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Abstract

The paper develops a banking framework where a welfare com-
parison is made between non-tradable demand deposit and equity con-
tracts. Contrary to the existing literature that relies heavily on smooth
preferences assumption to justify the liquidity insurance superiority of
the ‘run-prone’ debt contracts over the ‘run-free’ equity contracts, the
paper shows that when aggregate consumption uncertainty is intro-
duced, the welfare dominance of deposit contracts emerges for a sim-
pler preference structure as deposit contracts offer more risk-sharing
opportunities. The model illustrates that such uncertainty creates a
high dispersion between the allocations that can be attained by trading
in the secondary market, and therefore the equity contract provides ex
ante less risk-sharing to risk-averse consumers than a tailored-made
debt contract.
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1 Introduction

In the theoretical literature on financial intermediation pioneered by Bryant
(1980) and Diamond and Dybvig (1983), demand deposit contracts’ ability
to provide optimal risk-sharing against consumers’ private consumption con-
tingencies at the expense of an illiquid portfolio of assets has been extensively
examined, and alternative contractual arrangements have been discussed.
Among these alternative contractual arrangements offered by intermediaries
is Jacklin (1987)’s proposal of equity contracts that attain the optimal level
of risk-sharing as a unique equilibrium. That is, financial intermediaries that
are entirely financed by equity and permit interim trade of equity claims can
also provide consumers with the optimal level of liquidity without the possi-
bility of failure, unlike non-tradable deposit contracts where intermediaries
can default on their debt when runs are triggered. However, the existence
of these free-of-default alternative contractual forms does not justify the
use of deposit contracts in liquidity provision. Therefore, in the literature
on equity contracts initiated by Jacklin (1987), it is generally argued that
consumption preferences have an important role to play in the ex-ante wel-
fare dominance of demand deposit contracts in the Diamond-Dybvig type
banking frameworks.

This paper examines the equity contracts approach on financial interme-
diation and shows that the welfare superiority of the demand deposit over
equity contracts does not necessarily rely on consumers’ preference struc-
ture, but it can also be substantiated in a simple intertemporal banking
environment characterised by uncertainty about consumers’ aggregate de-
mand for liquidity. In this framework, aggregate liquidity uncertainty is
introduced by considering that consumers’ preferences are random at the
time period when financial contracts are designed. As such, intermediaries
can only make conjectures about the actual realisation of the future aggre-
gate demand for liquidity from an assumed distribution. In this setup, the
paper examines the different characteristics of the two contractual arrange-
ments and discusses the contracts’ optimality by evaluating their welfare
performance.

The seminal paper by Diamond and Dybvig (1983) has provided the
building blocks of recent theoretical models in explaining how demand de-
posit contracts offered by financial intermediaries provide liquidity insurance
to consumers and consequently improve on the competitive outcome. Specif-
ically, in an environment where aggregate demand for liquidity is certain, by
pooling consumers’ endowments, intermediaries can fully diversify away pri-
vately observed consumption shocks, uncorrelated across consumers. Hence,
through the asset transformation function, intermediaries can attain the op-
timal risk-sharing allocation and provide risk-averse consumers with the de-
sired liquidity. This liquidity provision, however, leaves intermediaries prone
to runs when an extrinsic factor affects depositors’ beliefs about the banks’
solvency. Therefore, optimal risk-sharing comes at the cost of an illiquid
portfolio of assets which leaves banks prone to default.

In the absence of uncertainty about the economic fundamentals, banks’
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vulnerability to runs has been extensively discussed in the literature, and the
welfare implications of policies that prevent or mitigate the effects of bank
runs have been widely examined. The most common policies discussed in the
literature that enhance public confidence about the soundness of the frac-
tional reserve banking system and avert liquidity problems include the role
of a central bank acting as a lender of last resort (e.g. Smith (1984), Allen
and Gale (2000)), suspension of demand deposits convertibility schemes (e.g.
Chari and Jagannathan (1988), Chari (1989), Wallace (1990)), and deposit
insurance schemes (e.g. Freeman (1988), Hazlett (1997)). Another strand
of literature has been focused on the design of ‘run-proof’ deposit contracts.
In particular, Green and Lin (2000, 2003) show that a deposit contract can
be designed to implement the ex-ante efficient allocation as a unique equi-
librium when the payoffs specified by the contract are contingent on deposi-
tors’ reported preferences which are verifiable but cannot be falsified. When
depositors are served on a first-come first-served basis, such distribution
mechanism of banks’ resources is shown to guarantee truthful revelation of
depositors’ individual consumption preferences and the inefficient bank-run
equilibrium never arises. Peck and Shell (2003) also consider a distribution
mechanism such that early withdrawals depend on the withdrawal history
when a sequential service constraint is in place but, unlike Green and Lin
(2000, 2003), depositors queue outside the bank only if they want to with-
draw and cannot observe their position in the line. In this setting, it is
shown that there is a unique equilibrium where bank runs can occur with a
positive probability.

An alternative contractual arrangement to demand deposit contracts in-
troduced by Jacklin (1987) considers the allocations that can be achieved
by a ‘banking firm’ which issues equity shares rather than debt in return for
consumers’ endowment (or equity contracts) that can be traded in an ex-
post secondary market. In a Diamond-Dybvig setup where consumers have
corner preferences, Jacklin (1987) shows that tradable equity contracts are
an attractive alternative to deposit contracts as they provide optimal risk-
sharing opportunities to depositors against private consumption shocks and
eliminate the bank run equilibrium. However, when consumers are consid-
ered to have smooth consumption preferences over time, deposit contracts
are the dominant contracts in terms of welfare when incentive constraints
are not violated and the optimum risk-sharing equilibrium can be attained.

The assumption of smooth preferences coupled with no aggregate un-
certainty has also been widely adopted in the literature in evaluating the
liquidity risk-sharing performance of these two contractual arrangements. In
particular, introducing uncertainty about the fundamentals in their attempt
to explain bank runs as triggered by interim information that depositors re-
ceive about the impending state of the economy, Jacklin and Bhattacharya
(1988) find that deposit contract can be the welfare dominant type of con-
tract. In a similar model, Alonso (1996) reaches the same conclusion even
when banks offer ‘run-proof’ contracts by taking into account the worst
possible realisation of the interim information about the state of the fun-
damentals in the contract design. Haubrich (1988) and Haubrich and King
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(1990) make a distinction between liquidity and income risk where they
demonstrate that the deposit contract’s comparative advantage over an eq-
uity contract is in providing liquidity risk-sharing, while Sussman (1992)
argues that government intervention in the secondary market can achieve
the optimal risk-sharing allocation. Departing from the welfare comparison
between the two contractual forms, Gorton and Pennacchi (1990) argue that
deposit contracts provide a mechanism to protect uninformed agents being
exploited by coalitions of informed agents about the impending state of the
economy in the secondary market. In equilibrium, they demonstrate that
intermediaries issue both debt and equity contracts where informed agents
select to hold equity and uninformed agents select to hold debt.

Thus, it is evident that the results in the literature on the welfare domi-
nance of deposit contracts rely heavily on the assumed preference structure.
Following Jacklin (1987)’s argument, the ex-ante welfare inferiority of the
equity contracts under smooth preferences is attributed to the restriction in
the design of the contract that consumers have the same wealth prior to trade
in the secondary market (i.e. the dividend payment). Under smooth prefer-
ences, this results in a loss of expected utility in comparison to tailored-made
incentive compatible allocations under demand deposit contracts, as differ-
ent types of consumers have different valuation of consumption in different
time periods. However, this distinction between deposit and equity con-
tracts becomes irrelevant in the case of corner preferences where consumers
are assumed to consume only once in their lifetime.

The model developed in this paper is based on Diamond and Dyb-
vig (1983) formulation of financial intermediation, and it shows that non-
tradable deposit contracts can be ex ante welfare dominant in the presence
of aggregate consumption uncertainty and without relying on the commonly
used smooth preferences assumption. In contrast to the existing literature,
the model demonstrates that when the aggregate demand for liquidity is
not ex ante known, deposit contracts can offer more liquidity insurance to
risk-averse consumers and dominate in terms of welfare even under a more
restrictive preference structure such as corner preferences. In particular, it is
assumed that the fraction of early withdrawers is random so that banks can
only make inferences about the aggregate early withdrawal demand from
an assumed distribution by pooling depositors’ endowment, provided that
incentives are not distorted due to extrinsic factors. In the presence of un-
certainty at the time period when contracts are designed, only second-best
allocations can be attained by either contract. Examining the distinguishing
features of the two contracts, the attributes that impose tighter constraints
to the intermediaries’ planning problem are identified, and conclusions are
made with respect to the welfare performance of the two contractual ar-
rangements. Indeed, it is shown that a common dividend payment un-
der aggregate consumption uncertainty imposes ex-ante tighter constraints
on intermediaries’ planning problem. These constraints can generate large
variations in the market-clearing price for ex-dividend shares, and conse-
quently large variations in the final equilibrium consumption allocations. It
is demonstrated that the equity contract is dominated by a deposit contract
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because it offers less liquidity insurance in the state of the world that is
mostly wanted by risk-averse depositors, and more liquidity insurance when
is least desirable. Following Wallace (1988) and similarly to the existing
literature, depository claims contrary to equity claims, are not tradable so
that ex-post arbitrage opportunities do not arise in the model. Lastly, the
importance of the assumed underlying technology structure in concluding
about the welfare dominance of the two contracts is highlighted.

Although the paper focuses on the welfare analysis of financial inter-
mediaries with different capital structure, the results can also be extended
to welfare comparison between alternative channels of liquidity provision.
The contractual arrangements considered in the paper can be interpreted as
depository intermediaries that raise capital by issuing non-tradable deposit
contracts such as commercial banks and thrifts, and non-depository interme-
diaries that issue tradable equity claims such as mutual funds. Alternatively,
it can be viewed that liquidity is supplied in the economy indirectly through
depository intermediaries, or directly by trade of shares of firms with a pre-
determined dividend policy and access to the productive investments in the
economy. As such, the results of the paper provide a welfare evaluation
of consumption allocations attainable under different configurations of the
financial system of an economy.

The rest of the paper is structured as follows. Section 2 describes the
model and the benchmark case of full information. Section 3 analyses the
optimal form of the demand deposit and equity contracts. The welfare com-
parison of these two contracts is described in section 4, and the conclusion
is presented in section 5.

2 The Model

The banking environment in this model is similar to Diamond and Dybvig
(1983) framework, where uncertainty about depositors’ early withdrawal
demand is introduced as in Allen and Gale (2005).

Consumers and Preferences: There is a single homogeneous commodity
in the economy that can be used for consumption and investment, and three
dates indexed by t = 0, 1, 2. There is a continuum of measure one of ex-
ante identical consumers born at date 0 with an endowment of one unit of
the commodity, and nothing thereafter. Consumers receive a ‘privately ob-
served’ liquidity shock at date 1 and may become either impatient consumers
with probability π ∈ (0, 1), or patient consumers with probability (1 − π).
The liquidity shock affects consumers’ preference structure. Consumers are
assumed to have corner preferences such that impatient consumers derive
utility only from the consumption of the commodity at date 1, whereas pa-
tient consumers only from consumption at date 2. Expected utility is given
by

V (C1, C2;π) = πU(C1) + (1 − π)U(C2) (1)

where Ct denotes consumption at date t = 1, 2. The utility function U(Ct)
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is twice continuously differentiable with U ′′(Ct) < 0 < U ′(Ct) and satisfies
the Inada conditions.

Similar to Allen and Gale (2005), aggregate uncertainty is modelled by
assuming that the preference shock π is a random variable that takes two
possible values 0 < πL < πH < 1 with respective probabilities q and 1 − q.
The distribution of the liquidity shock is common knowledge at date 0 and
uncertainty is resolved after consumption and investment decisions have
been made at date 1. The liquidity shock is independently and identically
distributed across consumers so that, from the law of large numbers, π also
represents the proportion of impatient consumers in the economy. Therefore,
there is ex-ante uncertainty about the aggregate demand for liquidity as the
fraction of consumers who turn out to be either type is random.

Technologies: There are two risk-free technologies available to all con-
sumers in the economy; a short-term and a long-term technology. The short-
term technology is a one-period storage technology with a return of 1 unit
at date t + 1 for every unit of the commodity invested at date t = 0, 1.
The long-term technology is a two-period technology with a certain return
of R > 1 units for every unit of the commodity invested at date 0. If the
long-term productive technology is interrupted at date 1, it yields a return
equal to the return of storage.

Intermediation and Contracts: As an alternative to the investment in
the above technologies, consumers can deposit their endowment in banks
which are assumed to have access to all the technologies described above.
The banking system consists of a large number of identical banks, perfectly
competing on the terms of the contracts offered to consumers at date 0.
Hence, without loss of generality, the analysis focuses on the contractual
relationship between consumers and a representative financial intermediary
that maximises consumers’ expected utility subject to constraints. The rep-
resentative intermediary is assumed to be subject to a sequential service
constraint such that depositors are served on a first-come, first-served basis.
As such, the intermediary cannot extract any information about consumers’
individual consumption preferences which remains private information, and
the introduction of incentive compatibility constraints is required to ensure
truthful revelation of consumers’ preferences. In addition, due to the un-
certainty about π when contracts are designed, the aggregate demand for
liquidity (i.e. early withdrawals) is not verifiable, and therefore, contracts
that offer payments at date 1 contingent on the realisation of π are not
enforceable. The representative bank can offer either a menu of demand de-
posit contracts or an equity contract to the consumers at date 0 in return for
their endowment. For each contract, the bank is obliged to pay the amounts
specified in the contract.

A menu of demand deposit contracts gives the right to consumers to
withdraw either at date 1 or 2. Being unable to distinguish consumers’
individual preferences, the bank designs an incentive-compatible menu of
deposit contracts such that consumers self-select the payment designed for
their consumption profile once the liquidity shock is realised. In addition,
because the uncertainty about π is only resolved after early withdrawals have
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been made, the payment designed for impatient consumers is independent of
the state of the world, whereas the payment designed for patient consumers
exhausts bank’s resources at date 2. However, intermediaries that offer
liquidity insurance to risk-averse consumers by issuing debt contracts are
always subject to default when bank runs are triggered due to sunspots as
in Diamond and Dybvig (1983). As the analysis focuses on the ex ante
welfare performance of deposit contracts in the absence of insolvency, the
possibility of bank runs is ignored.

Alternatively, the representative intermediary can offer an equity con-
tract which gives consumers the right to receive two payments; a dividend
payment δ1 ∈ (0, 1) at date 1, and a liquidating dividend payment of δ2 < R
at date 2. A secondary market opens at date 1 that allows trade of the equity
holders’ claims to take place. Having realised their individual consumption
preferences at date 1, consumers have incentives to participate in the mar-
ket as they are entitled to receive an additional payment at the date that
they do not value consumption. Market forces determine the equilibrium
market price which is, therefore, dependent on the prevailing state of the
world. The utility from consumption that consumers obtain from an equity
contract does not only depend on the terms of the contract, but also on the
equilibrium market price in the secondary market, which in turn depends
on the realisation of π.

2.1 Full Information

To facilitate the welfare comparison between the two contractual arrange-
ments under incomplete information, the benchmark full-information case is
examined first, where the only friction in the economy is the unobservability
of consumers’ individual consumption preferences. Consider a social planner
that invests consumers’ endowment in the underlying technologies on their
behalf at date 0, and provides consumption allocations that maximise con-
sumers’ expected utility. The social planner (or a representative bank with
full information) is assumed to realise the state of the world at date 1 and
before any consumer is served. The social planner’s maximisation problem
has the following form:

Problem 2.1

max
{CS

1 ,CS
2 }

qV
(
CH

1 , CH
2 ;πH

)
+ (1 − q) V

(
CL

1 , CL
2 ;πL

)
(2)

subject to the budget constraints:

πSCS
1 ≤ XS at t = 1

(1 − πS)CS
2 ≤ R(1 − XS) + (XS − πSCS

1 ) at t = 2,
(3)

where S = H,L is the state of the world.

The sequential budget constraints indicate that a proportion XS ∈ (0, 1)
of the investment in the productive technology is liquidated in order to
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meet the total withdrawal demand at date 1, while the remainder comes to
maturity in the next period and finances the withdrawal demand at date
2, given the realisation of the state of the world. Provided that the return
from early liquidation of the long-term technology is equal to the return
from storage, the feasibility constraint at date 1 holds with equality as it is
optimal to invest consumers’ endowment in the long-term technology and
liquidate a part of this investment in order to meet the demand for early
consumption, while keeping the rest invested to finance the demand for late
consumption at date 2.

Solving the maximisation problem, the first-order conditions indicate
that, independently of the state of the world, the ratio of the marginal
utility of consumption between the two periods is equal to the return of the
long-term productive technology

U ′(CS
1 ) = RU ′(CS

2 ). (4)

Note that under full-information, the impatient consumers’ payoff is con-
tingent on the state of the world. Let CS∗

1 and CS∗

2 be the positive social
optimum (i.e. first-best) payoffs that satisfy the budget constraints and the
first-order conditions, and XS∗

is the social optimum level of liquidation of
the investment in the productive technology, for any S = H,L.

Similar to relevant literature, the coefficient of relative risk aversion is
assumed to be greater than one as risk-averse consumers seek insurance
against the unfortunate event of becoming impatient after the realisation of
the liquidity shock at date 1. This condition guarantees that any feasible
allocation which transfers consumption from date 2 to date 1 in relation to
the autarkic outcome leads to a Pareto-improvement in welfare. 1

The following relationship characterises the social optimum payoffs:2

1 < CH∗

1 < CL∗

1 for t = 1
CH∗

2 < CL∗

2 < R for t = 2.
(5)

Hence, for a coefficient of relative risk aversion is greater than one, the
relationship between the social optimum payoffs and the autarkic payoffs

1In the absence of intermediaries and prohibition of trade between consumers, given the
assumed investment technologies, impatient consumers consume their initial endowment,
whereas patient consumers enjoy the full proceeds of the investment of their endowment
in the productive technology. Although the autarky allocation is a feasible allocation for
the representative bank as it satisfies the budget constraints with equality, it does not
necessarily satisfy the first-order condition. The direction of movement of the equilibrium
allocations that can Pareto-improve autarky’s outcome depends on consumers’ risk aver-
sion. Indeed, for a coefficient of relative risk aversion greater than one, U ′(1) > RU ′(R)
as CU ′(C) is decreasing in C, and therefore any feasible allocation such that 1 < C1 and
C2 < R can attain a higher level of depositors’ expected utility.

2Note that by substituting the relationship between CS∗

1 and CS∗

2 obtained from the
binding sequential feasibility constraints in equation (3), the first-order condition in equa-
tion (4) can be expressed in terms of CS∗

1 . Differentiation of CS∗

1 with respect to πS

yields
dCS

∗

1

dπS =
R2(1−CS

∗

1
)U′′(CS

∗

2
)

(1−πS)((1−πS)U′′(CS∗

1
)+πSR2U′′(CS∗

2
))

< 0 since CS∗

1 > 1 and from the con-

cavity of the utility function. Therefore, for πH > πL it follows that CH∗

1 < CL∗

1 and
correspondingly CH∗

2 < CL∗

2 from the first-order conditions.
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signify an improvement in welfare as risk-averse consumers seek to obtain
liquidity insurance. In addition, from the first-order conditions and the
concavity of the utility function it can be shown that 1 < CS∗

1 < CS∗

2 < R
and consumers self-select the payoff that is designed for their consumption
profile. Finally, note that the relationship between the optimal liquidation
level for each state is XL∗

< XH∗

as more resources need to be liquidated at
date 1 for a greater number of impatient depositors in order for the optimal
risk-sharing allocation to be attained.3

3 Intermediation under Incomplete Information

When the banking system is characterised by incomplete information, the
representative bank can not distinguish depositors’ individual consumption
preferences and, contrary to Allen and Gale (2004, 2005), it does not realise
the state of the world prior to any withdrawals. The objective function
of the representative welfare-maximising bank is identical to the one in the
complete information case, but depending on the contractual arrangement in
question (i.e. deposit or equity contract), different feasibility and incentive
constraints need to be introduced.

3.1 Deposit Contract

Suppose that in return for consumers’ endowment at date 0, the bank is of-
fering a menu of demand deposit contracts which provide consumers with the
right to withdraw a specified amount of the homogenous commodity at date
1 or date 2. The menu of demand deposit contracts has the form {D1;DS

2 },
where D1 and DS

2 represent the amount of the commodity available to be
withdrawn (and consumed) at date 1 and date 2, respectively. Bank’s in-
ability to determine the state of the world prior to any withdrawals preclude
the contract’s payments at date 1 to be contingent on the realisation of π.
Therefore, the contracts’ payments designed for impatient depositors should
be the same across states. After serving the impatient depositors, the bank
can determine the state of the world, and therefore, the allocation that is
designed for patient depositors is contingent on π and exhausts the resources
of the welfare-maximising intermediary. The bank’s feasibility constraints
have the form:

πSD1 = xS for t = 1
(1 − πS)DS

2 = R
(
1 − xS

)
for t = 2

(6)

for any S = H,L.

3Substituting for CS∗

1 and CS∗

2 from the binding sequential feasibility constraints in
equation (3) into the first-order condition in equation (4), differentiation of XS∗

with re-

spect to πS yields dXS∗

dπS =
πSRCS

∗

2
U′′(CS

∗

2
)+XS

∗

U′′(CS
∗

1
)(1−πS)/πS

(1−πS)U′′(CS∗

1
)+πSR2U′′(CS∗

2
)

> 0 from the concavity

of the utility function. Therefore, XL∗

< XH∗

from πL < πH .
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By committing at date 0 to a fixed payoff at date 1, depending on the
realisation of the state, let xS ∈ [0, 1] be the proportion of the investment
in the long-term technology that is liquidated in order to meet the total
demand for early withdrawals, while the rest remains invested until date 2.

Maximisation of depositors’ expected utility given in equation (2) sub-
ject to the budget constraints given in equation (6) yields the first-order
condition4

(
qπH + (1 − q)πL

)
U ′ (D1)

qπHU ′
(
DH

2

)
+ (1 − q)πLU ′

(
DL

2

) = R. (7)

Let D∗
1 and DS∗

2 be the optimal positive payoffs of a deposit contract
which are determined by the feasibility constraints and the above first-order
condition.

The following property describes the effect of q on the equilibrium payoffs
and on the optimal value function under a deposit contract.

Property 3.1 D∗
1 is strictly decreasing in q, whereas DH∗

2 and DL∗

2 are
strictly increasing in q. The depositors expected utility is strictly decreasing
and convex in q.

(Proof: see Appendix)

Note that when the state of the world is known with certainty (i.e. q = 0
or q = 1), equation (7) becomes identical to the first-order condition in
the social planner’s case. In relation to the social optimum payoffs, the
above property implies that D∗

1 > 1 and DH∗

2 < DL∗

2 < R. In particular,
the higher the probability of a large number of impatient depositors, the
lower the optimal payoff at date 1 will be as a greater proportion of the
commodity needs to be liquidated to meet a high demand for liquidity.
From the feasibility constraints, this results into higher payoffs for patient
consumers as the returns from investment in the productive technology are
distributed amongst a smaller number of patient consumers.

In addition, bank’s inability to determine depositors’ individual con-
sumption preference requires the introduction of an incentive compatibility
constraint to ensure that consumers will always truthfully reveal their con-
sumption preferences and has the form

U(D1) ≤ qU(DH
2 ) + (1 − q)U(DL

2 ). (8)

Consumers who realise at date 1 that they are impatient, will always
reveal their true type by withdrawing D1 to finance early consumption.
However, patient consumers have two options; they can either withdraw
D1 at date 1 and store the proceeds for one period, or wait until date 2

4Given that the budget constraints as described in equation (6) hold with equality for a
welfare maximising intermediary, it can be shown that xL/πL = xH/πH . Substituting for
D1 and DS

2 into the objective function described in equation (2) and utilising the above
relationship, the objective function can expressed in terms of a single choice variable, say
xH . Differentiation with respect to xH yields the first-order condition.
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to withdraw and consume DS
2 . Thus, the above incentive compatibility

constraint ensures that patient consumers will not misrepresent their type
since the utility that they derive from withdrawing D1 does not exceed the
expected utility they derive from withdrawing the payoff that is designed
for their type.

Obviously, the above incentive constraint is satisfied when D∗
1 < DH∗

2

but this relationship depends on the functional form of the utility and the
parameters of the model. Without imposing any additional restrictions in
the model, it is shown in the Appendix that the optimal menu of deposit
contracts is incentive compatible as the optimal payoffs do not violate the
incentive compatibility constraint. However, in order to ensure that the
optimal payoffs are positive, the model’s specifications are assumed to satisfy
CL∗

1 < 1/πH .

3.2 Equity Contract

The banking firm that offers an equity contract to consumers at date 0 in
return for their endowment, issues and sells the contract at a price of 1 unit
of the homogeneous commodity, raising capital of 1 unit which is invested
in the underlying technologies. The equity contract has the form {δ1, δ2}
where payments specified in the contract are: δ1 = δ denotes the dividend
payment that consumers receive at date 1, where δ ∈ (0, 1); δ2 = R(1 − δ)
denotes the liquidating dividend that consumers receive at date 2. The
representative intermediary selects δ to maximise the depositors’ expected
utility from consumption. However, the consumption allocations of the two
types of consumers also depend on the market-clearing price which in turn
depends on the realised state of the world. The intermediary, anticipating
the equilibrium market price for each state of the world, selects the dividend
payment to maximise social welfare.

In an attempt to provide a full description of the market forces that de-
termine the attainable allocations under an equity contract, consumers’ in-
centives to trade in the secondary market are examined first. After receiving
the dividend payment at date 1, impatient consumers sell their ex-dividend
share in the secondary market at a positive price pS, whereas the patient
depositors will use their dividend payment to buy δ/pS additional shares.
Hence, the consumption allocation of impatient and patient consumers, de-
noted as CS

1E and CS
2E respectively, will be:

CS
1E = δ + pS

CS
2E =

(
1 + δ/pS

)
R(1 − δ).

(9)

In determining the market forces that operate in the secondary market,
it is apparent that impatient consumers are always willing to trade their
ex-dividend share since they can obtain additional utility of consumption at
date 1 by selling it at a positive price. Therefore the supply of ex-dividend
shares in the secondary market is perfectly inelastic and equal to the number
of impatient consumers; or QS = πS . On the other hand, the demand for
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ex-dividend shares derives from patient consumers who use their dividend
payment to buy additional shares when this provides them with consumption
at date 2 at least equal to the consumption that they could otherwise achieve
if they do not participate in the secondary market. Therefore, the demand
for ex-dividend equity is given by

QD =

{
(1 − πS)δ/pS for pS ≤ R(1 − δ)

0 for pS > R(1 − δ).

That is, patient consumers are willing to buy additional ex-dividend
shares only if the price they have to pay for each share does not exceed the
return that an ex-dividend share yields at date 2.

Consequently, trade in the secondary market determines the equilibrium
market price and the resulting consumption allocations. The equilibrium
price in the secondary market is

pS∗

=

{
(1 − πS)δ/πS for δ ≤ δ̃S

R(1 − δ) for δ > δ̃S

(10)

where δ̃S = πSR
πSR+(1−πS)

(so that δ̃L < δ̃H as πL < πH) denotes the threshold

value of the dividend payment for which the liquidating dividend payment is
equal to the market-clearing price. Thus, the market-clearing price depends
on the dividend payment and on the parameters of the model. When δ ≤ δ̃S ,
the market-clearing price is equal to the ratio of the supply of the commod-
ity by patient consumers to the supply of ex-dividend shares by impatient
consumers, and is less than the liquidating dividend. When δ̃S < δ, the
market-clearing price reaches its ceiling value and is equal to the liquidating
dividend.

The two possible equilibria that can arise in the secondary market are
represented in Figure 1 where the quantity and price of the ex-dividend
shares traded are measured on the horizontal and vertical axis, respectively.
The supply of shares is perfectly inelastic at πS , while the demand is ini-
tially horizontal at the price for which patient consumers are indifferent to
trade, up to the point where, given the dividend payment chosen by the
intermediary, there are gains from trade and the demand becomes strictly
decreasing and convex thereafter.5 One possible equilibrium in the market is
represented by point A and is referred to Surplus Equilibrium as the cost of
buying additional ex-dividend shares for patient consumers is less than the
returns of this investment. Another possible equilibrium is given by point
B and is referred to Non-Surplus Equilibrium as the cost of this investment
opportunity is equal to its reward.

Substituting for equilibrium price in the secondary market given from
equation (10) into the consumption allocations of the two types of depositors
given by equation (9), the latter will become:

5From the inverse demand function we can observe that dp/dQD = −δ(1−πS)/Q2
D < 0

and d2p/dQ2
D = 2δ(1 − πS)/Q3

D > 0.

11



CS
1E =

{
δ/πS for δ < δ̃S

δ + R(1 − δ) for δ ≥ δ̃S

CS
2E =

{
R(1 − δ)/(1 − πS) for δ < δ̃S

δ + R(1 − δ) for δ ≥ δ̃S .

(11)

Anticipating the market equilibrium price pS∗

, the bank chooses a div-
idend payment to maximise consumers’ expected utility. Substituting for
the consumption allocations of the two types of consumers into the objec-
tive function, the bank can determine the optimal dividend payment δ∗

and consequently, the resulting equilibrium allocations CS∗

1E and CS∗

2E . Note
also from equation (11) that the relationship of the equilibrium payoffs for
the two types of consumers in a given state is such that CS∗

1E < CS∗

2E when
the surplus equilibrium is attained, and CS∗

1E = CS∗

2E when the non-surplus
equilibrium is attained.6

From these two plausible scenarios that may occur in the secondary
market and the two states of the world, the following lemma indicates that
there are only two different regions where the optimal dividend payment
can lie, and therefore there are two possible configurations of the secondary
market that can arise in equilibrium.

Lemma 3.2 Depending on the parameters of the model, the optimal divi-
dend payment chosen by a welfare maximising intermediary that issues eq-
uity shares will be either such that δ∗ < δ̃L, or δ̃L ≤ δ∗ < δ̃H .

(Proof: see Appendix)

The first configuration is when δ∗ < δ̃L which means that the secondary
market is in the surplus equilibrium for both states. The second configura-
tion is when δ̃L ≤ δ∗ < δ̃H which implies that the secondary market is in
the surplus equilibrium for the high state, and in the non-surplus equilib-
rium for the low state.7 In the proof of the above lemma it is shown that
consumers’ expected utility is maximised for a dividend payment less than
δ̃H , and therefore, the configuration where the secondary market is in the
non-surplus equilibrium for both states is never optimal.

Substituting the consumption allocations as given in equation (11) into
consumers’ expected utility in equation (2) and maximising with respect to
δ yields the following first-order condition

qU ′
(
CH∗

1E

)
+ (1 − q)U ′

(
CL∗

1E

)

qU ′
(
CH∗

2E

)
+ (1 − q)U ′

(
CL∗

2E

) = R, (12)

6From equation (11), CS∗

1E is increasing in δ, whereas CS∗

2E is decreasing in δ. Since

CS∗

1E = CS∗

2E for δ ≥ δ̃S, then for any lower value of δ for which the surplus equilibrium is
attained, it follows that CS∗

1E < CS∗

2E .
7Clearly, from the assumption that πL < πH , the possibility that the market is in the

surplus equilibrium for the low state and in the non-surplus equilibrium for the high state
is redundant.
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where CL∗

1E < CL∗

2E for δ∗ < δ̃L, and CL∗

1E = CL∗

2E for δ̃L ≤ δ∗ < δ̃H .
In the proof of lemma (3.2) in the Appendix, it is shown that there is a

unique δ∗, and therefore a unique consumption allocation, for each configu-
ration of the secondary market that maximises consumers’ expected utility.
Let CS∗

1E and CS∗

2E denote the positive payoffs for impatient and patient con-
sumers for each state respectively, satisfying the above first-order condition
and equation (11). Hence, the relationship between the equilibrium payoffs
can be summarised as

CH∗

1E < CL∗

1E ≤ CL∗

2E < CH∗

2E . (13)

The above relationship indicates that the equity contract offers more liq-
uidity insurance to risk-averse consumers in the low state as the dispersion
between the equilibrium payoffs for the two types of consumers is greater
in the high state. This is due to the negative effect of πS on pS∗

which
influences the equilibrium consumption allocations. A high number of im-
patient consumers implies a high quantity of ex-dividend shares supplied in
the secondary market which results in a low equilibrium market price. As a
consequence, the consumption of impatient consumers is reduced since they
are forced to sell their ex-dividend shares at a low price, and the consump-
tion of patient consumers increases as they can buy a greater number of
shares using their dividend payment to finance their consumption at date
2. In terms of Figure 1, an increase in the number of impatient consumers
can be represented by a shift of the supply of ex-dividend shares to the right
and a leftward shift of the convex segment of the demand for ex-dividend
shares, resulting into a lower market-clearing price.

Moreover, the following comparative static property of the equilibrium
payoffs and the optimal value function with respect to q provides a greater
insight on the performance of the equity contract in terms of welfare.

Property 3.3 For δ∗ < δ̃L, CS∗

1E is strictly increasing in q and CS∗

2E is

strictly decreasing in q. For δ̃L ≤ δ∗ < δ̃H , CL∗

1E becomes strictly decreasing
in q (where CL∗

1E = CL∗

2E). The depositors’ expected utility at equilibrium is
strictly decreasing and convex in q, for any δ∗ ∈ [X∗

L,X∗
H ].

(Proof: see Appendix)

The above property suggests that the greater the probability of a large
number of impatient consumers, the greater the dividend payment in period
1. A high dividend payment has a positive direct effect on the equilib-
rium consumption at date 1, and an indirect effect through the resulting
high demand for ex-dividend shares which puts an upward pressure on the
market-clearing price. Due to the feasibility constraints, this results in lower
payoffs at date 2 for both states. In addition, the greater the probability
that the state will be high, the lower the liquidity insurance offered by the
contract as indicated by equation (13), and therefore the overall expected
utility decreases in q.
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From the above property, a unique threshold value of q exists, namely
q̃ ∈ (0, 1], for which the optimal configuration of the secondary market

changes in the low state. Since q̃ is the threshold value for which δ∗(q̃) = δ̃L,

where δ̃L is independent of q, from the first-order condition it follows that

q̃ =
U ′

(
CL∗

1E(δ̃L)
)

(R − 1)

U ′
(
CH∗

1E (δ̃L)
)
− U ′

(
CH∗

2E (δ̃L)
)

+ U ′
(
CL∗

1E(δ̃L)
)

(R − 1)
(14)

where CL∗

1E(δ̃L) = CL∗

2E(δ̃L). Note also that q̃ is positive and less than 1 since

CH∗

1E (d̃L) ≤ CH∗

1 and CH∗

2 ≤ CH∗

2E (d̃L).8

Starting from the limit case where the state of the world is known with
certainty to be low (i.e. q = 0) so that the secondary market is in the surplus
equilibrium (i.e. CS∗

1 < CS∗

2 ), as q increases it reaches the threshold value
of q̃ at which the secondary market will be in the non-surplus equilibrium
in the low state. As the optimum dividend payment, and consequently the
date 1 payoffs, increase with the probability of the number of impatient con-
sumers being high, the equity contract provides more liquidity insurance in
the high state. However, as the intermediary has to commit to a fixed divi-
dend payment at date 0, this results in more liquidity insurance than what
is socially optimal in the low state. Indeed, when q is sufficiently high (i.e.
q̃ ≤ q), the contract offers full insurance against the risk of being impatient
in the low state.

4 Welfare Evaluation

In each of the maximisation problems that the representative intermediary
has to solve in offering either contract as presented before, the intermediary
maximises the same objective function but subject to different constraints.
Therefore, the welfare comparison of the two contracts focuses on the con-
straints that characterise each contract’s optimal payoffs in relation to the
benchmark case of full-information. In addition, optimal payoffs refer to the
second-best payoffs as the social optimum allocation cannot be achieved by
either contract.

Examining the characteristics of the two contracts, it is evident that,
in contrast to the social planner, by offering a menu of demand deposit
contracts where depositors are served on a first-come first-served basis fol-
lowing a sequential service constraint, the intermediary realises the state of
the world only after πL depositors have been served in period 1. Therefore,
the level of liquidation of the initial investment in the long-term technology
is contingent on the state of the world. However, since the uncertainty about
π is not resolved prior to early withdrawals, it is not possible for the date 1

8The relationship between equity contract’s optimal allocation and the social optimum
allocation is discussed in the following Section on the comparison of the two contracts.
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payoff to be contingent on the state of the world. Hence, the deposit con-
tract is constrained in relation to the social planner case to offer the same
payoff to impatient depositors independently of the state. Starting from the
social planner’s budget constraints and imposing equality on the first period
payoffs yields xL∗

< XL∗

< XH∗

< xH∗

. The relationship between the
optimal payoffs is therefore

CH∗

1 < D∗
1 < CL∗

1 for t=1
DH∗

2 < CH∗

2 < CL∗

2 < DL∗

2 for t=2.
(15)

The deposit contract eliminates the risk that impatient depositors face
due to the uncertainty about the prevailing state, but this risk is borne by
patient depositors as the fixed date 1 payoff results in a higher dispersion
between date 2 payoffs relative to the social optimum payoffs. In particular,
when offering a fixed payment at date 1, if the state turns out to be low, the
lower number of withdrawals in period 1 implies that more resources remain
invested in the productive technology, and therefore, a higher payoff that
patient depositors receive.

On the other hand, when the intermediary offers an equity contract,
it commits to a fixed dividend payment where the market-clearing price
finally determines the consumption levels for the two states of the world.
Comparing the budget constraints for the social planner and the bank that
offers an equity contract, the analogy of the dividend payment δ and the
level of liquidation XS become apparent. Clearly, the social planner can
adjust the investment portfolio depending on the realisation of the state,
whereas the intermediary is constrained to offer a fixed dividend payment
and let the market forces determine the equilibrium allocation for each type
of consumer. Starting from the social planner’s budget constraints at date
1 and imposing the restriction that the amount of the long-term investment
liquidated at date 1 is independent of the state yields XL∗

≤ δ∗ ≤ XH∗

.
The volatility of the market’s clearing price, however, results in a higher
dispersion between the equilibrium payoffs in relation to the social optimum
payoffs. From the budget constraints for the two periods it follows that
CL∗

1 and CH∗

2 increase, whereas at the same time CL∗

2 and CH∗

1 decrease.
Therefore, the relationship between the optimal payoffs between the social
planner case and the equity contract case is

CH∗

1E < CH∗

1 < CL∗

1 < CL∗

1E for t=1(
CL∗

1E ≤
)
CL∗

2E < CL∗

2 and CH∗

2 < CH∗

2E for t=2.
(16)

Evaluating the performance of the two contracts in terms of social wel-
fare, the following result summarises the main findings.

Proposition 4.1 In a Diamond-Dybvig framework with corner preferences
and aggregate consumption uncertainty, when the utility function and the
model’s parameters are such that the threshold value q∗ ∈ (0, 1) exists, stan-
dard demand deposit contracts ex-ante dominate equity contracts in terms of
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welfare for any q∗ < q ≤ 1; otherwise deposit contracts are welfare optimal
for any q ∈ [0, 1].

(Proof: see Appendix)

The proof of the above proposition is based on the properties with respect
to q of consumers’ expected utility at equilibrium under each contract, and
is depicted in Figure 2 where the horizontal and vertical axis measure q
and consumers’ expected utility, respectively. As both contracts can achieve
the social optimum allocation when the state of the world is known with
certainty (i.e. SOL for q = 0 and SOH for q = 1), and are both strictly
decreasing and convex in q, the proof of the above statement focuses on the
comparison of the slope of the optimal value function for each contractual
arrangement at the limit cases where q is known with certainty. It is shown
that the expected utility of the deposit contract EV ∗

D is steeper than that
of the equity contract EV ∗

E as q tends to unity. However, the slope of EV ∗
D

relative to EV ∗
E as q tends to zero depends on the parameters of the model.

When EV ∗
D is flatter than EV ∗

E at q = 0, the deposit contract dominates for
any q ∈ [0, 1], where EV ∗

D is represented by the dashed line and EV ∗
E by the

bold line. When EV ∗
D is steeper relative to EV ∗

E , a threshold value q∗ ∈ (0, 1)
can be defined, for which EV ∗

D and EV ∗
E cross, so that the deposit contract

dominates for q∗ < q ≤ 1, as it is represented by the solid line. In order
to obtain a better understanding of the impact that the model’s parameters
have in determining the dominance of each contract, the standard budget
line-indifference curve analysis is used to examine how changes in q affect
consumers’ welfare.

Consider firstly the case where the surplus equilibrium can be achieved
in the secondary market for ex-dividend shares in both states which corre-
sponds to the values of the probability of the high state such that q ∈ [0, q̃).
The result can be illustrated diagrammatically from the observation that all
the feasible allocations can be described by an intertemporal budget con-
straint. Simplifying for the amount of liquidation (or the dividend payment
in case of the equity contract), all optimal allocations satisfy the following
intertemporal budget constraint

πSCS
1 + (1 − π)CS

2 /R ≤ 1. (17)

From the characteristics of the two contracts, the restrictions of each
contractual agreement can be expressed in terms of the consumption alloca-
tions. This case is illustrated in Figure 3 where the horizontal axis measures
the consumption in period 1 and the vertical axis measures the consumption
in period 2. The budget lines for the two states of the world cross at the
autarky allocation C1 = 1 and C2 = R. The concavity of the utility function
and linearity of budget constraints ensures the existence of a unique opti-
mum allocation for each state that maximises depositors’ expected utility.
Note that in order to simplify the diagrammatic analysis, a homothetic util-
ity function is considered such that income expansion paths are represented
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as rays from the origin.9 The social optimum allocations are located on the
crossing points between the two budget lines and the ray from the origin
SO which captures the fixed proportionality of the marginal utilities be-
tween the two types of depositors, across the two different states. Similarly,
the income expansion paths for the equity and deposit contract coincide
with the SO for the low state, and for the high state are represented by the
rays EC0 and DC0, respectively, where DH∗

2 < CH∗

2 < CL∗

2 < CH∗

2E .10

In determining the dominance of each contract at the limit as q tends to
0, from the properties 3.1 and 3.3 it follows that the difference between the
slope of the expected utility of the two contracts is equal to the difference
between the expected utility that they attain in the high state. Therefore,
welfare dominance for values of q in the region around zero, depends on
which contract’s allocation lies on a higher indifference curve in the high
state. Examples provided in the proof of proposition 4.1 in the Appendix
show that both possibilities may arise as this depends on the parameters of
the model and on the functional form of utility. Hence, if the deposit contract
dominates in the region of q around 0, then it remains the dominant contract
for any q ∈ [0, 1]. On the other hand, if the equity contract is initially the
dominant one, then the threshold value q∗ is defined and the equity contract
dominates for any q ∈ [0, q∗).

As q increases, the properties of the optimal payoffs with respect to q
suggest that the income expansion paths of the equity contract are rotat-
ing downwards whereas the income expansion paths of the deposit contract
rotate upwards. In particular, when q = q̃, an additional condition is in-
troduced in the design of the equity contract as the secondary market is in
the non-surplus equilibrium for the low state and the payoffs across the two
periods are equal; i.e. CL∗

1E = CL∗

2E . In terms of Figure 3, the income expan-
sion path of the equity contract in the low state is the 45 degrees line and
the optimal consumption allocation is now determined by the intersection
of the 45 degrees line with the corresponding budget constraint, represented
by point FL.

For higher values of q such that q̃ < q ≤ 1, the allocation of the equity
contract for the low state does not satisfy the intertemporal budget con-
straint described in equation (17) with equality. Indeed, it has been shown
that when the non-surplus equilibrium is attained in the secondary market
for the low state, the common equilibrium payoff for both periods is de-
creasing in q. In terms of Figure 3, this corresponds to a movement along
the 45 degrees line for higher values of q which leads to inferior allocations
for the low state inside the budget set. Finally, for q = 1, both contracts
attain the social optimum allocation for the high state as it is illustrated in
Figure 4. The income expansion paths of both contracts coincide with that
of the social optimum at SO, whereas for the low state they are represented

9This specification of the utility function is only for illustrative purposes as the result
of the model hold for any utility function that satisfies the standard neoclassical properties
with a coefficient of relative risk aversion greater than one.

10Solving for the common dividend payment between the two states yields CH∗

2E =
1−πH

1−πL CL∗

2 > CL∗

2 as πL < πH .
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by the 45 degree line and the ray from the origin DC1 for the equity and
the deposit contract respectively, since CL∗

2E < CL∗

2 < CH∗

2 < DL∗

2 . The
equilibrium allocation of the equity contract lies on the bold segment of the
45 degrees line between points FL and FH .11

The conclusions about welfare dominance are derived from the charac-
teristics that distinguish these two contracts, as opposed to the contract
that can be offered under full information. Clearly, their difference lies in
the constraints that characterise each contract and the restrictions that they
impose on the payoffs to adjust in each state, once the uncertainty is resolved
at the end of date 1. The representative intermediary being unable to ob-
serve the state of the world when the contracts are offered at date 0, it loses
flexibility in the design of the contracts in relation to the social planner.

Specifically, by offering a demand deposit contract, the bank loses flexi-
bility in terms of the payoff that can be offered at date 1 as it has to commit
to a fixed payoff, independent of the state of the world. Hence, although
holding the impatient depositors payoff constant eliminates the risk related
to the uncertainty about the state of the world in the first time period, this
risk is passed to the second time period as it creates greater dispersion be-
tween the date 2 payoffs in relation to the social optimum payoffs. In terms
of the risk of being impatient (or liquidity risk) which can be captured by
the dispersion between the payoffs designed for each type of consumer for a
given state, from the relationships described in equation (15) it follows that
the deposit contract offers more risk-sharing in the high state than what
is socially desirable as DH∗

2 − D∗
1 < CH∗

2 − CH∗

1
12 and less risk-sharing in

the low state as CL∗

2 − CL∗

1 < DL∗

2 − D∗
1. In the graphical representations

in Figures 3 and 4 for a homothetic utility function, the risk-sharing pro-
vision of the deposit contract is illustrated by the steepness of the income
expansion paths relative to the social optimum income expansion path where
DH∗

2 /D∗
1 < CH∗

2 /CH∗

1 and CL∗

2 /CL∗

1 < DL∗

2 /D∗
1 .

On the other hand, by offering an equity contract, the bank loses flexi-
bility in terms of the amount of resources that can be liquidated at date 1
(and correspondingly, on the amount of resources that remain invested in
the productive technology), as it has to commit to a fixed dividend payment
at date 0. Depending on the realisation of the state, trade takes place and
the market price for ex-dividend shares adjust to its equilibrium value. As
previously shown in the description of the contract, market forces in the sec-
ondary market create a high dispersion between the resulting equilibrium
consumption allocation in relation to the corresponding social optimum allo-
cation for a given state. In terms of liquidity risk measured as the dispersion
between CS∗

2E and CS∗

1E , from the relationships described in equation (16) it

11Note that Figure 4 is drawn such that CH∗

2 exceeds the full-insurance payoffs in the
low state indicated by the point FL. In case where CH∗

2 is lower that the full-insurance
payoffs in the low state, the allocation that the equity contract can attain in the low
state lies on the segment of the 45 degrees line above point FH but below CH∗

2 since
πCH∗

1 + (1 − π)CH∗

2 < CH∗

2 .
12This relationship holds even when the utility function and the parameters of the model

are such that DH∗

2 < D∗

1 .
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follows that the equity contract offers less risk-sharing in the high state and
more risk-sharing in the low state than the social optimum allocations as
CH∗

2 − CH∗

1 < CH∗

2E − CH∗

1E and CL∗

2 − CL∗

1 > CL∗

2E − CL∗

1E. Equivalently, in
Figures 3 and 4, the steepness of equity contract’s income expansion paths
for each state relative to the social optimum expansion path is such that
CH∗

2 /CH∗

1 < CH∗

2E /CH∗

1E and CL∗

2 /CL∗

1 > CL∗

2E/CL∗

1E .
In the design of the optimal contract that provides liquidity insurance to

risk-averse consumers, it is apparent that committing to a fixed first period
payoff is less restrictive than committing to a fixed investment policy when
uncertainty is resolved in period 1. The ex-ante dominance of the deposit
contract relative to equity contract in terms of consumers’ expected utility
arises from the fact that the former offers more liquidity insurance in the
‘bad state’ of the world (i.e. high state) than the equity contract since
DH∗

2 − D∗
1 < CH∗

2 − CH∗

1 < CH∗

2E − CH∗

1E , which is more valuable ex ante to
risk-averse consumers. On the other hand, the equity contract offers more
liquidity insurance in the ‘good state’ of the world (i.e. low state) than
the deposit contract since CL∗

2E − CL∗

1E < CL∗

2 − CL∗

1 < DL∗

2 − D∗
1, which

is ex-ante less valuable to risk-averse depositors. According to proposition
4.1, this means that as q increases, if the demand deposit is not already the
optimal contract, it becomes the dominant one as the state of the world is
more likely to be high.

5 Conclusion

This paper shows that, in an economy characterised by a corner preference,
when uncertainty about the liquidity shocks is not resolved in the time pe-
riod when contracts are designed, demand deposit contracts can outperform
equity contracts as social welfare is maximised over a less restrictive set of
constraints. Indeed, committing to a fixed dividend payment creates large
fluctuations on the equilibrium market price, which is reflected by a high
dispersion of the resulting equilibrium payoffs relative to social optimum
payoffs. As a consequence, equity contracts offer less risk-sharing opportu-
nities against consumption contingencies which are private information to
consumers, than deposit contracts that designate incentive compatible al-
locations to depositors, depending on the realisation of their consumption
preferences.

The results derived in this model on the ex ante welfare optimality
through the comparison of these two contractual arrangements rely heav-
ily on the assumed structure of the economy’s underlying technology. The
weak dominance of the long-term technology over the storage technology
makes investment decisions at date 0 trivial with regard to the withdrawal
uncertainty at date 1. This is because optimality requires full investment
of bank’s resources in the productive technology, and liquidation at no cost
relative to storage of the required amount in order to honour the promised
liabilities. This, of course, provides flexibility in the design of the demand
deposit contract as the bank can adjust the proportion of the resources it
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liquidates depending on the prevailing state that is realised at date 1. There-
fore, it is clear that when a cost of liquidation is introduced in the model,
so that liquidation of the productive technology is costly relative to stor-
age, then bank’s investment decisions at date 0 have an important impact
on the resulting equilibrium allocations as it loses flexibility in the design
of the deposit contract. This imposes additional restrictions on the alloca-
tions that are feasible, and consequently erode the dominance of the deposit
over the equity contract. However, the performance of the equity contract
remains unaffected by the returns from early liquidation of the productive
technology. This is partly because the intermediary has always to commit
to a fixed dividend payment and also due to the fact that, trade in the
secondary market on the claims that are written on the long-term invest-
ment creates another ‘liquid asset’ between dates 1 and 2, as no premature
liquidation of the physical investment is required. For example, in the ex-
treme case where investment in the productive technology is irreversible, a
depository intermediary is restricted to invest a fixed proportion of its re-
sources in long-term, where at the same time it offers a fixed first period
payoff. Obviously, this additional restriction, which is identical to the one of
the equity contract offering a single dividend payment, makes maximisation
of consumers’ expected utility to be under a tighter set of constraints and
therefore the equity contract will dominate in terms of welfare.
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Figure 1: Surplus and Non-Surplus Equilibria
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Figure 2: Welfare Comparison of the Contracts
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Figure 3: Equilibrium Allocations for q ≤ q̃
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Figure 4: Equilibrium Allocations for q = 1

V L
∗

D

V L
∗

E

450 line

SO
DC1

FL

FH

FL

CS
1 ,D1

CS
2 ,DS

2

1/πH 1/πL

CH∗

1

R

(1−πH )

R

(1−πL)

CH∗

2

DL
2

22



Appendix

Proof of Incentive Compatibility of Deposit Contract’s payoffs

Eliminating the return from early liquidation from the sequential bud-
get constraints given in equation (6), the equilibrium allocations for a menu
of deposit contracts can be expressed in terms of the date 1 payoff. As
such, the objective function given in equation (2), say EVD, and the incen-
tive constraint in equation (8), say IC, can be expressed in terms of D1.
Differentiation of EVD(D1) with respect to D1 yields

∂EVD(D1)

∂D1
= πU ′ (D1) − R

(
qπHU ′

(
DH

2

)
+ (1 − q)πLU ′

(
DL

2

))
and

∂2EVD(D1)

∂D2
1

= πU ′′ (D1) + R2

(
q

(πH)2

1 − πH
U ′′

(
DH

2

)
+ (1 − q)

(πL)2

1 − πL
U ′′

(
DL

2

))
< 0,

where π = qπH + (1 − q)πL the expected value of π.
To simplify the notation, let Φ(D1) ≡ ∂EVD(D1)/∂D1. Ignoring IC(D1),

let D∗
1 the unique payoff at date 1 that maximises consumers’ expected util-

ity, i.e. Φ(D∗
1) = 0.

Similarly, differentiation of IC(D1) with respect to D1 yields

∂IC(D1)

∂D1
= U ′ (D1) + R

(
q

πH

1 − πH
U ′

(
DH

2

)
+ (1 − q)

πL

1 − πL
U ′

(
DL

2

))
> 0.

Note that when the state of the world is known with certainty such that
q = 0 or q = 1, the deposit contract attains the social optimum allocation as
Φ(D1) = 0 becomes equivalent to the social planner’s first-order condition
in equation (4). The social optimum payoffs do not violate the incentive
constraint as CS∗

1 < CS∗

2 , and therefore Φ(D∗
1) − IC(D∗

1) > 0 for q = 0 or
q = 1.

Given the standard properties of the assumed utility function, mono-
tonicity of Φ(D1) and IC(D1) in terms of D1 guarantees the existence of
a unique value of D1, say D̃1, such that Φ(D̃1) − IC(D̃1) = 0. In order
to prove that the optimal payoffs of the deposit contract do not violate the
IC(D1), it is sufficient to show that D∗

1 < D̃1, or alternatively Φ(D̃1) < 0,
for any q.

Differentiation of D̃1 with respect to q provides

dD̃1

dq
= −

∂Φ(D̃1)/∂q − ∂IC(D̃1)/∂q

∂Φ(D̃1)/∂D̃1 − ∂IC(D̃1)/∂D̃1

< 0,

where both the denominator and numerator are negative as

∂Φ(D̃1)/∂q = (πH − πL)U ′(D̃1) − R
(
πHU ′(DH

2 ) − πLU ′(DL
2 )

)
< 0

∂IC(D̃1)/∂q = U(DL
2 ) − U(DH

2 ) > 0
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since 0 < DH
2 < DL

2 from πL < πH .

Hence, the derivative of Φ(D̃1) with respect to q will be

dΦ(D̃1)

dq
= ∂Φ(D̃1)/∂q + ∂Φ(D̃1)/∂D̃1

(
dD̃1/dq

)
< 0.

As Φ(D̃1) is monotonic in q and Φ(D̃1) < 0 when q = 0 or q = 1, it
follows that Φ(D̃1) < 0 for any q ∈ [0, 1] and therefore the incentive com-
patibility constraint never binds.

Proof of Property 3.1

Substituting into the first-order condition (equation (7)) the equilibrium
allocations of a menu of deposit contracts which are expressed in terms of
D∗

1 by eliminating xS from the sequential budget constraints (equation (6)),
differentiation of D∗

1 with respect to q yields

dD∗
1

d q
=

(
πL − πH

)
U ′(D∗

1) + R
(
πHU ′(DH∗

2 ) − πLU ′(DL∗

2 )
)

(qπH + (1 − q)πL)U ′′(D∗
1) + R

(
qπHU ′′(DH∗

2 ) πHR
1−πH + (1 − q)πLU ′′(DL∗

2 ) πLR
1−πL

) .

The denominator is negative from the concavity of the utility function,
while the numerator can be expressed from the first-order condition as

πH πL R

qπH + (1 − q)πL

(
U ′(DH∗

2 ) − U ′(DL∗

2 )
)

> 0

which has a positive sign since DH∗

2 < DL∗

2 . Therefore, dD∗
1/dq < 0, and

from the feasibility conditions it follows that dDS∗

2 /dq > 0.
According to the Envelope Theorem, the total effect of a change in q to

the optimal value function is equal to the direct effect of q and therefore

dEV ∗
D(V )

dq
=

∂EV ∗
D(V )

∂q
= V H∗

D − V L∗

D ,

where V S∗

E denotes consumers’ expected utility in a given state as specified
in equation (1), and EV ∗

D(V ) = qV H∗

D +(1− q)V L∗

D the consumers’ expected
utility at date 0.

Differentiating again with respect to q yields

d2EV ∗
D(V )

dq2
=

dD∗
1

dq

(
(πH − πL)U ′(D∗

1) − R
(
πHU ′(DH∗

2 ) − πLU ′(DL∗

2 )
))

,

which from the first-order condition can be simplified to

d2EV ∗
D(V )

dq2
=

πL

q

dD∗
1

dq

(
RU ′(DL∗

2 ) − U ′(D∗
1)

)
> 0.
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The sign of the above derivative is positive as dD∗
1/dq < 0 and RU ′(DL∗

2 ) <
U ′(D∗

1). The last inequality derives from the relationship between the opti-
mal deposit contract’s payoffs and the social optimum payoffs where D∗

1 <
C∗

1L and D∗
2L > C∗

2L, and therefore U ′(D∗
1)/U

′(DL∗

2 ) > R (= U ′(C∗
1L)/U ′(C∗

2L)).
As dEV ∗

D(V )/dq is monotonically increasing in q, in order to prove that
it has a negative sign for any q, it is sufficient to show that dEV ∗

D(V )/dq is
negative when evaluated at q = 1 where

dEV ∗
D(V )

dq

∣∣∣∣
q=1

= (πH−πL)U(CH∗

1 )+(1−πH)U(CH∗

2 )−(1−πL)U

(
R(1 − πLCH∗

1 )

1 − πL

)
.

Note that EV ∗
D(V )/dq|q=1 is increasing in πL as

∂
(

dEV ∗
D(V )/dq|q=1

)

∂πL
= U

(
R(1 − πLCH∗

1 )

1 − πL

)
−U(CH∗

1 )+
R(CH∗

1 − 1)

1 − πL
U ′

(
R(1 − πLCH∗

1 )

1 − πL

)
> 0

where, following similar reasoning, for πL = πH it becomes EV ∗
D(V )/dq|{q=1,πL=πH} =

0. Therefore, EV ∗
D(V )/dq|q=1 is negative for any 0 < πL < πH , and con-

sequently, EV ∗
D(V )/dq is negative for any q ∈ [0, 1]. Thus, consumers’ ex-

pected utility is strictly decreasing and convex in q when the equilibrium
deposit contract is offered.

Proof of Lemma 3.2

The proof is based on determining the optimal dividend payment for each
alternative configuration of the secondary market without initially imposing
any restrictions on δ. After imposing the restrictions on δ for which each
case is defined, the region where δ∗ lies can be established, and the resulting
equilibrium configuration in the secondary market can be determined.

Substituting for the consumption allocations given in equation (11) into
the objective function for each alternative configuration of the secondary
market, consumers’ expected utility can be expressed in terms of δ. The con-
cavity of the utility function and linearity of consumption allocations with
respect to δ guarantee the existence of a unique dividend payment for each
configuration that maximises consumers’ expected utility. In particular, for
the market configurations where δ < δ̃L (say case A) and δ̃L ≤ δ < δ̃H

(say case B), the optimal dividend payment in each case is an interior

solution to the maximisation problem. Note also that δ̃L is the unique
tangency point of consumers’ expected utility in these two cases. How-
ever, for δ̃H ≤ δ (say case C), the dividend payment that maximises con-
sumers’ expected utility given by U (δ + R(1 − δ)) is a corner solution since

dU/dδ = −(R − 1)U ′ (δ + R(1 − δ)) < 0 for any δ ∈ (0, 1). In addition, δ̃H

is the unique tangency point of consumers’ expected utility in cases B and
C. Hence, introducing the constraints on δ for which each case is defined,
consumers’ expected utility is never maximised for the configuration where
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the secondary market is in the non-surplus equilibrium for both states. In
contrast, cases A and B constitute possible equilibrium configurations for
the secondary market depending on the parameters of the model and the
utility function.

Proof of Property 3.3

For δ∗ < δ̃L, the equilibrium allocations given in equation (11) can be
expressed in terms of CH∗

1E by simplifying for δ∗ as

CL∗

1E =
πH

πL
CH∗

1E , CH∗

2E =
R(1 − πHCH∗

1E )

1 − πH
and CL∗

2E =
R(1 − πHCH∗

1E )

1 − πL
.

Substituting for the above payoffs in the first-order condition (equation
(12)), the latter can be expressed in terms of CH∗

1E . Differentiating CH∗

1E with
respect to q yields

dCH∗

1E

dq
= −

U ′(CH∗

1E ) − U ′(CL∗

1E) − R
(
U ′(CH∗

2E ) − U ′(CL∗

2E)
)

qU ′′(CH∗

1E ) + (1 − q)πH

πL U ′′(CL∗

1E) + πHR2
(
q

U ′′(CH∗

2E )
1−πH + (1 − q)

U ′′(CL∗

2E )
1−πL

) > 0

which is always positive since the denominator is negative from the concavity
of the utility function, and the numerator is positive from the relationship
between the equilibrium payoffs (CH∗

1E < CL∗

1E < CL∗

2E < CH∗

2E ) and the con-

cavity of the utility function. Hence, for δ∗ < δ̃L, it follows that dCS∗

1E/dq > 0
and dCS∗

2E/dq < 0 from the feasibility constraints.

In a similar manner, for δ̃L ≤ δ∗ < δ̃H , the consumption allocation for
the low state can be written in terms of CH∗

1E as

CL∗

1E = CL∗

2E = πHCH∗

1E + R(1 − πHCH∗

1E ),

since δ∗ = πHCH∗

1E .
Substituting the above payoffs in the first-order condition and differen-

tiation of CH∗

1E with respect to q provides

dCH∗

1E

dq
= −

U ′(CH∗

1E ) − U ′(CL∗

1E) − R
(
U ′(CH∗

2E ) − U ′(CL∗

1E)
)

qU ′′(CH∗

1E ) + qR2 πH

1−πH U ′′(CH∗

2E ) + (1 − q)πH(1 − R)2U ′′(CL∗

1E)
> 0

which is positive following similar reasoning as in the case where δ∗ < δ̃L.
Hence, dCH∗

1E /dq > 0 and dCH∗

2E /dq < 0, whereas dCL∗

1E/d q = −πH(R −

1) dCH∗

1E /d q < 0 when δ̃L ≤ δ∗ < δ̃H .
The above properties of the equilibrium payoffs can be used to deter-

mine the properties of the consumers’ expected utility with respect to q in
equilibrium. From the Envelope Theorem, the comparative static property
of the optimal value function (EV ∗

E(V )) with respect to q for δ∗ < δ̃L is
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dEV ∗
E(V )

d q
=

∂EV ∗
E(V )

∂q
= V H∗

E − V L∗

E

Differentiating again with respect to q provides

d2EV ∗
E(V )

dq2
= πH dCH∗

1E

dq

(
U ′(CH∗

1E ) − U ′(CL∗

1E) − R
(
U ′(CH∗

2E ) − U ′(CL∗

2E)
))

> 0

which is positive from the relationship between the optimum payoffs and
the concavity of the utility function as discussed previously in proving that
dCH∗

1E /dq > 0.
Since dEV ∗

E(V )/dq is monotonically increasing in q, evaluation at q̃ which

is the maximum value that q can take for δ∗ ≤ δ̃L yields

dEV ∗
E(V )

dq

∣∣∣∣
q=q̃

=πHU(CH∗

1E (δ̃L)) + (1 − πH)U

(
R(1 − πHCH∗

1E (δ̃L))

1 − πH

)

−

U(πHCH∗

1E (δ̃L) + R(1 − πHCH∗

1E (δ̃L))) < 0

which is negative from Jensen’s inequality due to the strict concavity of
the utility function, and therefore, dEV ∗

E(V )/dq = V H∗

E − V L∗

E < 0 for
any q ∈ [0, q̃). The consumers’ expected utility in equilibrium is strictly

decreasing and convex when δ∗ < δ̃L.
Similarly, in the case where d̃L ≤ d∗ < d̃H , from the Envelope Theorem

it follows that

dEV ∗
E(V )

dq
=

∂EV ∗
E(V )

∂q
= V H∗

E − UL∗

< 0,

where d∗ = πCH∗

1E and therefore

V H∗

E −UL∗

= πHU(CH∗

1E )+(1−πH)U

(
R(1 − πHCH∗

1E )

1 − πH

)
−U(πHCH∗

1E +R(1−πHCH∗

1E )) < 0

from Jensen’s inequality due to the concavity of the utility function.
In addition, the second derivative will be

d2EV ∗
E(V )

dq2
= πH dCH∗

1E

d q

(
U ′(CH∗

1E ) − U ′(CL∗

1E) − R
(
U ′(CH∗

2E ) − U ′(CL∗

1E)
))

> 0

which, similar to the case where q < q̃, is positive from the relationship
between the optimum payoffs and the concavity of the utility function.

Thus, the consumers’ expected utility is strictly decreasing and convex
in q ∈ [0, 1] when the equilibrium equity contract is offered.

Proof of Proposition 4.1
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From properties 3.1 and 3.3, consumers’ expected utility under each con-
tractual arrangement is strictly decreasing and convex in q. Hence, in order
to conclude about the dominance of each contract, the difference between
the slopes of the optimal value function with respect to q of the two contracts
is evaluated at q = 0 and q = 1.

Let ∆∗
ED = EV ∗

E(V ) − EV ∗
D(V ) be the difference between the expected

utility attained under an equity and deposit contract in equilibrium. Differ-
entiating with respect to q it holds that

d∆∗
ED

dq
=

∂EV ∗
E(V )

∂q
−

∂EV ∗
D(V )

∂q

where for either contract ∂EV ∗/∂q = V H −V L < 0 from properties 3.1 and
3.3.

Evaluating the above difference at q = 1 it follows that

d∆∗
ED

dq

∣∣∣∣
q=1

= V L∗

D − V L∗

E

as both contracts achieve the social optimum in the high state. Note also
that since q̃ < 1, the equity contract attains the non-surplus equilibrium in
the low state.

Specifically, for q = 1 the equilibrium payoffs in the low state for the
equity and deposit contracts respectively, will be

CL∗

1E(q = 1) = πHCH∗

1 + R(1 − πHCH∗

1 ) since d∗ = πHCH∗

1 ,

D∗
1(q = 1) = CH∗

1 and DL∗

2 (q = 1) =
R(1 − πL CH∗

1 )

1 − πL
.

Therefore, d∆∗
ED/dq|q=1 will be

d∆ED

dq

∣∣∣∣
q=1

= πLU(CH∗

1 )+(1−πL)U

(
R(1 − πLCH∗

1 )

1 − πL

)
−U

(
πHCH∗

1 + R(1 − πHCH∗

1 )
)

.

In order to prove that the deposit contract is the welfare dominant con-
tract at q = 1, provided that consumers’ expected utility under each contract
is strictly decreasing in q, it is sufficient to show that d∆ED/dq|q=1 > 0.

Note that d∆ED/dq|q=1 is increasing in CH∗

1

∂(d∆ED/dq|q=1)

∂CH∗

1

=πL

(
U ′(CH∗

1 ) − RU ′

(
R(1 − πL CH∗

1 )

1 − πL

))

+ πH(R − 1)U ′(πCH∗

1 + R(1 − πHCH∗

1 )) > 0.

As the autarky payoff of CH∗

1 = 1 is the minimum value that CH∗

1 can
take, evaluation of d∆ED/dq|q=1 at CH∗

1 = 1 yields

28



d∆ED

dq

∣∣∣∣
{q=1,CH∗

1 =1}

= πLU(1) + (1 − πL)U(R) − U
(
πH + R(1 − πH)

)
.

Given that q̃ < 1, the following condition on the model’s parameters
should hold for the equity contract to be in the non-surplus equilibrium

πHCH∗

1 + R(1 − πHCH∗

1 ) ≤
R

πLR + 1 − πL
, or CH∗

1 ≥
πL

πH

R

πLR + 1 − πL
.

For CH∗

1 = 1, the above condition can be expressed in terms of R as

R ≤ πH(1 − πL)/
(
πL(1 − πH)

)
. Let R̃ be the value of R for which the

condition holds with equality. As d∆ED/dq|{q=1,CH∗

1 =1} is decreasing in R

from

∂

(
d∆ED

dq

∣∣∣
{q=1,CH∗

1 =1}

)

∂R
= (1−πL)U ′(R)−(1−πH)U ′

(
πH + R(1 − πH)

)
< 0,

evaluation of d∆ED/dq|{q=1,CH∗

1 =1} at R̃ yields

d∆ED

dq

∣∣∣∣
{q=1,CH∗

1 =1,R̃}

= πLU(1) + (1 − πL)U(R̃) − U(πH/πL).

In order for the autarky allocation to be the social optimum alloca-
tion in the high state, from the first-order condition in the social plan-
ner’s problem given in equation (4), the coefficient of relative risk aversion
should be equal to one. In this case, the utility function takes the loga-
rithmic form and the above expression becomes decreasing in πL, where

∂
(

d∆ED/dq|{q=1,CH∗

1 =1,R̃}

)
/∂πL = − log(R̃) < 0. In addition, when eval-

uated at the maximum value that πL can take (i.e. πL = πH) it is equal to
zero. Therefore, as πL < πH , d∆ED/dq|{q=1,CH∗

1 =1,R̃} > 0 for any R when

the secondary market is in the non-surplus equilibrium, and consequently,
d∆ED/dq|q=1 > 0 for any CH∗

1 > 1. Hence, as q approaches 1, the expected
utility that consumers derive from the deposit contract is greater than that
of the equity contract as illustrated in Figure 2.

Similarly, evaluating the difference between the slopes of the expected
utilities at q = 0 yields

d∆ED

dq

∣∣∣∣
q=0

= V H∗

E − V H∗

D

since both contracts achieve the social optimum for the low state. Substi-
tuting for the payoffs provides
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d∆ED

dq

∣∣∣∣
q=0

=πHU

(
πL

πH
CL∗

1

)
+ (1 − πH)U

(
R

(
1 − πLCL∗

1

)

1 − πH

)

−

(

πHU(CL∗

1 ) + (1 − πH)U

(
R

(
1 − πHCL∗

1

)

1 − πH

))

Given that consumers’ expected utility under each contract is strictly
decreasing in q, for the deposit contract to be the welfare dominant one in
the region around q = 0 requires d∆ED/dq|q=0 < 0. However, no positive
conclusions can be drawn about the sign of the above expression as this
depends on the parameters of the model and the functional form of the
utility. In particular, for the constant relative risk aversion utility function
of the form U(C) = C1−γ/(1−γ), where γ > 1 the coefficient of relative risk
aversion, algebraic examples can be provided where the above difference can
take both positive and negative signs.

From the first-order condition of the social planner and the intertemporal
budget constraint, the social optimum payoff at date 1 in the low state is

CL∗

1 =
(
πL + (1 − πL)R

1−γ
γ

)−1
. Suppose for example that γ = 2, πH =

0.7 and πL = 0.4. For R = 3.5, d∆ED/dq|q=0 ≈ 0.46, or alternatively

V H∗

E > V H∗

D . In terms of Figure 2 and given that both EV ∗
E(V ) and EV ∗

D(V )
are decreasing in q, this implies that EV ∗

E(V ) is flatter than EV ∗
D(V ) at

q = 0 and therefore the equity contract initially dominates and the threshold
value of q∗ ∈ (0, 1) can be defined where EV ∗

D(V ) is represented by the
solid line. In terms of Figure 3, this implies that the allocation of the
equity contract in the high state lies on a higher indifference curve than
the allocation of the deposit contract as V H∗

E > V H∗

D . On the contrary,
for R = 2, d∆ED/dq|q=0 ≈ −0.22, or V H∗

E < V H∗

D . Hence, EV ∗
E(V ) is

steeper than EV ∗
D(V ) at q = 0 in Figure 2 and therefore the deposit contract

dominates, where EV ∗
D(V ) is represented by the dashed line. In this case,

the equity contract’s allocation lies on a lower indifference curve in Figure
3.
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