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Abstract

Based on the cultural formation of continuous preferences frame-
work of Pichler [16], this paper analyzes the evolution of preferences
and behavior in a two cultural groups setting. We show that the qual-
itative dynamic properties depend crucially on what parents perceive
as the optimal preferences for their children to adopt. Under inter–
generationally fixed optimal preferences, the preferences of the cul-
tural groups will always stay distinct. If the optimal preferences coin-
cide with those derived from the representative group behavior, then
a multitude of convergence path types can realize. These contain both
an inter–generational assimilation process toward the same preference
point, as well as inter–generational dissimilation.
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1 Introduction

Motivation When different cultural groups live together, then there is
always cultural exchange through the social(ization) interactions between
the members of the groups. While this can well concern the mutual dissem-
ination of the customs of the groups, it notably consists to a large extent of
a mutual (inter–generational) influencing of the preferences, values, norms,
attitudes and beliefs of the groups’ members.

This context raises interest both on empirical and theoretical grounds.
In the empirical context, the question of assimilation and integration of
immigrants with different cultural backgrounds into hosting societies has
attained increasing attention in recent years, both in media and on the po-
litical agenda. This calls for a framework that allows for a theoretical rep-
resentation and analysis, optimally leading into a leveraged understanding
of the empirical processes at work.

The present paper presents such a theoretical framework, based on a re-
cent theory of Pichler [16] on the inter–generational formation of continuous
preferences.1 We will show a static and dynamic analysis of the evolution
of behavior and preferences in a two cultural groups setting, subject to one
type of continuous preferences. Thereby, one of the focus points will be to
derive conclusions about the underlying assimilation process between the
two cultural groups, both in terms of their adopted preferences, as well as
in terms of their behavioral decisions.

Contributions and Results The first part of this paper is devoted to a
recapitulation of the cultural formation of preferences framework of Pichler
[16]. In doing so, we will show in a first step how children come to adopt
intensities of any arbitrary continuous preference type. We let this be based
on the children’s social learning from role models for preference intensities
observed in their social environment. Thereby, we derive these role models,
which we call displayed preference intensities, from the socio–economic ac-
tions of adults. We then show how to interpret the preference intensities that
adults have adopted such as to construct and characterize preferences over
displayed preference intensities, respectively the underlying socio–economic
actions.

In a second step, we introduce one possible way to endogenize the cul-
tural formation of preference process as resulting out of purposeful parental
socialization decisions. These are twofold. The first is the choice of a dis-
played preference intensity. The second consists of investments into the
weight that this role model has in the socialization process of the child rel-
ative to the weight that the observed representative displayed preference

1The latter are meant to contain all types of preferences that can reflect different
intensities, located in a convex subset of the real line.
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intensity of the general social environment has. We will call this weight the
parental socialization success share. Thus, basically, the parental decision
problem is to choose best replies against the representative role model of
the general social environment. Notably, this is subject to the perception
that the parents have of the optimal preference intensity for their children to
adopt (and different perceptions can have a remarkable impact on the qual-
itative static and dynamic properties, as will be shown below). We show
conditions under which a pure strategy Nash equilibrium of the induced
‘strategic socialization interaction game’ of the parents exists. These equi-
librium choices do endogneously determine the inter–generational evolution
of the preference intensities and the preferences of the society.

In the second and main part of this paper, we then embed the endogenous
cultural formation of preferences process in a society that is populated by
two distinct cultural groups. With these, we basically refer to a collection of
families, for which it holds that the parental (adult) members have identical
adopted preference intensities and form identical perceptions of the optimal
preference intensities for their children. Under these (and other) symmetry
assumptions it then follows that all parents of the same cultural group do
always have identical best reply choices. This is the basis for the existence of
group–symmetric Nash equilibria. Notably, under such choices, (almost) all
children of the same cultural group do adopt the same preference intensities,
which inter–generationally preserves the symmetry properties.

The central task pursued in this paper is the analysis of the group–
symmetric Nash equilibrium choices and the resulting dynamic evolution of
the adopted preference intensities under two different benchmark perception
rules for the optimal preference intensities. In the main part of the paper,
we consider first exogenously fixed (and distinct) optimal preference intensi-
ties, and second the case where the parents of a group perceive the average
displayed preference intensity of their own group members as the reference
value (‘endogenous norms’). Finally, in the Appendix, we also discuss the
case where all parents have ‘imperfect empathy’.2

Under any possible perception rule for optimal preference intensities, the
direction of the socialization efforts of the parents of both groups is always
toward the optimum. In the first case that we consider, this leads to an
inter–generational coordination toward a situation where the positions of
the adopted preference intensities can be considered ‘consistent’ with the
relative location of the fixed optimal preference intensities (if this situation
has not been given initially). With this we mean that (a) the group with
the strictly larger fixed optimal preference intensity does also have a strictly
larger adopted preference intensity, and (b) the preference intensities of both

2In a more general context, Pichler [16] has already shown that this case features
a global ‘melting pot’ property, i.e. the adopted preference intensities of (almost) all
dynasties converge to the same point.
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groups do lie strictly between the two optima.
Within this ‘generic state space’, the socialization efforts of the members

of the two cultural groups are in the opposite directions. This yields the
result that the parents of both cultural groups dis–integrate behaviorally
(i.e. the parents with the strictly larger/lower adopted preference intensity
choose to display a strictly larger/lower than adopted preference intensity)
and choose strictly positive parental socialization success shares. This has
the consequence that the relative positions of the two cultural groups are
inter–generationally preserved and the ‘generic state space’ can not be left.

While as a steady state must exist in the ‘generic state space’ (only), we
could even show that under weak conditions, one such rest point must exist
which is even asymptotically stable.

The qualitative asymptotic results of the fixed optimal preference inten-
sity case do thus feature the opposite extreme to the ‘imperfect empathy’
case: While as in the latter case, the preferences of the cultural groups do al-
ways converge to the same point, this will never happen under fixed optimal
preference intensities.

Compared to this sort of uniqueness of the qualitative asymptotic prop-
erties, the case of endogenous norms features a larger variety of possible
convergence path types. First of all, we could show that under suitable
conditions, any sequence of adopted preference intensities of the two groups
converges to a steady state. Even, there is a basin in terms of a maximum
distance of the adopted preference intensities, such that all pairs of adopted
preference intensities that enter (or start in) this basin converge to a point
where all adults have the same preferences. However, for a large enough ini-
tial preference distance, it is possible that the cultural groups dissimilate on
the transitory path and a steady state with a larger than initial preference
distance is reached.

Notably, these latter dynamic results are subject to a normalization
of the selection of the group–symmetric Nash equilibrium choices in any
given period. Specifically, we consider only choices that inter–generationally
preserve the relative positions of the two cultural groups in terms of a
lower/larger adopted preference intensity. If the preferences of the two
groups are distinct, this is guaranteed in the case where the parents of both
cultural groups dis–integrate behaviorally, coupled with a strictly positive
choice of socialization success share. In case of identical preferences, the
analogous condition is that all parents do not actively socialize, i.e. they
choose a displayed preference intensity that coincides with the adopted one,
coupled with zero investments into the socialization success share. Thus,
any such point is a rest point.

Related Literature The present analysis stands in a close relation to few
existing contributions on the question of the cultural formation of continuous
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preferences. Important early treatments of the topic are Cavalli-Sforza and
Feldman [9] in a theoretical, and Otto et al. [14] in an empirical context.
More recently Bisin and Topa [1] proposed a representation of the formation
of the values of continuous cultural traits. They represented the adopted
value of the cultural trait (or continuous preference type) as a weighted
average between a role model that is taken by the family and the average of
the value of the cultural trait in the population.

The major limitation of this contribution is, however, that it does neither
explicitly consider the family’s choice of role models, nor the construction
of role models themselves. Rather, Bisin and Topa [1] assume that parents
always choose their ‘target value’ (i.e. the optimal preference intensity in the
terminology of the present paper) as a role model. Given this restricted view
on the family’s behavioral choices, its socialization decision is then reduced
to the choice of its weight in the formation of the preference intensity of
their child.3

A second, and well established, related strand is the literature on the eco-
nomics of cultural transmission. It has been introduced by Bisin and Verdier
[3, 4, 5] and Bisin et al. [2], and is based on the work of Cavalli-Sforza and
Feldman [8, 9] and Boyd and Richerson [7] in evolutionary anthropology.
The focus is on the analysis of the population dynamics of the distribu-
tion of a discrete set of preferences (respectively cultural traits) under an
endogenous intergenerational cultural transmission mechanism.

The endogeneity stems from the purposeful parental choice of socializa-
tion intensity, which effectively determines the probability that the child
will directly adopt the preferences of the parents. Parents engage into the
cost of purposeful socialization in order to avoid (decrease the probability)
that their child will not adopt their preferences — in which case parents en-
counter subjective utility losses. For an exhaustive overview of foundations
of and contributions to this literature, see Bisin and Verdier [6].4

Notably, the latter theory considers the probabilistic transmission of
preferences and does not approach the issue of formation of the latter. This
restricts its applicability mainly to discrete preferences (respectively cultural
traits).

Outline The further setup of this paper is as follows. The succeeding
section 2 recapitulates the general framework on the (endogenous) cultural
formation of continuous preferences of Pichler [16]. This is followed by the
analysis of static and dynamic properties of the model in a two cultural
groups setting in section 3. We consider both fixed optimal preference in-

3The same sort of critique applies to the approach of Panebianco [15], who considers
the formation of inter–ethnic attitudes.

4Related to this strand of literature are the contributions of Cox and Stark [10] and
Stark [19] on the ‘demonstration (or preference shaping) effect’ of parental altruism choices
in front of their children.
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tensities in subsection 3.1, as well as endogenous norms in subsection 3.2.
Further, Appendix B.1 contains a short treatment of the case where all par-
ents have ‘imperfect empathy’. Finally, Appendix B.2 discusses essential
comparative statics properties of the model, and section 4 concludes.

2 Cultural Formation of Preferences

This section discusses a general model of the formation of continuous pref-
erences through the socialization process (in subsection 2.1). In subsection
2.2, we will also show how this cultural formation of preferences process
can be derived out of optimal parental socialization decisions. Notably, the
framework developed here constitutes a shortened representation of the one
introduced in Pichler [16]. For the details, please confer the original source
directly. The reader who is familiar with the latter can read the present
section as a refresher, but can well directly proceed to section 3.

2.1 Cultural Formation of Preferences

Consider an overlapping generations society. In the present and next sub-
section, we will restrict our glance on the cultural formation of preferences
process between two succeeding generations. This makes it possible to drop
all time indexes (for ease of exposition).

In any given period, let our society be populated by a continuum of
adults, a ∈ A = [0, 1] endowed with Lebesgue measure λ, and their children.
For simplicity, we will assume that reproduction is asexual and every adult
has one offspring, so that we can denote with ã ∈ Ã the children of the
parents a ∈ A (and the population size is constant).

Let us assume that all adults have available the same feasible set of
socio–economic actions, X ⊆ R

n. The structure of the latter is such that
any typical element x ∈ X is the characteristic role model for exactly one
preference intensity (PI). We will call this the displayed preference intensity
(DPI) of a choice of socio–economic actions x, φd(x) ∈ R. Thus, there exists
a displayed preference intensity function

φd : X 7→ R

where φd(X) then corresponds to the set of possible DPIs. To simplify the
subsequent exposition, we will denote the DPI of the socio–economic actions
of adult a ∈ A, xa ∈ X, as φd

a := φd(xa).
We will now introduce the representation of the socialization process

that this paper proposes. This will be established on grounds of the tabula
rasa assumption, which means in the present context that children are born
with undefined PI, and equally, with undefined preferences. On this basis,
we then let the formation of the PI that a child adopts result out of social
learning from the DPIs of adults (only) that it is confronted with.
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Specifically, this is being embedded in a framework of socialization inside
the family and by the general adult social environment, or ‘direct vertical
and oblique socialization’.5 In this context, we will let the PI that a child
ã ∈ Ã adopts be formed according to a weighted average between the repre-
sentative DPIs of both socialization sources. In the case of the child’s family,
this coincides with the DPI of its single parent a ∈ A, φd

a ∈ φd(X). The
representative DPI of the child’s general social environment, Aa := A\{a},
will be denoted φd

Aa
. This results out of the child’s social learning from the

observed DPIs of (eventually) different subsets of adults that it is confronted
with.

More precisely, we assume that there is a finite partition of the adult
set, {AJ}

K
J=1, and that all children socially learn from the average DPIs

of these subsets, φd
AJ

:= 1
λ(AJ )

∫

AJ
φd

a′ dλ (a′) ∈ con φd(X), ∀J = 1, . . . , K.

Specifically, for every child ã ∈ Ã there are oblique socialization weights,
{σãJ}

K
J=1, that represent the relative cognitive impacts of the child’s social

learning from the various subsets of adults. These weights satisfy σãJ ∈ [0, 1]
and

∑K
J=1 σãJ = 1, ∀ã ∈ Ã, ∀J = 1, . . . , K. We obtain, ∀ã ∈ Ã,

φd
Aa

:=
K
∑

J=1

σãJφd
AJ

∈ con φd(X).

The weight that the DPI of the parent of a child ã ∈ Ã has in the
socialization process of the child will be called the parental socialization
success share, σ̂a ∈ [0, 1]. This corresponds to the cognitive impact of the
parental DPI relative to the cognitive impact of the representative DPI of
the child’s general social environment. Factors that would determine this
relative cognitive impact would include the social(ization) interaction time
of the parent with its child, as well as the effort and devotion that the parent
spends to socialize its child to the chosen DPI.6

We now obtain the formation of the PI that a child ã ∈ Ã adopts through
the ‘direct vertical and oblique socialization’ process, φã, as

φã = σ̂aφ
d
a + (1 − σ̂a)φ

d
Aa

. (1)

We will call this the parental socialization technique. It embodies the view
that the parents set a PI benchmark, φd

a, and can invest into their parental
socialization success share, σ̂a, to countervail the socialization influence that
the child is exposed to in its general social environment, φd

Aa
. Since the final

adopted PI of a child is by construction a convex combination of all DPIs

5This terminology stems from Cavalli-Sforza and Feldman [9], and is distinguished
from ‘horizontal socialization’, viz. the socialization influence of members of the same
generation (which we leave unconsidered in the present paper).

6See e.g. Grusec [12] for an introductory overview of theories on determinants of
parental socialization success.
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that it observes, the set of possible PIs that a child can adopt then coincides
with the convex hull of the set of possible DPIs, con φd(X) ⊆ R.

We assume next that, in their adult life period, all individuals keep the
PI that they have adopted in their childhood in an unchanged way. These
adopted PIs of the adults can be interpreted to induce ‘filters’ under which
adults can compare and rank different choices of socio–economic actions.
This form of evaluation takes place in terms of comparing the DPIs of the
socio–economic actions to the own adopted PIs.7 Specifically, we assume
that the adopted PIs induce complete and transitive preference relations
over choices of DPIs (respectively the underlying socio–economic actions).

Assumption 1 (‘Own’ Utility). For every a ∈ A,

(a) there is an ‘own’ utility function uφa : con φd(X) 7→ R, uφa
(

φd
a

)

∈ R,
where

(b) uφa is single–peaked with peak φa, thus strictly increasing/decreasing at
all φd

a ∈ con φd(X) such that φd
a < / > φa.

Intuitively, the single–peakedness property means that we assume adults
to prefer choosing behaviors (DPIs) that are as close as possible in line with
their adopted PIs.

2.2 Endogenous Cultural Formation of Preferences

In the present section, we will lay down one specific way of achieving an
endogeneization of the cultural formation of preferences process. This will be
based on purposeful socialization decisions of parents. Thereby, we notably
restrict the latter to consist of their choice of a displayed preference intensity
and of their parental socialization success share. This means that we leave
the oblique socialization weights (that determine the children’s relative social
learning from the different adult subsets) exogenously fixed.

Motivation for Purposeful Socialization In a first step, we have to
clarify what motivation parents have to actively engage in their children’s
socialization process, i.e. what induces them to purposefully employ their
socialization technique (the functioning of which we assume them to be fully
aware of). Basically, we let this motivation stem from the fact that parents
also obtain an inter–generational utility component. Thereby, this is either
related to the adopted PI of their children and/or to the DPI (respectively
the underlying socio–economic actions) that they expect their adult children
to take.

As far as the latter expectations are concerned, we make here an as-
sumption on a specific form of parental myopia: Although parents obtain

7This is in line with the cognitive dissonance theory of Festinger [11].
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an inter–generational utility component, which eventually induces them to
choose a DPI that does not coincide with their adopted PI (see below), we
assume that they do not realize that this form of behavior changing impact
will also be present in their adult children’s decision problems. Thus, any
parent a ∈ A expects its adult child to choose a DPI that is in the set of
maximizers of its ‘own’ utility function, arg maxφd

ã∈φd(X) uφã
(

φd
ã

)

. Under

the following assumption, φd(X) is convex and thus φd(X) = con φd(X).
This then guarantees by the single–peakedness of the utility functions that
arg maxφd

ã∈φd(X) uφã
(

φd
ã

)

= φã, ∀a ∈ A. Hence, the parental expectations of
their adult children’s DPIs are uniquely determined.

Assumption 2 (Convexity). X ⊆ R
n is non–empty and convex and φd is

continuous. If n > 1 then φd is additionally concave.

Given the parents’ myopic expectations, it is independent of whether the
inter–generational utility component of a parent is related to the adopted PI
or expected DPI of its adult child, since they coincide. Under this property,
we will now assume that any parent perceives an optimal preference inten-
sity, such that if the adult child adopts this optimal PI (and is expected to
behave according to it), then this is considered by the parent to be ‘inter–
generational utility maximal’. These parent–specific optimal PIs are subject
to what we call perception rules.

Thereby, the perception rule of the optimal PI of any parent is deter-
mined by two ‘ingredients’. The first one specifies a (set of) subset(s) of
adults, which can be understood as reference group(s). The second ingredi-
ent then specifies the construction of the optimal PI that a parent perceives
out of characteristics of the adults in these reference group(s). These char-
acteristics can either be observable (notably the DPIs of adults) or known
to an individual parent.

To formally introduce the concept of perception rules, it will be conve-
nient to define A as a σ–algebra generated by the finite partition {AJ}

K
J=1

(this is without further loss of generality).

Definition 1 (Perception Rule). The rule for the perception of the optimal

PI of parent a ∈ A is a pair
(

Ra, φ̂ã

)

, where ∅ 6= Ra ⊆ {a} ∪ A and where

φ̂ã : {a} ∪ A 7→ con φd(X), φ̂ã (Ra) ∈ con φd(X).

To ease the interpretation of this conceptualization, we will list here
three sensible types of perception rules for optimal PIs. In section 3, we will,
in a two cultural groups setting, be concerned with analyzing evolutionary
processes subject to the second and third type of perception rules mentioned
here.8 Note also that the list below is not meant to be exhaustive (one could
e.g. consider combinations of the three types mentioned).

8The first, ‘imperfect empathy’, type has already been discussed in Pichler [16]. In
Appendix B.1, the respective results for the two cultural groups setting are shortly dis-
cussed.
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CR 1 The optimal PI of a parent a ∈ A is identical to its adopted PI,
Ra = {a} and φ̂ã ({a}) = φa ∈ con φd(X).

CR 2 The optimal PI of a parent a ∈ A is identical to a parent–specific
(model–exogenous) PI, Ra = {a} and φ̂ã ({a}) = ea ∈ con φd(X).

CR 3 The optimal PI of a parent a ∈ A is identical to the average DPI of
one of the adult subsets, Ra = AM , M ∈ {1, . . . , K}, and φ̂ã (AM ) =
φd

AM
∈ con φd(X).

Given the perception rule rules and the resulting optimal PIs, we assume
further that parents perceive utility losses for deviations of the adopted PI
of their children from these optimal PIs. Specifically, for any parent a ∈ A,
we introduce the parameter ia ∈ R+ that shall capture the strength of
the perceived inter–generational utility losses. We will call this the parent’s
inter–generational preference intensity. For simplicity, we assume that these
are invariably passed over from an adult to its child, iã = ia, ∀a ∈ A.

Assumption 3 (Inter–generational Utility). ∀a ∈ A,

(a) there is an inter–generational utility function vφ̂ã(Ra) (· |ia ) : con φd(X) 7→

R, vφ̂ã(Ra) (φã |ia ) ∈ R, where

(b) ∀ia ∈ R++, vφ̂ã(Ra) (· |ia ) is single–peaked with peak φ̂ã (Ra), thus strictly
increasing/decreasing at all φã ∈ con φd(X) such that φã < / > φ̂ã.

Optimization Problems and Nash Equilibrium In the last step to-
ward the construction of the parental optimization problems, let us finally
discuss the cost associated with investments into controlling the parental
socialization success share. These would concern e.g. the opportunity cost
of the time parents spend for the active socialization of a child, as well as
the (psychological) cost of the effort and devotion invested. We will repre-
sent these cost by an indirect cost function of choices of socialization success
shares. This function is assumed to be identical for all adults a ∈ A and will
be denoted c : [0, 1] 7→ R+, c (σ̂a) ∈ R+.

The parental optimization problem is it then to choose a DPI and its
socialization success share such as to maximize the life–time utility net of
the cost of achieving the chosen socialization success share. Assuming (for
analytical simplicity) additive separability of the utility and cost functions,
we obtain, ∀a ∈ A,

max
(φd

a,σ̂a)∈φd(X)×[0,1]
uφa

(

φd
a

)

+ vφ̂ã(Ra) (φã |ia ) − c (σ̂a) (2)

s.t. φã = σ̂aφ
d
a + (1 − σ̂a)φ

d
Aa

.
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The optimization problems of the parents hence basically consist of trading
off the cost and benefits of their socialization choices. The cost are consti-
tuted by ‘own’ utility losses that parents experience when choosing a DPI
that deviates from their adopted PI, together with the cost of a choice of
their socialization success share. The benefits accrue in form of resulting
inter–generational utility gains through reductions in the distance between
the child’s adopted PI and the perceived optimal PI.

Finally, let us briefly consider issues on the existence of a (pure strategy)
Nash equilibrium of the game that is induced by the strategic interdepen-
dence of the individual parental choices. These can take the following forms.

First of all, as has already been discussed, the net life–time utility of an
individual parent, i.e. the object of its optimization problem (2), depends
on the location of the representative DPI of the general social environment.
This is constructed out of the oblique socialization weights and the average
DPIs of the adult subsets. Second, the decisions of the other adults could
influence the net life–time utility of an individual parent via the perception
rule for its optimal PI (as e.g. in the third type of perception rule).

In this respect, to guarantee the existence of a Nash equilibrium, the
following additional normalization is required: If the perception rule of a
parent is based on the DPIs and/or socialization success shares of one or
more subsets of the adults, then this is only in terms of the respective
averages.

Proposition 1 (Nash Equilibrium Existence9). If Assumptions 1–3 hold,
and if X is compact and the functions φ̂ã are continuous for every a ∈ A,
then a Nash equilibrium exists.

Proof. Confer Proposition 3 in Pichler [16].

The existence result above means that in any given period, we can use (a
selection of) the Nash equilibrium choices for substitution in the formation
of PIs equation (1). By doing so, we obtain an endogenous representation
of the inter–generational formation of PIs, i.e. we have endogenized the
cultural formation of preferences process.

3 Assimilation of Cultural Groups

In this section, we will embed the endogenous cultural formation of prefer-
ences framework in an environment where the society is populated by two
distinct cultural groups. The focus of the subsequent subsections will be
on the analysis of the evolution of the adopted preference intensities and
induced preferences subject to the Nash equilibrium socialization decisions

9The concept of a Nash equilibrium that we employ here requires that almost all parents
play best replies. This follows Schmeidler [18] and Rath [17].
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of the parents of both cultural groups. This will be done by imposing two
distinct types of perception rules. In subsection 3.1 we will consider the
second type of perception rule discussed above, while as section 3.2 is based
on the third type. Finally, the results for the first, ‘imperfect empathy’, type
of perception rule in the present setting are shortly discussed in Appendix
B.1.

Consider any given period t ∈ {0, 1, . . . } and assume that the adult set
of that period is partitioned in two subsets with strictly positive measure,
At = Ht ∪ Lt. We will call these subsets cultural groups, and index them
Gt ∈ {Lt, Ht}, with population shares qGt := λ(Gt). In the present setting,
it will be convenient to index the members of the adult generations in any
period t as gt ∈ Gt, and to denote −Gt := {Lt, Ht}\{Gt}.

Assume now that in the given period, the parent–child profiles are group–
symmetric. With this we mean that within a cultural group, all adults have
identical adopted PIs, which we denote φGt ; identical inter–temporarily fixed
inter–generational PIs, denoted iG; and identical inter–temporarily fixed

perception rules for optimal PIs, denoted
(

RG, φ̂G

)

. Finally, we assume the

oblique socialization weights of all children to be also identical. As far as
the latter are concerned, we even assume unbiased oblique socialization. In
this case, the representative DPIs are identical for all children of the society
and coincide with the average DPI of the adults. We will denote this average
DPI φd

At
.

Under these normalizations, we obtain the optimization problems (2) of
any parent gt ∈ Gt, Gt ∈ {Lt, Ht} as

max
(φd

gt
,σ̂gt)∈ φd(X)×[0,1]

uφGt

(

φd
gt

)

+ vφ̂G(RG)
(

φgt+1 |iG
)

− c (σ̂gt) (3)

s.t. φgt+1 = φd
gt

+ (1 − σ̂gt)(φ
d
At

− φd
gt

).

Given the group–symmetry that we have established, it follows that all
parents of a cultural group do always have identical sets of pairs of best reply
choices of a DPI and socialization success share. In a further extension of
the symmetry–properties, we will assume at this point that even all parents
of a cultural groups always select the same best reply pairs out of these sets
(but this is not known to the single individual).10

Assumption 4 (Compactness, Continuity). X is compact, and the func-
tions ub, vd (· |h), c and φ̂G are continuous.

Subsequently, we will call a symmetric Nash equilibrium (SNE) a Nash
equilibrium where all parents of a cultural group that choose a best reply
do also choose the same one.

10Alternatively, this property would be satisfied if we would assume the target functions
of the optimization problems of all parents to be strictly concave (since then the best reply
sets would be single–valued).
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Corollary 1 (Symmetric Nash Equilibrium). Under the group–symmetry
properties and Assumption 4, a symmetric Nash equilibrium (SNE) exists
in any period.

Proof. The existence has been discussed in Proposition 1, and the symmetry
holds basically by assumption.

Within the set–up of the present section, the set of SNEs of any period
depends on the adopted and inter–generational PIs, the perception rules, as
well as on the population shares of the two cultural groups. The subsequent
analysis will be based on the selection of a single element of these SNE

sets for any Pt := {φLt , φHt , iL, iH ,
(

RL, φ̂L

)

,
(

RH , φ̂H

)

, qHt} ∈ φd(X)2 ×

R
2
+ ×

(

A× C0
)2

× [0, 1]. We will denote the selected SNE as a tuple

{

φd∗

Gt
(Pt) , σ̂∗

Gt
(Pt)

}

Gt=Lt,Ht

.

Substituting these into the parental socialization techniques (1), it fol-
lows that almost all children of both cultural groups adopt the same PIs.
We obtain these as

φGt+1 = φd∗

Gt
(Pt) −

(

φd∗

Gt
(Pt) − φd∗

−Gt
(Pt)

)

(

1 − σ̂∗
Gt

(Pt)
)

(1 − qGt). (4)

This constitutes a representation of the members of the two cultural groups
that is inter–generationally ‘continuous’. With this, we mean that (almost
all) contemporaneous children of a cultural group form next period’s adults
of the same cultural group. It then also follows that the population shares
of the two cultural groups are constant and we will drop the respective
time–indexes subsequently.

Integration and Assimilation The analysis in the succeeding two sub-
sections will always be initiated by a discussion of the SNE choices of any
given period under the different types of perception rules. In this context,
we will speak of behavioral dis–integration of the adult members of a cul-
tural group Gt ∈ {Lt, Ht} whenever it holds that

∣

∣φd∗

Gt
(Pt) − φd∗

−Gt
(Pt)

∣

∣ >
∣

∣φGt − φd∗

−Gt
(Pt)

∣

∣. This means that these adults choose a more ‘radical’ DPI
relative to the DPI of the other group’s adults than the choice of their
adopted PI would mean.

In an inter–temporal context, it will be crucial to determine the endoge-
nous evolution of the SNE choices — and with it the endogenous evolution
of the adopted PIs. Specifically, we will also want to answer the question
of the inter–temporal assimilation (or dissimilation) process between the
two cultural groups. In a slight variation of the terminology introduced in
Pichler [16], we will speak of (PI) assimilation whenever the PI–distance

12
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∆φ
t := |φLt − φHt | strictly declines over generations, i.e. ∆φ

t+1 < ∆φ
t . From

equation (4), we obtain the PI–distances under SNE choices as

∆φ
t+1 =

∣

∣

∣

(

φd∗

Lt
(Pt) − φd∗

Ht
(Pt)

)∣

∣

∣

(

σ̂∗
Lt

(Pt)qH + σ̂∗
Ht

(Pt)(1 − qH)
)

. (5)

Furthermore, if the assimilation is such that the adopted PIs of the members
of the cultural group with the contemporaneously smaller PI strictly increase
over generations, while the opposite holds vice verso, we will speak of strict
assimilation.

Finally, with behavioral assimilation, we will call a situation where the
absolute distance between the SNE choices of DPIs of the two groups strictly
declines between two generations.

3.1 Fixed Optimal Preference Intensities

In the present subsection, we consider a situation where the parents of
both cultural groups perceive (exogenously given) inter–generationally fixed
optimal preference intensities. Thus, in any given period and for both
Gt ∈ {Lt, Ht}, φ̂G (RG) = eG ∈ con φd(X). This structure corresponds
to the second type of perception rule. Without loss of generality, consider
subsequently the (non–degenerate) case where eH > eL.

The following assumption will be prerequisite for a meaningful charac-
terization of the symmetric Nash equilibrium choices.

Assumption 5 (Slope).

(a) ub and vd (· |h) are differentiable at their peaks, and

(b) c is differentiable at the origin with slope zero, and strictly increasing in
the interval (0, 1].

Since both the utility and inter–generational utility function are single
peaked, it follows by Assumption 5 (a) that both functions have zero slope at
their peaks. Thus, parents perceive no (inter–generational) utility losses for
marginal deviations of their chosen DPI from their adopted PI, respectively
of their adult child’s adopted PI from the optimal PI.

In the rest of the analytical part of this subsection, we will be concerned
with characterizing the SNE choices of the parents as well as the resulting
evolutions of the PIs of the two cultural groups. To do this, we will focus
our attention on what we call the generic state space.

Proposition 2 (Generic State Space). Let Assumptions 1–5 hold. Then,

∀P0 ∈ φd(X)2 × R
2
++ ×

(

A× C0
)2

× (0, 1) subject to φ̂H (RH) = eH > eL =

φ̂L (RL), ∃∞ > T (P0) ≥ 0 such that eH > φHT (P0)
> φLT (P0)

> eL.

Proof. In Appendix A.1.
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This latter proposition states the following. Independent of the initial
PIs of the two cultural groups, the PIs will enter a basin in the state space
where the positions of the two PIs can be considered ‘consistent’ with the
relative location of the fixed optimal PIs. With this we mean that (a) the
group with the strictly larger fixed optimal PI does also have a strictly
larger adopted PI, and (b) the PIs of both groups do lie in the interior of
the ‘PI–space’ that is formed by the two fixed optimal PIs.

φHt

φLt

eH

eL

eL

eH

Figure 1: Phase Diagram (Non–generic State Space)

That any path that starts outside this generic state space must lead into
it is illustrated in the phase diagram 1. In any of the fields in this diagram,
the dotted lines indicate the boundaries of the range of the angles that the
phase vectors can take (notably, the boundaries themselves are not included
in this range). Also, one of these possible phase vectors is always depicted.
Furthermore, the phase vectors on the boundaries between the various fields
share (the combination of) the properties of those in their neighboring fields.
This also implies that all phase vectors on the boundary of the generic state
space point into it.

Let us briefly discuss the basic intuition to understand this phase di-
agram. We start with the two (‘non–generic’) fields in the upper triangle
of the state space where the PI of group L is smaller than optimal. This
implies that the direction of the socialization efforts of the members of this
group is ‘upwards’ (i.e. they tend to choose a DPI that is larger than their
adopted PI, jointly with a strictly positive parental socialization success
share). Since also both the adopted PI and the optimal PI of group H are
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strictly larger than the adopted PI of group L, their chosen DPI tends to
be strictly larger than the adopted PI of group L. This combination leads
to a strict inter–generational increase of the adopted PI of group L under
SNE choices. The analogous logic shows that, within the fields in the upper
triangle of the state space where the PI of group H is larger than optimal,
the adopted PI of group H must strictly decrease.

Consider now the lower left triangle in the state space. In this, the PI
of group H is smaller than that of group L, and both are smaller than the
optimal PI of group L. In this case, the directional socialization efforts of
both groups are (strictly) ‘upwards’. This implies that at least the adopted
PI of group H must strictly increase inter–generationally. Again, the anal-
ogous logic shows that in the upper right triangle, the adopted PI of group
L must strictly decrease.

Finally, consider the lower right field in the state space. In this, the
PI of the members of cultural group L is larger than both their adopted
and optimal PI, as well as larger than the adopted PI of cultural group
H. Furthermore, the latter is smaller than optimal. This implies that the
directional socialization effort of the members of group L is ‘downwards’
while that of group H is ‘upwards’. This combination then yields the effect
that under SNE choices, the inter–generational increase in the adopted PI
of group H must be strictly larger (respectively strictly less negative) than
that of group L.

We will now turn to the characterization of SNE choices within the generic
state space. Note that the results below do hold for all elements in the sets
of SNE choices of any period (thus, for any SNE selection function).

Proposition 3 (SNE Characterization). Let Assumptions 1–5 hold and let
eH > φHt > φLt > eH . Then, ∀{iL, iH , qH} ∈ R

2
++ ×(0, 1),

(a) φd∗

Ht
(Pt) > φHt > φLt > φd∗

Lt
(Pt),

(b) σ̂∗
Gt

(Pt) ∈ (0, 1], ∀Gt ∈ {Lt, Ht},

(c) eH > φHt+1 > φLt+1 > eL.

Proof. In Appendix A.2.

Within the generic state space, the socialization efforts of the members of
the two cultural groups are in the opposite directions. This yields the result
that in any SNE, the parents of both cultural groups dis–integrate behav-
iorally and choose strictly positive socialization success shares. Nevertheless,
their socialization investments would never be intense enough such that the
next generation’s adopted PIs would exactly coincide with the optimal one
(the logic of this sort of result is being discussed in Pichler [16]). This means
that once the PIs of the two groups have entered the generic state space,
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they will never leave it again. Thus, in an extension of Proposition 2, it
follows that for every t′ ≥ T (P0), eH > φHt′

> φLt′
> eL.

Obviously, also any steady state must be located within the generic state
space. The following assumption is prerequisite for guaranteeing asymptotic
stability of at least one such rest point.

Assumption 6 (Continuous SNE Selection Function). A continuous SNE
selection function exists.

Proposition 4 (Stable Steady State). Let Assumptions 1–6 hold. Then,
an asymptotically stable steady state exists (in the generic state space).

Proof. In Appendix A.3.

φHt

φLt
eH

eH

eL

Figure 2: Phase Diagram (Generic State Space)

This stability result is driven by the combination of the following forces.
First, as has been shown in Proposition 3, within the generic state space, the
direction of the socialization efforts of the members of both cultural groups
are toward their fixed optimal PIs — thus in opposite directions. This
also implies that both types of parents have to countervail the unfavorable
preference influence that the DPI of the members of the other cultural group
have on their children. These countervailing efforts tend to be increasing for
increasing distances between the adopted PIs of the two groups. Second, the
intensity of the socialization efforts of the parents of both cultural groups
tend to be decreasing with decreasing distance of their adopted PIs to their
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fixed optimal PI (the latter two properties are shown in the comparative
statics Appendix B.2).

Within a neighborhood of the boundary of the generic state space, the
combination of those effects is always unbalanced, i.e. no steady state exists
therein. However, a rest point must exist in the generic state space. Even,
there is one such point for which it holds that in a neighborhood around
it, the above described effects are unbalanced in a way that guarantees
asymptotic stability.

The phase diagram 2 illustrates the just described dynamic forces within
the generic state space.

Numerical Illustration We will close this subsection with an illustration
of the analytical findings by means of a numerical simulation.11 In both cases
of Figure 3, the initial PIs of the members of both groups coincide with
their fixed optimal PIs. Furthermore, group L is always the minority with a
population share of ten per cent. Such a constellation can e.g. be interpreted
as having resulted from immigration (of group L), where initially the hosting
and immigrant group have had adopted exactly their optimally perceived PI.
The latter could e.g. be constantly indoctrinated by two distinct religious
institutions which the two different cultural groups adhere to — and which
thus constitute the respective norms on behavior of the two groups.

0

φ
d
∗

G
t
,φ

G
t

0

φ
d
∗

G
t
,φ

G
t

0
0

1

t

σ̂
∗ G

t

0
0

1

t

σ̂
∗ G

t

t t

Case qH = 0.9, iL = iH = 0.4 Case qH = 0.9, iL = 0.8, iH = 0.4

Figure 3: Evolution under Fixed Optimal PIs

In the upper graph of each case, the solid and dotted lines represent

11For the numerical illustrations in this and the following subsections, we use the fol-
lowing specifications (unless otherwise noted): ub (j) = − (b − j)2, vd (k|h) = −h (d − k)2,
c (o) = o2.

Furthermore, in the present cases, we used an initial PI–distance of 4 units (which thus
coincides with the distance between the fixed optimal PIs), and the total length of the
time–axis in all graphs corresponds to 100 periods. Nevertheless, the choice of the initial
PI–distance and the resulting length of the convergence path could be arbitrarily changed,
so that they are not indicated in the graphs.
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the DPIs and PIs of the two groups (and the dash–dotted line locates the
population–share weighted convex combination of the initial PIs; this would
equate to the steady state if parents of both cultural groups would not invest
into their socialization instruments). The paths of the socialization success
shares of the parents of group L are represented by the dotted lines in the
lower graph of each case.

The left case of the figure stylizes immigration of a cultural group with a
comparatively weak norm on behavior into a hosting society for which this
also holds. To the contrary, the right case of the figure stylizes immigration
of a cultural group with a strong norm on behavior into a hosting society
with a comparatively weak norm.

Let us first collect the evolutionary regularities that can be seen in both
cases. First, the members of both cultural groups dis–integrate behaviorally
in every period. Second, there is an assimilative tendency until the steady
state has been reached. This PI–assimilation is accompanied by an assim-
ilation of the chosen DPIs of the cultural groups (see also the comparative
statics results in Appendix B.2).

Furthermore, in both cases the minority cultural group invests consider-
ably more into both socialization instruments. This is (partially) due to the
fact that the minority group faces a much more unfavorable composition of
the general social(ization) environment (in terms of the resulting location of
the average DPI compared to the fixed optimal PI). The individual parents
of that group thus aim to compensate this by increased investments into
their socialization instruments. In the right case, the minority group does
additionally have a much stronger norm on behavior, i.e. the social pun-
ishments from behavioral deviations from the norm are accordingly more
intense. This additionally induces the parents of this group to invest more
into socialization.

This latter effect has a remarkable impact on the dynamical evolution of
the endogenous variables. In the left case, the norms of both cultural groups
are low enough such as to allow for a substantial assimilation process. Even,
the PIs of the two groups do nearly converge to a symmetric steady state
(but stay distinct).12 Compared to this case, the increased socialization
investments of the minority group in the right case do trigger an according
reaction of the majority group. Thus, both groups invest more into both
socialization instruments. As a consequence, the PIs of the two groups are
held back from assimilation already after very small deviations from the
fixed optimal PIs. The resulting steady state PI–distance is accordingly
larger.

12We call a symmetric steady state a steady state where almost all adults have the same
adopted PI.
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3.2 Endogenous Norms on Behavior

The present section will be based on the third type of perception rule dis-
cussed in section 2.2. The latter lets all parents form their perception of
the optimal preference intensity based on a the average DPI of a subset of
the adults. In the present context, it is immediate to let the respective sub-
sets coincide with the adult members of the own cultural group of a parent.
Thus, under the symmetry assumptions taken above, the optimal PI always
coincides with the identical best reply DPIs of the own group members.

We will start the analytical part of this subsection with a characterization
of the SNE choices of any period. To be able to do this in a sensible and
consistent way, we will require the additional assumption below.

Assumption 7 (Concavity). The target functions of optimization problems
(3) are concave.

This assumption is stronger than it might appear on first glance. To see
this note that concavity of the own and inter–generational utility functions
together with convexity of the cost function is not in general sufficient to
guarantee concavity of the target functions of the optimization problems.
This follows since the Hessian matrices of the parental socialization tech-
niques with respect to the two decision variables are indefinite.13 Thus the
inter–generational utility functions are not in general concave with respect
to the two decision variables. To cure this, it is thus necessary that the own
utility functions together with the cost functions are jointly concave and
convex enough compared to the concavity of the inter–generational utility
functions.

Once this sort of condition is satisfied, it is then also guaranteed that
in any given period, SNE choices exist that preserve the relative positions
of the adopted PIs of the two groups. To require this property can be
considered sensible, since it assures a minimum sort of continuity of the
inter–generational evolution of the PIs.

Proposition 5 (Relative–Position–Preserving SNE Choices). Let Assump-
tion 1–5 and 7 hold. Then, in any given period and for every {iL, iH , qH} ∈
(R++ \{∞})2 × (0, 1), a SNE with the following characteristics exists.

1. Case φHt >< φLt

(a) φd∗

Ht
(Pt) >< φHt >< φLt >< φd∗

Lt
(Pt),

14

(b) σ̂∗
Gt

(Pt) ∈ (0, 1), ∀Gt ∈ {Lt, Ht},

(c) φd∗

Ht
(Pt) >< φHt+1 >< φLt+1 >< φd∗

Lt
(Pt).

13The determinants of these Hessian matrices are −1.
14The outer inequalities turn into equalities if the adopted PI of a cultural groups equals

the relevant one of the boundaries of the set of possible DPIs.
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2. Case φHt = φLt

(a) φd∗

Gt
(Pt) = φGt = φGt+1, ∀Gt ∈ {Lt, Ht},

(b) σ̂∗
Gt

(Pt) = 0, ∀Gt ∈ {Lt, Ht}.

Proof. In Appendix A.4.

The key to understanding these properties is the following. First remem-
ber that under the present perception rule, the optimal PI of the members
of both cultural groups always coincides with their identical best reply DPI
choices. This opens the possibility of multiple, qualitatively different, SNEs.
However, consider a situation where the DPIs are such that both groups dis–
integrate behaviorally. Then, the best reply directions of socialization efforts
would coincide with this constellation, i.e. there would be best reply behav-
ioral dis–integration of both groups. This is the basis for the existence of a
SNE that as characterized in the first part of Proposition 5.

Since both cultural groups dis–integrate behaviorally, together with a
strictly positive socialization success share, it also follows that the relative
PI positions of the two groups are preserved over generations. However, the
parents of both cultural groups would never choose to exclusively socialize
their children (choose a parental socialization success share of one). This
follows since in this case, their adult children’s adopted PI would coincide
with the chosen DPI of the parents, thus with the optimal PI. This can
though never be subject to best reply choices (as discussed in detail in
Pichler [16]).

Finally, in the case where the adopted PIs of both cultural groups are
identical, the situation where the parents of both cultural groups do not
actively socialize their children is possible under SNE choices. This follows
since such a choice–constellation would yield maximum possible utility for all
parties involved. Notably, since the adopted PIs of all adult children would
then coincide with the adopted PIs of the contemporaneous adult generation,
any such case would constitute a steady state (which is additionally relative
position preserving).

Under these relative position preserving properties, it furthermore fol-
lows that no PI–trajectory that has its origin in the upper/lower triangle of
the state space can enter the lower/upper triangle. We will next turn to the
discussion of the qualitative properties of the corresponding PI–dynamics.
For one part of this discussion, the following assumption will be required.

Assumption 8 (Symmetric Utility Functions). For every b, b′ ∈ con φd(X),
ub (j) = ub′ (j′) if b− j = b′ − j′. Similarly, for every d, d′ ∈ con φd(X), and
h ∈ R+, vd (k|h) = vd′ (k′|h) if d − k = d′ − k′.

This assumption states that all ‘own’ and inter–generational utility func-
tions yield identical felicity for identical ‘directional’ deviations from their
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peaks. On the one hand, this assumption appears to be quite natural. On
the other hand, note that it implies that the dis–utilities that accrue due
to deviations from the utility peaks are independent of the positions of the
peaks relative to the boundaries of the set of possible DPIs (respectively
‘adoptable’ PIs).15

Proposition 6 (Evolution under Endogenous Norms on Behavior). Let As-
sumptions 1–7 be satisfied. Then, the following properties are satisfied un-
der relative position preserving SNE choices and for every (iL, iH , qH) ∈
R

2
+ ×(0, 1).

(a) There exists a ∆ (iL, iH , qH) ∈
(

0, | con φd(X)|
]

such that ∀0 < ∆φ
t <

∆ (iL, iH , qH), ∆φ
t+1 < ∆φ

t . This implies that ∀∆φ
0 < ∆ (iL, iH , qH),

limt→∞ ∆φ(t, ∆φ
0 , iL, iH , qH) = 0.

(b) If additionally Assumption 8 is satisfied, then there exists a SNE selec-
tion function such that ∀ (φL0 , φH0) ∈ con φd(X)2, the PIs converge to
a steady state.

Proof. In Appendix A.5.

The first part of this proposition states that indeed, there is a basin in
terms of a maximum PI–distance such that for any pair of PIs that features
a lower distance, the cultural groups assimilate inter–generationally.

This result rests crucially on the continuity of the relative position pre-
serving SNE selection function. Remember that we imposed the normaliza-
tion that at any symmetric PI point (i.e. any point on the main diagonal of
the state space), the parents of both cultural groups choose zero investments
into their socialization instruments. Thus, any such a point is a rest point.
By the continuity of the SNE choices, it must then hold that in some neigh-
borhood around the main diagonal, the parents of both groups choose low
enough pairs of behavioral dis–integration and socialization success shares,
such that this results into assimilation. Thus, for any initial pair of PIs of
the groups that is located within the latter, the PIs converge to a symmetric
steady state.

Nevertheless, the basin of attraction of the symmetric steady states does
not in general coincide with the whole state space. The second part of
Proposition 6 then states that (under the relevant conditions) even any

15To see that accounting for these relative positions might be sensible, consider a pair
of unequal adopted PIs. Then, any identical DPI deviation from these utility peaks in the
same direction would imply that always one chosen DPI can be considered more ‘radical’
relative to the maximum or minimum possible DPI. Thus, if one would e.g. like to account
for the adults’ eventual ‘preferences’ for moderate behavior, Assumption 8 would not be
appropriate. A similar line of thought applies in case that parents would e.g. prefer their
adult children having moderate adopted PIs (respectively choosing more moderate DPIs).
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initial pair of PIs that is located outside this basin converges. This property
rests on normalizations of the phase vectors (which is achieved through
additional normalizations of the underlying SNE selection function) to rule
out the existence of circles in the whole state space.

In very short words, these normalizations are such that the state space is
being composed of a continuum of connected line segments. These consist of
(a) a vertical line on which the lower/upper bound of the set of possible DPIs
is binding in the DPI choice of the parents of group L (in the upper/lower
triangle of the state space), and on which the inter–generational PI–change
of group H is constant; (b) a 45 ◦–line on which the inter–generational PI–
changes of both groups are constant (notably, these lines can ‘melt down’
to single points); and (c) a horizontal line on which the upper/lower bound
of the set of possible DPIs is binding in the DPI choice of the parents of
group H (in the upper/lower triangle of the state space), and on which the
inter–generational PI–change of group L is constant.

Since the state space is thus constructed as a continuum of (connected)
line segments on which the inter–generational PI–change of group L and/or
group H are constant, it follows that no circles can exist. Thus, any sequence
of PIs must converge.

φHt

φLt

Figure 4: Phase Diagram (Upper Triangle)

The results of Proposition 6 are illustrated in Figure 4, which stylizes
possible qualitative properties of the phase vectors in the upper triangle of
the state space (the phase diagram in the lower triangle would correspond
to the mirror image). This upper triangle is partitioned into four distinct
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fields, indicated by the dotted lines. These stylize the regions where either
the lower/upper bound of the set of possible DPIs is binding for group L/H
(the leftmost/upper–rightmost triangle), respectively where both boundaries
are binding (the rectangle), or where both boundaries are unbinding (the
main triangle).

The central characteristic of this phase diagram is that with increasing
PI–distance, the PI–assimilation of the cultural groups declines in mag-
nitude. Specifically, in a neighborhood around the main diagonal (which
consists of a continuum of steady states) the cultural groups do first strictly
assimilate, followed by a neighborhood in which assimilation takes place.
Furthermore, there is a 45 ◦–line in the main triangle where the PI–distance
stays constant (but not the PIs themselves in this case).

For any point in the main triangle that features a larger PI–distance,
the cultural groups do even (strictly) dissimilate. In the present illustra-
tion, where the socialization efforts of the parents of group H are always
dominating (which can be due to e.g. a larger strength of the behavioral
norm), this has the following consequence: Any PI–trajectory that starts in
the according area of the state space must lead into a field where (at least)
the upper bound of the set of possible DPIs is binding for group H.

In this field, there is then a separating vertical line with the following
properties. If a trajectory enters (or starts in) the field ‘to the left’ (i.e. at a
point with a lower adopted PI of group L) of this vertical line, then the PIs
will converge to the asymptotically stable steady state in the rectangle. In
the opposite case, the PIs will be subject to an assimilation process toward
a symmetric steady state. Finally, if the trajectory should enter the field
exactly at the vertical line (or starts thereon), then the depicted unstable
steady steady state would be reached.

Numerical Illustration We again conclude this subsection with a nu-
merical illustration of the evolutionary dynamics16. In both cases of Figure
5, group L is a again the minority with a population share of twenty per
cent. Furthermore, it has a slightly lower intensity of the endogenous norm
on behavior.

The only distinction between both cases is that the right case features a
twice as high initial PI–distance as the left case. As can be seen, this has a
crucial consequence on the evolutionary dynamics. The constellation in the
left case is such that the initial PIs are located in the basin of attraction
of the symmetric steady states. Even, both cultural groups do assimilate
throughout the convergence path. This process is again accompanied by an
assimilation of the chosen DPIs.

These results do not hold in the right case. To the contrary, the initial PI

16Compared to the previous subsection, the total length of all time–axes is reduced to
30 units.
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Figure 5: Evolution under Endogenous Behavioral Norms

distance is large enough such as that even an inter–generational dissimilation
process is triggered — both with respect to the PIs as well as the chosen
DPIs.

4 Conclusions

This paper extended a recent theory of Pichler [16] on the inter–generational
formation of continuous preferences. Followed by a recapitulation of the
latter theory, we analyzed the dynamic evolution of both the behavior and
the preferences in a society populated by two distinct cultural groups.

We showed that the qualitative dynamic properties depend crucially on
how parents form their perception of the optimal preference intensity that
their children should adopt. As has already been shown in Pichler [16], if
all parents have ‘imperfect empathy’, then the preferences of (almost) all
dynasties converge to the same point. To the contrary, if all parents of
a cultural group adhere to the same exogenously given and fixed optimal
preference intensity, then this can never happen. Rather, the two cultural
groups stay distinct forever.

The largest variety of possible qualitative properties of the convergence
paths is being featured when the optimal preference intensities of all parents
of a cultural group coincide with that derived from the average behavior of
the group members. Given this, it is well possible that the preferences
of (almost) all parents converge to the same point. However, it can occur
that the cultural groups initially assimilate, but stay distinct in the long run.
Even, an inter–generational dissimilation process that leads to a steady state
with larger than initial preference distance can realize.

This sort of analysis also yields additional insights into empirically ob-
servable patterns of assimilation and integration of cultural groups. How-
ever, the present one–dimensional framework can only be considered the first
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step in a longer road toward a holistic representation of these processes. The
next steps on this road could concern a general, n–dimensional analysis, both
with respect to the number of preference types, as well as to the number of
cultural groups. Furthermore, we considered here only benchmark cases of
perception rules for optimal preference intensities. A more general approach
would be sensible.

Note also that we restricted the parental decision problems to the so-
cialization side only — and left other behavioral determinants (like gen-
eral social interactions) unconsidered. Accounting for a richer ‘adult world’
could yield qualitatively different results. Finally, the role of the children in
their socialization process is so far that of passive receivers. Allowing for a
pro–active role of children in the adoption process of preferences could also
constitute a fruitful extension of the present baseline model (and that of
Pichler [16]).

A Proofs

Many parts of the proofs below follow straightforwardly from the general
characteristics of parental best reply choices shown in Proposition 1 in
Pichler [16] (these characteristics must also hold for the individual best
reply choices in a SNE). For ease of reference, we replicate this proposi-
tion here. We will be using the notation of section 2, and additionally
require the following. For any a ∈ A, we will denote any pair of best
reply choices (which are chosen against the representative DPI and sub-
ject to the optimally perceived PI, adopted and inter–generational PI) as
(

φd
a

(

φd
Aa

, φ̂ã (Ra) , φa, ia

)

, σ̂a

(

φd
Aa

, φ̂ã (Ra) , φa, ia

))

, which we will abbre-

viate below as
(

φd
a (·) , σ̂a (·)

)

. Furthermore, the resulting best reply location
of the adult child’s adopted PI will be denoted φã

(

φd
a (·) , σ̂a (·) , φd

Aa

)

.

Proposition A.1 (Characterization of Best Replies). Let Assumptions 1–3
hold. Then, if

(a) φd
Aa

6= φ̂ã (Ra), generically17 sign
(

φd
a (·) − φa

)

= − sign
(

φd
Aa

− φ̂ã (Ra)
)

and σ̂a (·) > 0, while always sign
(

φã

(

φd
a (·) , σ̂a (·) , φd

Aa

)

− φ̂ã (Ra)
)

=

sign
(

φd
Aa

− φ̂ã (Ra)
)

.

17There are two kinds of exceptions to the generic characterization. The first is that if
the deviation of the best reply DPI from the adopted PI into the characterized direction
is not possible, i.e. if the adopted PI of a parent coincides with (the relevant) one of the
boundaries of φd(X), then the best reply DPI will coincide with that boundary (while
as still generically σ̂a (·) > 0). The second is that in the cases where φ̂ã (Ra) > φa and

φd
Aa

∈
(

φa, φ̂ã (Ra)
)

, respectively where φ̂ã (Ra) < φa and φd
Aa

∈
(

φ̂ã (Ra) , φa

)

, it can

also hold that sign
(

φd
a (·) − φa

)

= 0 and σ̂a (·) = 0, hence φã

(

φa, 0, φd
Aa

)

= φd
Aa

.
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(b) φd
Aa

= φ̂ã (Ra), it holds that φd
a (·) − φa = 0 and σ̂a (·) = 0, hence

φã

(

φa, 0, φ̂ã (Ra)
)

− φ̂ã (Ra) = 0.

Proof. Confer the proof of Proposition 1 in Pichler [16].

A.1 Proof of Proposition 2

That Proposition 2 holds follows as an immediate consequence of the Lemma
below. This shows the range of the phase vectors depicted in Figure 1.

Lemma 1 (Phase Vectors).

(a) If φHt ≥ eH and φHt ≥ φLt then φ̇Ht < 0; and if φLt ≤ eL and φLt ≤ φHt

then φ̇Lt > 0.

(b) If φLt ≥ φHt ≥ eH then φ̇Lt < 0; and if eL ≥ φLt ≥ φHt then φ̇Ht > 0.

(c) If φLt ≥ eL, φLt ≥ φHt and φHt ≤ eH then φ̇Ht > φ̇Lt.

Proof. Before we start this proof, note that in the notation of the SNE quan-
tities below, their dependence on Pt is not indicated for brevity. Also, in a
slight notational inconsistency, we will denote with φd

gt

(

φd∗

At

)

the best reply
choices to the location of the average (SNE–)DPI of any individual member
of the cultural groups Gt ∈ {Lt, Ht} (again, the dependence on other pa-
rameters is not indicated). Note also that all claims that are made below
without comment follow directly from Proposition A.1.

(a) Let φHt ≥ eH and φHt ≥ φLt . Then φ̇Ht < 0 if φd∗

At
< φHt . Suppose, by

ways of contradiction, that φd∗

At
≥ φHt . In this case, φd

ht

(

φd∗

At

)

≤ φHt . Fur-

thermore, φd
lt

(

φd∗

At

)

> φLt if φLt is larger than the lower bound of φd(X). If

φLt equals that lower bound, then φHt > φd
lt

(

φd∗

At

)

= φLt . This contradicts

φd∗

At
≥ φHt being supported by best reply choices.
The proof for the ‘opposite’ case of φLt ≤ eL and φLt ≤ φHt is analogous.

(b) Let φLt ≥ φHt ≥ eH . Then φ̇Lt < 0 if φd∗

At
< φLt . Suppose, again

by ways of contradiction, that φd∗

At
≥ φLt . In this case, φd

lt

(

φd∗

At

)

< φLt and

φd
ht

(

φd∗

At

)

< φHt . This yields a contradiction.
The proof for the ‘opposite’ case of eL ≥ φLt ≥ φHt is again analogous.

(c) Let φLt ≥ eL, φLt ≥ φHt and φHt ≤ eH . Then, if φd∗

At
∈ (φHt , φLt)

it follows that φ̇Ht > 0 and φ̇Lt < 0. If φd∗

At
/∈ (φHt , φLt), then this can only

hold if φd∗

Lt
< φd∗

At
< φd∗

Ht
. Thus, φHt+1 > φLt+1 =⇒ φ̇Ht > φ̇Lt .

26



Michael Pichler

A.2 Proof of Proposition 3

By Proposition A.1, it suffices to show here that φd∗

At
∈ (eL, eH). Suppose,

by ways of contradiction, that φd∗

At
≥ eH . But then, φd

ht

(

φd∗

At

)

≤ φHt while

φd
lt

(

φd∗

At

)

< φLt . This contradicts φd∗

At
≥ φHt being supported by best reply

choices. The analogous logic yields a contradiction for the case of φd∗

At
≤

φLt .

A.3 Proof of Proposition 4

First note that the dynamical system is time–autonomous. For this reason,
we will subsequently drop all time–indexes for ease of notation. Further, we
will denote the phase vectors corresponding to any point (φL, φH) ∈ φd(X)2

as
(

φ̇L (φL, φH) , φ̇L (φL, φH)
)

and suppress the dependence on the other

(constant) parameters. Also note that by the continuity of the SNE choices,
the phase vectors must be continuous in state space.

Consider the point (eL, eH). We know (from the proof of Proposition
2) that at this point, φ̇H (eL, eH) < 0. Conversely at the point (eL, eL)
φ̇H (eL, eH) > 0. It follows that on the ‘lower border (LB)’ of the generic
state space where φL = eL the signs of φ̇H must switch an odd number of
times. Similarly, since φ̇L (eH , eH) < 0, it follows that on the ‘upper bound
(UB)’ of the generic state space where φH = eH , the signs of φ̇L must switch
an odd number of times.

Consider now any of the isoclines that starts at a ‘switching point’ of φ̇H

on the LB. Thus, this isocline must feature φ̇H = 0, and can furthermore
not end at the UB, since there φ̇H (φL, eH) < 0. Assume now that such
an isocline ‘starts’ and ‘ends’ at the LB. Since no isoclines where φ̇H = 0
can cross each other, it follows that between the corresponding start– and
endpoints on the LB there must lie (either zero or) an even number of
points where φ̇H changes signs. It then follows that a φ̇H = 0–isocline
that starts at the LB and ends at the main diagonal (MD) must exist.
Furthermore, at least one such isocline must also have ‘odd order’ on the
LB. With this we mean that both counting from above or from below, the
number of appearance of the corresponding ‘switching point’ of φ̇H is odd.
Finally, on any such isoclines, the sign of φ̇L must switch an odd number of
times. This follows since on the MD, φ̇H > φ̇L must hold, thus φ̇L < 0 at
the end–point on the MD of the isocline under scrutiny. Thus, there is an
odd number of intersections with isoclines where φ̇L = 0 (of which an odd
number exists).

Since on the LB, φ̇L (eL, φH) > 0 it follows from the analogous reasoning
that at least one φ̇L = 0–isocline that starts at the UB and ends at the MD
with ‘odd order’ must exist. Also, the the sign of φ̇H must switch an odd
number of times thereon (since on its end–point on the MD, φ̇H > 0 must
hold). Thus, there is an odd number of intersections with isoclines where
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φ̇H = 0 (of which an odd number exists).
From these properties, it is now immediate that at least one pair of the

above described ‘odd order’ isoclines must intersect — where the intersection
can only take place at ‘odd order’ (on both isoclines). Consider now this in-
tersection, which obviously constitutes a steady state. Denote this (φ∗

L, φ∗
H).

Now, since the intersection can only take place at ‘odd order’, it follows that
there is a nonempty neighborhood around the steady state where (a) for all
points on the respective φ̇H = 0–isocline such that φL <=> φ∗

L, it holds
that φ̇L (φL, φH) >=< 0, and (b) for all for all points on the respective
φ̇L = 0–isocline such that φH <=> φ∗

H , it holds that φ̇H (φL, φH) >=< 0.
By the continuity of the phase vectors it then finally follows that the steady
state (φ∗

L, φ∗
H) is locally asymptotically stable.

A.4 Proof of Proposition 5

Consider any φHt > φLt . Further, denote with the pair
(

φd
Lt

, φd
Ht

)

the
(average) DPIs of the members of the cultural groups (these coincide with
the parents’ optimal PIs). It then follows that φd

At
= (1 − qH)φd

Lt
+ qHφd

Ht
.

Assume now that φd
Ht

≥ φHt > φLt ≥ φd
Lt

, in which case φd
At

∈
(

φd
Lt

, φd
Ht

)

.
From Proposition A.1, we know that for any of the individual best replies

of the members of both groups to such a constellation, it must hold that
φd

ht

(

φd
Lt

, φd
Ht

)

≥ φHt and φd
lt

(

φd
Lt

, φd
Ht

)

≤ φLt . The sets of individual best
reply DPIs are furthermore non–empty, compact and UHC by Berge’s The-
orem of the Maximum. By the concavity of the target functions of the
individual optimization problems, these sets are furthermore convex.

We thus have a non–empty, convex– and compact–valued and UHC cor-
respondence from a non–empty, convex and compact set into itself. By
Kakutani’s Fixed Point Theorem, there must thus exist a fixed point of the
form

(

φd
lt

(

φd
Lt

, φd
Ht

)

, φd
ht

(

φd
Lt

, φd
Ht

))

=
(

φd
Lt

, φd
Ht

)

.

From Proposition A.1, we know additionally that, under the conditions
above, whenever φHt/φLt is strictly smaller/larger than the upper/lower
bound of the set of possible DPIs, then (given the described constellation
above) any of the individual best replies must feature φd

ht

(

φd
Lt

, φd
Ht

)

> φHt

and φd
lt

(

φd
Lt

, φd
Ht

)

< φLt , and σ̂gt

(

φd
Lt

, φd
Ht

)

> 0, ∀gt ∈ {lt, ht}. This final-
izes the proof of part (a) of Proposition 5.

To see part (b) simply note that if φHt = φLt = φ, then it must hold
that

(

φd
lt

(φ, φ) , φd
ht

(φ, φ)
)

= (φ, φ) and (σ̂lt (φ, φ) , σ̂ht
(φ, φ)) = (0, 0).

A.5 Proof of Proposition 6

Again due to the time–autonomy of the dynamical system, we will drop the
time–indexes in the subsequent proof.

28



Michael Pichler

(a) Consider any arbitrary point on the main diagonal of the state space,
(φ, φ). Then, by the continuity of the SNE choices, there must exist an
open neighborhood around this point, Nǫ(φ, φ), with φL 6= φH , ∀ (φL, φH) ∈
Nǫ(φ, φ), and for which it holds that 0 < σ̂∗

G (φL, φH) < ǫ < 1, ∀G = {L, H}.
Assume now, by ways of contradiction, that the distance between the PIs

of the two cultural groups would be increasing (i.e. not strictly decreasing)
at any point in this open neighborhood. Using the previous inequality, it
follows from equation (5) that ∀ (φL, φH) ∈ Nǫ(φ, φ),

∣

∣φd∗

L (φL, φH) − φd∗

H (φL, φH)
∣

∣

|φL − φH |
>

1

ǫ
> 1

would have to hold. Now, remember from Proposition 5 that φd∗

G (φ, φ) = φ,
∀G = {L, H}. Thus, for any sequence in Nǫ(φ, φ) that converges to the
point (φ, φ), it would have to hold by the continuity of the DPI choices that
the limit of the left hand side of the above inequality equals one. But this
yields a contradiction.

(b) This proof will be based on additional normalizations of the SNE se-
lection function. To discuss these, we will focus our attention to the upper
triangle of the state space (i.e. where φH ≥ φL).

Consider a point where the adopted PI of the members of group L
coincides with the lower bound of φd(X) =

[

φ, φ
]

. Denote this
(

φ, φ1
H

)

,

with φ1
H > φ. We know that at any such point φd∗

L

(

φ, φ1
H

)

= φ, and the
DPI constraint is binding. Then, there is always a SNE selection func-
tion for which it holds that there is a non–empty and right–open interval
[(

φ, φ1
H

)

,
(

φ1
L, φ1

H

))

, where φ1
L > φ, for which it holds that (a) the DPI

constraint for L stays binding; as well as that (b) for all points
(

φL, φ1
H

)

in
this interval, φd∗

H

(

φL, φ1
H

)

= φd∗

H

(

φ, φ1
H

)

and σ̂∗
H

(

φL, φ1
H

)

= σ̂∗
H

(

φ, φ1
H

)

.
Extending this sort of normalization to any point where φL = φ (and

which is not located on the main diagonal), we obtain a continuum of right–
open intervals on any of which it holds that φ̇H is constant.

Analogously, consider a point where φH = φ, and denote this point
(

φ2
L, φ

)

, with φ2
L < φ. We know that at this point φd∗

H

(

φ2
L, φ

)

= φ, and
the DPI constraint is binding. Then, there is always a SNE selection func-
tion for which it holds that there is a non–empty and left–open interval
((

φ2
L, φ2

H

)

,
(

φ2
L, φ

)]

, where φ2
H < φ, for which it holds that (a) the DPI

constraint for H stays binding; as well as that (b) for all points
(

φ2
L, φH

)

in

this interval, φd∗

L

(

φ2
L, φH

)

= φd∗

L

(

φ2
L, φ

)

and σ̂∗
L

(

φ2
L, φH

)

= σ̂∗
L

(

φ2
L, φ

)

.

Extending this sort of normalization to any point where φH = φ (and
which is not located on the main diagonal), we obtain a continuum of left–
open intervals on any of which it holds that φ̇L is constant.

Consider now any pair of points that consists of a right–boundary point
of the first type of intervals and a left–boundary point of the second type of
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intervals, which satisfies the following conditions: (a) At the first of these
points, the DPI constraint for group H is not binding, and at the second of
these points, the DPI constraint for group L is not binding. (b) These two
points are connected through a 45 ◦–line–segment (in state space).

We will now impose a normalization on the SNE selection on these sorts
of 45 ◦–line–segments. To introduce this, the following definition will be
useful.

Definition A.1 (State–corrected SNE Choices). ∀ (φL, φH) ∈ con φd(X)2,
denote the tuple

{

φd∗

G (φL, φH) − φG, σ̂∗
G (φL, φH)

}

G∈{L,H}

as state–corrected SNE choices.

We will now indeed require the SNE selection function to select identical
state–corrected SNE choices for every point on any of the above constructed
45 ◦–line–segments. Thus for all points on such 45 ◦–line–segments, both φ̇L

and φ̇H are constant (i.e. the 45 ◦–line–segments are isoclines).
We can now give the following summarizing characterization of the phase

vectors in the upper triangle of the state space. First, the main diago-
nal consists of a continuum of steady states (Proposition 5 (b)). This is
neighbored by a continuum of line–segments consisting of a connection of
(a) a horizontal line in state space where φ̇H is constant, with (b) a 45 ◦–
isocline, with (c) a vertical line where φ̇L is constant. The ‘upper’ border
of this neighboring field of the main diagonal is as follows. There is a point
(φm, φm) where

(

φd∗

L (φm, φm) ,
(

φd∗

H (φm, φm)
))

=
(

φ, φ
)

, but where both
DPI constraints are unbinding. This single point constitutes its own 45 ◦–
line–segment. Thus, the vertical and horizontal lines connected to this point
do constitute the borders of a rectangle in which it holds that the lower DPI
constraint is binding for group L and the upper DPI constraint is binding
for group H. This rectangle is thus made of a continuum of horizontal lines
with constant φ̇H and a continuum of vertical lines with constant φ̇L.

From these properties, it follows straightforwardly that no cycles can
exist in the upper triangle of the state space. Thus, all sequences of PIs must
converge to a steady state therein. Extending these properties (respectively
the normalizations on the SNE selection function) to the lower triangle of
the state space in an analogous way, we obtain the convergence property for
the whole state space.

B Extensions

B.1 Evolution under Imperfect Empathy

The central property of the evolution under global ‘imperfect empathy’ (re-
spectively the first type of perception rule) is that if the oblique socialization
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is unbiased, then the PIs of (almost) all adults converge to the same point
(confer Proposition 4 in Pichler [16]). Since in the present paper, we have
assumed unbiased oblique socialization, this result must thus hold.

It rests to show the characterization of the SNE choices for the two
cultural groups case and under global imperfect empathy.

Proposition B.1 (Characterization of SNE choices). Let Assumptions 1–
5 hold. Then, the following SNE properties are satisfied, ∀{iL, iH , qH} ∈
(R++ \{∞})2 × (0, 1).

1. Case φHt <> φLt

(a) φd∗

Ht
(Pt) <> φHt <> φHt+1 <> φLt+1 <> φLt <> φd∗

Lt
(Pt)

18, and

(b) σ̂∗
Gt

(Pt) ∈ (0, 1), ∀Gt ∈ {Lt, Ht}.

2. Case φHt = φLt

(a) φd∗

Gt
(Pt) = φGt = φGt+1, ∀Gt ∈ {Lt, Ht}, and

(b) σ̂∗
Gt

(Pt) = 0, ∀Gt ∈ {Lt, Ht}.

Proof. Let φHt > φLt . By Proposition A.1, it suffices to show that φd∗

At
(Pt) ∈

(φLt , φHt). Assume, by ways of contradiction, that φd∗

At
(Pt) ≥ φHt . However,

in this case φht

(

φd∗

At
(Pt)

)

≤ φHt while even φlt

(

φd∗

At
(Pt)

)

< φHt . This yields

a contradiction. Analogously, we obtain a contradiction for φd∗

At
(Pt) ≤ φLt .

Also, the proof for the case φHt > φLt is analogous.
Let φHt = φLt , and assume that φd∗

At
(Pt) <> φHt = φLt . But then,

φgt

(

φd∗

At
(Pt)

)

>< φd∗

At
(Pt), ∀gt ∈ {lt, ht}, which yields a contradiction again.

By the results of Proposition B.1, the cultural groups strictly assimilate
inter–generationally. Thus, the distance between the PIs of the two groups
is a contraction mapping and the PIs of the groups converge to the same
point (confirming the result of Pichler [16]). This result can be interpreted
to correspond to the ‘melting pot’ theory of assimilation of cultural groups
(see e.g. Han [13]).

B.2 Comparative Statics

For pursuing the comparative statics subject to the types of perception rules
that we considered in the present paper, the following additional assump-
tions are necessary.

Assumption B.1 (Curvature).

18Again, the outer inequalities would be strict if the respective adopted PI would coin-
cide with the relevant boundary of con φd(X). But this can only be the case in the initial
period, given the results of the present Proposition.
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(a) ub, vd (· |h) and c are C2, and

(b) sign (d − k) ∂2 vd(k|h )
∂ k ∂ h

> 0, ∀ (k, h) ∈ con φd(X) × R++.

Assumption B.1 (b) means that the marginal cost of a deviation of the
adopted PI of the adult child from the optimal PI is strictly increasing in the
inter–generational PI. Notably, this is only necessary for the results of the
third and fourth column of the comparative statics matrix below to hold.

The results of the following Proposition are valid for all specifications of
the perception rules that we consider in the present paper.

Proposition B.2 (Comparative Statics). Let Assumptions 1–B.1 be satis-
fied. Assume that φHt > φLt,

19 and let us distinguish the cultural groups
as Gt = Lt/Ht. Then, if the optimization problems of the parents of both
groups are strictly concave at at the SNE, and if the two decision variables
are ‘not too strong substitutes’, the following comparative statics results hold

sign





∂ φd∗

Gt
(Pt)

∂ φGt

∂ φd∗

Gt
(Pt)

∂ φ−Gt

∂ φd∗

Gt
(Pt)

∂ iG

∂ φd∗

Gt
(Pt)

∂ i−G

∂ σ∗

Gt
(Pt)

∂ φGt

∂ σ∗

Gt
(Pt)

∂ φ−Gt

∂ σ∗

Gt
(Pt)

∂ iG

∂ σ∗

Gt
(Pt)

∂ i−G





=
(

+1/ + 1 −1/ − 1 −1/ + 1 −1/ + 1
−1/ + 1 +1/ − 1 +1/ + 1 +1/ + 1

)

Proof. Below, we will denote with L∗
G the identical Lagrangeans of the op-

timization problems of all parents of any group Gt ∈ {Lt, Ht}. For saving
space, we will mostly drop the time–indexes below. By the Implicit Function
Theorem20, we obtain the following comparative statics effects.

sign

(

∂ φd∗

G

∂ φG

)

=

sign









(

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

)2

−
∂2 L*

-G

∂ φd
-G

2

∂2 L*
-G

∂ σ̂-G
2





(

∂2 L*
G

∂ φd
G ∂ φG

∂2 L*
G

∂ σ̂G
2
−

∂2 L*
G

∂ φd
G ∂ σ̂G

∂2 L*
G

∂ σ̂G ∂ φG

)





sign

(

∂ σ∗

G

∂ φG

)

= (B.1)

sign









∂2 L*
-G

∂ φd
-G

2

∂2 L*
-G

∂ σ̂-G
2
−

(

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

)2




(

∂2 L*
G

∂ φd
G ∂ φG

∂2 L*
G

∂ φd
G ∂ σ̂G

−
∂2 L*

G

∂ φd
G

2

∂2 L*
G

∂ σ̂G ∂ φG

)

+





∂2 L*
G

∂ φd
G

2

∂2 L*
G

∂ σ̂G
2
−

(

∂2 L*
G

∂ φd
G ∂ σ̂G

)2




(

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

∂2 L*
-G

∂ σ̂-G ∂ φd
G

−
∂2 L*

-G

∂ φd
-G ∂ φd

G

∂2 L*
-G

∂ σ̂-G
2

)





19This normalization is without loss of generality. The results for the opposite case
would be identical, with the comparative statics signs reversed.

20Since the parental optimization problems are strictly concave at any SNE under con-
sideration, the determinant of the Hessian matrix is strictly positive and all conditions for
the Implicit Function Theorem are fulfilled.
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sign

(

∂ φd∗

G

∂ φ−G

)

=

sign

((

∂2 L*
-G

∂ φd
-G ∂ φ-G

∂2 L*
-G

∂ σ̂-G
2
−

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

∂2 L*
-G

∂ σ̂-G ∂ φ-G

)(

∂2 L*
G

∂ φd
G ∂ φd

-G

∂2 L*
G

∂ σ̂G
2
−

∂2 L*
G

∂ φd
G ∂ σ̂G

∂2 L*
G

∂ σ̂G ∂ φd
-G

))

sign

(

∂ σ∗

G

∂ φ−G

)

=

sign

((

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

∂2 L*
-G

∂ σ̂-G ∂ φ-G
−

∂2 L*
-G

∂ φd
-G ∂ φ-G

∂2 L*
-G

∂ σ̂-G
2

)(

∂2 L*
G

∂ φd
G ∂ φd

-G

∂2 L*
G

∂ φd
G ∂ σ̂G

−
∂2 L*

G

∂ φd
G

2

∂2 L*
G

∂ σ̂G ∂ φd
-G

))

sign

(

∂ φd∗

G

∂ φs
G

)

=

sign









(

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

)2

−
∂2 L*

-G

∂ φd
-G

2

∂2 L*
-G

∂ σ̂-G
2





(

∂2 L*
G

∂ φd
G ∂ iG

∂2 L*
G

∂ σ̂G
2
−

∂2 L*
G

∂ φd
G ∂ σ̂G

∂2 L*
G

∂ σ̂G ∂ iG

)





sign

(

∂ σ∗

G

∂ φs
G

)

= (B.2)

sign









(

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

)2

−
∂2 L*

-G

∂ φd
-G

2

∂2 L*
-G

∂ σ̂-G
2





(

∂2 L*
G

∂ φd
G

2

∂2 L*
G

∂ σ̂G ∂ iG
−

∂2 L*
G

∂ φd
G ∂ σ̂G

∂2 L*
G

∂ φd
G ∂ iG

)

+

(

∂2 L*
-G

∂ φd
-G ∂ φd

G

∂2 L*
-G

∂ σ̂-G
2
−

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

∂2 L*
-G

∂ σ̂-G ∂ φd
G

)(

∂2 L*
G

∂ φd
G ∂ φd

-G

∂2 L*
G

∂ σ̂G ∂ iG
−

∂2 L*
G

∂ φd
G ∂ iG

∂2 L*
G

∂ σ̂G ∂ φd
-G

))

sign

(

∂ φd∗

G

∂ φs
−G

)

=

sign

((

∂2 L*
-G

∂ φd
-G ∂ i-G

∂2 L*
-G

∂ σ̂-G
2
−

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

∂2 L*
-G

∂ σ̂-G ∂ i-G

)(

∂2 L*
G

∂ φd
G ∂ φd

-G

∂2 L*
G

∂ σ̂G
2
−

∂2 L*
G

∂ φd
G ∂ σ̂G

∂2 L*
G

∂ σ̂G ∂ φd
-G

))

sign

(

∂ σ∗

G

∂ φs
−G

)

=

sign

((

∂2 L*
-G

∂ φd
-G ∂ σ̂-G

∂2 L*
-G

∂ σ̂-G ∂ i-G
−

∂2 L*
-G

∂ φd
-G ∂ i-G

∂2 L*
-G

∂ σ̂-G
2

)(

∂2 L*
G

∂ φd
G ∂ φd

-G

∂2 L*
G

∂ φd
G ∂ σ̂G

−
∂2 L*

G

∂ φd
G

2

∂2 L*
G

∂ σ̂G ∂ φd
-G

))

To analyze the comparative statics effects in the sign–equations above, first
note that all bracket–terms that do include neither one of the second partial

derivatives
∂2 L*

G

∂ φd
G ∂ σ̂G

or
∂2 L*

-G

∂ φd
-G ∂ σ̂-G

are unambiguous in sign. Since the sign of

∂2 L*
G

∂ φd
G ∂ σ̂G

and
∂2 L*

-G

∂ φd
-G ∂ σ̂-G

are ambiguous, this also holds for all bracket–terms

above where these expressions are included. For G = L/H, consider the
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vector

bG :=





∂2
L

*
G

∂ φd
G

∂ φG

∂2 L*
G

∂ σ̂G ∂ φG

∂2
L

*
G

∂ φd
G

∂ iG

∂2 L*
G

∂ σ̂G ∂ iG

∂2
L

*
G

∂ φd
G

∂ φd
-G

∂2 L*
G

∂ σ̂G ∂ φd
-G





and note that for cultural group L/H, all entries of this matrix are strictly
negative/positive. Next, let ∀G ∈ {L, H}

∂2 L∗

G

∂ φd
G ∂ σ̂G

< / > (max/min bG)
∂2 L∗

G

∂ φd
G

2
and

∂2 L∗

G

∂ φd
G ∂ σ̂g

< / >

(

max/min
1

bG

)

∂2 L∗

G

∂ σ̂2

G

(B.3)

This basically requires that the two socialization instruments must not be
too strong substitutes in the parental optimization problem (3) (or that
the optimization problem must be sufficiently concave in both socialization
instruments compared to the cross–concavity). It is then straightforward
to show that under the conditions (B.3), the comparative statics effects of
Proposition B.2 hold.
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