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1 Introduction

A long-standing problem is to provide an empirical description of the value of an indi-

vidual’s human capital and the associated return on an individual’s human capital. The

value of human capital is in theory simply discounted future earnings. Thus, it is key to

determine how an individual’s earnings and an individual’s stochastic discount factor co-

move. The main difficulty is that discount factor properties can only be inferred indirectly

through data on financial asset returns or individual choices.

One strategy for making progress on this problem is to take a structural approach

and make parametric assumptions about preferences, as well as assumptions on the exact

structure of an individual’s decision problem. These parameters can then be estimated,

and the value and return to human capital can be characterized using the stochastic

discount factor produced by a solution to an empirically-motivated specification of this

decision problem.

In this paper we take a different approach. We explore what can be said about

individual human capital values and returns without making parametric assumptions on

preferences and without solving such a decision problem. However, we assume that one

knows two important things: (1) a statistical model for financial asset returns and an

individual’s earnings; and (2) some key properties of an individual’s stochastic discount

factor. We assume this discount factor is non-negative, satisfies an Euler equation for

each financial asset and is no more variable than some specified upper bound. These

assumptions will not allow one to precisely value an individual’s future earnings unless

future earnings can be replicated by trade in financial assets. Nevertheless, upper and

lower bounds on the value of human capital can be determined by pricing the earnings

component that can be replicated by trade in financial assets and then bounding the value

of the residual component of earnings.

We view the two approaches as being complementary. If the bounds approach puts

tight bounds on values and returns, then this tells one that all the extra assumptions

and additional data used in the structural approach can only serve to slightly narrow

the value and return to human capital beyond what can be determined from earnings

and asset returns data. In contrast, if the bounds approach implies very loose bounds,

2



then this tells one that the additional data and assumptions employed in the structural

approach are critical for reaching conclusions about the return to human capital.

We highlight one area in which an empirical understanding of the value and return

to human capital is relevant. To maintain a constant fraction of overall wealth in stock

holdings, an individual’s direct financial holdings of stock and bonds need to be selected

with the value of human capital in mind. If human capital is like stock, then the fraction of

financial wealth held in stock would need to increase over the lifetime. If human capital is

like risk-free debt, then the opposite reasoning applies. To make progress on this argument

and give practical advice, one needs to investigate this if condition empirically. To do so,

it is important to adopt the human capital value and return notions used in this paper:

values and returns based on an individual’s stochastic discount factor.

There are three main contributions of the paper. First, we show that value bounds

imply return bounds. Second, we illustrate how all the concepts work within a simple

example. Third, we calculate value and return bounds using U.S. data.

Value and return bounds for U.S. data are determined in two steps. We start by

providing an empirical description of the joint dynamics of male earnings and stock re-

turns. Given such a statistical model, we then calculate value and return bounds using

the restriction that the coefficient of variation of an individual’s stochastic discount factor

is no larger than a given multiple of the conditional Sharpe ratio. If the Euler equation

restriction is to hold, then this coefficient of variation must, at a minimum, be at least as

large as the Sharpe ratio. We find that value and return bounds are very loose even after

imposing that the coefficient of variation is at most 1.1 times the conditional Sharpe ratio.

Specifically, for this upper limit the expected lifetime return to human capital must lie

between −10 and 17 percent per year. This is almost exclusively due to the large amount

of idiosyncratic earnings variation that we estimate from U.S. data, consistent with find-

ings from numerous previous empirical studies. We find that when all idiosyncratic risk is

eliminated without eliminating aggregate sources of earnings risk, then value and return

bounds are tight. The expected lifetime return to human capital is then between 0.25

and 2.5 percent per year, for a range of restrictions on the coefficient of variation of an

individual’s stochastic discount factor.
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Three literatures are most closely related to the problem that we address. First, there

is a literature on the value of human capital. This literature has almost exclusively focused

on valuing highly aggregated measures of cash flows (e.g. economy-wide earnings or cohort

earnings) rather than individual male earnings as examined in this paper. See Huggett

and Kaplan (2010) for a discussion of this literature. Second, the finance literature has

put upper and lower value bounds on cash flows. Cochrane and Saa-Requejo (2000) and

Cochrane (2001) develop theory, provide applications and review this literature. The

bounds literature builds on the stochastic discount factor formulation of asset pricing

problems developed by Hansen and Jagannathan (1991) and others. The basic idea in

the value bounds literature is to value the component of cash flows that can be replicated

by trade in marketed assets and bound the value of the residual component. To the

best of our knowledge, we are the first to apply these ideas to calculate value and return

bounds on individual-level earnings. Third, the paper is related to the literature on

incomplete markets and idiosyncratic earnings risk. Specifically, market incompleteness

is what generates a gap between upper and lower value bounds and is hence key to our

analysis.

2 Framework

2.1 Basic Concepts

We assume that the asset pricing theorist knows the stochastic process governing earnings

e = {ej}
J
j=1 and (gross) financial asset returns Ri = {Ri

j}
J
j=1 for i ∈ I. J denotes the

last period of the working lifetime, whereas I denotes the set of assets that the agent

observes and can trade. The agent values future earnings using a stochastic discount

factor m∗ = {m∗
j,j+1}

J
j=1. The discount factor between age j and k is the product of

one-period discount factors m∗
j,k =

∏k−1
i=j m∗

i,i+1. All random variables are defined on some

underlying probability space (Ω,F , P ) and are assumed to be square integrable.

We now define the value of human capital and the return to human capital. The value

of an agent’s human capital vj(m
∗) is simply the value of future earnings discounted using

m∗. Expected values at age j are calculated using the information σ-field Fj of the agent.
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The one-period discount factor m∗
j,j+1 is assumed to be Fj+1 measurable. We assume that

Fj is the σ-field generated by earnings and asset returns up to period j (i.e. (ek, (R
i
k)i∈I)

for k ≤ j).1 The return to human capital Rh
j+1(m

∗) is defined as the random variable

which equals the sum of the earnings and value in period j + 1 divided by the period j

value. The lifetime return Rlife(m
∗) is the geometric average of the period returns.

vj(m
∗) ≡ E[

J
∑

k=j+1

m∗
j,kek|Fj]

Rh
j+1(m

∗) ≡
vj+1(m

∗) + ej+1

vj(m∗)

Rlife(m
∗) ≡ [Rh

2(m
∗)Rh

3(m
∗) · · ·Rh

J(m
∗)]1/(J−1)

Huggett and Kaplan (2010) provide a justification for defining the value of human

capital in this way. They argue that if an agent is given the opportunity to move away

from holding all the shares in his/her cash flow stream ej , then when the value of these

shares is set at vj(m
∗) the agent will optimally choose to always continue to hold all these

shares. While the argument for this proposition relies on a concave utility function over

consumption, it is not sensitive to the exact theoretical mechanism by which earnings are

produced. If earnings are produced with goods inputs, then it is earnings net of the value

of goods inputs that must be valued.

2.2 Bounds

We assume that the asset pricing theorist knows that the agent’s discount factor lies in the

set M . This set contains square integrable stochastic discount factors that satisfy three

restrictions. First, each one-period discount factor is non-negative. Second, the Euler

equation holds for each financial asset available to the agent. These first two restrictions

would be implied, from a utility theory framework, by a strictly positive marginal utility

1The theory can be extended to cover the case where Fj is finer as would be the case when the agent
also observes signals providing information on future earnings and returns beyond those implied by past
earnings and returns.
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of consumption and by agent optimization. Third, all the one-period discount factors

have a second moment that is no larger than some upper bound denoted b2. This last

restriction is an auxiliary assumption rather than a restriction implied by some underlying

decision problem.

M ≡ {m : (1) mj,j+1 ≥ 0, (2) E[mj,j+1R
i
j+1|Fj] = 1, ∀i ∈ I, (3) E[m2

j,j+1|Fj] ≤ b2, ∀j}

The upper and lower bounds on values and returns are simply the supremum and

infimum of the possible values and returns over the set M . These are defined below.

Since values and returns are random variables the bounds are also random variables.

vuj ≡ sup
m∈M

vj(m) and vlj ≡ inf
m∈M

vj(m)

Ru
life ≡ sup

m∈M
Rlife(m) and Rl

life ≡ inf
m∈M

Rlife(m)

It is important to clarify when there will be a gap between the upper bound vuj and

the lower bound vlj . Any gap between the value bounds will then imply a gap between

the return bounds. There can be a gap between the value bounds when it is not possible

to replicate future earnings with a trading strategy in financial assets. Thus, market

incompleteness is key. To see this in its simplest form, consider the value in the second-

to-last period vJ−1(m). Below we rewrite vJ−1(m) using the fact that there is a unique

decomposition eJ = projJ(eJ)+ǫJ of earnings into the part projJ(eJ) in the space spanned

by financial asset returns and the orthogonal part. The component in the space spanned by

asset returns has exactly the same value for any m ∈ M . This fact is implied by the Euler

equation and is expressed in the second equation below using projJ(eJ) =
∑

i∈I α
i
J−1R

i
J

for some weights αi
J−1.

vJ−1(m) = E[mJ−1,J(projJ(eJ )+ǫJ)|FJ−1] = E[mJ−1,JprojJ(eJ)|FJ−1]+E[mJ−1,JǫJ |FJ−1]

E[mJ−1,JprojJ(eJ)|FJ−1] = E[mJ−1,J

∑

i∈I

αi
J−1R

i
J |FJ−1] =

∑

i∈I

αi
J−1, ∀m ∈ M
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This decomposition makes it clear that any gap between the upper and lower value

bounds comes about when the value of the orthogonal component of earnings differs across

m ∈ M . This happens when the orthogonal component ǫJ is non-zero and when there are

two discount factors m1, m2 ∈ M that covary differently with this component of earnings.

The first criteria is an observable as the asset pricing theorist is assumed to know the

statistical process governing earnings and asset returns. In practice, empirical methods

can provide evidence on the size and nature of the orthogonal component of earnings.

The second criteria occurs when the volatility bound (restriction (3)) is large enough so

that m is sufficiently variable to satisfy the Euler equations (restriction (2)) and there is

some additional scope for m to vary with the orthogonal component of earnings.

2.3 Relationship Between Value Bounds and Return Bounds

Next, we show that bounds on lifetime returns are implied by bounds on the value of

human capital. To see why this holds, simply restate lifetime returns as indicated below.

It is then clear that, for any draw ω ∈ Ω of shocks, lower values for human capital imply

higher values for lifetime returns. Thus, an upper bound on lifetime returns is obtained

by inserting the lower bound on values vlj at each age into the right-hand side of this

equation. Using the same logic, a lower bound on lifetime returns is determined by the

upper bound on values vuj . Theorem 1 argues that the least upper bound and the greatest

lower bound on lifetime returns are determined by the value bounds.

Rlife(m) ≡ [(
v2(m) + e2

v1(m)
) · · · (

vJ(m) + eJ
vJ−1(m)

)]1/(J−1) = [
eJ

v1(m)

J−1
∏

j=2

(1 +
ej

vj(m)
)]1/(J−1)

Theorem 1 Let (m∗, e, [Ri : i ∈ I]) denote the agent’s stochastic discount factor, earn-

ings and asset returns. If earnings and asset returns are strictly positive and the set of

possible stochastic discount factors M is non-empty, then

(i) Rl
life = [ eJ

vu
1

∏J−1
j=2 (1 +

ej
vu
j

)]1/(J−1) and Ru
life = [ eJ

vl
1

∏J−1
j=2 (1 +

ej
vl
j

)]1/(J−1).
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(ii) Rlife(m
∗) ∈ [Rl

life, R
u
life] provided that the volatility bound is above the second mo-

ment of the agent’s stochastic discount factor (i.e. b2 ≥ E[(m∗
j,j+1)

2|Fj], ∀j).

Proof See Appendix D.

3 A Simple Example

In this section we provide a simple example to illustrate how all the concepts work. We

start by describing an environment with a single risk-free asset and permanent idiosyn-

cratic earnings shocks. This model is a finite lifetime version of the problem analyzed by

Constantinides and Duffie (1996). This model is useful because it allows us to express

both the value and the return to human capital in closed form. We then calculate bounds,

assuming that only the earnings process and the interest rate are known, and not the full

structure of the model.

3.1 The Model

Consider the decision problem of an agent who faces an exogenous earnings process and

can borrow and lend at a risk-free rate r. Earnings are subject to permanent shocks

arriving each model period. The agent maximizes expected utility over the lifetime.

Utility: E[
∑J

j=1 β
j−1u(cj)|F1], where u(c) =

{

c1−ρ

(1−ρ)
: ρ > 0, ρ 6= 1

log(c) : ρ = 1

Earnings: ej =
∏j

k=1 zk, where ln zk ∼ N(µ, σ2) is i.i.d.

Information: Fj is the σ-field generated by (e1, ..., ej)

Risk-free return: R = (1 + r) > 0

Decision Problem: maxE[
∑J

j=1 β
j−1u(cj)|F1] subject to

(1) cj + aj+1 ≤ aj(1 + r) + ej , (2) cj ≥ 0, aJ+1 ≥ 0
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When the interest rate satisfies 1 + r = 1
β
exp(ρµ − ρ2σ2

2
) and initial assets are zero,

then the solution to the agent’s decision problem is to set consumption equal to earnings

each period. The plausibility of this assertion can be seen by noting that the agent’s

Euler equation holds under these conditions. The agent’s stochastic discount factor is

then m∗
j,j+1 = β

u′(cj+1)

u′(cj)
= β

u′(ej+1)

u′(ej)
. The agent’s value of human capital vj(m

∗) is then

proportional to earnings each period. This implies that the agent’s realized return to

human capital Rh
j+1(m

∗) is proportional to the permanent earnings shock zj+1. Lifetime

returns are then easy to determine as they are the geometric average of realized period

returns and period returns are i.i.d. across periods. These results are summarized below.

vj(m
∗) = E[

J
∑

k=j+1

m∗
j,kek|Fj] = fjej

fj =
J
∑

k=j+1

βk−j exp((k − j)[(−ρ+ 1)µ+ (−ρ+ 1)2
σ2

2
])

Rh
j+1(m

∗) =
ej+1 + fj+1ej+1

fjej
= (

1 + fj+1

fj
)zj+1

E[Rlife(m
∗)|F1] =

1

β
exp(µρ+

σ2

2
(

1

J − 1
− (1− ρ)2))

3.2 Bounds on Values and Returns

Next we consider an asset pricing theorist who has knowledge of the stochastic process

for earnings and the interest rate on the single risk-free asset. We now determine what

could be said about the value and return to the agent’s human capital, given only this

knowledge, and no other details of the decision-making environment.

We start by noting that upper and lower value bounds satisfy a Bellman equation. We

focus on the Bellman equation for the upper bound since the lower bound can be handled

by replacing the supremum with the infimum operation. The state variable in Bellman’s

equation is current earnings ej as earnings are Markovian.

vuj (ej) = supmj,j+1
E[mj,j+1(v

u
j+1(ej+1) + ej+1)|ej] s.t.
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(1) mj,j+1 ≥ 0, (2) E[mj,j+1(1 + r)|ej] = 1 and (3) E[m2
j,j+1|ej ] ≤ b2

To solve Bellman’s equation, two facts are useful. First, bounds are linear in current

earnings: vuj (e) = γu
j e. This follows from backwards recursion using the fact that shocks

are multiplicative ej+1 = ejzj+1 and zj+1 is independent of ej . Second, a simple recursion

governs the coefficients: γu
j = (γu

j+1 + 1)γu
J−1, where γJ = 0. This implies that γu

j =
∑J−1

k=j (γ
u
J−1)

J−k. Thus, calculating all the upper bounds boils down to finding γu
J−1 =

vuJ−1(1) = sup{m:(1)−(3)hold} E[mJ−1,Jz].

Bounds on returns are now easy to state for this model. Theorem 1 tells one that lower

bounds on the realized lifetime returns are determined by upper bounds on the value of

human capital. Furthermore, value bounds are proportional to realized earnings. These

statements are summarized in the first equation below. The second and third equation

below state bounds on mean lifetime returns based on the bound for realized returns.

Theorem 1 implies that E[Rl
life|F1] ≤ E[Rlife(m

∗)|F1] ≤ E[Ru
life|F1], provided that the

exogenously conjectured volatility bound b2 is at least as large as the second moment of

the agent’s stochastic discount factor. Shortly, we will use these equations to calculate

bounds, given a computational method for approximating (γu
J−1, γ

l
J−1).

Rl
life = [(

e2 + γu
2 e2

γu
1 e1

) · · · (
eJ−1 + γu

J−1eJ−1

γu
J−2eJ−2

)(
eJ

γu
J−1eJ−1

)]1/(J−1) =
1

γu
J−1

[
eJ
e1
]1/(J−1)

E[Rl
life|F1] =

1

γu
J−1

exp(µ+
σ2

2(J − 1)
)

E[Ru
life|F1] =

1

γl
J−1

exp(µ+
σ2

2(J − 1)
)

3.3 Quantitative Properties of Values and Returns

We analyze a quantitative version of this model to illustrate how all these ideas work

together. The interest rate is set to r = 0.01 and the agent’s lifetime is set to J = 46

model periods. Earnings parameters are set so that the mean earnings profile equals 1

each model period: µ = −σ2/2. We allow a one standard deviation shock to earnings to
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vary from zero to a twenty percent shock. These assumptions are sufficient to calculate

bounds on values and returns. To calculate the true value and return to human capital,

in addition it is necessary to specify the preference parameters, and to ensure that the

interest rate assumption used in the construction of the solution to the decision problem

holds. To achieve this, we set an agent’s coefficient of relative risk aversion to ρ = 2 and

set the discount factor β =
exp(ρµ− ρ2σ2

2
)

1+r
.

Figure 1(a) displays upper and lower value bounds for different magnitudes of the

standard deviation σ of log earnings shocks.2 These value bounds are based on an ex-

ogenously specified volatility bound which we set equal to the true second moment of the

agent’s stochastic discount factor (i.e. b2 ≡ E[m∗2
j,j+1|Fj]) for each value of σ. Figure 1(a)

shows that the bounds on values fan out as earnings risk increases. The true value of

human capital v1(m
∗) is also displayed in Figure 1(a). The true value is difficult to see in

this Figure as it is always very close to the computed lower bound.3

Figure 1(a) shows that the value of an agent’s human capital falls as the shock vari-

ance increases. To help understand this result, below we decompose the value into two

components: the value of the mean earnings profile and the value of the residual (orthog-

onal) component of earnings ǫk ≡ ek −E[ek|F1]). These can be viewed as the value of the

earnings component spanned by asset returns and the value of the orthogonal component.

The first component is exactly the same for each model because both the mean earnings

profile and the mean of the agent’s stochastic discount factor are the same. Furthermore,

the first component can be precisely valued without knowledge of the precise nature of

the agent’s stochastic discount factor m∗. Thus, the value of human capital is lower with

risk than in the no earnings risk case because the value of the orthogonal component of

earnings is negative with risk. This occurs because an agent’s stochastic discount factor

2The bounds are calculated using the theory from the previous subsection and using computational
methods to calculate (γu

J−1
, γl

J−1
). To compute these two quantities, we discretize the shock process and

numerically solve the optimization problem. All programs used to compute results can be found at the
journal’s website.

3This is not too surprising. The agent’s true stochastic discount factor comoves negatively with
earnings. The stochastic discount factor that achieves the lower bound on the value of human capital
will also comove negatively with earnings and will by construction have the same first two moments as
the agent’s true stochastic discount factor.
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covaries negatively with the orthogonal component of earnings.

v1(m
∗) = E[

J
∑

k=2

m∗
1,kek|F1] =

J
∑

k=2

E[m∗
1,kE[ek|F1]|F1] +

J
∑

k=2

E[m∗
1,kǫk|F1]

Figure 1(b) displays the mean lifetime return on human capital and the upper and

lower bound on expected lifetime returns. These are calculated based upon the formulas

derived in section 3.2. Figure 1(b) shows that the true mean lifetime return increases

as risk increases and that the upper bound on lifetime returns closely approximates the

agent’s true mean return.

The cone-shaped areas in Figure 1 can be interpreted as follows. An empirical re-

searcher could impose parametric assumptions on the utility function and make specific

assumptions on the nature of an agent’s budget constraint. Given a procedure for select-

ing these parameters, the value and return to human capital could be calculated using

the stochastic discount factor resulting from a solution to the agent’s decision problem.

Applying such a procedure for each value of the earnings risk σ, would produce a map

or correspondence living within the cone-shaped areas of Figure 1. This holds regardless

of the parametric class of utility functions that the researcher specifies, provided that

the Euler equation restriction holds. However, it is key that the second moment of the

agent’s stochastic discount factor inferred from such a parametric procedure is not above

the value employed in calculating the bounds.

3.4 Additional Restrictions on M

Within the simple example analyzed, it may seem unreasonable that the class M of

stochastic discount factors allows discount factors to covary positively with the orthogonal

component of earnings. However, this is precisely what happens at the upper bound on

values and the lower bound on returns. Thus, one can ask whether or not theory puts

restrictions on M beyond those employed so far. For example, is the covariation always

non-positive with the othogonal component of earnings?

Claim 1 presents a simple result on this question. It proves that within a two-period

model with exogenous earnings this covariation is always non-positive. In this claim E2
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denotes the expectations operator conditioned on period 2 asset returns.

Problem P1

maxE1[U(c1, c2)]

subject to

c1 + a2 ≤ a1
∑

i∈I

αi
1R

i
1 + e1; c2 ≤ a2

∑

i∈I

αi
2R

i
2 + e2

Claim 1 Assume U(c1, c2) is strictly increasing, strictly concave and differentiable. At

a solution to Problem P1, where m∗ = U2(c1,c2)
E1[U1(c1,c2)]

and ǫ2 ≡ e2 − E2[e2], we have that

(1) E1[m
∗ǫ2] ≤ 0 and (2) v1(m

∗) ≡ E1[m
∗e2] ≤ E1[m

∗E2[e2]]

Proof (1) E1[m
∗ǫ2] = E1[E2[m

∗ǫ2]] ≤ E1[E2[m
∗]E2[ǫ2]] = 0. The leftmost equality holds

by the law of iterated expectations. The inequality holds as the conditional covariance be-

tween m∗ and ǫ2 is non-positive. This holds as, conditioned on second period asset returns,

m∗ decreases as ǫ2 increases by concavity. The rightmost equality holds as E2[ǫ2] = 0. (2)

This is implied by (1). ⋄

Claim 1 implies that in the simple example from section 3.1, with only two model

periods (J = 2) and with a flat mean earnings profile, the upper bound on values and

the lower bound on returns are now tighter: v1(m
∗) = E1[m

∗e2] ≤ e1/R and E1[R
h
2 ] =

E1[
e2

v1(m∗)
] ≥ E1[

e2
e1/R

] = R.

Extending this simple result beyond two periods is not straightforward for general

earnings and returns structures. It would be sufficient to show that future consumption

increases with a positive innovation to earnings, conditioned on returns. Establishing this

is not so simple as future consumption now depends on an endogenous future savings

decision.

We show that a multi-period analog to Claim 1 holds for the purely temporary com-

ponent of earnings variation within models where earnings are exogenous and have a

Markovian shock structure. Claim 2 presents this result when earnings ej = ējνj are the

product of an independent shock νj and a Markovian component ēj . The earnings residual
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ǫj is then ǫj ≡ ej − Êj [ej ], where the expectations operator is conditioned on all period

j earnings and return information except the realization of the independent temporary

shock νj. The next section presents an empirical earnings and return model of this type.

Problem P2

maxE1[
J
∑

j=1

βj−1u(cj)]

subject to

cj + aj+1 ≤ aj
∑

i∈I

αi
jR

i
j + ej ; aJ+1 ≥ 0

Claim 2 Assume u(c) is strictly increasing, strictly concave and differentiable and that

earnings have an independent shock component which is multiplicative. At an interior

solution to Problem P2, where m∗
j,j+1 =

βu′(cj+1)

u′(cj)
, we have Ej[m

∗
j,j+1ǫj+1] ≤ 0, ∀j.

Proof Note that Ej [m
∗
j,j+1ǫj+1] = Ej [Êj+1[m

∗
j,j+1ǫj+1]] ≤ Ej[Êj+1[m

∗
j,j+1]Êj+1[ǫj+1]] = 0.

The leftmost equality holds by the law of iterated expectations. The inequality holds

provided the conditional covariance is non-positive. The rightmost equality holds as

Êj+1[ǫj+1] = 0.

It remains to show that the conditional covariance is non-positive. It is sufficient to

show that cj+1 is increasing in νj+1, other things equal, as then ǫj+1 increases and mj,j+1

decreases as νj+1 increases. Given the Markovian structure, we can pose Problem P2

recursively and view consumption cj+1(wj+1, zj+1, νj+1) as a function of a vector of state

variables, where zj+1 summarizes the information in asset returns and all components of

earnings other than the temporary shock νj+1 and wj+1 = aj+1
∑

i∈I α
i
j+1R

i
j+1 summarizes

financial wealth.

vj(wj, zj , νj) = max u(cj) + βEj[vj+1(wj+1, zj+1, νj+1)]

cj + aj+1 ≤ wj + ej

A standard result for this type of problem is that at an interior solution the value function

is increasing, concave and differentiable in w and d
vj(wj ,zj ,νj)

dwj
= u′(cj(wj, zj , νj)). These
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properties are established by backwards induction using the corresponding properties of

u. Concavity of the value function then implies that cj must increase in wj, other things

equal. By independence, an increase in νj is equivalent to an appropriate increase in

financial wealth. Thus, cj also must increase in νj , other things equal. ⋄

4 Earnings and Asset Returns: Empirics

We now turn to applying these ideas to calculate bounds on human capital values and

returns using U.S. data. To operationalize the concepts introduced in Section 2 it is

necessary to have knowledge of (1) the set of assets that are actively traded by households

and (2) the joint stochastic structure of earnings and asset returns. Regarding the set of

actively traded financial assets, we focus our analysis on the case of two assets: one risky

(equities) and one riskless (bonds). We review evidence on how widely these two assets

classes are held by U.S. households.

Campbell (2006) analyzes participation rates of U.S. households in different asset

classes using the 2001 Survey of Consumer Finances. He finds that safe assets (e.g.

checking, saving and money market accounts) and vehicles are very widely held across

households. These two asset classes are held by at least 80 percent of households within

any percentile of the total asset holding distribution, except for households in the bottom

10 percent of the asset holding distribution. Thus, assuming that the Euler equation holds

for a low-risk asset is well motivated. The evidence for holding equity is more mixed.

Within the top 25 percent of the asset holding distribution, Campbell (2006) finds that

more than 80 percent of U.S. households hold public equity. However, within the bottom

25 percent of the asset holding distribution less than 40 percent of U.S. households hold

public equity. He also finds that participation in equity markets rises sustantially with

the level of education. Thus, we think that the assumption that the Euler equation for

equities holds is better supported for the college education sample that we analyze than

for the high school education sample.
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4.1 Stochastic Model for Earnings

The statistical model of earnings that we estimate is broadly similar to the model analyzed

in Storesletten, Telmer and Yaron (2004). In this model yi,j,t denotes the logarithm of

annual earnings for individual i of age j in year t. We assume that yi,j,t is comprised of

five orthogonal components:

yi,j,t = φt + κj + fi + zi,j,t + εi,j,t

zi,j,t = ρzi,j−1,t−1 + ηi,j,t

zi,0,t = 0.

The first two components are aggregate. φt is a stochastic time effect that reflects

changes in aggregate labor productivity that are common to all workers. κj is a deter-

ministic experience profile that we model as quartic polynomial in age.

The remaining three terms are individual-specific. fi ∼ N(0, σ2
f ) is an individual-

specific fixed effect, ηi,j,t ∼ N(0, σ2
η,t) is an idiosyncratic persistent shock and εi,j,t ∼

N(0, σ2
ε,t) is a purely transitory idiosyncratic shock.4

We estimate the model using data on male annual labor earnings from the Panel Study

of Income Dynamics (PSID) from 1967 to 1996. We restrict attention to male heads of

households between ages 25 and 55. Thus, we value individual earnings over the ages

25 to 55. Hence in our calculations, human capital values are zero after age 55. We

divide the sample into high school (HS) and college (COL) sub-samples, based on their

maximum observed completed years of education. Individuals with 12 or fewer years

of education are labeled HS while those with more than 12 years are labeled COL. We

hence make no distinction between high-school dropouts and high-school graduates on

one hand, and college dropouts, college graduates and post-graduates on the other hand.

Our measure of annual gross labor earnings includes pre-tax wages and salaries from all

jobs, plus commision, tips, bonuses and overtime, as well as the labor part of income from

self-employment. Labor earnings are inflated to 2008 dollars using the CPI All Urban

series. Full details can be found in Appendix A.

4When estimating the model we allow for time effects in both the persistent and transitory variance.
However, we restrict these to be constant when calculating bounds.
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Table 1: Parameter estimates for idiosyncratic earnings process

ALL HS COL
σ2
f 0.161 0.149 0.154

(0.011) (0.015) (0.013)
ρ 0.934 0.835 0.915

(0.025) (0.067) (0.030)
σ2
η 0.034 0.048 0.038

(0.007) (0.016) (0.008)
σ2
ε 0.128 0.125 0.111

(0.011) (0.018) (0.011)

Notes: Standard errors computed by block bootstrap with 250 repetitions. Reported parameter estimates
for σ2

η and σ2

ε are averages over 1967 to 1996. Estimation allows for time effect in both these variances.
Standard errors are bootstrap standard errors of the averages. See Appendix B for details.

The model is estimated in two stages. In the first stage we use OLS to estimate the

age profile, κ̂j, and the year effects, φ̂t. Residuals from the first stage are then used to

obtain GMM estimates of the remaining parameters, where the moments included are the

elements of the auto-covariance function for each age/year combination. Full details of

the estimation procedure can be found in Appendix B. Parameter estimates are shown in

Table 1. These results are consistent with estimates from similar specifications that have

been estimated elsewhere in the literature summarized in Meghir and Pistaferri (2010).

4.2 Asset Returns

We use monthly returns on 1-month treasury bills, averaged over the calendar year, as

data for the annual risk-free rate, rft . Equity returns, ret , are annual returns on a value-

weighted portfolio of all NYSE, AMEX and NASDAQ stocks including dividends, from

1967-2004.5 Real returns on both assets are calculated by adjusting for realized inflation

using the same CPI All Urban series that was applied to the earnings data. Table 2

displays summary statistics of the log gross real return for this time period.

5All returns data come from Kenneth French and are available at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html
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Table 2: Returns summary statistics, 1967 to 2004

Mean Std Dev.

log(1 + rft ) 1.26% 2.40%
log(1 + ret ) 5.72% 17.50%

Notes: Risk-free rate is average monthly return on 1-month treasury bills, averaged over the calendar
year. Equity returns are annual returns on a NYSE/AMEX/NASDAQ value-weighted portfolio including
dividends.

4.3 Joint Dynamics of Earnings and Asset Returns

Although the PSID is an ideal data set for studying the auto-correlation structure of

individual earnings, its relatively small sample size and the fact that after 1996 it was

converted into a biannual survey means that it is less suited to studying dynamics in the

aggregate component φt of earnings. Our approach is to retain the PSID as our data source

for the idiosyncratic component of earnings but to also analyze an alternative measure of

the aggregate component of labor earnings φt estimated using Current Population Survey

(CPS) data. We estimate this component from CPS data in the same way as we do in

the PSID: we run a first stage regression of individual log earnings on a polynomial in age

and on time dummy variables. We remove the low-frequency component of our estimate

of φt by removing a linear trend.6 We denote the deviations of the estimate of φt from

trend as Yt. See Appendix A for further details.

We work with demeaned equity returns data of the form Qt = log(1 + ret ). By con-

struction, our measure of aggregate earnings has mean zero.

The joint dynamics of aggregate earnings and equity returns are assumed to follow an

unrestricted first-order vector autoregression (VAR):
(

Yt

Qt

)

= A

(

Yt−1

Qt−1

)

+ ut

E [utu
′
t] = Σ

6We have also examined the sensitivity of our estimates to using a Hodrick-Prescott filter to remove
the low-frequency components and obtain very similar results. We choose to focus on the linear trend
for the sake of transparency. An alternative approach would have been to work with growth rates rather
than levels of the relevant series.
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Table 3: Parameter estimates for VAR

PSID: ALL PSID: HS PSID: COL CPS: ALL CPS: HS CPS: COL
A

Yt: Yt−1 0.864** 0.971** 0.843** 0.959** 1.006** 0.931**
Qt−1 0.101** 0.122** 0.101* 0.076** 0.081** 0.078**

Qt: Yt−1 -1.408* -2.053** -1.051* -1.436** -1.389** -1.146*
Qt−1 -0.193 -0.244 -0.165 -0.107 -0.099 -0.078

Σ

ΣY Y (×10−3) 0.751 0.492 1.270 0.552 0.516 0.763
ΣQQ(×10−0) 0.024 0.020 0.024 0.025 0.025 0.026
ΣY Q(×10−3) -0.804 0.192 -0.887 0.186 0.405 0.061

Notes: (**) significant at 1% level. (*) significant at 5% level. PSID data are from 1967-1996, CPS data
are from 1967-2004

Parameter estimates from this VAR are reported in Table 3 and the implied steady-

state dynamics are reported in Table 4. The stochastic properties of the VAR in Table

4 are for the most part similar across the two definitions of aggregate earnings. The

parameter estimates for all cases reveal a high degree of persistence in aggregate earnings,

although the autocorrelation of the aggregate component of earnings in CPS data is

slightly higher than that in PSID data (around 0.87 vs 0.75). In all specifications we also

find a moderate negative contemporaneous correlation (around−0.35) between one-period

equity returns and aggregate labor income.

5 Bounds on Values and Returns

5.1 Volatilty Bound on Stochastic Discount Factor

To compute value bounds we need to set the parameter b2 governing the upper bound on

the second moment of an agent’s stochastic discount factor. A simple rearrangement of the

Euler Equation produces the well-known restriction below on the coefficient of variation
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Table 4: Implied steady-sate statistics from VAR

PSID CPS
ALL HS COL ALL HS COL

sd (Yt): Data 0.050 0.062 0.046 0.054 0.060 0.057
Model 0.045 0.046 0.058 0.054 0.065 0.059

sd (Rt): Data 0.167 0.167 0.167 0.175 0.175 0.175
Model 0.166 0.167 0.167 0.174 0.179 0.173

corr (Yt, Rt): Data -0.364 -0.325 -0.394 -0.370 -0.344 -0.343
Model -0.390 -0.427 -0.359 -0.359 -0.411 -0.323

corr (Yt, Yt−1): Data 0.754 0.756 0.774 0.869 0.858 0.889
Model 0.719 0.783 0.738 0.871 0.916 0.857

corr (Rt, Rt−1): Data -0.089 -0.089 -0.089 0.061 0.061 0.061
Model -0.043 0.000 -0.034 0.054 0.110 0.048

corr (Yt, Rt−1): Data -0.030 -0.065 0.019 -0.117 -0.102 -0.105
Model 0.033 0.023 -0.012 -0.100 -0.192 -0.072

corr (Rt, Yt−1): Data -0.179 -0.163 -0.371 -0.403 -0.365 -0.411
Model -0.310 -0.466 -0.305 -0.408 -0.467 -0.365

Notes: Table shows average moments in the data, together with implied steady-state statistics from
the corresponding estimated vector auto-regression. PSID data are from 1967-1996, CPS data are from
1967-2004
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of one period stochastic discount factors. This restriction states that the coefficient of

variation is at least as large as the conditional Sharpe ratio, where Rx
j+1 is the excess

return on equity.

σj

(

m∗
j,j+1

)

Ej

[

m∗
j,j+1

] ≥

∣

∣

∣Ej

[

Rx
j+1

]∣

∣

∣

σj

(

Rx
j+1

) (1)

We choose values of the parameter b2 so that the coefficient of variation of the stochas-

tic discount factor is no larger than a given multiple (α) of the conditional Sharpe ratio.

Because our assumed stochastic process for aggregate labor earnings and equity returns

features variation in the conditional mean of returns, but not the conditional variance,

the conditional Sharpe ratio will vary across realizations of earnings and returns. Since

we impose bounds that are constant multiples of the conditional Sharpe ratio, this implies

that the raw bound (b2 in the terminology of Section 2) varies across the state space. The

set of values for this multiple that we consider is α ∈ {1.1, 1.5, 2.0, 4.0}. Thus, we explore

a tight upper bound that allows only slightly more variation than is needed to satisfy the

Euler equations for equity and debt (α = 1.1) as well as those that allow substantially

more variation (α = 4). A tight upper bound means that there is only a little room for the

stochastic discount factor to move with or against the orthogonal component of earnings.

5.2 Properties of Value Bounds

To calculate bounds on human capital values, we use recursive methods to solve for the

upper and lower bounds at each age at each point in the state space for earnings and

returns.7 We take as given that earnings and returns follow the statistical model esti-

mated in section 4. We then simulate a large number of realizations of the idiosyncratic

earnings shocks, attaching to each simulated agent his own simulated path for the aggre-

gate component of earnings and the return on the risky asset. We report the mean of

the upper and lower bounds at each age. All bounds are reported with a value for the

individual-specific fixed effect equal to zero (i.e. fi = 0). Bounds for other values for

the fixed effect can be obtained by scaling the upper and lower bounds proportionately

7See Appendix C for computational details.
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using exp(fi). All of the results we report are based on the CPS estimates from Table

3 for the aggregates (returns and aggregate earnings) and the Table 1 estimates for the

idiosyncratic component of earnings.

Figure 2 reports the upper and lower bounds for the High School and College sub-

samples and for the combined sample. Along with the bounds, we plot the expected

discounted value for earnings. This is a natural benchmark with which to compare the

size of the bounds. It reflects the value that one would attach to an individual’s labor

earnings if they were discounted at the risk-free rate.

We find that value bounds are wide. Even with our most restrictive bound on the

volatility of the stochastic discount factor, the gap between the upper and lower value

bound at young ages is far larger than the difference in the expected discounted value of

earnings across education groups. This implies that the restrictions, highlighted in section

2, coming from asset returns and earnings alone only loosely pin down the value of human

capital. This holds both in the full sample and for both education groups.

Note, however, that the width of the value bounds, and their dependence on the level

of α, stem strongly from the upper bound. Large values for the upper bound are attained

by stochastic discount factors that have a strong positive covariation with earnings. In

Section 3.4 we discuss that in certain cases theory allows one to impose additional re-

strictions that rule out positive covariation of various types. We now impose that the

component of earnings which is orthogonal to asset returns does not covary positively

with the stochastic discount factor. This is a stonger condition than was formally justi-

fied. Recall that Claim 2 from section 3 ruled out positive covariation for only the purely

temporary component of earnings variation.

Figure 2(d) shows that imposing this additional constraint substantially tightens the

upper bound for values. For example, the average reduction in the upper bound for the full

sample with α = 2.0 is a factor of 1.6. The additional constraint on the set of stochastic

discount factors does not alter any of the lower bounds.
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5.3 Properties of Return Bounds

We construct upper and lower bounds on returns. Returns bounds are calculated by sim-

ulating a large number of paths for the upper and lower bounds on values, and calculating

the bounds on returns that are implied by each of these paths based on Theorem 1. We

report the means of these lifetime return bounds in Table 5 and note that (i) they are

wide and (ii) in no case is the lower bound positive. These findings further stress the

results from the bounds on values: even with tight restrictions on the volatility of the

stochastic discount factor, equity returns and the risk-free rate do not imply tight bounds

for the return on human capital.

It is also possible to construct a life-cycle profile for return bounds. After any sequence

of shock realizations up to age j, one can define a lifetime return after that age and history

as the geometric average of future returns to human capital. We construct bounds for

these returns and plot the mean return bound at each age in Figure 3. The bounds tend

to fan out with age. Thus, examining returns over a shorter interval of the remaining

lifetime does not result in tighter bounds than those in Table 5. This holds for the full

sample and for both education levels. We note that the lower bound on the return at the

end of the working lifetime (age 55) in Figure 3(d) is positive. This is consistent with

the general spirit of Claim 1 from section 3. Claim 1 says that the orthogonal component

of earnings in the last period, given returns, cannot covary positively with the agent’s

discount factor and thus this component of earnings can only serve to lower the value of

an individual’s human capital in the second to last period of the working lifetime.

6 What Type of Earnings Risk Matters for Bounds?

In this section we assess which factors are important for the width of the bounds reported

in Section 5. We first show that idiosyncratic risk, rather than aggregate risk, accounts

for almost all of the width of the bounds. We then argue that early in life, persistent

shocks account for most of the gap between the upper and lower bound, while closer to

retirement, transitory shocks are more important.

Figure 4 displays value bounds for the combined sample from a version of the model
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Table 5: Bounds on expected lifetime returns (%)

High School College Full Sample

Bound Lower Upper Lower Upper Lower Lower* Upper
(α)
1.1 −12.4 23.6 −11.2 17.5 −10.3 −5.1 17.0
1.5 −13.7 29.7 −12.5 20.6 −11.6 −6.1 19.4
2.0 −14.8 36.1 −13.7 23.7 −12.7 −6.9 21.8
4.0 −16.8 55.5 −15.9 32.0 −14.9 −9.1 27.3

Notes: ‘Lower*’ refers to bounds calculated by imposing the additional restriction that the covariance
between the orthogonal component of earnings and the stochastic discount factor is non-positive.

without aggregate earnings shocks (4(a)) and without idiosyncratic shocks (4(b)). To

calculate bounds in the absence of aggregate shocks, we construct an AR(1) process

for equity returns that has unconditional moments that are the same as the marginal

moments for equity returns from the estimated VAR. Removing aggregate shocks narrows

the bounds by roughly a factor of 2, but the bounds are still wide.

In contrast, when the only source of earnings risk is aggregate shocks (i.e. idiosyncratic

risk is completely removed) the value of human capital is almost uniquely determined.

Bounds are not degenerate: they are just so narrow that when plotted on the same scale

as the original bounds they appear to be a single line. The value bounds for this case

imply that lifetime expected net returns must lie between 0.25% and 2.50%.8

We conclude that with an empirically plausible joint stochastic process for aggregate

earnings and equity returns, it is precisely idiosyncratic risk that makes it difficult to pin

down the value and return to human capital using data on asset returns and earnings

alone. Absent idiosyncratic risk, the weak restrictions we impose on stochastic discount

factors, that are used in finance, would usefully pin down human capital values and

returns.

Next, we investigate which type of idiosyncratic earnings risk is responsible for the

8Repeating this exercise, we find lifetime expected return bounds of (.10, 2.6) for the College sample
and (.23, 2.6) for the High School sample.
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width of bounds. Figure 5 displays value bounds when we retain only persistent earnings

shocks (5(a)) and only transitory earnings shocks (5(b)). Overall, both types of risk appear

to contribute to wide bounds. However, there are important differences over the life cycle.

For young agents, there are many remaining years to feel the effects of persistent shocks,

so these contribute a great deal to the width of bounds. For older agents, persistent

shocks are less important, because there are fewer years to realize their effects.

7 Final Remarks

We have constructed bounds on the value of human capital and then used these bounds to

construct bounds on the lifetime return to human capital. The bounds are derived from

knowledge of the set of traded assets, the joint stochastic process for individual earnings

and asset returns, as well as three assumptions about an individual’s stochastic discount

factors: they are (i) non-negative, (ii) satisfy an Euler equation for each asset and (iii)

have a second moment no larger than some pre-specified upper bound.

Using U.S. data, we find that value and return bounds are quite wide. Even allowing

for only slightly more variation in the stochastic discount factor than is needed to price

equity and debt, we find that earnings and asset returns data can only restrict the mean

lifetime return on human capital to lie between -5 percent and 17 percent per year. The

vast majority of the gap is due to the idiosyncratic component of earnings risk. Absent

the idiosyncratic component of earnings risk, the average lifetime return on human capital

is between 0.25 and 2.5 percent per year - not far from the average risk-free rate. One of

the main messages of these findings is that to learn something sharper about the return

to an individual’s human capital will require a structural approach. Huggett and Kaplan

(2010) take up this challenge and use a fully specified structural model with idiosyncratic

and aggregate sources of earnings risk to measure the value and return to human capital.

We highlight two challenges to the empirical findings of this paper that might be

taken up in future work. First, the statistical model of earnings analyzed in section 4 may

overstate the magnitude of persistent idiosyncratic earnings shocks. Huggett, Ventura

and Yaron (2007) argue that learning ability differences across individuals can account
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for much of the large rise in the variance of log earnings observed over the working lifetime.

Thus, the role of persistent shocks may be substantially smaller than what we infer in

Table 1. Second, we have assumed that the aggregate component of male earnings has

a deterministic trend. Future work can investigate the possibility of stochastic trends or

cointegration between the aggregate component of earnings and equity returns. These

possibilities may give the aggregate component of earnings a larger role in producing

higher mean returns to human capital.
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A Data and Sample Selection

We use the core PSID sample from waves 1968 to 1997, which refer to earnings in years 1967
to 1996. After 1997 the PSID became a bi-annual survey, hence we exclude the more recent
waves. We restrict attention to male heads of household between the ages of 25 and 55 with
annual labor income of at least $1000 in 2008 dollars. Our measure of annual labor income
includes pre-tax wages and salaries from all jobs, plus commission, tips, bonuses and overtime,
as well as the labor part of income from self-employment. Our final sample contains 54, 589
observations on 5, 130 individuals. The median number of annual observations per individual
is 9. We construct three education samples: one comprising all males (ALL), one comprising
males with 12 or fewer years of education (HS) and one comprising males with more than 12
years of education (COL). Our CPS data comes from the IPUMS database of March Outgoing
Rotation Groups. We use data on earnings from 1967 to 2004. The aggregate components
of labor earnings for each subsample are measured as the coefficients on year dummies in a
regression that is analogous to the one described below.

B Estimation of Idiosyncratic Earnings Model

Estimation is done in two stages. In the first stage we estimate φt and κj by regressing log real
annual earnings on a quartic polynomial in age and a full set of year dummies. This is done sep-
arately for the three education samples. Residuals from the first-stage regression are then used

to estimate the remaining parameters of the individual earnings equation,
(

ρ, σ2
f , {σ

2
η,t}, {σ

2
ε,t}
)

.

The auto-covariance function for residual log-earnings is calculated for up to 10 lags for every
age/year combination. For this purpose, individuals are grouped into 5-year age cells so that
when calculating covariances at age j, individuals aged j ∈ [j − 2, j + 2] are used. Only cells
with at least 30 observations are retained. A GMM estimator is then used to estimate the
parameters, where the moments included are the elements of the auto-covariance function. The
moments are weighted by n0.5

j,t,l where nj,t,l is the number of observations used to calculate the
covariance at lag l in year t for age j. Since the permanent shock and the transitory shock are
not separately identified in the last period, we assume that σ2

η,T = σ2
η,T−1. Individuals aged 25

to 55 are used to construct the empirical auto-covariance functions. This means that variances
and covariance from ages 27 to 53 are effectively used in the estimation. Standard errors are
calculated by bootstrap with 250 repetitions, thus accounting for estimation error induced by
the first-stage estimation.

C Computational Details

Bounds are calculated using backwards recursion, starting from a value of zero in retirement.
We discretize the state space using 5 points for the return on the risky asset, 5 points for
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the aggregate component of earnings, 5 points for the persistent idiosyncratic component and
5 points for the transitory component. Bounds are calculated for a value of the fixed effect
equal to zero. Note that bounds for other values of the fixed effect are just multiples of these
bounds. With a discrete state space for earnings and asset returns the calculation of bounds
can be recast as a linear optimization problem in the state-specific values of the stochastic
discount factor, subject to linear constraints (the Euler equations), non-negativity constraints
and a single quadratic constraint (the volatility bound on the SDF). We use a semi-definite
progamming algortithm (SeDuMi 1.21 implemented in Matlab) to perform this optimization.

Specifically, we solve the following finite horizon dynamic programming problem, where x̃j is
the vector of state variables that is relevant for forecasting future earnings and asset returns, εj
is the transitory component of earnings and xj = (x̃j , εj). Note that x̃j has three components:
two from the VAR and one from the persistent idiosyncratic shock. We use mj to denote one-
period stochastic discount factors, ej to denote earnings, Re

j to denote the return on equities

and Rf to denote the risk-free rate. To calculate upper bounds on values we solve

vuj (x̃j) = max
{mj+1(xj+1)}

∑

xj+1

mj+1 (xj+1)
[

ej+1 (xj+1) + vuj+1 (x̃j+1)
]

Pr (xj+1 | x̃j)

subject to:

mj+1 (xj+1) ≥ 0 ∀ xj+1
∑

xj+1

mj+1 (xj+1)R
e
j+1 (xj+1) Pr (xj+1 | x̃j) = 1

R
f
j+1

∑

xj+1

mj+1 (xj+1) Pr (xj+1 | x̃j) = 1

∑

xj+1

mj+1 (xj+1)
2 Pr (xj+1 | x̃j) ≤ b2

Lower bounds are calculated by replacing the max operator with a min operator. We impose
the constraint that the covariance between the stochastic discount factor and the orthogonal
component of earnings is non-positive by adding the following constraint

∑

xj+1

mj+1 (xj+1) ẽj+1 (xj+1) Pr (xj+1 | x̃j) ≤
1

Rf

∑

xj+1

ẽj+1 (xj+1) Pr (xj+1 | x̃j)

where ẽj is the residual from a projection of ej on
(

Rf , Re
j

)

.

D Proof of Theorem 1

(i) We focus on proving the upper bound result as the lower bound result follows by a parallel
argument. The inequality below provides an upper bound to Rlife(m),∀m ∈ M , given ω̄ ∈ Ω.
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In stating the inequality, we note that (Rlife(m), vj(m), vlj , ej) are all random variables. We hide
this depedence on the realization ω̄ ∈ Ω for notational simplicity.

Rlife(m) = [
eJ

v1(m)

J−1
∏

j=2

(1 +
ej

vj(m)
)]

1

J−1 ≤ [
eJ

vl1

J−1
∏

j=2

(1 +
ej

vlj
)]

1

J−1

This candidate upper bound is the least upper bound if ∀ǫ > 0,∃m ∈ M such that condition

vj(m)− vlj < ǫ,∀j holds, given ω̄ ∈ Ω. This follows as [ eJ
v1(m)

∏J−1
j=2 (1 +

ej
vj(m))]

1

J−1 is continuous

in these strictly positive realized values.
We now construct an m ∈ M with this property. Given any ǫ > 0, suppose we have an

m1 ∈ M such that vj(m
1)− vlj < ǫ for all j ≤ k, given ω̄ ∈ Ω. This clearly holds for k = 1. By

the definition of the infimum, ∃m2 ∈ M such that vk+1(m
2) − vlk+1 < ǫ, given ω̄ ∈ Ω. Define

m3, as indicated below, so that vj(m
3) − vlj < ǫ for all j ≤ k + 1. Clearly, m3 ∈ M as it is

constructed from m1,m2 ∈ M . Repeating this construction to apply for all ages, establishes
that the relevant property holds.

m3
j,j+1(ω) =

{

m2
j,j+1(ω) : ∀j ≥ k + 1,∀ω ∈ Fk+1 if vk+1(m

2)(ω̄) < vk+1(m
1)(ω̄)

m1
j,j+1(ω) : all other cases

Fk ≡ {ω ∈ Ω : ∀j ≤ k, ej(ω) = ej(ω̄) and Ri
j(ω) = Ri

j(ω̄),∀i ∈ I}

(ii) Since m∗ ∈ M , Rlife(m
∗) ∈ [Rl

life, R
u
life]. ⋄
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(a) Value Bounds
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Figure 1: Bounds on values and return for model in Section 3, by standard deviation of
earnings shocks (σ)
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(a) High School
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(b) College
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(c) Full Sample
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(d) Full Sample (with additional constraint)

Figure 2: Bounds on human capital values

Notes: All plots show upper and lower bounds for the value of human capital as a function of age.
Units are 2008 dollars. Bounds are reported for multiples of the conditional Sharpe ratio in the set
{1.1, 1.5, 2, 4}. The thin black line is the expected present value of earnings discounted at the risk-free
rate. See text for further details.
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(a) High School
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(b) College
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(c) Full Sample
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(d) Full Sample (with additional constraint)

Figure 3: Bounds on human capital returns

Notes: All plots show upper and lower bounds for the gross expected lifetime return to human capital as a
function of age. Bounds are reported for multiples of the conditional Sharpe ratio in the set {1.1, 1.5, 2, 4}.
See text for further details.
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(a) Only Idiosyncratic Shocks: Values
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(b) Only Aggregate Shocks: Values
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(c) Only Idiosyncratic Shocks: Returns
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(d) Only Aggregate Shocks: Returns

Figure 4: Human Capital Values and Returns: Aggregate vs Idiosyncratic Shocks

Notes: Plots (a) and (b) show upper and lower bounds for the value of human capital as a function of
age. Units are 2008 dollars. Plots (c) and (d) show upper and lower bounds for the gross expected lifetime
return to human capital as a function of age. Bounds are reported for multiples of the conditional Sharpe
ratio in the set {1.1, 1.5, 2, 4}. The thin black line is the expected present value of earnings discounted
at the risk-free rate. See text for further details.
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(a) Only Persistent Shocks
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(b) Only Transitory Shocks

Figure 5: Persistent vs transitory idiosyncratic risk
Notes: Plots show upper and lower bounds for the value of human capital as a function of
age. Units are 2008 dollars. Bounds are reported for multiples of the conditional Sharpe
ratio in the set {1.1, 1.5, 2, 4}. The thin black line is the expected present value of earnings
discounted at the risk-free rate. See text for further details.
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