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1 Introduction

When output is high, U.S. firms as a whole issue more debt, invest more, and pay more to sharehold-

ers. Debt issued and equity payouts are both positively correlated with investment and positively

correlated with each other. These findings suggest that firms use debt financing both to invest in

their operations and to increase payments to shareholders. While borrowing to finance investment

is well understood, borrowing to pay shareholders is more puzzling. Why would firms systematically

transfer resources from bondholders to shareholders over the business cycle?

The workhorse model for analyzing business cycle correlations among macroeconomic variables

is the real business cycle (RBC) model. However, traditional RBC models abstract from firm financ-

ing decisions. In the standard setup, a representative consumer-firm has access to a neoclassical

production function and makes optimal consumption-investment decisions given a known stochastic

process for productivity.1 An implicit assumption is that firms can costlessly reallocate resources

in order to maximize the consumer’s lifetime expected utility. A consequence of this approach is

that conventional RBC models have little to say about financial behavior over the business cycle.

In reality, of course, firms have an array of options for financing their activities. In particular,

firms can raise capital by borrowing at a fixed interest rate, by issuing equities, or by using internal

funds. The classic paper by Modigliani and Miller (1958) showed that if capital markets are

frictionless, firms should be indifferent regarding their capital structure. However, a common view

in the corporate finance literature is that firms pursue a financial mix that balances the costs

and benefits of different forms of finance (Leary and Roberts (2005)). According to this “tradeoff

theory” of capital structure, financial frictions such as interest tax deductions and bankruptcy costs

pin down a firm’s optimal debt-equity ratio (see, for example, Scott (1976) and Miller (1977)). In a

wide-ranging survey of CFOs conducted by Graham and Harvey (2001), most respondents reported

that they have at least a loose target for their firms’ debt-equity ratio. Many of the participants

stated that interest tax deductions and credit ratings influence decisions about how much debt to

issue.

In this paper I add a corporate finance decision to a standard RBC model. Firms decide how

much debt to issue and how much to pay shareholders by weighing the costs and benefits of debt

and equity financing. My goal is to explain some stylized facts about aggregate debt and equity

flows in U.S. data. First, aggregate corporate borrowing and payouts to shareholders are almost

always positive throughout the postwar period (1952 – 2007). Second, debt issuance and net equity

payouts are (i) positively correlated with output, (ii) positively correlated with investment, and

(iii) positively correlated with each other. Third, real variables have become less volatile in recent

years, while financial variables have become more volatile.

The key feature of the model is a set of parameterized financial frictions. On the debt side,

interest payments are tax deductible. This makes debt financing preferred to equity financing for
1For an example of a “standard” RBC model, see Hansen (1997).
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low levels of debt. However, I also require bondholders to pay a monitoring cost that is increasing in

the firm’s debt-to-capital ratio. The tradeoff between the debt tax shield and the monitoring costs

determines the firm’s optimal level of debt. On the equity side, I assume that it is costly for firms

to adjust their payouts to shareholders. This assumption is consistent with evidence that firms

tend to smooth dividends over time. It also captures, in a stylized way, the legal and accounting

costs associated with issuing and repurchasing equity shares.

I calibrate the model to U.S. data for the postwar period 1952 – 2007. In contrast with a

standard RBC model, my model predicts positive borrowing at all points in the business cycle. The

model correctly implies that debt issuance and equity payouts are procyclical, positively correlated

with investment, and positively correlated with each other. Finally, I calibrate the model to two

separate time periods, 1952 – 1983 and 1984 – 2007, in order to explain the stylized facts described

by Jermann and Quadrini (2007): namely, that real variables have become less volatile in the second

subperiod, while financial variables have become more volatile. By varying both the scale of the

technology shocks and the degree of financial frictions, the model can match both facts.

I interpret these results as evidence that the types of frictions modeled – tax incentives, debt

monitoring costs, and equity adjustment costs – can help explain the degree to which firms use debt

financing to increase payments to shareholders. The results also provide support for a “dynamic

tradeoff theory” of capital structure: firms target an optimal debt-equity ratio, but the target

evolves over time as economic conditions change.

This paper contributes to a growing literature on capital structure over the business cycle. The

debt friction can be viewed as a reduced form of the debt enforcement problem in Bernanke et al.

(1999). Relative to their model, my model allows for equity issuance. Covas and den Haan (2006),

Levy and Hennessy (2007) and Jermann and Quadrini (2007) all present models of debt and equity

financing over the business cycle. Covas and den Haan have a partial equilibrium model of debt

and equity finance where the interest rate process is exogenous. In contrast, the risk-free rate in

my model is determined endogenously in general equilibrium. Levy and Hennessy (2007) consider

a general equilibrium problem where managers can finance investment with debt or equity but are

allowed to divert resources from both bondholders and shareholders. I differ by assuming that

the firm’s objective is aligned with that of shareholders. In my model, the equity friction reflects

adjustment costs rather than an explicit agency problem.

My model is most closely related to Jermann and Quadrini (2007). They present a model of

debt and equity finance and use it to explain the reduced volatility of macroeconomic variables

and increased volatility of financial variables over the past two decades. My paper differs in three

main ways. First, the key shock in Jermann and Quadrini’s main analysis is an asset price shock,

whereas I consider a standard technology shock. Second, Jermann and Quadrini’s debt friction

takes the form of an endogenous “debt ceiling”, above which firms cannot borrow at any price. In

practice, however, firms do not face a strict ceiling on debt; rather, the cost of debt may increase if

firms borrow excessively. I attempt to capture this phenomenon through monitoring costs. Third,
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while Jermann and Quadrini also consider a convex cost for equity payouts, their cost function

is increasing in the deviation of today’s equity payout from its long-term target. In contrast, my

cost function is an adjustment cost: it is increasing in the deviation of today’s equity payout from

yesterday’s payout. I argue that this more naturally captures the legal and financial costs that I

am trying to model.

The rest of the paper is structured as follows. Section 2 documents some stylized facts about

debt and equity flows. Section 3 explains the financial frictions that I attempt to model. Section 4

presents the model. Section 5 discusses calibration and presents the results. Section 6 concludes.

2 Debt and Equity Flows in the U.S.

In this section I discuss the empirical features of debt and equity flows that I would like my model

to capture. Figure 1 plots aggregate debt issued, equity payouts, and real fixed investment in the

U.S. nonfarm sector, measured in billions of 2000 dollars. Data are quarterly flows from the Federal

Reserve’s Flow of Funds and the BEA’s NIPA accounts (for fixed investment) for the period 1952:1

– 2007:4. I convert nominal flows to real flows using the BEA price index for value-added in the

nonfarm sector. “Debt Issued” is the net increase in credit market liabilities over the quarter. A

negative number reflects a net repayment of debt by businesses. “Equity Payout” equals dividends

plus net repurchases of equity shares in the corporate sector, less proprietors’ net investment in

the noncorporate sector. The idea is to capture net flows to shareholders as a group, including

small business owners. I view dividends and equity issues as two sides of the same coin: a firm

that wishes to “raise capital” through equity may do so by lowering its dividend, by offering new

shares, or both. Equivalently, a firm that wishes to “reward shareholders” may do so by increasing

its dividend, by repurchasing shares, or both. The analysis reflect this presumed equivalence of

dividends and share repurchases.2

A number of facts emerge from Figure 1. First, debt issued and net equity payouts are almost

always positive over the postwar period. In aggregate, the U.S. business sector rarely issues equity or

repurchases debt. Positive borrowing, in particular, suggests that some degree of leverage is optimal

for firms. A second regularity is that debt issued and equity payouts are positively correlated. This

close co-movement is especially striking beginning in the late 1980s. This suggests that net debt

issuance and equity issuance are substitutes for firms.3 Third, both debt issued and equity payouts

are positively correlated with investment. Finally, debt issued and equity payouts are considerably

more volatile in the second half of the period.

Table 1 computes business cycle correlations for equity payouts, debt issued, real GDP and

real fixed investment. I have detrended all variables with a Hodrick-Prescott filter. Debt issued

and equity paid are both positively correlated with GDP (“procyclical”), positively correlated with
2Jermann and Quadrini (2007) also consider net equity payouts, measured in a similar way.
3Contrast this with Covas and den Haan (2006), who find that debt and gross equity issuance are complements.

Covas and den Haan do not subtract share repurchases from equity issuance.

4



investment, and positively correlated with each other. These findings suggest that firms borrow

more heavily during booms. Firms apparently use the proceeds from borrowing both to invest and

to finance higher payments to shareholders.

Table 2 presents business cycle volatilities for the two subperiods 1952 – 1983 and 1984 – 2007.

Debt issued and equity payouts (as shares of GDP) have become more volatile.4 In contrast, real

GDP and real investment have become less volatile, a well-documented phenomenon known as

business cycle moderation.

I summarize the stylized facts from this section as follows. First, aggregate debt issued and

equity payments to shareholders are almost always positive over the business cycle. Second, debt

issued and equity payouts are (i) positively correlated with output, (ii) positively correlated with

investment, and (iii) positively correlated with each other. Third, debt issued and equity payouts

have become more volatile starting in 1984, while real variables have become less volatile.

The next section describes and motivates the financial frictions that I model. Section 4 presents

the full model.

3 Financial Frictions

Conceptually, firms can finance their activities with debt, equity, or internal funds. In the model,

debt financing takes place through one-period corporate bonds. Corporate bonds are issued by

firms and pay a “quoted” interest rate rt, but they require costly monitoring to ensure repayment.

Consumers are the investors are in this model, so they pay the monitoring costs. Monitoring costs

for a firm’s debt are assumed to be a linear function of the firm’s debt-to-capital ratio Lt, which

consumers take as given. The price of a corporate bond to consumers is given by:

PB,Ct =
1

1 + rt
+ µLt (1)

µ is an exogenous parameter that controls the scale of the debt friction. Monitoring costs can

be motivated as follows. Each period a firm could, in principle, default on its debt and enter a state

of bankruptcy. Default is more likely the larger the amount borrowed relative to the firm’s capital

stock, which serves as collateral. Assume that bankruptcy is a distress state with unavoidable

deadweight losses. In this setting, monitoring costs can be interpreted as a safety buffer against

potential bankruptcy costs. Despite this motivation, I do not explicitly model bankruptcy. In

particular, there is no default in equilibrium: investors always pay the monitoring costs, and the

firm always repays its debt.5

4I scale equity payouts and debt issued by nominal GDP (value-added in the nonfarm sector) when computing
volatilities. The increase in volatility is even more dramatic when these variables are not scaled by GDP. Measured
in billions of chained 2000 dollars, the volatility of equity payouts increased by a factor of 3.78 and the volatility of
debt issued increased by a factor of 2.48.

5A deeper foundation for monitoring costs would require explicitly modeling the bankruptcy-inducing event. A

5



An alternative interpretation of the debt friction is that it reflects a rating effect. There is

ample evidence that firms are concerned about credit ratings when deciding how much debt to

issue; see Graham and Harvey (2001) and Kisgen (2006). One of the metrics that rating agencies

use to evaluate creditworthiness is a firm’s debt-to-capital ratio. Figure 2 shows the median debt-

to-capital ratio for firms with different credit ratings. Firms with higher debt-to-capital ratios tend

to have lower ratings.6 It is also well known that lower-rated corporate bonds have greater yields

than higher-rated bonds. Therefore, it is more costly for firms with low credit ratings to issue

corporate debt. The monitoring cost in (1) can thus be interpreted as reflecting the effect of higher

debt levels on the cost of debt via a lower credit rating.

Interest paid on corporate debt in the U.S. is tax-deductible to the firm, a concept known as

the “debt tax shield”. The price that a firm receives for issuing a one-period corporate bond is

therefore given by:

PB,Ft =
1

1 + (1− τ)rt
(2)

τ is the marginal corporate tax rate. Note that the effective cost of debt to the firm is (1− τ)rt.

Note that in general, PB,Ct need not equal PB,Ft . For example, in the model, the tax deduction

enjoyed by firms is paid for by a lump-sum tax on consumers. This creates a wedge between the

proceeds a firm receives from issuing a bond and the price that consumers pay for a bond. Since the

firm perceives that it can issue bonds at a favorable price, it will want to issue a positive amount

of debt. However, the price of corporate debt to consumers rises with the amount issued because

of the monitoring costs described above. As the price of debt increases, consumer demand for

corporate bonds declines. The tradeoff between the tax advantage and monitoring costs will pin

down the equilibrium level of debt and the “quoted” rate rt in equilibrium.

On the equity side, I assume that it is costly for firms to adjust their payouts to shareholders.

Conceptually, the equity payout in the model reflects net flows to shareholders: dividends plus

repurchases of shares, net of new issues. I impose the following quadratic cost function for a firm

that wishes to pay Dt at time t, given last period’s payout, Dt−1, and the capital stock carried over

from last period, Kt−1:

standard approach uses an idiosyncratic shock and a debt contract. The debt contract specifies an interest rate and
a cutoff value for the shock above which the firm always repays. Examples include Bernanke et al. (1999) and Covas
and den Haan (2006). I take a simplified approach to the debt friction in order to avoid the heterogeneity arising from
idiosyncratic shocks. Since my focus is on aggregate fluctuations over the business cycle, little explanatory power is
lost by making this simplification.

6Here, “capital” refers to a firm’s outstanding debt plus its outstanding equity, which together equal the firm’s
assets. In the model, a firm’s only asset is its capital stock. Therefore, I treat the “debt-to-capital ratio” in the model
as the ratio of a firm’s outstanding debt to its capital stock.
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c(Dt, Dt−1,Kt−1) = Dt + φKt−1

(
Dt

Dt−1
− 1
)2

, φ > 0 (3)

Note that the adjustment cost is increasing in the percentage change of today’s payout from

yesterday’s payout. The parameter φ controls the scale of the adjustment cost. The convex func-

tional form given here is consistent with evidence that firms tend to smooth dividends over time, an

observation first made by Lintner (1956). It also consistent with evidence regarding the legal and

accounting costs associated with issuing and repurchasing equity shares. For example, Hansen and

Torregrosa (1992) and Atlinkilic and Hansen (2000) show that underwriting fees exhibit increasing

marginal cost in the size of the equity offering. I note that the adjustment cost here differs from

Jermann and Quadrini (2007) in an important way. My cost function is the deviation of today’s

equity payout from yesterday’s payout, rather than the deviation of today’s equity payout from its

long-term target. In a model with persistent productivity shocks, the firm’s optimal long-term

target may be very different from its optimal short-term payout. For example, in a model that

fluctuates around a steady-state, the optimal current payout to shareholders is typically larger than

the steady-state payout whenever productivity is above its steady-state level. It is not clear why

it should be expensive to be away from the long-term target if the current payout is optimal for

shareholders. The cost function in (3) is a true adjustment cost: it is increasing in the percentage

deviation of today’s payout from yesterday’s payout. Arguably, this specification more naturally

describes the legal and accounting costs that I am trying to model.

Finally, a firm can of course finance its investment through the use of internal funds. In the

model, “internal funds” consist of a firm’s current output plus its undepreciated capital stock. I do

not model capital adjustment costs, so it is costless for a firm to use its internal funds to increase

or decrease its capital stock.

The financial frictions serve two roles in the model. First, they determine the firm’s optimal

(positive) level of debt even in the absence of stochastic shocks. Second, they affect the way in

which the firm reacts to shocks. In response to a positive, persistent productivity shock, the firm

would like to both increase investment (to take advantage of higher expected productivity) and

pay more to shareholders (to pass on the unexpected increase in lifetime profitability). If debt is

available and the cost of changing the equity payout is low, the firm accomplishes this by borrowing

heavily to boost its capital stock and increase payments to shareholders. On the other hand, if the

cost of adjusting equity is high, the firm seeks to avoid large swings in its payout. As a result, the

firm increases payouts only gradually, and its borrowing is both lower in magnitude and delayed in

time.
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4 The Model

The model economy consists of a continuum of identical consumers and a continuum of identical,

perfectly competitive firms. First I specify the consumer’s problem and the firm’s problem. I then

define an equilibrium and briefly discuss the solution procedure.

4.1 Consumer’s problem

A representative consumer can hold one-period risk-free bonds, B̃t, one-period corporate bonds,

Bt, and shares of firms, St. Risk-free bonds pay the net interest rate r̃t with certainty. Corporate

bonds are issued by firms and pay the “quoted” interest rate rt, but they require costly monitoring

in order to ensure repayment. Monitoring costs are assumed to be a linear function of the firm’s

debt-to-capital ratio Lt, which the consumer takes as given.

Each share pays a dividend Dt and trades in the stock market at the price Pt. Every period,

the consumer receives income from her portfolio and decides how much to consume, Ct, and how

much to reinvest in the three assets. Denote all variables chosen or realized in period t with the

subscript t. Endogenous variables that are predetermined in period t carry the subscript t − 1.

The consumer is infinitely-lived and maximizes the expected present discounted value of her utility,

Et
∑∞

j=0 β
ju(Ct+j), with 0 < β < 1. The consumer’s problem can be written recursively as follows:

W (B̃t−1, Bt−1, St−1) = max
B̃t,Bt,St

{
u(Ct) + Et

[
βW (B̃t, Bt, St)

]}
(4)

s.t. Ct +
(

1
1 + r̃t

)
B̃t + PB,Ct Bt + PtSt = B̃t−1 +Bt−1 + (Pt +Dt)St−1 − Tt (5)

µ is an exogenous parameter that controls the scale of the debt friction. A high µ implies that

monitoring costs are very sensitive to the firm’s debt-to-capital ratio. The consumer must also pay

a lump-sum tax Tt, whose role will be explained later. The consumer’s first-order conditions are as

follows:

(B̃t) :
1

1 + r̃t
= Et[Mt+1] (6)

(Bt) : PB,Ct = Et[Mt+1] (7)

(St) : Pt = Et[Mt+1(Pt+1 +Dt+1)] (8)

where Mt+1 ≡
βu′(Ct+1)
u′(Ct)

(9)

Equations (1), (6), (7) relate the corporate interest rate rt to the firm’s debt-to-capital ratio Lt
and the risk-free rate r̃t:
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1
1 + rt

=
1

1 + r̃t
− µLt (10)

I assume a standard CRRA utility function:

u(C) =
C1−η

1− η
, η > 0 (11)

4.2 Firm’s problem

A representative firm operates a neoclassical production function F (Kt−1, ZtNt) and maximizes

the expected present discounted value of its stream of net equity payments to shareholders. Kt−1

is the firm’s capital stock carried over from last period, Nt is labor input, Zt is labor-augmenting

technological progress, and Dt is the net equity payout. Labor input Nt is normalized to 1 for

all t; I abstract from fluctuations in labor supply.7 Since the firm is owned by consumers, it

discounts payments to be made at time j > t using the consumer’s stochastic discount factor,

Mt+j ≡ βu′(Ct+j)/u′(Ct). The firm attains its new capital stock Kt by issuing corporate bonds Bt
and by adjusting its net equity payout Dt. Interest paid on corporate bonds is tax-deductible, as

given by (2). Finally, the firm faces a quadratic adjustment cost when changing its equity payout,

as given by (3). The firm’s problem can be written recursively as follows:

V (Kt−1, Bt−1, Dt−1) = max
Bt,Dt,Kt

{Dt + Et [Mt+1V (Kt, Bt, Dt)]} (12)

+ λt

{
F (Kt−1, Zt) + (1− δ)Kt−1 + PB,Ft Bt −Bt−1 − c(Dt, Dt−1,Kt−1)−Kt

}
(13)

λt is the Lagrange multiplier on the firm’s budget constraint, δ is the depreciation rate of capital,

and τ is the marginal corporate tax rate. I impose the following functional form for the production

function:

F (Kt−1, Zt) = Kα
t−1Z

1−α
t , α ∈ (0, 1) (14)

The firm’s budget constraint, with functional forms imposed, is as follows:

Kt = Kα
t−1Z

1−α
t + (1− δ)Kt−1 +

Bt
1 + (1− τ)rt

−Bt−1 −Dt − φKt−1

(
Dt

Dt−1
− 1
)2

(15)

7It would be straightforward to extend the model to incorporate a labor-leisure decision along the lines of Hansen
(1997).
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In the Appendix I derive three Euler Equations for the firm – one each for bonds, dividends,

and capital. The Euler Equations are:

(Bt) :
λt

1 + (1− τ)rt
= Et [Mt+1λt+1] (16)

(Dt) : 1 + Et

[
2φMt+1λt+1

(
Kt

Dt

)(
Dt+1

Dt

)(
Dt+1

Dt
− 1
)]

=

λt

[
1 + 2φ

(
Kt−1

Dt−1

)(
Dt

Dt−1
− 1
)]

(17)

(Kt) : Et

[
Mt+1λt+1

{
α

(
Zt+1

Kt

)1−α
+ (1− δ)− φ

(
Dt+1

Dt
− 1
)2
}]

= λt (18)

Define the debt-to-capital ratio Lt, which appears in the household’s problem, as follows:

L(t) ≡ Bt
Kt−1

(19)

The debt-to-capital ratio is defined as the ratio of the firm’s outstanding debt to its capital stock,

which is the firm’s only asset. Note that consumers take the firm’s debt-to-capital ratio as given

when solving their portfolio allocation problem. This is justified theoretically by the assumption

of infinitesimally “small” consumers: each consumer perceives that her decision about how much

debt to hold does not affect the aggregate debt-to-capital ratio.

4.3 Equilibrium and solution technique

In equilibrium, the tax exemption on corporate bonds is financed by the lump-sum tax on house-

holds:

Tt =
{

τrt
[1 + (1− τ)rt](1 + rt)

}
Bt (20)

The risk-free bond B̃t is in zero net supply. On the other hand, corporate borrowing Bt will

always be strictly positive because of the tax advantage. I normalize shares St to be 1 for all t.8 In

equilibrium, the consumer’s budget constraint (5) then reduces to the following:
8Recall that conceptually, Dt represents dividends plus net repurchases of shares. However, because I normalize

St to 1 for all t, Dt equals dividends in the model, and there is technically no issuing or repurchasing activity. If
firms were allowed to change both Dt and the number of shares St, there would be an infinite set of optimal values
for (Dt, St). To avoid this indeterminacy, I fix the number of shares; but I could just as well have fixed the dividend
level and let firms choose the number of shares. In the discussion that follows, I will continue to interpret Dt as
dividends plus net repurchases of shares.
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Ct = Dt +Bt−1 −
[

1
1 + (1− τ)rt

+ µLt

]
Bt (21)

I close the model by specifying a stochastic process for log productivity zt.

zt = z1t + z2t (22)

∆z1t = (1− ρ1)g + ρ1∆z1t−1 + ε1t , |ρ1| < 1 (23)

z2t = ρ2z2t−1 + ε2t , |ρ2| < 1 (24)

E[ε1t] = E[ε2t] = 0 , V ar[ε1t] = σ2
1 , V ar[ε2t] = σ2

2 (25)

ε1t and ε2t iid over time and independent of each other (26)

This specification offers the flexibility of using a difference-stationary shock, an AR(1) shock, or

a combination of both. An equilibrium is a sequence of prices and allocations such that all markets

clear when consumers and firms behave optimally, taking equilibrium prices as given.

I characterize the equilibrium in two steps. First, I find the unique nonstochastic balanced

growth path (BGP) equilibrium where the variables Zt, Kt, Bt, Dt, Ct and Pt all grow at a constant

rate and the variables Lt, Mt, r̃t, rt, and λt are constant. Next, I log-linearize the equations of the

model around the nonstochastic BGP. This generates a system of linear expectational difference

equations in a set of stationary variables. Finally, I solve this system computationally using a

technique described by Uhlig (1997). The result is an equilibrium law of motion and an equilibrium

policy rule.

5 Results

In this section I present results from simulating the model described in the previous section. First,

I explain how the model was calibrated. I then show and discuss impulse response functions for

debt and equity flows. Next, I discuss simulation results for the overall period 1952 – 2007. Finally,

I calibrate the model to the two subperiods 1952 – 1983 and 1984 – 2007 in order to account for

the change in volatilities of real and financial variables over the past two decades.

5.1 Calibration

Table 3 summarizes the calibrated parameter values for the model. I set η, the consumer’s coefficient

of relative risk aversion, to 2, a commonly used value in empirical macro studies. In the benchmark

specification, I use an AR(1) shock only, so there is no trend growth (g = 0). I set the persistence

of the shock, ρ2, to 0.95. The share of capital in income, α, is set to 0.40, and the quarterly
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depreciation rate, δ, is set to 0.02. Following Jermann and Quadrini (2007), I set the marginal

corporate tax rate τ to 0.30.

The rest of the parameters are calibrated to match particular moments in quarterly data for

the U.S. nonfarm business sector over the period 1952:1 – 2007:4. Given the assumption of no

trend growth, the subjective discount factor β pins down the real risk-free rate. I take the real

risk-free rate to be the average annualized yield on three-month Treasury bills over the quarter, net

of inflation.9 This rate is 1.30%, which corresponds to a quarterly value of 0.99675 for β. I scale

the technology shocks to match the standard deviation of GDP over the time period.

Given τ , the debt friction µ determines the steady-state level of corporate borrowing. A higher

µ makes the cost of borrowing more sensitive to the amount borrowed, which in turn leads to less

borrowing in the steady-state. I calibrate µ to match the average debt-to-GDP ratio in the nonfarm

sector. The value of that ratio is 0.62, which corresponds to a value for µ of 0.0384. The equity

friction parameter φ captures the cost of adjusting the firm’s equity payout. A higher φ results in

“smoother” equity payouts over time. I calibrate φ to match the standard deviation of net equity

payouts as a share of GDP. The volatility in the data is 1.14, corresponding to a value for φ of

0.000655.10

5.2 Impulse Responses

To fix intuition, it is helpful to look at impulse response functions for debt and equity flows. First,

consider a frictionless RBC model with no debt financing and no equity adjustment cost. I represent

this in the model by removing Bt as a choice variable and setting φ = 0. Consumption in this model

is just equal to the net equity payout.11 Figure 3 shows the impulse response function for net

equity payouts in the frictionless model. All impulse responses are expressed in terms of percentage

deviations from steady-state values. In response to a positive, persistent productivity shock, the

firm immediately raises its payout. The intuition is that after the shock, the firm’s expected lifetime

profitability is suddenly higher. Since the firm’s objective is to maximize shareholder utility, and

since shareholders place positive weight on consumption today, the firm optimally raises its payout

immediately. As time goes on, the firm accumulates capital, increases output and raises its equity

payout still higher. Eventually, as the shock dies out, the firm’s payout peaks and then declines

back to its steady-state value. It is important to realize that although the equity payout goes up on

impact, the firm is also investing more. Greater investment is optimal because high productivity

today forecasts high productivity tomorrow, which increases tomorrow’s expected marginal product

of capital. Figure 4 shows the impulse response for investment. Since the firm is not raising equity
9I measure inflation as the annualized percent change in the CPI over the quarter.

10I also tried the following variations, none of which significantly altered the results. (i) I tried values for η in the
range of 0.5 to 2, including η = 1 (log utility). (ii) I used a difference stationary shock, first with g = 0 and then with
g = ln(1.5). (iii) I set α = 0.3. (iv) I set τ = 0.2, recalibrating µ as described above. Results available on request.

11See equation (21). Recall that when there are no frictions, debt is indeterminate; this is the classic prediction of
Modigliani and Miller (1958). Therefore, in the frictionless model, I do not allow firms to borrow, and I set Bt = 0
for all t.
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capital (it is instead increasing payments to shareholders), the firm finances its investment through

its stock of internal funds. The firm prefers to finance using internal funds because issuing equity

would detract too much from shareholder utility. Note that today’s positive productivity shock

increases the stock of internal funds available for both investment and equity payouts.

Now consider the full model with both debt and equity financing. Figure 5 shows impulses

response for the equity payout. I consider two cases: the dashed line sets φ = 0, and the the solid

line sets φ = 0.000655 (its calibrated value). Consider first the case of no equity adjustment cost

(labeled “No Friction” in the figures). In response to a positive and persistent productivity shock,

the equity payout now increases steeply on impact, then returns quickly to its steady-state value.

The intuition is that with access to tax-advantaged debt, the firm can “borrow from bondholders

to pay shareholders.” Despite the apparent spike in the equity payout, consumers still face a

relatively smooth consumption profile, as shown in Figure 7. The reason is that consumers are

also the bondholders in general equilibrium, and the net issuance of corporate bonds to consumers

largely offsets the increase in equity payouts. Indeed, Figure 6 shows that with no equity adjustment

cost, the firm’s net issuance of debt on impact nearly equals the change in its equity payout. Unlike

equity, however, debt declines gradually back towards its steady-state level. The ongoing issuance

of debt finances capital investment; this is illustrated in Figure 8.

The introduction of the equity adjustment cost significantly dampens the firm’s equity payout.

In particular, Figure 5 shows that the increase of equity payouts on impact is less than one-fifth

of the increase in the no-adjustment-cost scenario. Since adjustment costs are a pure deadweight

loss, the firm faces a strong incentive to smooth its equity payout. As a result, the firm engages in

much less “borrowing from bondholders to pay shareholders.” Figure 6 shows that relative to the

no-adjustment-cost case, the firm borrows less on impact and reaches peak borrowing only after a

delay.

While the impact of the frictions on financial variables is significant, the impact on real alloca-

tions is very small. Figures 7 and 8 show that the impulse responses of consumption and investment

do not change much when I add the calibrated equity adjustment cost. In addition, these impulse

responses are very similar to their counterparts in the frictionless model with no debt. Contrast this

result with Jermann and Quadrini (2007), where the severity of financial frictions has a significant

effect on the impulse responses of real variables. The Jermann and Quadrini result depends on

two key features not present in my model: (i) a debt ceiling above which the firm cannot borrow

at any price, and (ii) an asset-price shock that alters the debt ceiling without affecting aggregate

productivity. This suggests that the theoretical effect of financial frictions on the real economy

depends critically on how both the frictions and the shocks are modeled.

5.3 Volatilities and Cross Correlations

Table 4 presents selected business cycle statistics from simulating the model and compares them

with the corresponding moments in the data. I simulate the calibrated model by generating 50
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sample paths of 200 quarters each for productivity, discarding the first 100 quarters. I compute

business cycle statistics for each sample path and take averages over the 50 samples. I apply an

HP filter with a smoothing parameter of 1600 to both actual and simulated data.12 I consider the

model with and without an equity adjustment cost. Looking at the standard deviations, the full

model is able to replicate the volatility of the equity-payout-to-GDP ratio observed in the data.

Recall that I calibrated φ to 0.000655 in order to match this moment. Although this may appear

to be a small friction, it makes a big difference. When I set φ = 0, the implied volatility of equity

payouts jumps from 1.14 to 6.51 – almost six times higher than in the data. As suggested by the

impulse response functions, the adjustment cost results in “smoother” equity payouts over time.

Looking at correlations, equity payouts and debt issued are (i) positively correlated with output,

(ii) positively correlated with investment, and (iii) positively correlated with each other, consistent

with the stylized facts described in Section 2. These results hold both with and without equity

adjustment costs. The tax advantage on debt, combined with monitoring costs, is sufficient to

replicate these correlations. I interpret this as evidence that the interest tax deduction and concerns

about excessive leverage influence the aggregate behavior of debt and equity flows over the business

cycle.

These results also provide some evidence for a “dynamic tradeoff theory” of capital structure.

Given the costs and benefits of debt, firms appear to target an optimal debt-equity ratio. However,

the target itself changes over time as shocks impact firms’ resources and alter their forecasts for

future productivity. Of course, the evidence presented is all at the aggregate level. More convincing

evidence of a dynamic tradeoff theory would require an empirical firm-level analysis, which is beyond

the scope of this paper.

The model is somewhat less successful at matching the absolute values of some key volatilities.

Note that the volatility of (log) real GDP was calibrated to match the data. The model’s volatility

of investment is close to the data, as in standard RBC models. However, the model’s volatility of

debt is too high; and the model’s volatilities for the ratio of outstanding debt to equity (“debt-

equity ratio”) and the ratio of equity payments to equity outstanding (“payout-to-market-value”)

are too low. The latter two ratios depend in large part on the movement of stock prices in the data,

which are much more volatile than predicted by most macro models. However, as I show below,

the model is more successful at replicating changes in these volatilities over time.

5.4 Changes in Volatilities over Time

As documented in Section 2, the business cycle volatilities of output and investment have declined

substantially starting in the mid-1980s, a well known phenomenon known as business cycle moder-

ation. Jermann and Quadrini (2007) document that during the same period, the financial structure
12Results are similar when the simulated data is left unfiltered. Furthermore, the business cycle statistics in the

data don’t change much under alternative filters, such as the Baxter-King band-pass filter. Results available on
request.
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of firms has become more volatile – a finding that I also replicated in Section 2. In particular, the

volatility of equity payouts has increased by over 50% from the period 1952 – 1983 to the period

1984 – 2005. In this section I demonstrate that the model can successfully account for the joint

findings of dampened real volatility and increased financial volatility.

Since financial frictions do not have large real effects in my framework, I adopt the position

of Arias et al. (2006) and assume that the decline in real volatility is a result of less volatile

productivity shocks. For example, the second subperiod was not characterized by the oil supply

disruptions and large swings in inflation that marked the 1970s. On the other hand, I assume that

the increase in financial volatility was driven by innovations in financial markets that eased the

frictions in the model. Such innovations include the wide adoption of securitized assets and SEC

rules facilitating greater flexibility in equity offerings and repurchases; see Jermann and Quadrini

(2007) for other examples.

I proceed by calibrating the volatility of technology shocks σ2, the debt friction µ and the

equity friction φ separately for each subperiod. As before, my calibration targets are the standard

deviation of GDP, the average debt-GDP ratio and the standard deviation of the equity-payout-

to-GDP ratio. Table 5 presents my results. The model is fairly successful at matching relative

volatilities across the two time periods. Given that GDP volatility declined by about 50%, the

model predicts a 50% decline in the volatilities of real investment and consumption, consistent

with the data. By calibrating µ, I am able to match a 50% increase in the average value of the

debt-to-GDP ratio. By calibrating φ, I also reproduce the roughly 70% increase in the volatility

of equity payouts. The model also matches, at least qualitatively, relative volatilities for four

variables that were not calibration targets: the debt-issued-to-GDP ratio, the debt-equity ratio,

the payout-to-market-value ratio, and the real risk-free rate. The results in Table 5 are calculated

from HP-filtered data. Results from unfiltered data were similar and are available on request.

The model provides an alternative explanation for the joint findings of dampened real volatility

and increased financial volatility over the past two decades. In my framework, the moderation in

real business cycles is driven by the “good fortune” of less volatile productivity shocks, while the

increase in financial volatility is a result of reduced financial frictions. Note that the reduction

in financial frictions is sufficient to increase financial volatility even in the presence of dampened

technology shocks, which by themselves would decrease financial volatility. In contrast, Jermann

and Quadrini (2007) present a model where financial innovations drive both results. Their model

relies on an asset price shock and an endogenous debt ceiling that transmits pure financial shocks

to the real sector. In order to discriminate between the two explanations, one would need to pin

down the relative importance of asset price shocks and technology shocks in the data. Identifying

and quantifying different types of shocks involves many challenges, not the least of which is to

arrive at meaningful and agreed-upon definitions. I defer this topic for future research.
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6 Conclusion

I have shown that an RBC model with an explicit capital structure decision can explain a number

of stylized facts about aggregate debt and equity flows in U.S. data. I developed an augmented

RBC model characterized by three financial frictions: a debt tax shield, debt monitoring costs, and

(optionally) an equity adjustment cost. The tax shield and costly monitoring pin down an optimal,

positive amount of debt issued. The equity adjustment cost allows for more realistic fluctuations

of equity payouts in response to technology shocks. In calibrated simulations, the model correctly

implies that debt issued and equity payouts are both positively correlated with GDP, positively

correlated with investment, and positively correlated with each other. Finally, I use the model to

explain the finding of Jermann and Quadrini (2007) that real variables have become less volatile

over the last two decades, while financial flows have become more volatile. By varying both the

scale of the technology shocks and the degree of financial frictions, I can account for both results.

A number of avenues are available for further research. One straightforward extension would

be to estimate the key parameters of the model (µ and φ) using a simulated method-of-moments

technique. This would potentially generate a better fit with the data. The model has implications

for the capital structure decisions of individual firms. For example, firms with high tax exposure

and firms that are easily monitored should make greater use of debt financing than other firms.

Furthermore, as a firm’s tax exposure and other characteristics change over time, its reliance on

debt financing should also change. These implications could be tested in firm-level panel data. A

more ambitious extension would involve extending the model to an international setting. A two-

country version of the model with trade in financial assets and asymmetric financial frictions would

have predictions for debt and equity flows across countries. I plan to pursue these ideas in future

work.
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Appendix

A Derivation of Euler Equations for Firm’s Problem

The firm’s problem can be written as follows:

V (Kt−1, Bt−1, Dt−1) = max
Bt,Dt,Kt

{Dt + EtMt+1V (Kt, Bt, Dt)} (27)

+λt

{
F (Kt−1, Zt) + (1− δ)Kt−1 +

Bt
1 + (1− τ)rt

−Bt−1 − c(Dt, Dt−1,Kt−1)−Kt

}
(28)

Taking first-order conditions:

(Bt) : EtMt+1VB(Kt, Bt, Dt) +
λt

1 + (1− τ)rt
= 0 (29)

(Dt) : 1 + EtMt+1VD(Kt, Bt, Dt)− λtc1(Dt, Dt−1,Kt−1) = 0 (30)
(Kt) : EtMt+1VK(Kt, Bt, Dt)− λt = 0 (31)

From the envelope conditions, we have:

VK(Kt, Bt, Dt) = λt+1 [FK(Kt, Zt+1) + (1− δ)− c3(Dt+1, Dt,Kt)] (32)
VB(Kt, Bt, Dt) = −λt+1 (33)

VD(Kt, Bt, Dt) = −λt+1c2(Dt+1, Dt,Kt) (34)

Substituting the envelope conditions back into the first-order conditions:

(Bt) :
λt

1 + (1− τ)rt
− EtMt+1λt+1 = 0 (35)

(Dt) : 1− EtMt+1λt+1c2(Dt+1, Dt,Kt)− λtc1(Dt, Dt−1,Kt−1) = 0 (36)
(Kt) : EtMt+1λt+1 [FK(Kt, Zt+1) + (1− δ)− c3(Dt+1, Dt,Kt)]− λt = 0 (37)

I impose the following functional forms for the production function and dividend-adjustment
cost function:

F (Kt−1, Zt) = Kα
t−1Z

1−α
t , α ∈ (0, 1) (38)

c(Dt, Dt−1,Kt−1) = Dt + φKt−1

(
Dt

Dt−1
− 1
)2

, φ > 0 (39)

Applying the functional forms above to equations (35), (36) and (37) gives the Euler Equations
listed in the main text.
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B Full List of Equations Characterizing Equilibrium

For convenience, all the equations of the model are reproduced here:

1
1 + r̃t

= Et[Mt+1] (40)

Pt = Et[Mt+1(Pt+1 +Dt+1)] (41)

Mt ≡
βu′(Ct)
u′(Ct−1)

(42)

1
1 + rt

=
1

1 + r̃t
− µLt (43)

Kt = Kα
t−1Z

1−α
t + (1− δ)Kt−1 +

Bt
1 + (1− τ)rt

−Bt−1 −Dt − φKt−1

(
Dt

Dt−1
− 1
)2

(44)

λt
1 + (1− τ)rt

= EtMt+1λt+1 (45)

1 + Et

{
2φMt+1λt+1

(
Kt

Dt

)(
Dt+1

Dt

)(
Dt+1

Dt
− 1
)}

= λt

{
1 + 2φ

(
Kt−1

Dt−1

)(
Dt

Dt−1
− 1
)}

(46)

EtMt+1λt+1

{
α

(
Zt+1

Kt

)1−α
+ (1− δ)− φ

(
Dt+1

Dt
− 1
)2
}

= λt (47)

L(t) ≡ Bt
Kt−1

(48)

Ct = Dt +Bt−1 −
[

1
1 + (1− τ)rt

+ µLt

]
Bt (49)

zt = z1t + z2t (50)
∆z1t = (1− ρ1)g + ρ1∆z1t−1 + ε1t , |ρ1| < 1 (51)

z2t = ρ2z2t−1 + ε2t , |ρ2| < 1 (52)

E[ε1t] = E[ε2t] = 0 , V ar[ε1t] = σ2
1 , V ar[ε2t] = σ2

2 (53)
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Variables Correlation
(Equity Payout, GDP) 0.16

(Debt Issued, GDP) 0.45
(Real Fixed Investment, GDP) 0.90

(Equity Payout, Real Fixed Investment) 0.19
(Debt Issued, Real Fixed Investment) 0.52

(Equity Payout, Debt Issued) 0.38

Table 1: Business cycle correlations for selected real and financial variables from 1952 – 2007. “Debt
Issued” is the net increase in credit market liabilities. A negative number reflects a net repayment
of debt by businesses. “Equity Payout” equals dividends plus net repurchases of equity shares in
the corporate sector, less proprietors’ net investment in the noncorporate sector. GDP is real gross
value-added in the nonfarm business sector. All variables are detrended using a Hodrick-Prescott
filter with a smoothing parameter of 1600. Sources: Flow of Funds, Federal Reserve Board and
NIPA Accounts, BEA.
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Standard Deviations (× 100) 1952–1983 1984–2007 Late/Early
Equity Payout / GDP 0.85 1.44 1.69

Debt Issued / GDP 1.32 1.69 1.28
Log Real GDP 2.56 1.18 0.46

Log Real Fixed Investment 5.58 3.63 0.65

Table 2: Changes in selected business cycle statistics for the Nonfarm sector between 1952 – 1983
and 1984 – 2007. All variables are detrended using a Hodrick-Prescott filter with a smoothing
parameter of 1600. Sources: Flow of Funds, Federal Reserve Board and NIPA Accounts, BEA.
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Parameter Value Calibration Target Target Value
η 2 Standard in literature
β 0.99675 Real risk-free rate 1.30%
G 1 Zero growth in steady-state
α 0.40 Standard in literature
δ 0.02 Standard in literature
τ 0.30 Jermann and Quadrini
ρ2 0.95 Standard in literature
σ2 0.0282 Std dev of GDP (x100) 2.09
µ 0.0384 Mean of Debt / GDP 0.62
φ 0.000655 Std dev of Equity Payout / GDP (x100) 1.14

Table 3: Calibration.
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Standard Deviations (× 100) Data Full Model φ = 0
Equity Payout / GDP 1.14 1.14 6.49

Debt Issued / GDP 1.49 4.53 7.55
Debt Outstanding / Equity Outstanding 3.17 0.02 0.04

Equity Payout / Equity Outstanding 0.84 0.01 0.03
Log Real GDP 2.09 2.09 2.09

Log Fixed Investment 4.84 5.11 5.05

Correlations Data Full Model φ = 0
(Equity Payout, GDP) 0.16 0.81 0.39

(Debt Issued, GDP) 0.45 0.60 0.96
(Real Fixed Investment, GDP) 0.90 1.00 1.00

(Equity Payout, Real Fixed Investment) 0.19 0.83 0.40
(Debt Issued, Real Fixed Investment) 0.52 0.57 0.97

(Equity Payout, Debt Issued) 0.38 0.26 0.43

Table 4: Standard deviations and correlations from data and model, HP-filtered.
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1952 – 1983 1984 – 2007 Late/Early
Mean Data Model Data Model Data Model

Debt Stock / GDP 0.51 0.51 0.78 0.78 1.53 1.53
Standard Deviations (× 100) Data Model Data Model Data Model

Equity Payout / GDP 0.85 0.86 1.44 1.44 1.69 1.67
Debt Issued / GDP 1.32 3.70 1.69 3.76 1.28 1.02

Debt Outst. / Equity Outst. 2.83 0.02 3.57 0.02 1.26 1.11
Equity Payout / Equity Outst. 0.72 0.00 0.98 0.01 1.36 1.76

Log Real GDP 2.56 2.56 1.18 1.18 0.46 0.46
Log Investment 5.58 6.30 3.63 2.86 0.65 0.45

Log Consumption 1.47 0.63 0.73 0.29 0.49 0.46
Real T-Bill Rate 133.04 0.08 124.73 0.03 0.94 0.40

Table 5: Changes in business cycle statistics for the Nonfarm sector between 1952 – 1983 and 1984
– 2007.

24



Figure 1: Aggregate debt and equity flows and aggregate real investment in the U.S. nonfarm
sector, in billions of chained 2000 dollars. Sources: Flow of Funds, Federal Reserve Board and
NIPA Accounts, BEA.
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Figure 2: Median debt-to-capital ratios for firms by long-term S&P credit rating. Here “capital”
refers to a firm’s outstanding debt plus its outstanding equity, which together equal the firm’s
assets. Each bar in the graph plots the median debt-to-capital ratio among all active Compustat
firms with the given credit rating. Source: Compustat, author’s calculations.
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Figure 3: Impulse response for net equity payout in a frictionless model.

Figure 4: Impulse response for investment in a frictionless model.
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Figure 5: Impulse responses for net equity payout.

Figure 6: Impulse responses for debt.
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Figure 7: Impulse responses for consumption.

Figure 8: Impulse responses for investment.
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