SLS respects the boundaries of

the rating dependent variable as data points are used to estimate the conditional expecta-

tion of G(.). Finally, researchers should be aware that SLS does not allow for out-of-sample

predictions.

5 Conclusion

This paper focused on econometric models for rating data. We established that existing

models, such as ordered latent models or the linear regression model, have a number of

shortcomings. A new general framework for a cardinal rating scale model addresses these

issues. Depending on the specific assumptions, model parameters can be estimated by

non-linear least squares, by quasi-maximum likelihood or by semi-parametric least squares.

Predicted means of the new model automatically satisfy the logical constraints provided

by the upper and lower bounds of the rating scale. It works equally well for discrete ratings,

as it does for continuous ones. Continuous, or near continuous, ratings scales are empirically

relevant. For example, the Standard & Poors rating of investment grades distinguishes 25

values. Also, subjective ratings in a survey can be performed by a visual mark on a ruler, a

method that has been employed occasionally in psychometrics, and is likely to become more

widespread in the future. In these cases, ordered latent models clearly are impractical, and

the proposed RSM is a superior alternative to the linear regression model that ignores the

boundary condition of such scales.

In an empirical application to discrete life satisfaction scores, we showed that the meth-

ods are easy to implement. It turned out that the average marginal effects of the nonlinear
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RSMs were similar to ordinary least squares estimates. However, substantial differences in

predicted individual specific marginal effects could be found for observations in the tails of

the distribution of predicted satisfaction scores.
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Appendix

Table 3: Replication of Summary Statistics

Mean Std.Dev. Min Max

Age 38.84 11.60 14 86
Years of Education 11.41 3.08 7 18
Children in hh 0.75 0.98 0 9
Persons in hh 3.12 1.35 1 14
Female 0.44 0.49 0 1
Child of hh-head 0.13 0.33 0 1
No hh-head 0.01 0.1 0 1
Single-wp 0.25 0.43 0 1
Married 0.65 0.48 0 1
Seperated-wp 0.02 0.13 0 1
Seperated-np 0.002 0.04 0 1
Divorced-wp 0.06 0.24 0 1
Divorced-np 0.004 0.07 0 1
Widowed-wp 0.01 0.12 0 1
Widowed-np 0.001 0.04 0 1
Spouse abroad 0.002 0.04 0 1
Selfemployed 0.15 0.36 0 1
East-German 0.2 0.40 0 1
EU-citizen 0.07 0.26 0 1
Foreigner Non-EU 0.1 0.3 0 1

· N=39747
· Abbreviations: hh: household, np: no partner, wp: with partner
· This table replicates the summary statistics provided in the ap-

pendix of Stutzer and Frey (2008).



Table 4: Raw Regression Output - Parametric RSMs
OLS QML-Logit QML-Probit NLS-Logit NLS-Probit

Commuting Time -4.59E-03 -2.20E-03 -1.33E-03 -2.21E-03 -1.33E-03
(4.57E-04) (2.31E-04) (1.40E-04) (2.31E-04) (1.40E-04)

Age -4.90E-02 -2.44E-02 -1.45E-02 -2.50E-02 -1.49E-02
(5.76E-03) (3.00E-03) (1.79E-03) (3.02E-03) (1.80E-03)

Age2 5.06E-04 2.53E-04 1.50E-04 2.60E-04 1.55E-04
(6.83E-05) (3.56E-05) (2.13E-05) (3.57E-05) (2.13E-05)

Female -1.77E-02 -8.53E-03 -5.19E-03 -8.15E-03 -4.96E-03
(1.71E-02) (8.40E-03) (5.04E-03) (8.44E-03) (5.07E-03)

Education = 7y. -4.22E-02 -2.10E-02 -1.29E-02 -1.84E-02 -1.14E-02
(4.56E-02) (2.52E-02) (1.51E-02) (2.53E-02) (1.52E-02)

Education = 10y. 1.55E-01 7.73E-02 4.63E-02 7.68E-02 4.60E-02
(2.62E-02) (1.37E-02) (8.21E-03) (1.37E-02) (8.24E-03)

Education = 12y. 1.94E-01 9.62E-02 5.77E-02 9.55E-02 5.73E-02
(3.27E-02) (1.63E-02) (9.81E-03) (1.64E-02) (9.83E-03)

Education = 14y. 2.47E-01 1.22E-01 7.30E-02 1.24E-01 7.43E-02
(3.69E-02) (1.80E-02) (1.08E-02) (1.81E-02) (1.09E-02)

Education = 18y. 3.94E-01 1.95E-01 1.17E-01 1.95E-01 1.17E-01
(3.85E-02) (1.87E-02) (1.12E-02) (1.88E-02) (1.13E-02)

Child of hh-head 8.55E-02 4.30E-02 2.65E-02 3.67E-02 2.27E-02
(4.25E-02) (2.11E-02) (1.27E-02) (2.12E-02) (1.27E-02)

No hh-head -1.68E-01 -8.12E-02 -4.95E-02 -7.70E-02 -4.70E-02
(8.42E-02) (4.25E-02) (2.56E-02) (4.27E-02) (2.58E-02)

Single-wp 9.26E-01 4.15E-01 2.54E-01 4.15E-01 2.54E-01
(2.07E-01) (1.09E-01) (6.76E-02) (1.10E-01) (6.81E-02)

Married 1.14 5.18E-01 3.16E-01 5.14E-01 3.14E-01
(2.06E-01) (1.09E-01) (6.75E-02) (1.10E-01) (6.79E-02)

Separated-wp 5.04E-01 2.24E-01 1.37E-01 2.24E-01 1.37E-01
(2.16E-01) (1.14E-01) (7.06E-02) (1.15E-01) (7.10E-02)

Separated-np -5.08E-01 -2.21E-01 -1.37E-01 -2.17E-01 -1.34E-01
(2.20E-01) (1.28E-01) (7.87E-02) (1.29E-01) (7.95E-02)

Divorced-wp 7.69E-01 3.45E-01 2.11E-01 3.42E-01 2.10E-01
(2.09E-01) (1.10E-01) (6.81E-02) (1.11E-01) (6.85E-02)

Divorced-np -2.33E-03 -6.55E-03 -3.53E-03 -4.53E-03 -2.30E-03
(1.30E-01) (6.95E-02) (4.20E-02) (6.99E-02) (4.22E-02)

Widow-wp 8.09E-01 3.64E-01 2.22E-01 3.61E-01 2.21E-01
(2.17E-01) (1.14E-01) (7.06E-02) (1.15E-01) (7.10E-02)

Widow-np -4.53E-01 -2.03E-01 -1.24E-01 -2.01E-01 -1.23E-01
(2.38E-01) (1.51E-01) (9.28E-02) (1.50E-01) (9.25E-02)

Child-hh=1 -6.36E-02 -3.12E-02 -1.88E-02 -3.06E-02 -1.85E-02
(2.52E-02) (1.24E-02) (7.43E-03) (1.23E-02) (7.39E-03)

Child-hh=2 -7.67E-02 -3.80E-02 -2.31E-02 -3.55E-02 -2.16E-02
(3.32E-02) (1.60E-02) (9.63E-03) (1.60E-02) (9.62E-03)

Child-hh>3 -2.22E-01 -1.09E-01 -6.54E-02 -1.10E-01 -6.60E-02
(5.09E-02) (2.53E-02) (1.52E-02) (2.53E-02) (1.52E-02)

Squareroot Persons in hh 1.11E-01 5.45E-02 3.26E-02 5.57E-02 3.33E-02
(4.00E-02) (2.00E-02) (1.20E-02) (2.02E-02) (1.21E-02)

Selfemployed -9.04E-02 -4.40E-02 -2.65E-02 -4.36E-02 -2.63E-02
(2.33E-02) (1.14E-02) (6.87E-03) (1.14E-02) (6.88E-03)

East-German -7.13E-01 -3.36E-01 -2.04E-01 -3.36E-01 -2.03E-01
(2.24E-02) (1.01E-02) (6.14E-03) (1.02E-02) (6.17E-03)

EU-citizen 1.26E-01 6.47E-02 3.88E-02 6.27E-02 3.76E-02
(3.53E-02) (1.89E-02) (1.12E-02) (1.90E-02) (1.13E-02)

Foreigner Non-EU -1.19E-01 -5.88E-02 -3.53E-02 -5.86E-02 -3.52E-02
(3.03E-02) (1.62E-02) (9.67E-03) (1.63E-02) (9.75E-03)

First interview 2.54E-01 1.31E-01 7.77E-02 1.31E-01 7.81E-02
(3.66E-02) (1.89E-02) (1.12E-02) (1.89E-02) (1.12E-02)

Year 90 8.37E-02 4.34E-02 2.56E-02 4.51E-02 2.66E-02
(2.83E-02) (1.46E-02) (8.70E-03) (1.47E-02) (8.74E-03)

Year 92 -4.12E-01 -1.81E-01 -1.11E-01 -1.79E-01 -1.10E-01
(6.70E-02) (2.87E-02) (1.77E-02) (2.88E-02) (1.77E-02)

Year 95 -5.99E-02 -2.95E-02 -1.81E-02 -2.63E-02 -1.62E-02
(2.51E-02) (1.24E-02) (7.47E-03) (1.25E-02) (7.49E-03)

Year 98 -1.14E-02 -6.44E-03 -4.01E-03 -4.35E-03 -2.79E-03
(2.58E-02) (1.26E-02) (7.54E-03) (1.26E-02) (7.56E-03)

Year 03 -7.20E-02 -3.55E-02 -2.17E-02 -3.20E-02 -1.96E-02
(2.33E-02) (1.15E-02) (6.91E-03) (1.16E-02) (6.94E-03)

Constant 7.11 9.47E-01 5.78E-01 9.59E-01 5.85E-01
(2.41E-01) (1.26E-01) (7.75E-02) (1.27E-01) (7.79E-02)

· Standard errors reported in parentheses.
· Estimated coefficients correspond to the parameter vector β in models (??).
· First line of column (1) corresponds to column (3) of table 1 in Stutzer and Frey (2008).
· N=39747



Table 5: Marginal Effects - Semiparametric RSM

OLS SLS

Commuting Time -4.59E-03 -4.79E-03
Age -4.90E-02 -5.08E-02
Age2 5.06E-04 5.31E-04
Female -1.77E-02 -1.85E-02
Education = 7y. -4.22E-02 -4.42E-02
Education = 10y. 1.55E-01 1.62E-01
Education = 12y. 1.94E-01 2.04E-01
Education = 14y. 2.47E-01 2.61E-01
Education = 18y. 3.94E-01 4.06E-01
Child of hh-head 8.55E-02 8.93E-02
No hh-head -1.68E-01 -1.77E-01
Single-wp 9.26E-01 9.79E-01
Married 1.14E+00 1.18E+00
Separated-wp 5.04E-01 5.26E-01
Separated-np -5.08E-01 -5.36E-01
Divorced-wp 7.69E-01 7.85E-01
Divorced-np -2.33E-03 -2.44E-03
Widow-wp -4.53E-01 -4.74E-01
Widow-np 8.09E-01 8.57E-01
Child-hh=1 -6.36E-02 -6.63E-02
Child-hh=2 -7.67E-02 -8.08E-02
Child-hh>3 -2.22E-01 -2.35E-01
Squareroot Persons in hh 1.11E-01 1.13E-01
Selfemployed -9.04E-02 -9.54E-02
East-German -7.13E-01 -7.43E-01
EU-citizen 1.26E-01 1.33E-01
Foreigner Non-EU -1.19E-01 -1.25E-01
First interview 2.54E-01 2.66E-01
Year 90 8.37E-02 8.29E-02
Year 92 -4.12E-01 -4.29E-01
Year 95 -5.99E-02 -6.26E-02
Year 98 -1.14E-02 -1.21E-02
Year 03 -7.20E-02 -7.49E-02
Constant 7.11

· Reported coefficients correspond to marginal effects. Marginal
effects in Column 2 are evaluated at the mean characteristics.

· First line of column (1) corresponds to column (3) of table 1 in
Stutzer and Frey (2008).

· The life satisfaction score is modeled as dependent variable.
· N=39747


