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1 Introduction

The finite-state Markov chain approximation methods developed by Tauchen (1986a)

and Tauchen and Hussey (1991) are widely used in solving functional equations where

the state variables follow autoregressive processes. Nonlinear dynamic macroeconomic

and asset pricing models often imply a set of integral equations (moment conditions)

that do not admit explicit solutions. Discrete-valued approximations prove to be an ef-

fective tool for reducing the complexity of the problem (Burnside, 1999). Also, there is a

substantial interest in these methods for generating simulation data from nonlinear dy-

namic models in evaluating the sampling properties of generalized method of moments

estimators (Tauchen, 1986b; Hansen, Heaton and Yaron, 1996; Stock and Wright, 2000;

among others). The Markov-chain approximation methods choose discrete values for

the state variables and construct transition probabilities such that the characteristics of

the generated process mimic those of the underlying process. However, both Tauchen

(1986a) and Tauchen and Hussey (1991) point out that these methods do not perform

well for highly persistent autoregressive (AR) processes or processes with characteristic

roots close to unity. Although these methods can generate a better approximation at

the cost of a finer state space, this type of approach is not always feasible.1

The poor approximation of the methods by Tauchen (1986a) and Tauchen and

Hussey (1991) for strongly autocorrelated processes has spurred a renewed research

interest given the prevalence of highly persistent shocks in dynamic macroeconomic

models. Rouwenhorst (1995) proposes a Markov-chain approximation of an AR(1) pro-

cess constructed by targeting its first two conditional moments. Some recent advances

in the literature on Markov-chain approximation methods include Adda and Cooper

1See Burnside (1999) for how rapidly the computational cost increases with the number of states,
and how severe this curse of dimensionality is in the vector autoregressive case. More importantly,
as we show in Proposition 1 below, these existing methods cannot always generate a meaningful
approximation even when the number of states is very large.
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(2003), Floden (2008) and Kopecky and Suen (2010). While these methods provide

substantial improvements in approximating the first-order univariate autoregressions,

their extension to vector autoregressions (and higher-order autoregressive processes),

which is of great practical interest to macroeconomists, is not readily available and

possibly highly non-trivial. As a result, the method by Tauchen (1986a) continues to

be employed almost exclusively by researchers for approximating multivariate processes

by finite-state Markov chains. The only alternative method that is available for approx-

imating multivariate processes is the method proposed by Galindev and Lkhagvasuren

(2010). However, this method is developed for a particular class of multivariate autore-

gressive processes: correlated AR(1) shocks, i.e., a set of AR(1) shocks whose innovation

terms are correlated with each other. Although this method can be applied to vector

autoregressions (VAR) by decomposing the latter into a set of interdependent AR(1)

shocks, the state space generated by the method is not finite, except for the special

case of equally-persistent underlying shocks. Therefore, to the best of our knowledge,

a general method for approximating VAR processes by a finite-state Markov chain

with appealing approximation properties over the whole parameter region of interest

(including highly persistent parameterizations) is not yet available in the literature.

This paper fills this gap and proposes a moment-matching method for approximat-

ing vector autoregressions by a finite-state Markov chain. The main idea behind this

method is to construct the Markov chain by targeting conditional moments of the un-

derlying continuous process as in Rouwenhorst (1995), rather than directly calculating

the transition probabilities using the distribution of the continuous process as in the

existing methods. More specifically, we express the Markov-chain transitional prob-

abilities as the solution of a nonparametric (empirical likelihood) problem subject to

moment restrictions. To target the conditional moments in constructing the Markov

chain, we use key elements of the Markov chains generated by the methods of Tauchen
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(1986a) and Rouwenhorst (1995). Therefore, the proposed method extends the proce-

dures of Tauchen (1986a) and Tauchen and Hussey (1991) to highly persistent cases

and those of Rouwenhorst (1995) and Kopecky and Suen (2010) to vector cases, while

still maintaining a finite number of states.

Our method yields accurate approximations without relying on a large number of

grid points for the state variables. In particular, the method expands the finite-state

Markov chain approximation to a much wider range of the parameter space. While

the largest gains of the proposed approach arise when the characteristic roots of the

underlying process are close to unity, it tends to outperform (in terms of bias and

variance) the existing methods even when the persistence is moderate or low. Finally,

the method can be readily adapted to accommodate other important features of the

conditional distribution of the continuous-valued process.

The rest of the paper is organized as follows. Section 2 introduces the continuous-

and discrete-valued versions of the multivariate model and the main notation. Section 3

reviews the existing approximation methods and demonstrates that they fail to deliver

a reasonable approximation as the roots of the continuous-valued process approach

the unit circle. The reason for this is that the existing methods calculate transition

probabilities defined over discrete grids using continuous probability density functions.

Therefore, the quality of the approximation deteriorates sharply when the standard

deviation of the error terms becomes comparable to or smaller than the distance between

the grid points. Our approximation method is introduced in Section 4. We show that

the approximation is achieved by matching the first two conditional moments of the

underlying process and describe the construction of the transition probability matrix

and the Markov chain. Section 5 investigates the numerical properties of the method

in a bivariate VAR(1) process with varying degrees of persistence. Section 6 concludes.

The proofs and some additional theoretical results are presented in Appendices A to C.
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2 Model

In this section we present the underlying continuous-valued vector autoregressive pro-

cess and introduce the main structure and notation for the finite-state Markov chain

used for approximating the continuous process.

2.1 Continuous VAR process

Let yt be an M × 1 vector containing the values that variables, y1, y2, · · · , yM , assume

at date t. We consider the following vector autoregressive (VAR) process:

yt = Ayt−1 + εεεt, (1)

where A (with a generic element ai,j) is an M×M matrix with roots that lie strictly out-

side (although arbitrarily close to) the unit circle and the M×1 vector εεεt is i.i.d. N (0,Ω)

with Ω = diag(ω2
1, ω

2
2, ..., ω

2
M) being a diagonal matrix. Extending the analysis to a non-

diagonal Ω is relatively straightforward and is discussed later in the paper.2 Our focus

on the zero-mean, first-order VAR is primarily driven by expositional and notational

simplicity and deterministic terms as well as higher-order dynamics can be easily incor-

porated at the expense of additional notation. Let Σ be the unconditional covariance

matrix of the process yt. Let σi denote the unconditional standard deviation of yi for

each i. Then, the i-th diagonal element of Σ is given by σ2
i .

2Results for non-Gaussian errors, that target also the conditional skewness and kurtosis of the
underlying process, are presented in Appendix C. Since the normality (and log-normality, in the case
of modeling shocks with stochastic volatility as in Fernandez-Villaverde, Guerron-Quintana, Rubio-
Ramirez and Uribe, 2011) assumption is routinely used in describing the properties of the shocks
in macroeconomic models, the current version of the paper presents the construction of the finite-
state Markov chain only for this benchmark case. We should also note that regardless of the true
values of skewness and kurtosis of the error terms, the unconditional skewness and kurtosis of the
process converge to those of the normal distribution when the persistence approaches the nonstationary
boundary.

4



2.2 Finite-state Markov chain

Let ỹt denote the finite-state Markov chain that approximates yt in (1). Each compo-

nent ỹi,t takes on one of the Ni discrete values denoted by ȳ
(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i . Therefore,

at each point in time, the entire system will be in one of the N∗ = N1×N2× · · · ×NM

states. Let ȳ(1), ȳ(2), · · · , ȳ(N∗) label these N∗ states and Π denote the N∗ ×N∗ transi-

tion matrix whose [row j, column k] element πj,k measures the probability that in the

next period the system will be in state k conditional on the current state j.

Our goal is to construct a finite number of grid points for each element of ỹt and

to calculate the associated transition probability matrix Π so that the characteristics

of the generated process closely mimic those of the underlying process y.

Define

hi(j, l) = Pr(ỹi,t = ȳ
(l)
i |ỹt−1 = ȳ(j)) (2)

for i = 1, 2, · · · ,M , l = 1, 2, · · · , Ni and j = 1, 2, · · · , N∗. For any i, let Li be an

integer-valued function such that ỹi,t = ȳ
(Li(j))
i when the system is in state j at time

t. Since the components of εεεt are independent, the transition probability πj,k can be

written as the product of the individual transition probabilities:

πj,k =
M∏
i=1

hi(j, Li(k)). (3)

This means that, for each pair (i, j), we need to construct Ni transition probabilities

Hi(j) = {hi(j, 1), hi(j, 2), · · · , hi(j,Ni)} (4)

over the grid points ȳ
(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i . Since
∑Ni

l=1 hi(j, l) = 1 for each (i, j), Hi(j) can

be regarded as a probability mass distribution defined over the discrete values ȳ
(1)
i , ȳ

(2)
i ,

· · · , ȳ(Ni)
i .
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The problem of determining the probability weights associated with this probability

mass distribution can be expressed as a nonparametric likelihood problem. In partic-

ular, given the grids (ȳ(1), ȳ(2), · · · , ȳ(N∗)), the nonparametric (or empirical) likelihood

estimate of the transition probability matrix can be obtained as the solution to the

constrained maximization problem:

max
hi(j,l)∈[0,1]

M∑
i=1

N∗∑
j=1

Ni∑
l=1

ln(hi(j, l)) (5)

subject to the constraint

Ni∑
l=1

hi(j, l) = 1 for i = 1, · · · ,M. (6)

To avoid trivial solutions, this optimization problem needs to be augmented with

additional restrictions that best describe the statistical properties of model (1) for yt.

For any i and j, let µi(j) denote the expected value of process yi,t+1, conditional on

yt = ȳ(j), i.e.,

µi(j) = ai,1ȳ
(L1(j))
1 + ai,2ȳ

(L2(j))
2 + · · ·+ ai,M ȳ

(LM (j))
M . (7)

The new method that we propose below targets the first and second conditional mo-

ments of the process yt by imposing the following restrictions:

Ni∑
l=1

hi(j, l)ȳ
(l)
i = µi(j) (8)

and
Ni∑
l=1

hi(j, l)(ȳ
(l)
i − µi(j))2 = ω2

i (9)

for i = 1, · · · ,M and j = 1, · · · , N∗. Equations (8) and (9) require that the Markov
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chain adequately approximate the conditional mean and variance of the continuous-

valued process yt.

3 Existing Methods

The existing finite-state methods for approximating vector autoregressions by Tauchen

(1986a) and Tauchen and Hussey (1991) share the common feature that they use con-

tinuous probability distribution functions for calculating the transition probabilities de-

fined over discrete grids. As mentioned in the introduction, the finite-state extension to

multivariate processes of the recently proposed methods for improving the Markov chain

approximation in near-nonstationary region of univariate AR processes is not readily

available. In what follows, we consider explicitly the method proposed by Tauchen

(1986a) as a representative of the existing methods since, according to Floden (2008),

it tends to be more robust to the parameters of the underlying process than its version

in Tauchen and Hussey (1991).

The construction of the transition probabilities and the Markov chain for Tauchen’s

(1986a) method can be described as follows. For each i, Tauchen (1986a) chooses

equispaced grid points over the interval [−mσi,mσi] for some m > 0,3 where σi denotes

the unconditional standard deviation of yi. Specifically, for each i, the grid points are

chosen according to the following rule:

ȳ
(l)
i = −mσi + (l − 1)4i, (10)

where

4i = 2mσi/(Ni − 1) (11)

3According to Tauchen (1986b), m = 3 works well in practice. Footnote 4 below discusses how the
value of m affects conditional and unconditional variances differently.
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and l = 1, 2, · · · , Ni. Note that 4i measures the distance between two consecutive

nodes of ỹi.
4

Given the above grid points, consider the following partition of the real line for each

i: C
(1)
i =]−∞, ȳ(1)

i +4i/2], C
(Ni)
i =]ȳ

(Ni)
i −4i/2,∞[, and C

(l)
i =]ȳ

(l)
i −4i/2, ȳ

(l)
i +4i/2],

where l = 2, 3, · · · , Ni − 1. Tauchen (1986a) calculates the transition probabilities as

hi(j, l) = Pr
(
µi(j) + εi ∈ C(l)

i

)
. (12)

Denoting the cumulative distribution function of the standard normal variable εi/ωi by

Φi, equation (12) can be rewritten as

hi(j, l) =



Φi

(
ȳ
(1)
i −µi(j)+4i/2

ωi

)
if l = 1,

1− Φi

(
ȳ
(Ni)
i −µi(j)−4i/2

ωi

)
if l = Ni,

Φi

(
ȳ
(l)
i −µi(j)+4i/2

ωi

)
− Φi

(
ȳ
(l)
i −µi(j)−4i/2

ωi

)
otherwise.

(13)

According to Tauchen (1986a), the rationale for equations (7) and (12) is that if the

partitioning
(
C

(1)
i , C

(2)
i , · · · , C(M)

i

)
is reasonably fine, then the conditional distribu-

tion of ỹi,t given state j at time t − 1 will approximate closely (in the sense of weak

convergence) the conditional distribution of yi,t given yi,t−1 = µi(j).

4Note that there are two free parameters that underlie the approximation accuracy of Tauchen’s
method: the number of grid points Ni and the parameter m which is positively related to the distance
between the grid points. First, while the quality of Tauchen’s approximation improves as the number
grid points Ni increases, this type of approach is not always feasible as stated in Proposition 1 be-
low. Second, the choice of parameter m involves a sharp trade-off (especially in the presence of high
persistence) between targeting unconditional variance and conditional variance and the quality of the
approximation appears to be highly sensitive to the value of m (Kopecky and Suen (2010)). If the
value of m is too small (say m = 2), the resulting truncation imposed by [−mσi,mσi] can be quite
severe and Tauchen (1986a)’s method performs poorly for approximating the unconditional variance,
as well as other higher-order moments, of the underlying process. On the other hand, if the value
of m is too large, the distance between the grid points increases (see equation (11)) which reduces
the quality of approximating the conditional variance of the underlying process. It should be noted
that our proposed method breaks the tight link between the conditional and unconditional variance
inherent in the existing finite-state VAR methods.
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Given the finite-state Markov chain ỹt, let

ε̃εεt = ỹt − Aỹt−1, (14)

Ω̃ be the covariance matrix of ε̃εε and ω̃i denote the square root of the i-th diagonal

element of this matrix. Since the conditional probabilities for this Markov chain are

obtained by centering the density of εεε around Aỹt−1, we have

E(ỹt|ỹt−1, ỹt−2, · · · ) = Aỹt−1, (15)

and

E(ε̃εεt) = E{E[(ỹt − Aỹt−1)|ỹt−1, ỹt−2, · · · ]} = 0M . (16)

This implies, by the law of iterated expectations, that ε̃εεt is uncorrelated with ỹt−s for

s = 1, 2, · · · . However, the conditional covariance matrix of ε̃εεt, Var(ε̃εεt|ỹt−1, ỹt−2, · · · ),

depends on ỹt−1 and thus, ε̃εεt and ỹt−1 are dependent (Anderson, 1989). This clearly

suggests that targeting the first and second conditional moments will improve the qual-

ity of the Markov-chain approximation and it serves as a main motivation for the new

method proposed in this paper.

We now show that calculating the transition probabilities using the continuous dis-

tribution functions does not always deliver meaningful approximations.

Proposition 1. Let ω̃2
i denote the conditional variance of the i-th element of ε̃εε in equa-

tion (14), where ỹt is the finite-state Markov chain constructed using the Tauchen’s

(1986a) method with the standard normal CDF Φi. Then, for any set of integers

(N1, N2, · · · , NM) and any arbitrarily small positive number ε, there always exists a

highly persistent vector autoregressive process for which ω̃i/ωi < ε for all i.

Proof. See Appendix A.
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Proposition 1 is an extension of the results in Galindev and Lkhagvasuren (2010).

The main implication of the result in Proposition 1 is that Tauchen’s (1986a) method

will fail to approximate the variability in yt as one or more of the roots of the underlying

continuous-valued VAR process yt approach the unit circle. This problem arises because

the method targets only the first conditional moment of the continuous-valued process

yt.

Moreover, despite some numerical and methodological differences across the existing

Markov-chain approximations, all these methods suffer from the same problem as in

Tauchen (1986a) since they calculate the transition matrices using distribution functions

around the first conditional moment. In other words, regardless of the way the grid

points are constructed, there is a non-zero distance between any two grid points and

thus one can directly extend Proposition 1 to these methods.

4 A Moment-Matching Markov Chain Method

4.1 Main idea

Unlike the existing finite-state methods for multivariate processes that calculate the

transition probabilities using the conditional distribution function of yt, our proposed

method chooses the transition probabilities by targeting the key conditional moments

of yt. In this respect, we give our method a moment-matching interpretation and

refer to it as moment-matching (MM) method. More specifically, it approximates the

underlying process by targeting the 2M×N∗ moment conditions given by equations (8)

and (9). This means that the method chooses the grid points {ȳ(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i }Mi=1

and the associated probability mass functions {Hi(1), Hi(2), · · · , Hi(N
∗)}Mi=1 such that,

for all i and j, the mean and the variance of distribution Hi(j) target µi(j) and ω2
i ,

respectively.
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The grid points and the probability mass functions are constructed by mixing a

set of probability mass functions associated with the conditional distributions of the

finite-state processes generated by the method of Rouwenhorst (1995). The reason

for this particular choice of probability mass functions is that their mean and vari-

ance (or the conditional mean and variance of the Rouwenhorst process) are perfectly

matched.5 While explicitly incorporating information about the conditional moments

is expected to deliver efficiency gains compared to Tauchen’s (1986a) method over the

whole permissible parameter range, this method has some appealing properties when

the underlying process is highly persistent or near unit root.

It should be stressed that our MM method does not treat the underlying VAR

process as a collection of M univariate AR processes and then approximates these

scalar processes by the method of Rouwenhorst (1995). While this approach might

seem to be a natural way to extend the method of Rouwenhorst (1995) to a multivariate

setting, it introduces M − 1 additional continuous variables as shown in Galindev and

Lkhagvasuren (2010). In contrast, our proposed method generates a set of discrete

distributions (not a set of discrete processes) using the Rouwenhorst (1995) method

and mix these distributions to target the conditional mean and conditional variance of

each ỹi at each j. Thus, the MM method deals with M ×N∗ conditional distributions

and 2M ×N∗ conditional moments.

Furthermore, unlike the method by Galindev and Lkhagvasuren (2010) which cannot

(unless the shocks have the same persistence) generate a finite-state Markov chain

5In particular, for an AR(1) process yt = ρyt−1 +εt, where |ρ| < 1, εt is i.i.d. N (0, (1− ρ2)σ2) with
σ2 = Var(yt), it can be shown that E(ỹt) = 0 and Var(ỹt) = σ2. More importantly, the conditional
mean and variance of the Markov chain is also independent of the number of grid points: E(ỹt|ỹt−1 =
ȳ(k)) = ρȳ(k) and Var(ỹt|ỹt−1 = ȳ(k)) = (1 − ρ2)σ2. This stands in sharp contrast with the existing
methods (including Tauchen’s (1986a) method) which are very sensitive to the number of grid points
in approximating near unit root processes.
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when adapted for approximating vector autoregressions,6 the moment-matching method

developed in this paper yields a finite-state approximation regardless of the degree of

persistence of the different components of y while using only M state variables (i.e.,

ỹ1, ỹ2, ..., ỹM). This could potentially offer substantial computational gains when solving

functional equations. Finally, the flexibility of the MM method allows us to generalize

it easily to more complex setups such as nonlinear and non-Gaussian VAR processes.

4.2 Probability mass functions

Before constructing the Markov chain, let us introduce the following notation. Consider

a zero-mean AR(1) process with a persistence parameter r and unconditional standard

deviation s. Let x̃(n, r, s) be the n-state symmetric Markov chain process constructed

by the method of Rouwenhorst (1995) to approximate the AR(1) process. Let x̄(n, s) =

{x̄(1)(n, s), x̄(2)(n, s), · · · , x̄(n)(n, s)} denote the grid points and P (n, r) be the probabil-

ity transition matrix of x̃(n, r, s). Suppose that the [row k, column l] element of P (n, r),

pk,l(n, r), denotes the probability that the n-state process switches from x̄
(k)
i (n, s) to

x̄
(l)
i (n, s).

Now consider the k-th row of P (n, r),

pk(n, r) = {pk,1(n, r), pk,2(n, r), · · · , pk,n(n, r)}, (17)

where 1 ≤ k ≤ n. The key observation is that this row can be interpreted as a probabil-

ity mass function associated with the nodes x̄(n, s) = {x̄(1)(n, s), x̄(2)(n, s), · · · , x̄(n)(n, s)}.
6In general, in order to approximate an M -variate process yt given by equation (1), the method

by Galindev and Lkhagvasuren (2010) uses 2M − 1 state variables, of which M − 1 are continuous.
Therefore, their method requires an additional approximation step, M − 1 dimensional numerical
interpolation, when applied to functional equations. As a result, there is no explicit transition matrix
and even the implicit transition probabilities are model-dependent. From a practical point of view, the
method by Galindev and Lkhagvasuren (2010) is difficult to implement due to the large dimensionality
of the problem and the continuous nature of the additional variables which hampers the use of matrix
operations in solving functional equations.
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The mean and the variance of the probability mass distribution are rx̄(k) and (1−r2)s2,

respectively. On the other hand, the grid points x̄(n, s) and the transition matrix

P (n, r) are analytically related to the input variables, n, r, and s.7 Therefore, using

different combinations of grid points and transition matrices constructed by the method

of Rouwenhorst (1995), one can generate a class of probability mass functions with a

wide range of means and variances. We can now construct the Markov chain of the

VAR process in equation (1) by mixing these univariate probability mass functions.

4.3 Markov chain construction

4.3.1 Grid points

For each i ∈ {1, 2, · · · ,M}, the grid points of {ỹ1
i , ỹ

2
i , · · · , ỹ

Ni
i } are given by x̄(Ni, σi).

Specifically,

ȳ
(k)
i = −σi

√
Ni − 1 + 2σi

k − 1√
Ni − 1

(18)

for k = 1, 2, · · · , Ni.

4.3.2 Transition probabilities

Let ρi =
√

1− ω2
i /σ

2
i . Given i, the following four distinct cases are considered for each

j ∈ {1, 2, · · · , N∗}:

1. If µi(j) < ρiȳ
(1)
i , set Hi(j) ≡ p1(Ni, ρi).

2. If µi(j) > ρiȳ
(Ni)
i , set Hi(j) ≡ pNi

(Ni, ρi). In these two cases, the conditional

variance ω2
i is matched while the conditional mean attains the value closest to

µi(j) given the grid points.

7When n = 2, the probability transition matrix is given by P (2, r) =
(

(1 + r)/2 (1− r)/2
(1− r)/2 (1 + r)/2

)
.

For higher values of n, the transition probability matrix is constructed recursively using the elements
of P (2, r). The grid points {x̄(1)(n, s), x̄(2)(n, s), · · · , x̄(n)(n, s)} are given by n equally-spaced points
on the interval [−s

√
n− 1, s

√
n− 1]. See Rouwenhorst (1995) for details.
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3. If µi(j) = ρiȳ
(k)
i for some k, set Hi(j) ≡ pk(Ni, ρi). In this case, both the condi-

tional mean µi(j) and conditional variance ω2
i are matched.

4. If any of the above three conditions is not met, there must be an integer k such

that

ρiȳ
(k)
i < µi(j) < ρiȳ

(k+1)
i . (19)

Then, consider the following mixture distribution on {ȳ(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i }:

p̃k(Ni, ρi) = λpk(Ni, ρi) + (1− λ)pk+1(Ni, ρi), (20)

where λ =
ρiȳ

(k+1)
i −µi(j)

ρiȳ
(k+1)
i −ρiȳ

(k)
i

. The mean and variance of this mixture distribution are,

respectively, µ̃k(ρi) = µi(j) and

ω̃2
k(ρi) = ω2

i + ρ2
iλ(1− λ)

(
ȳ

(k+1)
i − ȳ(k)

i

)2

. (21)

Since 0 < λ < 1, the second term on the right hand side is positive. Therefore,

although the mean of the mixture distribution p̃k(Ni, ρi) hits the target µi(j), the

variance of the distribution is greater than the targeted conditional variance ω2
i .

Given the grid points, |ω̃2
k(ρi)− ω2

i | can be minimized by choosing a value higher

than
√

1− ω2
i /σ

2
i for ρi in equation (20) while, if necessary, adjusting k to satisfy

inequality (19).8 Let p̃k∗(Ni, ρ
∗
i ) be the mixture distribution obtained in such a

manner. Then, setting Hi(j) ≡ p̃k∗(Ni, ρ
∗
i ) matches the conditional mean while

achieving the best possible value for the conditional variance.

8As equation (21) shows, the gap |ω̃2
k(ρi) − ω2

i | decreases with the number of grids, Ni. Thus,
given a sufficient number of grids, the above minimization may be redundant in certain cases. In fact,
experimentation shows that for a moderate number of state space (e.g., Ni = 9), setting Hi(j) ≡
p̃k(Ni, ρi) already provides a reasonable quality of approximation.
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Repeating this procedure for i = 1, 2, · · · ,M , we obtain the probability mass func-

tions {Hi(1), Hi(2), · · · , Hi(N
∗)}Mi=1. The asymptotic validity of the method for ap-

proximating conditional expectations of general nonlinear functions that often arise in

economic models is discussed in Appendix B.

4.4 Extensions

While the procedure above is developed under the assumption of a diagonal covariance

matrix Ω, the proposed method can be easily extended to the case of a non-diagonal

covariance matrix. Suppose now that the underlying continuous-valued process follows

xt = b+Bxt−1 + ηt, (22)

where ηt is i.i.d. (0,Ψ) and Ψ is a non-diagonal matrix.9 Let G be a lower triangu-

lar matrix such that Ω = GΨG−1 is a diagonal matrix. Define the transformations

(Tauchen, 1986b),

xt → G[yt − (IM −B)−1b], (23)

B → A = GBG−1, (24)

and

ηt → Gεt. (25)

Then, we have the same model as in equation (1). After computing the discrete Markov-

chain approximation for this modified model, we reverse the transformations above in

order to obtain the discrete process corresponding to equation (22).

Furthermore, since any stationary AR(p) process can be expressed in a companion

9See also Terry and Knotek II (2011), who extend Tauchen (1986a) to processes with arbitrary
positive-semidefinite covariance structures for the error term.
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form as a VAR(1) process, our method effectively extends the method by Rouwenhorst

(1995) to higher-order scalar autoregressive processes. Another appealing feature of our

method is its flexibility which allows us to deal with possibly nonlinear VAR processes

and targeting additional moments of the conditional distribution such as skewness and

kurtosis.

Below we examine numerically how well the method works in terms of approximating

autoregressive processes for various degrees of persistence of the discrete space. We

show that the MM method outperforms the method by Tauchen (1986a), especially for

processes whose characteristic roots are close to one.

5 Numerical Evaluation

For our main numerical evaluation, we consider the bivariate VAR(1) case (M = 2)

with

εεεt ∼ i.i.d. N


 0

0

 ,

 0.1 0

0 0.1


 (26)

and A = AK0 , where

A0 =

 0.995619 0.005335

0.003557 0.992063

 (27)

and K is a positive integer set to 1, 10 and 100.10 It is straightforward to see that higher

values of K imply lower persistence. As in Tauchen (1986a), we choose nine grid points

for each component: N = N1 = N2 = 9. We also consider another case in which the

state space is much finer: N = 19. Given the trade-off between the approximation of

10The matrix A0 is chosen for comparison purposes. Specifically, when K = 100,

A = A100
0 =

(
0.7 0.3
0.2 0.5

)
.

Therefore, the vector autoregressive process coincides with the one considered in Tauchen (1986a).
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unconditional and conditional variance (see footnote 3), we set m = 3 which, according

to Tauchen (1986b), works well in practice.

5.1 Approximation accuracy

Let {ỹt}τt=1 denote the simulated time series either from the Markov chain approxi-

mation by Tauchen (1986a) or the method proposed in this paper. The accuracy of

the two approximations can then be examined by estimating the key parameters of the

initial process in equation (1). The parameters of interest are the unconditional vari-

ances of y1 and y2 (denoted by σ2
1 and σ2

2), the correlation coefficient between y1 and

y2, and the persistence measures 1 − ξ1 and 1 − ξ2, where ξ1 and ξ2 are the two roots

(eigenvalues) of matrix A. As in Tauchen (1986a) and Tauchen and Hussey (1991), the

simulated counterpart of A, Â, is obtained by fitting the linear autoregressive model

in equation (1) to {ỹt}τt=1. The evaluation of the approximation accuracy is based on

1,000 Monte Carlo replications of length τ = 2, 000, 000.11 Tables 1 and 2 report the

root mean squared errors (RMSE) as well as the biases and standard deviations of these

parameters relative to their true values.

The results suggest that our MM method dominates the method by Tauchen (1986a)

in terms of bias and RMSE for all parameters of interest across all degrees of persistence.

For example, for the least persistent case (K = 100), the relative bias for N = 9 of the

estimated 1−ξ1, σ
2
1 and σ2

2, using data generated by Tauchen’s (1986a) method, is 3.5%,

6.6% and 4.4%, respectively, whereas the corresponding biases for the MM method are

0.9%, -0.8% and -0.5%. For the moderate degree of persistence (K = 10), the biases for

the method of Tauchen (1986a) become -19.3%, 35.6% and 28.7%, while those of the

11Note that the length of the time series is much larger than that considered by Tauchen (1986a).
The main reason is that, for smaller number of observations, Tauchen’s method fails to generate
time-varying data for the examples considered here and, thus, renders the numerical evaluation of the
methods impossible. Put differently, for shorter time series, the numerical results will be much more
favorable for the method developed in this paper.
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MM method remain almost constant at 1.7%, -0.7% and -0.9%, respectively. However,

the advantages of our method become particularly striking for the high persistence case

(K = 1). For this degree of persistence, Tauchen’s (1986a) method fails to produce any

time variation in the approximate Markov chain process, which is consistent with our

theoretical results in Proposition 1. For example, the average probability of switching

from the current state to any other state (with N = 9) is only 0.03% for the method by

Tauchen (1986a). This results in substantially large biases and inflated RMSEs for the

parameters of interest. At the same time, our method continues to perform extremely

well with very low biases and RMSEs. Increasing the number of grid points from 9 to

19 improves the performance of Tauchen’s (1986a) method in the less persistent cases

but its numerical properties in the highly persistent case remain rather poor.

Kopecky and Suen (2010) prove that the invariant distribution of the Markov chain

constructed by Rouwenhorst’s (1995) method is a binomial distribution. A direct conse-

quence of this result is that the invariant distribution of the Markov chain constructed

by Rouwenhorst’s (1995) method converges asymptotically (as the number of states

goes to infinity) to a normal distribution. This is not surprising because the method

by Rouwenhorst (1995) targets only the first two conditional moments of the underly-

ing process. Therefore, it might be instructive to see how our method and Tauchen’s

(1986a) method approximate the higher-order moments (skewness and excess kurtosis)

of the continuously-valued process. The results (not reported here to conserve space)

show that the higher-order moments of the two methods do not differ much when the

persistence is low. When persistence is high, the MM method outperforms (often sub-

stantially) Tauchen’s method by generating skewness and excess kurtosis much closer

to their true values. In highly persistent cases, the method by Tauchen (1986a) often

fails to generate any variation in some of the components of ỹ (see Proposition 1) and

thus their higher-order moments are not defined.
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5.2 Conditional moments

The evaluation of the approximation accuracy in Tables 1 and 2 is based on uncon-

ditional moments of the underlying and simulated processes. Potentially important

information about the quality of the approximation is also contained in the conditional

moments. Hence, it would be interesting also to report the first two moments, condi-

tional on the state of the process.

Given the constructed grid points and transition probabilities, the implied condi-

tional mean and variance are µ̂i(j) =
∑Ni

l=1 hi(j, l)ȳ
(l)
i and ω̂2

i (j) =
∑Ni

l=1 hi(j, l)(ȳ
(l)
i −

µ̂i(j))
2, where i ∈ {1, 2, · · · ,M} and j ∈ {1, 2, · · · , N∗}. Then, for each i and j, the dis-

tances between the targeted and the generated conditional moments can be measured

by |µ̂i(j)− µi(j)| and |ω̂2
i (j)/ω

2
i − 1|. To assess the overall accuracy of the conditional

moments, we consider the weighted averages of these distances across the N∗ states

using the frequencies of each state as weights. The weights are constructed from a sim-

ulated process of length τ = 2, 000, 000. The results are presented in Table 3 and show

that the MM method performs extremely well across all parameterizations. Again, this

is not surprising since, by construction, this method targets the first two conditional

moments of the underlying process. More importantly, the results show that calculating

the transition probabilities using the conditional distribution, as in Tauchen (1986a),

generates a substantial bias in the conditional moments. This numerical finding lends

support to our theoretical result in Proposition 1.

5.3 Solving functional equations

Next, we consider the performance of the MM and Tauchen’s methods for solving

functional equations. For ease of presentation, we consider the following simple model.12

12For studies that use a finite-state Markov chains for solving a dynamic model with a multivariate
autoregressive processes, see, for example, Tauchen (1986b), Tauchen and Hussey (1991), Burnside
(1999) and Bayer and Juessen (2012).
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Consider a firm whose per-period profit is denoted by z. Suppose that each period the

firm is dissolved at an exogenous rate d < 1. Then, the firm’s (effective) time discount

factor is given by δ = 1−d
1+r

, where r > 0 is the interest rate. We assume that z and δ

follow a bivariate VAR(1) process denoted by F , i.e.

Pr(zt+1 < z′, δt+1 < δ′|zt = z, δt = δ) = F (z′, δ′|z, δ). (28)

Then, given the current state of the firm (z, δ), the expected present value of its profits

is defined by the following functional equation:

V (z, δ) = z + δ

∫
V (z′, δ′)dF (z′, δ′|z, δ). (29)

In the numerical implementation, we assume that z = y1 and δ = 1
1+exp(y2)

, where

y1 and y2 evolve according to equation (1). The following values are considered for

the parameters of equation (1): a1,1 = 0.990, a1,2 = 0, a2,1 = 0.083, a2,2 = 0.95 and

ω1,1 = ω2,2 = 1. After solving equation (29) using the transition matrices constructed

by the two methods, we simulate the time series of V for τ = 2, 000, 000 periods.

To evaluate the quality of the approximation, we compute the mean, standard devia-

tion and autocorrelation of {Vt}τt=1. The results are presented in Figure 1. Figure 1

shows that the MM method is less sensitive to the number of grid points compared with

Tauchen’s method. More importantly, as the number of grid points increases, the mean,

standard deviation and autocorrelation of {Vt}τt=1 generated by Tauchen’s method ap-

proach those obtained by the MM method. This suggests that the numerical solution

to the functional equation obtained by the MM method describes more accurately the

underlying dynamics of the value of the firm.
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5.4 Computational implications

These numerical results have important implications for the computational costs asso-

ciated with the different approximation methods. First, it should be noted that for the

purpose of demonstrating how the quality of the approximation changes as the number

of states increases, we focus on the process that can be approximated by Tauchen’s

method for the grid points considered here. Therefore, for the processes that have

roots much closer to (but less than) one, Tauchen’s method requires an extremely large

number of states in order to achieve the level of accuracy comparable to that obtained

by the new method with far fewer observations. This means that, under Tauchen’s

method, as the persistence goes up, the number of grid points must increase sharply.

Consequently, the computation involved becomes more time consuming or infeasible

(see Proposition 1). For example, given equation (1), the computation time for solving

linear equations is approximately proportional to (N1 × N2 × · · · × NM)3 (Burnside,

1999). Therefore, depending on the exact nature of the problem, this curse of dimen-

sionality will be even more severe for non-linear dynamic models. In contrast, the

accuracy of approximation of the MM method is less sensitive to the number of grid

points. For instance, Figure 1 shows that the quality of the approximation obtained by

the MM method using N1 = N2 = 9 is much higher than the one obtained by Tauchen’s

method using N1 = N2 = 49. More importantly, unlike Tauchen’s method, the MM

method can always generate a time-varying process.

6 Conclusion

This paper proposes a new method for approximating vector autoregressions by a finite-

state Markov chain. The main idea behind this method is to construct the Markov

chain by targeting a set of conditional moments of the underlying process rather than
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calculating the transition probabilities directly from an assumed distribution, centered

around the first conditional moment, as in the existing methods. Our moment-matching

method yields accurate approximations for a wide range of the parameter space, without

relying on a large number of grid points for the state variables. The improved approx-

imation accuracy of the proposed method is expected to have important quantitative

implications for solving dynamic stochastic models as well as multivariate functional

equations.
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APPENDICES

A Proof of Proposition 1

Let (ỹ
(n)
1 , ỹ

(n)
2 , · · · , ỹ(n)

t , · · · , ỹ(n)
T ) be a realization of the n-state Markov chain of length

T approximated over n grid points. In what follows, we keep n fixed and perform the

analysis as T → ∞. The VAR model that describes the dynamics of the underlying

continuous-valued process is given by

yt = Ayt−1 + εεεt (A.1)

where εεεt is i.i.d. N (0,Ω), Ω is a diagonal matrix with an i-th diagonal element ω2
i

and Σ is the unconditional covariance matrix of yt with an i-th diagonal element σ2
i .

Since we are interested in the behavior of highly persistent processes, it is convenient

to reparameterize the matrix A as local-to-unity (see Phillips, 1987, for example). In

particular, the matrix A is reparameterized as a function of T as (Elliott, 1998)

A = IM −
C

T
, (A.2)

where C = diag(c1, c2, ..., cM) with ci > 0 being fixed constants for all i = 1, ...,M .13

This is an artificial statistical device in which the parameter space for each individual

process is a shrinking neighborhood of one as T increases. This parameterization proves

to be very useful for studying the properties of strongly dependent processes as T →∞.

First note that using this reparameterization, the innovation variance matrix for the

13We can also allow for non-zero off-diagonal elements of C (see Gospodinov, Maynard and Pe-
savento, 2011) provided that this does not induce nonstationarity and preserves the stability of the
process. The proof that we present below goes through for this more general specification but at the
cost of more complicated notation.
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continuous-valued process can be expressed as

Ω =
CΣ + ΣC ′

T
− CΣC ′

T 2
. (A.3)

and the variance for the i-th innovation is

ω2
i =

2ciσ
2
i

T
− c2

iσ
2
i

T 2
. (A.4)

For Tauchen’s (1986a) method, the probability that the process yi switches from state

j (corresponding to grid point ȳ
(j)
i ) to any other state is given by

1− π(i)
j,j = 1− Pr

(∣∣∣∣∣εi − ciȳ
(j)
i

T

∣∣∣∣∣ ≤ 24i

)
, (A.5)

where π
(i)
j,j is the j-th diagonal element of the i-th Ni × Ni block of matrix Π and

4i denotes the distance between the grid points. As T → ∞, the persistence of the

process increases and 0 < ȳ
(j)
i /T < 24i (for all j) with probability approaching one.14

Therefore,

1− π(i)
j,j ≤ 1− Pr (|εi| ≤ 24i) = 2

(
1− Φ

(
24i√

2ciσ2
i /T − c2

iσ
2
i /T

2

))

and thus,

1− π(i)
j,j

ω2
i

<
2
(

1− Φ
(
4i

√
2T

σi
√
ci

))
2ciσ2

i /T − c2
iσ

2
i /T

2
(A.6)

for all j. Since

Φ

(
4i

√
2T

σi
√
ci

)
→ 1 as T →∞ (A.7)

14Note that ∆i is fixed. While one can reduce the speed of the convergence by making m a decreasing
function of the persistence, such an adjustment will severely distort the unconditional variances. See
footnote 3.
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by l’Hopital’s rule,

lim
T→∞

1− π(i)
j,j

ω2
i

=
4i

2σ3
i c

3/2
i π1/2

1

(1/T 3/2 − ci/T 5/2) exp(2ci42
i T/σ

2
i )

= 0. (A.8)

Hence, since the limiting behavior of the conditional variance of the Markov-chain

approximation is determined by the limiting behavior of 1− π(i)
j,j ,

ω̃2
i

ω2
i

→ 0 as T →∞. (A.9)

B Asymptotic Validity of the Method

In this Appendix, we establish the asymptotic validity of the proposed moment-matching

method for approximating conditional expectations of nonlinear functions and solving

functional equations. For notational simplicity, we present the results for a scalar

continuous-valued process with conditional density f(y′|y) although the results can be

extended to the vector case f(y|x), where y ∈ RM and x = (y−1, ...,y−L) ∈ RM ·L.

Consider the function

eg(y) =

∫
g(y′)f(y′|y)dy, (B.1)

where g(y) ∈ C0[a, b] and C0[a, b] denotes the space of continuous functions on [a, b]

with a < b and both a and b are finite. Assume that the support of f(y′|y) is a

subset of [a, b] × [a, b] and f(y′|y) is jointly continuous in y′ and y. Let ỹ denote

the n-state Markov-chain approximation proposed that takes on the discrete values

{ȳ(1), ȳ(2), · · · , ȳ(n)} and transition probabilities π
(n)
j,k = Pr(ỹ′ = ȳ(k)|ỹ = ȳ(j)). Let

egn(y) =
n∑
k=1

g(ȳ(k))π
(n)
j,k . (B.2)
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Following Tauchen and Hussey (1991), we need to show the uniform convergence result

sup
y∈[a,b]

|egn(y)− eg(y)| p→ 0 (B.3)

as n→∞.

The pointwise convergence of the conditional distribution of the Markov chain ỹ′

given ỹ = ȳ(j) to the conditional distribution of y′ given y = µ(j) can be inferred

from noting that the transition probability matrix for our method can be expressed

in a polynomial form (see Kopecky and Suen, 2010) and by appealing to the Stone-

Weierstrass approximation theorem. Finally, the condition that egn(y) is uniformly

bounded converts the pointwise convergence into uniform convergence. As a result,

egn(y) is equicontinuous which is a sufficient condition for the uniform convergence

result

sup
y∈[a,b]

|egn(y)− eg(y)| p→ 0 as n→∞. (B.4)

C Targeting Higher-Order Moments

In some applications, the normality assumption of the error term in equation (1) may

seem restrictive. Unfortunately, accounting for non-Gaussian features (for example,

non-zero skewness and excess kurtosis) in the conditional distribution of the underlying

process appears to be highly non-trivial. To see the source of the problem, note that the

innovation of the n-state scalar Markov process generated by the Rouwenhorst (1995)

method is the sum of innovations of n − 1 independent, two-state Markov processes

and as the number of grid points for each component of the vector autoregressive

process goes to infinity, the conditional skewness and excess kurtosis of the components

approach zero. Thus, in order to target non-zero conditional skewness and excess

kurtosis for any yi, one has to consider an alternative way of constructing the probability
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transition functions Hj(i), j ∈ {1, 2, · · · , N∗}.

It turns out that targeting higher-order conditional moments requires a much finer

state space. The reason is that due to the finite-state approximation itself, the innova-

tion of the finite-state process takes on a finite number of values. For example, when

the conditional mean is close to the upper and lower bounds of the grid, the conditional

distribution function is highly asymmetric and the overall skewness of the error term

is distorted. Moreover, when the persistence is high, the probability that the current

state repeats itself increases. As a result, the innovation will be highly concentrated

at zero and jumps to another state within a finite distance with low probability, which

gives rise to a leptokurtic distribution. Hence, non-zero skewness and excess kurtosis

inherently arise in any finite-state approximation. Therefore, to obtain a reasonable

approximation of higher-order conditional moments such as skewness and kurtosis, one

has to employ a much larger number of grid points. Keeping this in mind, we make

the following modifications to our procedure in Section 4.3.2 that allow us to target

skewness and excess kurtosis.

C.1 Conditional skewness

To generate non-zero conditional skewness, or equivalently, asymmetric conditional dis-

tribution, we use the first row of the transition matrix P (ñ)(ρ):

p
(ñ)
1 (ρ) = (p

(ñ)
1,1 (ρ) p

(ñ)
1,2 (ρ) · · · p(ñ)

1,ñ(ρ)), (C.1)

where ñ ≥ 3. Since this probability mass distribution is associated with the lowest

discrete value of the scalar AR(1) process, it is positively skewed unless ρ ≤ 0. Moreover,

when ρ > 0, the skewness increases with ρ.

Now let us consider n grid points constructed by Rouwenhorst’s (1995) method
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for an autoregressive process with unconditional variance σ2
i : [z(1), z(2), · · · , z(n)] with

n > ñ. We construct the transition matrix associated with these grid points using

p
(n)
1 (ρ). Specifically, we set the i-th row of the n× n matrix Q(n) to

qi =

 (0′i−1 p
(ñ)
1 (ρ) 0′n−ñ−i+1) if i < n− ñ,

(0′n−ñ p
(ñ)
1 (ρ)) otherwise,

(C.2)

where 0i denotes an i× 1 zero vector.15 It can be seen that the transition matrix Q(n),

along with the grid points, yields a scalar Markov chain whose conditional distribution

has the same skewness as the mass distribution function (C.1). Therefore, to construct

the probability transition functions Hi(j) as in Section 4.3.2, one can use Q(n) instead

of P (n).

C.2 Conditional kurtosis

To generate a conditional distribution with excess kurtosis, one can use a mixture

distribution approach. More specifically, let p̃
(ñ)
1 and p̃

(ñ)
2 be two discrete probability

distributions defined over ñ equally-distanced grid points that have a common mean

but different variances σ2
1 and σ2

2. Consider now the following mixture:

p(ñ) = λ̃p̃
(ñ)
1 + (1− λ̃)p̃

(ñ)
2 , (C.3)

where 0 ≤ λ̃ ≤ 1. Setting both σ1/σ2 and 1 − λ̃ to low values would result in excess

kurtosis for the conditional distribution p(ñ). Then, substituting this conditional dis-

tribution for p
(ñ)
1 (ρ) in (C.2) gives the i-th (i = 1, 2, ..., n) row of the desired transition

matrix Q(n).

15Using the row qi, one can target the negative skewness with the same absolute value by setting
qi,k = qi,n−k+1 where k ∈ {1, 2, ..., n}.
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Table 1. Approximation Accuracy: RMSE

σ̂2
1 σ̂2

2 Corr(ỹ1, ỹ2) 1− ξ̂1 1− ξ̂2

K N Tau. MM Tau. MM Tau. MM Tau. MM Tau. MM

100 9 0.066 0.008 0.044 0.005 0.017 0.006 0.035 0.010 0.003 0.001

19 0.036 0.002 0.025 0.002 0.002 0.002 0.003 0.003 0.001 0.001

10 9 0.356 0.010 0.287 0.011 0.047 0.006 0.193 0.019 0.121 0.003

19 0.278 0.008 0.195 0.006 0.004 0.003 0.008 0.008 0.004 0.003

1 9 0.993 0.025 0.215 0.021 NA 0.010 216.099 0.032 0.993 0.010

19 0.634 0.025 0.585 0.020 0.079 0.009 0.963 0.026 0.748 0.010

Notes. This table reports the root mean squared error (RMSE) of the key parameters

of the bivariate VAR(1) model relative to their true values. (See Section 5 for de-

tails). “Tau.” denotes the approximation obtained by the method of Tauchen (1986a)

whereas “MM” denotes the Markov chain approximation method developed in this pa-

per. Higher values of K imply less persistence. N stands for the number of grid points

used for each component of y. σ̂2
i denote the simulated unconditional variance of ỹi

where i ∈ {1, 2}. Corr(ỹ1, ỹ2) is the correlation coefficient between ỹ1 and ỹ2. ξ̂1 and ξ̂2

are the eigenvalues of matrix Â. NA indicates that, in some cases, there is no variation

in ỹ1 and, therefore, σ̂2
1 = 0 and the correlation coefficient Corr(ỹ1, ỹ2) is not defined.

The fact that the RMSE of σ̂2
1 relative to its true value is very close to 1 indicates that,

for most of the Monte Carlo experiments, there is no variation in ỹ1.
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Table 2. Approximation Accuracy: Bias and Standard Deviation

σ̂2
1 σ̂2

2 Corr(ỹ1, ỹ2) 1− ξ̂1 1− ξ̂2

K N Tau. MM Tau. MM Tau. MM Tau. MM Tau. MM

Bias

100 9 0.066 -0.008 0.044 -0.005 -0.016 -0.005 0.035 0.009 0.003 0.000

19 0.036 -0.000 0.025 0.000 0.000 0.000 0.002 0.000 0.000 -0.000

10 9 0.356 -0.007 0.287 -0.009 -0.046 -0.005 -0.193 0.017 -0.121 0.001

19 0.277 -0.000 0.195 -0.000 0.003 -0.000 0.002 0.000 -0.003 0.000

1 9 -0.993 -0.001 -0.167 -0.006 NA -0.005 67.092 0.018 -0.993 0.001

19 0.604 -0.001 0.578 -0.001 -0.071 -0.001 -0.963 0.002 -0.748 -0.000

Standard Deviation

100 9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.001 0.001

19 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.001 0.001

10 9 0.010 0.007 0.007 0.006 0.003 0.003 0.006 0.008 0.003 0.003

19 0.010 0.008 0.007 0.006 0.003 0.003 0.008 0.008 0.003 0.003

1 9 0.025 0.025 0.135 0.020 NA 0.009 205.42 0.026 0.001 0.010

19 0.192 0.025 0.091 0.020 0.035 0.009 0.005 0.026 0.005 0.009

Notes. This table reports the bias and the standard deviation of the parameters relative

to their true values. For the bias, the numbers that are much smaller than 0.0005

(0.05%) in absolute terms are denoted by 0.000 with their appropriate signs. See also

notes to Table 1.
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Table 3. The Distance between Generated and True Conditional Moments

µ̂1 − µ1 µ̂2 − µ2 ω̂2
1/ω

2
1 − 1 ω̂2

2/ω
2
2 − 1

K N Tau. MM Tau. MM Tau. MM Tau. MM

100 9 0.0010 0.0002 0.0009 0.0001 0.1164 0.0000 0.0599 0.0000

19 0.0000 0.0000 0.0000 0.0000 0.0425 0.0000 0.0233 0.0000

10 9 0.0179 0.0001 0.0041 0.0001 0.0524 0.0117 0.3428 0.0005

19 0.0010 0.0000 0.0001 0.0000 0.3201 0.0001 0.1634 0.0000

1 9 0.0163 0.0000 0.0240 0.0000 1.0000 0.0217 0.9852 0.0032

19 0.0171 0.0000 0.0139 0.0000 0.9515 0.0010 0.4298 0.0000

Notes. This table reports the distance between generated and true conditional mo-

ments. Specifically, for i ∈ {1, 2}, the numbers in column µ̂i − µi, are the weighted

average of |µ̂i(j)−µi(j)| which uses the frequencies of states j = 1, 2, ..., N∗ as weights.

The frequencies are constructed using a simulated process of length τ = 2, 000, 000.

Similarly, the numbers in column ω̂2
i /ω

2
i − 1 for i ∈ {1, 2} are the weighted average of

|ω̂2
i (j)/ω

2
i − 1| which uses the same frequencies as in columns µ̂i − µi. The numbers

that are smaller than 0.00005 are denoted by 0.0000.
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Figure 1: Simulated Moments of the Value of a Firm
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Notes: The figure plots the key simulated moments of the value of a firm, V , defined
in section 5.3. The horizontal axis is the number of grid points used for each of the
two underlying shocks. The moments are calculated using a simulated process of τ =
2, 000, 000 periods. The upper and middle panels plot the mean and the standard
deviation of {Vt}τt=1, while the lower one plots the autocorrelation of the simulated
series, corr(Vt, Vt+1). The solid line connects the values generated by the moment-
matching method developed in this paper, while the dashed line links those generated
by Tauchen’s method.
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