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Abstract 

This paper introduces a new tool for measuring relative pay within organisations, which we 

call the “pay parity (PP) matrix” and discusses its advantages and useful properties. The PP matrix 

allows us to conveniently measure, and draw inferences about, the nature of the whole remuneration 

schedule, such as its gradient and smoothness. We illustrate the application of the PP matrix by 

using data on the remuneration of academic executives. This tool has wider uses whenever matrix 

comparisons are involved.  
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1. Introduction 

Consider an organisation that has n levels of employees with level 1 the highest paying and level n  

the lowest; denote by iP  the pay received by those at level i, so the remuneration schedule is 1 nP , ,P… . 

How can we efficiently summarise the distribution of pay within the organisation? In this paper, we show 

this apparently innocuous question leads to further questions and issues that are quite rich in their 

implications. We start by discussing alternative ways of measuring relative pay, which leads to what we 

call the “the pay parity matrix”, a matrix that compares the pay at each level with all others. This is 

followed by a detailed statistical analysis of the properties of the matrix and we show how it can be used 

to conveniently summarise the schedule it terms of its gradient and degree of “smoothness”. Toward the 

end of the paper, we illustrate the estimation of the PP matrix with data drawn from a number of 

organisations. 

2. Possible Measures of Relative Pay 

One approach to relative pay is to express each level of pay as a deviation from the top, 

i 1P P ,  i 2, , n.− = …  But as these differences are expressed in dollars whose value changes from year to 

year and country to country, this is not the best way to proceed. Two related unit-free measures, the ratio 

i1 i 1R P P=  and the percentage difference ( )i1 i 1 1P 100 P P P′ = × − ( )i1100 R 1= × − , are also possible 

measures. While these represent improvements over the difference, they are still not wholly satisfactory.  

Instead we use the logarithmic ratio, defined as ( )i1 i1 i 1log R log P Pπ = = , which we shall call the “parity” 

between the remuneration of level  i  and that of the top. The advantages of this parity measure are 

outlined below. 

Consider the more general case of the comparison of remuneration at level i with any other level j, 

which may be above or below i. For each pair of levels ( )i, j ,  i, j 1, , n,= …  denote the ratio of iP  to jP  by 

ij i jR P P= , the percentage difference by ( ) ( )ij i j j ijP 100 P P P 100 R 1′ = × − = × −  and the parity by 

( )ij i jlog P Pπ = . The relationship between the percentage difference and the parity is ( )ij

ijP 100 e 1
π

′ = × − .  

Figure 1 illustrates the relation between the three measures of relative pay, the ratio, the percentage 

difference and the logarithmic ratio. When level i is below j, the ratio ij ij ijR 1, P 0 and 0′< < π < , and vice 

versa when i > j. For example, when the remuneration at level i is one-half that of j, the ratio ijR 1 2,=  

the percentage difference ijP 50′ = −  percent and the parity ij 100 69π × = − . As can be seen from the figure, 

the percentage difference is never less than the parity ( )100×  and when the two levels of pay i and j are 

sufficiently “close”, ij ij ijR 1,  and P 100′≈ ≈ × π . 
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The use of the parity ijπ  to make relative comparisons between different levels of remuneration 

has three distinct advantages:  

1. Independence of irrelevant levels. Consider the percentage difference between the pay at levels i 

and j, and that between the adjacent level i-1 and j, ij i 1, jP  and P −
′ ′ , respectively. Can these be used to 

compare pay at levels i and i-1? The difference between these two percentages is 

( )ij i 1, j i i 1 jP P 100 P P P− −
′ ′− = × − , which is the difference in pay between levels i and i-1  as a percentage of 

that of level  j. This measure is a bit cumbersome as it involves a three-way comparison of levels i, i-1 

and j. By contrast, the difference in the corresponding parities is 

( ) ( ) ( )ij i 1, j i j i 1 j i i 1log P P log P P log P P− − −π − π = − = , which has no such problem as it involves a direct 

comparison of only the pay at the relevant two levels, with no reference to that of the irrelevant base  j.  

In other words, the difference in the parities ij i 1, j−π − π  is just the parity of level  i  relative to level  i-1, 

viz., i.i 1−π .  This attractive “triangularity” property carries over to all higher-order comparisons of the 

form i,i k ij i k, j± ±π = π − π , where the comparator level can be either below (for k < 0) or above ( k > 0) the 

initial level  i. In this sense, the parity is independent of irrelevant levels, or more simply, is base 

invariant. 

2. Symmetry.  Suppose that an employee at level  i  earns 0β >  percent less than the highest-paid 

employee of the organisation (“the boss”), so that i1P 0′ = −β < . As percentage differences are not 

symmetric, that is ( ) ( )1 i i i 1 1P P P P P P 100− ≠ − − = β , the boss does not earn β  percent more than level 

i, which seems contradictory. The parity, by contrast, is not subject to this asymmetry as 

( )i1 1 i 1ilog P P−π = = π ; in words, if i earns i1 0−π >  less than the boss, then the boss earns i1π  more than i. 

3. Unrestricted domain. As pay is always positive, the pay of any level cannot be less than 100 

percent below that of any other level. Accordingly, the range of the percentage differences ijP′  is 

restricted to [ ]-100, ∞ , while that of the parity i jπ  is [ ],−∞ ∞ . This unrestricted domain property has 

statistical attractions including the avoidance of a tendency to a skewed distribution associated with the 

truncated lower limit of the percentage measure. 

3. The Pay Parity Matrix 

The whole remuneration schedule can be characterised by the 2n  parities ijπ  for i, j = 1,…,n.  

These can be conveniently arranged in the form of an n n×  matrix Π , which we dub “the pay parity 

matrix”.1  This matrix has the ( )
th

i, j  element ( )ij i jlog P Pπ = , which is remuneration of  level  i  relative 

to  j.  As i i 1P P ,  i 1, , n+> = … , by construction as we move from left to right along a given row of ,Π  the 

                                                 
1 In Clements and Izan (2008), we used the pay parity matrix to analyse the remuneration of Australian academic executives. 
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parities increase since we are comparing the pay of a given-level employee ( )iP  with that of successively 

lower-paid employees -- the boss, number 2, number 3, and so on.   

To illustrate, we use remuneration data referring to what we call “academic-executives” at The 

University of Western Australia, given in column 2 of Table 1. As can be seen, the highest-earning 

employee (the Vice-Chancellor) receives $A485,000 p. a., while the next four levels earn $335,000, 

$305,000, $295,000, $275,000, respectively. The second last element of column 2 shows that the 

arithmetic mean remuneration is $339,000, while, from column 3, the geometric mean is 

( )exp 12.7122 $332,000≈ . The corresponding pay parity matrixΠ is of order 5 5×  and is given in rows 

1-5 and columns 4-8 of the table. Moving from left to right across the first row, we see that level 1 

receives about 37 percent more than level 2, 46 percent more than 3, 50 percent more than 4 and 57 

percent more than 5. The other elements of the table are discussed below when we introduce the various 

properties of Π . 

 Let i ip log P= , so that ij i jp pπ = − . We can then express the pay parity (PP) matrix in the form  

(1)                                                          ′ ′=Π p pι ιι ιι ιι ι- , 

where [ ]1 np , , p ′=p … is a vector of the  n  levels of remuneration (in logarithmic form), and [ ]1, ,1 ′= …ιιιι is 

a vector of  n  unit elements. Suppose we multiply the remuneration schedule by some positive constant 

λ , so that it becomes 1 1 0 0

1 n 1 nP , ,P P , , P
′ ′   = λ λ   … … . For example, this λ  could be an adjustment for 

inflation, or an exchange rate that converts from one currency to another. Using a zero (one) superscript 

to denote the old (new) remuneration vector, in logarithmic terms, we have 

[ ]1 0 0

1 nlog P , , log P log , , log′ ′ = + λ λ p … … , which can be expressed as ( )1 0 log= + λp p ιιιι . Definition (1) 

then implies that the new PP matrix 1Π  coincides with the old one 0Π  as 

( ) ( ) ( ) ( )1 1 1 0 0 0log log
 ′ ′′ ′ ′ ′= = + λ + λ  

Π p p p p Πι ι ι ιι ι ιι =ι ι ι ιι ι ιι =ι ι ι ιι ι ιι =ι ι ι ιι ι ιι =- - . 

In this case, the PP matrix is unchanged as it involves only relative comparisons. Thus we can say that Π  

is homogeneous of zero degree in the remuneration vector when expressed in terms of dollars,[ ]1 nP , , P… , 

or that Π  is subject to additive degree of freedom. We record this as Property 1: 

Property 1 The pay parity matrix Π  is invariant to multiplicative scaling of the 

remuneration schedule. 

Definition (1) also implies that Π  is a skew-symmetric matrix, that is, the diagonal elements are 

all zero, while ij jiπ = −π , i, j 1, , n= … .  Thus: 

Property 2 The pay parity matrix Π  is skew-symmetric. 



 

 4 

This property is clear from the PP matrix of Table 1, where, for example, level 1 earns 37 percent more 

than level 2 [element (1,2) of the matrix], while 2 earns 37 percent less than 1 [element (2,1)]. This 

property represents an internal consistency of PP matrix comparisons. 

4. First and Second Moments 

Consider the thi  row of Π , [ ]i1 in, ,π π… . One way in which the information contained in the 

whole row can be summarised in terms of one number i, ,π is by the value that minimises the sum of 

squared deviations, ( )
2

n
j 1 ij i=∑ π − π . This leads to iπ  being the mean of the row, which we shall denote by 

( ) n
j 1i ij1 n =∑π = π , or ( )1 n= Ππ ιπ ιπ ιπ ι  for the corresponding vector of  n  row means. The vector ππππ  is a 

desirable centre-of-gravity measure of the whole Π  matrix in a least-squares sense. Denoting (the log of 

geometric) mean remuneration by 

(2)                                                     
n

j
j 1

1 1
p p

n n=
∑ ′= p = ι = ι = ι = ι , 

it then follows from definition (1) that the row averages take the form  

(3)                                          ( )
1 1

p
n n

′ ′= ,p - p p -π Π ι = ι ι ι = ιπ Π ι = ι ι ι = ιπ Π ι = ι ι ι = ιπ Π ι = ι ι ι = ι  

where the last step is based on n′ι ι =ι ι =ι ι =ι ι = . The last member of equation (3) states that the averages of the 

rows of the PP matrix are just the deviations of each level of remuneration from the overall mean. That is, 

i ip pπ = − , i=1, ,n… , where iπ  is the thi element of ππππ . Equation (3) can be expressed more compactly as  

(4)                                          1
n

,  w ith   =  ′= −M p M Iπ ιιπ ιιπ ιιπ ιι , 

where M is a symmetric idempotent matrix ( )=2M M  of order n n×  that satisfies =M 0ιιιι . As M  is 

symmetric, ′ ′=M 0ιιιι , which implies that 0.′ ′= Mp =ι π ιι π ιι π ιι π ι  Thus, the sum over all levels of the deviations 

from the mean is zero.   

We summarise the above discussion as follows: 

Property 3 The average of the elements in the th
i row of the pay parity matrix is the 

logarithmic deviation of remuneration at level  i  from the mean. 

Column 9 of Table 1 contains the row averages of the PP matrix, and shows that level 1 earns about 38 

percent more than the (geometric) mean, level 2 earns 1 percent more, and so on.  Interestingly, these row 

averages are close to the elements of column 2 of the PP matrix, which reflects the fact that in this 

example remuneration at level 2 is close to the mean.  The sum (and average) of these deviations from the 

mean is zero, as indicated by the second last entry of column 9.  

 As the PP matrix is a mapping of the remuneration vector p  from n
�  into 2n

� , we can write it as 

the function ( ) ′ ′p = p - pΠ = Π ι ιΠ = Π ι ιΠ = Π ι ιΠ = Π ι ι . Interestingly, if we apply ( )iΠΠΠΠ  to the vector of deviations from the 
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mean ππππ , rather than p , we obtain the original PP matrix associated with p . That is, 

( ) ( )′ ′ ′ ′= =- p - p pΠ π πι ιπ ι ι = ΠΠ π πι ιπ ι ι = ΠΠ π πι ιπ ι ι = ΠΠ π πι ιπ ι ι = Π ,which follows from definition (4) and is a type of self-reflective 

property. This result is a reflection of Property 1 whereby the PP matrix is invariant to multiplicative 

scaling of the remuneration schedule. When we express remuneration in terms of logarithmic deviations 

from the geometric mean, this amounts to a choice of units for remuneration by deflating by the 

geometric mean. More generally, if instead of the mean we subtract some 0α >  from each element of p, 

so that the “scaled” remuneration vector is αp - ιιιι , then the associated PP matrix is ( )αp -Π ιΠ ιΠ ιΠ ι , which is 

identical to the original matrix ( )pΠΠΠΠ . 

 How is remuneration of the organisation dispersed about the mean? One way to measure 

dispersion is by the variance of remuneration:  

(5)                              ( ) ( ) ( )
2n n

2 2

i i
i 1 i 1

1 1 1 1
p p p p

n n n n= =
∑ ∑′ ′σ = − = = πp - p -ι ι π π =ι ι π π =ι ι π π =ι ι π π = , 

where the third step follows from equation (3). Accordingly, 

Property 4 The variance of remuneration is the average of the sum of the squared 

row averages of the pay parity matrix. 

The last entry of column 3 of Table 1 shows that the logarithmic standard deviation of the remuneration 

schedule is 0.2002, or about 20 percent; thus the variance is ( )
2

0.2002 0.0401= . Column 10 presents the 

squares of the row averages, and their mean of -24.01 10× , given as the last element of the column, is 

identical to the above variance. 

 It is also to be noted that equations (4) and (5) imply that the variance can also be expressed as 

( )2 1 n ′ ′σ = p M Mp . But as  M  is idempotent, this simplifies to  

(6)                                                           2 1

n
′σ = p Mp . 

Next, consider the dispersion of the elements of the thi  row of the pay parity matrix about their centre of 

gravity, as well as their comovement with the elements of some other row. The following variance and 

covariance provide a convenient way to measure these concepts: 

        ( ) ( )( )
n n2

ii ij i ik ij i kj k
j 1 j 1

1 1
,                

n n= =
∑ ∑σ = π − π σ = π − π π − π . 

This iiσ  is the variance of the thi  row of the PP matrix, while ikσ  is the covariance between rows i and  k. 

The matrix ′−Π πιπιπιπι  is PP expressed as a deviation from the mean vector ππππ . The covariance matrix 

( )( )( )1 n ′′ ′− −Π ΠΩ = πι πιΩ = πι πιΩ = πι πιΩ = πι πι  contains on the diagonal the  n  row variances 11 nn, ,σ σ…  and the cross-row 

covariances ik σ  as the off-diagonal elements. As ( )1 n= Ππ ιπ ιπ ιπ ι , it follows that the above deviation 

matrix takes the form 
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1 1

n n

 
′ ′ ′− = =  

Π Π Π Π ΠMπι − ιι = Ι − ιιπι − ιι = Ι − ιιπι − ιι = Ι − ιιπι − ιι = Ι − ιι , 

where M is defined in equation (4). Thus as M is idempotent, the covariance matrix ΩΩΩΩ  becomes a 

multiple 1 n  of  

( )( )

( ) ( )

( )( )

2n

′′ ′ ′− − =

′ ′ ′ ′

′ ′ ′ ′=

′ ′=

′σ

Π Π Π Π

p p M p p

p M p M p p

p Mp

πι πι Μπι πι Μπι πι Μπι πι Μ

= ι − ι ι − ι= ι − ι ι − ι= ι − ι ι − ι= ι − ι ι − ι

ι − ι ι − ιι − ι ι − ιι − ι ι − ιι − ι ι − ι

ι ιι ιι ιι ι

= ιι .= ιι .= ιι .= ιι .

 

The fourth line of the above follows from  and ′ ′M = 0 Mι ι = 0ι ι = 0ι ι = 0ι ι = 0 , while the fifth is based on equation (6).  

Thus we have 2 ′σΩ = ιιΩ = ιιΩ = ιιΩ = ιι , so that  

(7)                                              2

ii ik ,    i, k =1, ,nσ = σ = σ … . 

In words, each row of the PP matrix has a common variance 2σ , and each of the distinct  ( )1 2 n n 1−    

covariances2 also takes this value. In view of the skew-symmetric nature of Π  (Property 2), each column 

of the matrix also has a common variance 2σ . The quantity 2σ  is the variance of the remuneration 

schedule defined in equation (5).  Accordingly, 

Property 5 The variance of each row and column of the PP matrix takes the same 

value, ,2σ  the variance of the remuneration schedule. Furthermore, each covariance 

between pairs of different rows (and columns) of this matrix is also equal to .2σ  

As discussed above, the standard deviation of the UWA remuneration schedule is 0.2002σ = . 

The last column of Table 1 contains the standard deviation (SD) of each row of Π , and as can be seen, 

each value here is -220.02 10× , the SD of the remuneration schedule. The same result applies to the SDs 

of the columns of Π , which are given as the last entries in columns 4-8 of Table 1.   

 The average sum of squares of the PP matrix is also of interest. This takes the form 

( ) ( ) ( )2 2 2n n
i 1 j 1 ij1 n 1 n tr= =∑ ∑ ′π = ΠΠ , where tr denotes the trace operator. Defining 

( ) ( )2 2n
i 1 i1 n p 1 n=∑ ′α = = p p  as average squared remuneration, in view of equation (1) we have  

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( )( )

( )

2 2

2

2

2 2 2 2 2 2 2

2

1 n tr 1 n tr

1 n tr

1 n tr n np np n

1 n n n p n p n

2 p .

′ ′ ′ ′ ′=

′ ′ ′ ′ ′ ′ ′ ′=

′ ′ ′ ′= α

= α − − + α

= α −

2

2 2

2

ΠΠ p - p p - p

p p - p p - p p + p p

pp - p p +

ι ι ι ιι ι ι ιι ι ι ιι ι ι ι

ι ι ι ι ι ι ι ιι ι ι ι ι ι ι ιι ι ι ι ι ι ι ιι ι ι ι ι ι ι ι

ι − ι ιιι − ι ιιι − ι ιιι − ι ιι  

                                                 
2 The correlation matrix corresponding to ΩΩΩΩ  takes the form ′ιιιιιιιι , so that each correlation is unity. 
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As ( ) ( )
22 2n

i 1 ip 1 n p - p=∑α − = = σ2 , we finally obtain  

(8)                                                        
n n

2 2

ij2
i 1 j 1

1
2

n = =
∑ ∑ π = σ . 

In words, the average sum of squares of the elements of the PP matrix is twice the variance of 

remuneration. 

Equation (1) implies that the mean of the 2n  elements of Π  is zero as, so the average sum of 

squares of the elements of Π  is also the variance.3 Result (8) then implies that the variance of Π  is 22 .σ  

The multiple 2 here derives from the nature of the Π  matrix which involves all the bivariate comparisons 

( )i, j , for i, j = 1,…,n. In particular, these 2n  comparisons include level  i  with level  j, as well as the 

reciprocal comparison of  j  with  i, so that the whole matrix contains ij i jp pπ = −  and ji j i ijp pπ = − = −π  

for i, j =1,…,n. Thus, when we square the elements of ΠΠΠΠ , the minus signs disappear and in essence each 

distinct pair ( )i, j  is included twice in the average sum of squares ( )2 2n n
i 1 j 1 ij1 n = =∑ ∑ π .4  We can summarise 

the above results as: 

Property 6 The elements of the PP matrix have a zero mean and a variance equal 

to 2
2σ , 2σ being the variance of the remuneration schedule.  

The bottom of Table 1 shows that the average sum of squares of the elements of the PP matrix is 

8.01 210−× , which is twice the variance of the remuneration schedule, 2 -24.01 10σ = × . 

5. The Gradient and Smoothness of the Remuneration Schedule 

The remuneration schedule, expressed in logarithmic form, ranked from the highest to the lowest, 

is 1 np , , p… . Suppose initially that it is not possible to skip any level when getting promoted. Thus, for 

example, an employee at the bottom of the hierarchy currently earning np  faces the prospect of getting 

promoted to level n-1 and receiving n 1p − . Such a promotion brings a pay rise of 

( )n 1 n n 1 n n 1,np p log P P− − −− = = π . Similarly, subsequent promotions yield n 2,n 1 n 3,n 2 1,2, ,...,− − − −π π π . This 

means that we can read off from the pay parity matrix the entire set of pay increases, in relative terms, 

from the bottom to the top, as the consecutive parities i 1,i−π , i n, , 2= … , that is, the elements on the sub-

diagonal immediately to the right of the main diagonal, read from the bottom right-hand corner to the top 

                                                 
3 The term “variance of Π ” is to be interpreted as meaning the variance of the 

2
n  elements of this matrix, vec Π . 

4 An alternative way to establish result (8) is as follows: Recall the covariance matrix introduced below equation (6), 

( )( )( )1 n .′′ ′− −Π π Π πΩ = ι ιΩ = ι ιΩ = ι ιΩ = ι ι  This can be expressed as ( )( )1 n  n′ ′−Π Π π πΩ =Ω =Ω =Ω = , so that ( ) n′ ′=Π Π Ω + π π . As 2 ′= σΩ ιιΩ ιιΩ ιιΩ ιι , 

it follows that  

( ) ( ) ( ) 2

i
i

2 2 n

1
tr  n tr tr n n π

=
∑

  ′ ′ ′= σ = σ     
Π Π π πιι + +ιι + +ιι + +ιι + + . 

As from equation (5), 2

i

2n
i 1π n ,= = σ∑ the above becomes ( ) 2 2tr  2n′ = σΠ Π , from which result (8) follows directly. 



 

 8 

left. The quantities i 1,i−π  are the logarithmic differences between remuneration at each level, or the sizes 

of the n-1 steps of the schedule. The average of these n-1 steps is the gradient of the entire remuneration 

schedule, ( ) n
i 2 i 1,i1 n 1 = −∑β = − π   . As ( )n n

i 2 i 2i 1,i i 1 i 1 np p p p= =− −∑ ∑π = − = − , the gradient takes the simple 

form 

(9)                                                   
( )1 n 1n
p p

n 1 n 1

− π
β = =

− −
. 

This shows that the gradient is just the overall “height” of the schedule, 1 np p− , per unit of its “length”, 

the n-1 steps. 

Thus we have 

Property 7 The successive steps of the remuneration schedule are given by the 

elements along the sub-diagonal of the pay parity matrix − − −n 1,n n 2,n 1 1,2, ,...,π π π . The 

gradient of the entire schedule is the average of these steps. This average is a 

multiple ( )−1 n 1  of the element of the PP matrix π1n , which is the logarithmic 

ratio of the highest to lowest pay.  

Looking again at the example in Table 1, column 8, row 4 reveals that a promotion from level 5 to level 4 

generates about a 7-percent pay increase, while subsequent promotions yield increases of 3 percent, 9 

percent and 37 percent, respectively. The first element of column 8 is 2

15 56.74 10−π = × , so the gradient β  

defined in equation (9) is 2 256.74 10 4 14.2 10− −× = × , or about 14 percent. We present in Figure 2 a plot 

of the four steps of the schedule, as well as the gradient. 

The sequence of pay increases associated with promotion from one level to the next is 

i 1,i−π , i n, , 2= … . Define the variance of this sequence as  

(10)                                               ( )
n 22

i 1,i
i 2

1

n 1
∆ −

=
∑σ = π −β

−
. 

As the gradient is defined as ( ) n
i 2 i 1,i1 n 1 = −∑β = − π   , if we interpret the height of each step i 1,i−π  as an 

independent “reading” on this gradient with a common variance 2

∆σ , then the sampling variance of the 

gradient is  

(11)                                                    
2

var
n 1

∆σ
β =

−
. 

To summarise 

Property 8  The standard error of the gradient of the remuneration schedule is a 

multiple −1 n 1 of the standard deviation of the successive steps along the schedule 

− − −n 1,n n 2,n 1 1,2, ,...,π π π . 
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Using the data in Table 1 to evaluate the variance in equation (10), yields ( )
22 0.1335∆σ = , so that the 

standard deviation is about 13.4 percent. Using this value in equation (11) together with n-1 = 4 , gives a 

standard error of the gradient of  ( )
2

var 0.1335 4 0.0668β = =  or about 6.7 percent. 

If the n-1 steps of the remuneration schedule are all of equal height -- that is, if the increase from 

one level to the next is identical for all levels -- then the schedule could be described as being “smooth”.  

In this case, each step size takes the identical value β , so that ( )s

ij j iπ = − β , i, j = 1,…,n, s

i 1,i−π = β , 

i 2, , n= … , and ( )s s

i jp j i p= − β + , i, j = 1,…,n, where the superscript  s  denotes the value under the 

hypothesis of “smoothness”. To allow for departures of the observed values of i 1,i−π  from β , we write  

(12)                                         i 1,i ie              i 2, , n−π = β + = … , 

where ie  is a zero-mean error term. Squaring both sides of this equation, summing over  i 2, , n= … , and 

using n
i 2 ie 0=∑ = , yields ( ) ( )2 2 2n

i 2 i 1,i n 1 n 1= − ∆∑ π = − β + − σ , where 2

∆σ  is the variance defined in equation 

(10). This shows that the total sum of squares (TSS) of the steps can be decomposed into two nonnegative 

components, so that the fractions  

(13)                                
2

2

2 2
R

∆

β
=

β + σ
      and      

2
2

2 2
1 R ∆

∆

σ
− =

β + σ
 

are, respectively, the proportion of the TSS explained by smoothness of the schedule, and the proportion 

that is not. The value of 2R  is a nonnegative fraction and is the squared correlation coefficient associated 

with regression (12).  Accordingly,  

Property 9 The value of 2R  defined in equation (13) is a measure of the extent to 

which the remuneration schedule is smooth. This 2R  is the share of the squared 

gradient in the sum of (i) the squared gradient and (ii) the variance of the successive 

steps along the schedule − − −n 1,n n 2,n 1 1,2, ,...,π π π . 

For the data given in Table 1, as mentioned above the gradient 214.2 10−β = × and 

( )
2

2 213.35 10−

∆σ = × . Using these values in the first member of equation (13), we obtain 

2
2

2 2

14.2 202
R 0.532

14.2 13.4 380
= = =

+
. 

Accordingly, for this remuneration schedule, smoothness accounts for a little over one-half of the total 

sum of squares. 

We assumed above that it is not possible to skip any level when getting promoted. Now suppose 

this is no longer necessarily the case, so that it is possible to achieve “accelerated” promotion whereby 
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some levels of the schedule are skipped. The pay increase in moving  k > 0  steps up the remuneration 

schedule from level  i  to i-k  is i k i i k,ip p− −− = π . This can be decomposed into  k  one-step moves as  

( ) ( ) ( )i k i i k i k 1 i k 1 i k 2 i 1 i

i k,i k 1 i k 1,i k 2 i 1,i

p p p p p p p p

.

− − − − − − − − −

− − − − − − − −

− = − + − + + −

= π + π + + π

…

…
 

Thus we have 

Property 10 Using the PPP matrix, a k-step move along the remuneration 

schedule is the sum of the corresponding  k  one-step moves. 

To illustrate this property in terms of Table 1, suppose someone moves from level four to level one. As 

2

14 49.72 10−π = × , this 3-step promotion entails an approximate 50-percent pay increase, which is the sum 

of the corresponding three one-step moves, 34 23 21 3.33 9.38 37.00 49.71π + π + π = + + =  (all 210 )−× . 

6. A Dummy-Variable Regression 

The above discussion deals with the pay parity matrix for an individual organisation. In this and 

the next section, we consider the problem of estimating a PP matrix with data from a sample of a number 

of organisations, and associated issues in hypothesis testing.   

Let icp  be the logarithm of the remuneration for level i ( )i 1,...,n= in company (or other institution) 

c (c 1,...,C)= . Define the dummy variable jicd  as taking the value of 1 if j = i, 0 otherwise. Consider a 

regression of icp  on the n-1 dummies, 2ic nicd ,...,d : 

(14)                                             
n

ic j jic ic
j 2

p d ,
=
∑= α + β + ε  

where α is the intercept, jβ  is the coefficient on the thj  dummy and icε  is a zero-mean independent 

disturbance term, with a constant variance 2

εσ . It is well known that the least-squares estimate of α , α̂ , is 

the geometric mean of the remuneration of level 1, the base level, while the estimate of jβ , jβ̂ , is the 

mean logarithmic difference between levels j and 1. For details, see the Appendix. 

 Suppose we have values for the first column of the pay parity matrix 11 21 31 n1, , , ,...,Π π π π π .  

Given that the ( )
th

i, j  element of Π  is defined as ij i jp pπ = − , it follows that all the remaining n-1 

columns of this matrix can be expressed in terms of the elements of the first.  That is, 
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(15)   

11 12 13 1n 1 2 1 3 1 n

21 22 23 2n 2 1 2 3 2 n

31 32 33 3n 3 1 3 2 3 n

n1 n2 n3 nn n 1 n 2 n 3

0 p p p p p p

p p 0 p p p p

  p p p p 0 p p

p p p p p p 0

                                         

π π π π − − −   
   π π π π − − −
   
π π π π = − − −   
   
   π π π π − − −   

… …

… …

… …

� � � � � � � �

… …

( )

( ) ( )

21 31 n1

21 21 31 21 n1

31 21 31 31 n1

n1 21 n1 31 n1

0

0

0    = .

0










−π −π −π  
  π π − π π − π
  

π − π − π π − π  
  
  

π − π − π − π − π  

…

…

…

� � � �

…

 

As the estimate of the coefficient jβ  in model (14), jβ̂ , is the mean of j 1p p− , equation (15) 

demonstrates that we can estimate the elements of the first column of Π  as i1 i
ˆˆ ,π = β  i 2,..., n= ; those in 

the first row as 1j j
ˆπ̂ = −β , j 2,..., n= ; and the remaining elements as ij i j

ˆ ˆˆ , i, j 2,..., n. π = β − β =  These 

expressions can be combined as  

(16)                           ij i j 1
ˆ ˆ ˆˆ , i, j 1,..., n,  with 0.π = β −β = β =  

Thus we have 

                        

2 3 n11 12 13 1n

21 22 23 2n 2 2 3 2 n

31 32 33 3n 3 3 2 3 n

n1 n 2 n3 nn
n n 2 n 3

ˆ ˆ ˆ0ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

 −β −β −βπ π π … π 
  π π π … π β β − β β −β  
 π π π … π = β β −β β − β 
  
  π π π … π    β β − β β −β 

…

…

…

� � � � � � � �

…

. 

 In the Appendix, we show that 

(17)                              
2 2

j

2ˆˆvar ,        var ,  j = 2,...,n,
C C

ε εσ σ
α = β =  

where 2

εσ  is the variance of the disturbance in model (14) and C is the number of companies. We also 

show that  

(18)                                
2

ij

2
ˆvar         i, j = 1,...,n, i j.

C
εσ

π = ≠  

Accordingly, the sampling variances of the estimates of all the (non-zero) elements of Π  are identical at 

22 εσ /C. This is clearly restrictive and reflects the covariance structure of model (14), whereby it is 

assumed that the disturbances have a constant variance across different levels of remuneration. In the next 

section we formulate a more general statistical model of the PP matrix with in a multivariate framework 

that relaxes these assumptions.5 

                                                 
5 In the executive compensation literature, pay is usually found to be strongly related to the size of the organisation. The 
Appendix also shows that if we add to the right-hand side of model (14) a size variable, the least-squares estimators of the 
dummy-variable coefficients are unchanged. 
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7. A Multivariate Approach 

 Let [ ]c 1c ncp ,..., p ′=p  denote the vector of remuneration at institution c ( )c 1,...,C= . Define the mean 

vector and corresponding covariance matrix as 

(19)                      ( )( )
C C

c c c
c 1 c 1

1 1
, .

C C= =
∑ ∑ ′= = − −p p p p p pΣΣΣΣ  

If each remuneration vector is independent and has a common covariance matrix, the covariance matrix of 

the mean vector is  

(20)                                                      
1

var
C

=p  . . . .ΣΣΣΣ  

 To illustrate, we use data on the remuneration of academic executives at 32 Australian universities 

presented in Table 2. Here, there are n 5=  levels of remuneration, and universities are ranked according to 

revenue (given in the last column of the table). Column 2 of Table 3 contains the mean vector (19) for the 

quartiles as well as for all 32 universities combined, while the covariance matrices ΣΣΣΣ  are given in columns 5-

9. The standard errors of the means, contained in column 3, are the square roots of the diagonal elements of 

covariance matrix (20). The diagonal elements of columns 5-9 reveal that the variances differ substantially 

across different levels. For example, in the first quartile, the variance of remuneration of level 1 (which refers 

to the Vice-Chancellor) is 7.52, while that of level 3 is 2.91 (both ×  100). These variances also differ 

appreciably across different groups of universities; a stark contrast is between the variance of level 1 in the 

first quartile, 7.52, and that of the same level in the third quartile, 2.59 (×  100). It is also to be noted that 

within a group, remuneration is quite highly correlated across different levels, especially among levels 2-5 

(see columns 10-14 of Table 3). These patterns all point to the restrictive assumptions of the dummy-variable 

approach, discussed above, as being unlikely to be satisfied in practice. 

 The n n×  pay parity (PP) matrix takes the form ′ ′= −pι ιpΠΠΠΠ ,which we shall estimate by using the 

mean vector p : 

(21)      ˆ .′ ′= p - pΠ ι ιΠ ι ιΠ ι ιΠ ι ι  

Table 4 contains in columns 2-6 the estimated PP matrices. Thus, according to the first row for the first 

quartile, the VC earns about 50 percent more than the number two academic executive on average, 62 percent 

more than number three, 75 percent more than number four and 79 percent more than number five. 

According to the standard errors (to be discussed further below), all these differences are highly significant.  

Many of the individual elements of the PP matrices differ across groups of universities; below we consider 

whether or not these differences are statistically significant. Finally, denoting the ( )
th

i, j  element of Π̂ΠΠΠ  by 

ijπ̂ , column 7 of Table 4 contains the row averages of the PP matrix, ( ) 5
j 1i ij

1 5ˆ ˆ ,=∑π = π  which are interpreted 

as the differences between the respective remuneration levels and the mean. Thus, for the first quartile, VCs 
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earn about 53 percent more than the group average, while remuneration of the lower levels is 3, -9, -21 and  

-26 percent away from average. These differences are mostly statistically significant. 

 The standard errors of the estimated PP matrices are obtained as follows. From equation (21), the thi  

column of Π̂ΠΠΠ  is i i
ˆ - p ,=π p ι  where ip  is the thi  element of .p  Define iι  as the n-vector with thi  element one 

and zeros elsewhere, so that i ip ′= ι p , i ip ′ ′= = iι ι p ι ι ι p  and ( )i i
ˆ ′= −π Ι ι ι p , where Ι  is the identity matrix.  

Thus, we can write 

(22)                                                         i i
ˆ ,=π Α p  

where i i
′= −Α Ι ι ι  is an n n  ×  matrix. Equation (22) then implies that i i i

ˆvar var π Α p Α ′=  or in view of 

equation (20), 

(23)                                            i i

1
ˆvar .

C
′=
i

π Α ΑΣΣΣΣ  

 We illustrate the workings of equation (23) first with the data pertaining to the first quartile 

universities. Columns 4-8 of Panel A of Table 5 contain the upper triangle of covariance matrix (23) for the 

first column of the PP matrix, that is, for i = 1. The square roots of the diagonal elements of this matrix are 

the standard errors of the elements of i
ˆ ,π  which are contained in column 3 of Table 5. For convenience, the 

point estimate of iπ̂  is reproduced (from Table 4) in column 2 of Table 5. The subsequent panels of Table 5 

contain the corresponding measures for the remaining columns of Π̂ΠΠΠ . Taken as a whole, columns 2 and 3 of 

Table 5 are a vectorised version of the point estimates of the PP matrix and the standard errors contained in 

Panel A of Table 4. The standard errors of Π̂ΠΠΠ  for the other groups of universities in Table 4 are computed in 

exactly the same manner. 

 Write the n 1×   vector of row averages of the PP matrix as ( )ˆ ˆ1 5=π πι  

( )( )1 5 ′ ′= −p ι ιp ι ( )1 5 ,′= −p ι ι p  or  

(23)                                                          ˆ =π Μp , 

where ( )- 1 5 .′Μ = Ι ι ι  Thus from equation (20), 

(25)                                                  
1ˆvar
C

′=π Μ ΜΣΣΣΣ . 

Columns 4-8 of Table 6 contain covariance matrix (25) for the first quartile, column 3 the corresponding 

standard errors (the square roots of the diagonal elements of the covariance matrix) and column 2 the point 

estimates of the row averages (reproduced from column 7 of Table 4). 

 Among the four groups of universities, we can test for differences in the pay parity matrices. Going 

back to Table 4, the parity between levels 2 and 4 is 24
ˆ 24.85π =  for the first quartile, with standard error 

4.51 (both 100 × ). For the second quartile, 24
ˆ 10.28π =  with standard error 3.39. The between-quartile 

difference 24.85 – 10.28 = 14.56 is given as element (2, 4) of the matrix on the left of Panel A of Table 7.  
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Under independence, the standard error of this difference is 2 24.51 3.39 5.65 ( 100) + = × , as shown in the 

corresponding element of the middle matrix of Panel A of Table 7, while the t-value of  14.56/5.65 = 2.58 is 

given as element (2, 4) of the matrix on the right of the panel.  This difference is significant at conventional 

levels. The other differences in the PPs are similarly interpreted. 

8. Concluding Comments  

 In this paper, we introduced a new tool -- the pay parity (PP) matrix -- for measuring relative pay 

within organisations and demonstrated its advantages and useful properties. We established how the 

whole remuneration schedule can be conveniently characterised with the PP matrix and illustrated its 

application by using data on the remuneration of academic executives. 

Important dimensions of the pay schedule are their average gradient and smoothness. These 

describe how remuneration increases as we move to higher levels in the organisation -- the steeper the 

gradient, the larger the increment in remuneration. In relatively flat organisational structures, we would 

expect the schedule to be reasonably smooth and the gradient to be modest, so that there would be little 

differentiation across various levels. In other types of organisations there could be large jumps in pay, in 

going from the second to the top job for example, so the remuneration schedule would be steeper and 

rougher. The pay parity matrix allows us to conveniently measure, and draw inferences about, the 

gradient and the degree of smoothness. 

Among the several other possible applications of the pay parity matrix, the measurement of 

income inequality is worth singling out. The income of each individual in a country could be compared 

with that of all others by using a type of parity matrix, but the large dimension of the matrix would be 

unwieldy. To keep things manageable, suppose individuals are grouped according to income such as 

quintiles, so that PP matrix is dimensioned 5 5× . As it can be shown that the PP matrix is consistent in 

aggregation, the 5 5×  matrix and the associated dispersion measures contain much of the population 

information. For example, the logarithmic variance of income over the whole population is the sum of 

two unique, nonnegative components, (i) a weighted average of the corresponding group variances, and 

(ii) a weighted between-group variance. 
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APPENDIX 

  
We consider the nature of the least-squares estimates of model (14), reproduced here: 

(A1)        
n

ic j jic ic
j 2

p d ,    i = 1,...,n levels,   c = 1,...,C companies.
=
∑= α + β + ε  

Denote the total number of observations n C×  by M. Define the M 1×  column vector of remuneration 

and corresponding M (n 1)× +  vector of right-hand side “variables” of model (A1) as 

 

 

 

                 

11

n1

12

n 2

1C

nC

p 1 0 . . . 0

. . 1 .

. . . .

. . . .

p 1 0 . . . 1

p 1 0 . . . 0

. . 1 .

. . . .

. . . .
,  

p 1 0 . . . 1

. . . .

. . . .

. . . .

p 1 0 . . . 0

. . 1 .

. . . .

. . . .

p 1 0 . . . 1

y =  X

   
   
   
   
   
   
   
   
   
   
   
   

=  
  
  
  
  
  
  
  
  
  
  
  

    

Level  1

.

.

.

Level  n

Level  1

.

.

.
 
Level  n

.

.

.

Level  1

.

.

.

Level  n















  

 

Note that the X matrix comprises exclusively zeros and ones, which we write as [ ]2 nX = ι d d… , 

where ι  is a column vector of M elements and jd  is an M-vector of observations on the j th  dummy 

variable. Note also that the inner product of each vector of dummies is equal to the number of companies 

in the sample and that these vectors are pairwise orthogonal: 

                                            j
′d jd  = C,         j = 2,…,n,       j

′d kd = 0,       j ≠ k. 

  Using the above notation, model (A1) can be written for i = 1,…,n and c  = 1,…,C in vector 

format as =y Xθ ε+ , where [ ]2 n
′= α β β…θθθθ  is a vector of n coefficients and ε  is a vector of 

disturbances. The least-squares (LS) estimator of θ  is ( )
1−

′ ′X X X y . The moment matrix takes the form 

C
o

m
p

an
y

 1
 

C
o

m
p

an
y

 2
 

C
o

m
p
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y

 C
 

C
o

n
st
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2    .    .    .    n 

n -1 dummies 
 for level 
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n

C ,
ι

X X  =  
ι I

′ 
′  

 
 

where ι  is a vector of n-1 unit elements and I is an identity matrix of order n-1. The inverse of this matrix 

is 

(A2)                                        ( )
1 11

   
C

−
′− 

′ =  ′− + 

ι
X X

ι I ιι
. 

The cross-product vector takes the form 

(A3)                                                 2

n

p

p ,

p

X y

••

•

•

 
 
 ′ =  
 
  

�

 

where n C
i 1 c 1 icp p= =•• = ∑ ∑ and C

c 1j jcp p=• = ∑ . 

 Equations (A2) and (A3) imply that the LS estimator of the coefficient vector is 

n

k
k 2

2 2
2

n

k
k 2

n nn

ˆ p p p

ˆ 1 p1 1ˆ p       =    .
C C p p

ˆ p p

ι
θ   =   

ι I ιι
ι + ι

•• •• •
=

•
•

•• •
=

• •

∑

∑

 α  − 
       ′−β    =      ′− +    − +           β       

� � �

 

As  

( )
n

k 1 1
k 2

p p p p p p ,•• • •• •• • •
=
∑− = − − =  

we have 

(A4)                             ( )1 j j 1

1 1ˆˆ  p  ,      p p  ,    j = 2,...,n
C C

• • •α = β = − . 

In words, the LS estimator of the intercept of model (A1) is the geometric mean of remuneration of level 

1. The coefficient of the j th  dummy is the mean of the difference between the remuneration of level  j  

and that of level 1. 

 As the covariance matrix of the LS estimator is ( )
12 −

ε
′σ X X , where 2

εσ  is the variance of icε , the 

disturbance term in model (A1), it follows from equation (A2) that  

(A5)                            
2 2

j

2ˆˆvar  ,          var ,    j = 2,...,n.
C C

ε εσ σ
α = β =  

In words, the variances of each of the n-1 coefficients of the dummies take the same value, and this value 

is twice that of the variance of the intercept. Equation (A5) is equation (17) of the text. 

 Equation (16) of the text shows that the estimate of the (i, j) th  element of the pay parity matrix is 

the difference between the i th  and j th  dummy coefficients: 
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(A6)                                     ij i j 1
ˆ ˆ ˆˆ ,   i, j = 1,...,n, with 0.π = β − β β =  

To derive the corresponding variance, define an n-vector that has the value one as element  i+1  and 

minus one as element  j+1: 

                                    [ ]0 0 1 0 0 1 0 0 ′= −z … … … , 

 

which satisfies 

(A7)                                         0,            2.ι z z z′ ′= =  

As ij
ˆˆ z θ,′π =  ( )

-12

ij
ˆˆvar   var ε

′ ′ ′π = σz θ z = z X X z . It then follows from equation (A2) that  

(A8)                                 
2

ij

1
ˆvar  .

C

ι

 z   z
ι I ιι

ε

 ′−
σ  

′π =  ′− +
 
 

 

  Define the vector z∗  as z with the first zero omitted, so that 0z z∗ ′ ′=
 

. Constraints (A7) imply 

that this vector also satisfies 

(A9)                                       0,          2.∗ ∗ ∗′′ = =ι z z z  

The quadratic form on the right-hand side of equation (A8) can then be expressed as 

( )
1

 2,∗ ∗′−  ′′ ′+ = ′− + 

ι
z  z = z I ιι z

ι I ιι
 

where the last step is based on constraints (A9). This means that  

(A10)                              
2

ij

2
ˆvar  ,      i, j = 1,...,n,    i j.

C
εσ

π = ≠  

In words, the sampling variance of each (non-zero) element of the pay parity matrix takes the same value, 

22 εσ /C. This value is the same as the variance of the dummy coefficients given in equation (A5).  

Equation (A10) is equation (18) of the text. 

  Another way to derive result (A10) is as follows. As the LS covariance matrix is ( )
-12 ,ε

′σ X X  from 

equation (A2) the covariance matrix of the dummy coefficients is 

(A11)                                            ( )
2

,
C

I ιιεσ
′+  

so that  

(A12)                                            ( )
2

i j
ˆ ˆcov ,  .

C
εσ

β β =    

From equations (A6), (A5) and (A12), 

( )
2 2 2 2

ij i j i j

2 2 2 2ˆ ˆ ˆ ˆˆvar var var 2cov , ,
C C C C

ε ε ε εσ σ σ σ
π = β + β − β β + −    = =  

(i +1)
th

 
element 

(j +1)
th

 
element 



 

 18 

which is the same as result (A10). Note finally that another feature of the pattern of covariance matrix 

(A11) is that the implied correlation matrix takes the form ( )( )1 2 ,′+I ιι so that the estimates of the 

dummy variable coefficients are equicorrelated with correlation one-half. 

 As prior research has established that executive remuneration systematically increases with the 

size of the organisation (Murphy, 1999, Soh, 2006), there may be reason to believe that the pay parity 

matrix is also related to size. If we measure size by revenue, a simple approach to investigate this 

possibility would be to add the logarithm of total revenue, cr , to the right-hand side of model (A1): 

(A13)    
n

ic c j jc ic
j 2

p r d
=
∑= δ + γ + φ + µ , 

where γ  is the elasticity of remuneration with respect to size, δ  and jφ  are new coefficients and icµ  is a 

disturbance term. While the value of the size elasticity in (A13), γ, is of considerable interest, the 

sensitivity of remuneration to size is identical for all levels of pay. Accordingly, model (A13) yields 

exactly the same estimates of the dummy variable coefficients as does (A1); that is to say, the two models 

imply the same pay parity matrix. We now prove this invariance result. 

  Proceeding as before, the only difference is that there is now a new second column of X for 

revenue. If we write nιιιι  for a column vector of n unit elements, this second column can be expressed as  

[ ]

[ ]

1 1 2 2 C C

1 n 2 n C n

r r r r r r

r r r

′

′′ ′ ′

… … … …

�ι ι ιι ι ιι ι ιι ι ι

 

where r = [ ]1 cr ,...,r ′  and ⊗  is the Kronecker product. Thus, X  can be written as X = 

[ ]M n 2 nr d d⊗ …ι ιι ιι ιι ι , where, as before, jd  is an M-vector of observations on the thj  dummy 

variable. Using the above notation, model (A13) can be written for  i = 1,…,n  and  c = 1,…,C  in vector 

format as = +y Xθ µ , where θ  = [ δ  γ  2φ  … nφ ] ′ and µ  is a vector of disturbances.   

  The least-squares estimator of θ  is 1( )−′ ′X X X y . Defining r = C
c 1 cr=∑  as total revenue of all  C  

companies, and 2s = 2C
c 1 cr=∑  as the sum of squared revenue, the moment matrix takes the form 

′X X  =  

n 1

2

n 1

n 1 n 1 n 1

CC r
n

rs

C r CI

−

−

− − −

′  
   ′  
 
 
 
 
 

ιιιι

ιιιι

ι ιι ιι ιι ι

, 

where n 1−I  is an identity matrix of order (n - 1). The inverse of this moment matrix is 

 

n⊗r ιιιι , = = 
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(A14)  

2 2

n-1

n 1

1

n-1 n 1 n 1 n 1 n 1

1n 1
ns r r1

CC

r C

( )

1 1
( )

C C

0

X X

0 I

−

−

− − − −

 −  
′−− −  

  ∆
′−  

 ′ =
 
 

′− + 
 
  

ιιιι

ι ι ιι ι ιι ι ιι ι ι

, 

where ( )2 2 2C ns r n 1 C r ∆ = − − −   and n 1−0  is an n-1 vector of zeros. The cross-product vector takes 

the form 

(A15)     

C

c c
c 1

2

n

p

r p

p

p

X y

••

•
=

•

•

∑

 
 
 

′ =  
 
 
 

�

, 

where n C
i 1 c 1 icp p ,= =•• = ∑ ∑  n

i 1c icp p=• = ∑  and C
c 1j jcp p=• = ∑ . 

 Combining equations (A14) and (A15) yields the following estimator of the vector of the dummy 

variable coefficients 

 

C

c c
c 1

2

n

p

r p

p

p

••

•
=

•

•

∑

 
 
 
 
 
 
 

�

. 

This shows that the thj  coefficient is  

n

j j k
k 2

1 1ˆ p (p p )
C C

•• • •
=
∑φ = − + + . 

As n
k 2 kp= •∑ = C

c 1 1cp p=•• ∑− = 1p p•• •− , the above simplifies to  

jφ̂  = j 1

1
(p p )

C
• •− . 

In words, the coefficient of the thj  dummy is the mean of the difference between the remuneration of 

level  j  and that of level 1; or the mean of level  j  relative to the mean of level 1. This is identical to the 

LS estimator of the corresponding dummy variable coefficient jβ  in model (A1), given in equation (A4).  

This establishes that simply adding revenue to the remuneration equation has no impact on the pay parity 

matrix. 

 
 
 

n 1 n 1 n 1 n 1 n 1

1 1
( )

C C
0 I− − − − −

 
′− +  

ι ι ιι ι ιι ι ιι ι ι  2

n

ˆ

ˆ

 φ
 
 
 φ 

�  = 
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FIGURE 1 

THREE MEASURES OF RELATIVE PAY 
  

   

 
 

 

 

 

 

 

 

 

 
 

TABLE 1 

REMUNERATION SCHEDULE AND PAY PARITY MATRIX, 
ACADEMIC EXECUTIVES, THE UNIVERSITY OF WESTERN AUSTRALIA, 2005 

 

    
Remuneration 

 

Pay parity matrix ΠΠΠΠ  
(Level j)   

Summary of PP matrix rows 

Logs   
Level i 

Dollars 
($'000)   1 2 3 4 5  Average 

Average 
squared 

Standard 
deviation 

(1) (2) (3)  (4) (5) (6) (7) (8)  (9) (10) (11) 

             

1 485 13.0919        37.97 14.42 20.02 

2 335 12.7219        0.97 0.01 20.02 

3 305 12.6281        -8.42 0.71 20.02 

4 295 12.5947        -11.75 1.38 20.02 

5 275 12.5245        -18.77 3.52 20.02 

             

Mean 339 12.7122  -37.97 -0.97 8.42 11.75 18.77  0.00 4.01 20.02 

SD 75.52 0.2002  20.02 20.02 20.02 20.02 20.02  20.02   

                          

             

    

Average sum of squares 

( )
5 5

2 2 1

ij
i 1 j 1

1 5 0.80 10
−

= =

×∑ ∑ π =  
    

             

             

 
Notes: 1. All entries in column 4-11 are to be divided by 100.  

 2. SD = standard deviation, defined as the square root of the mean squared deviation of n values 
1 n

x , , x… from the mean x , 

( ) ( )
2

n
i 1 i

1 n x x=∑ − .  

   Source:  The remuneration data of column 2 refer to academic-executives of the University of Western Australia. These data are from the 
University’s Annual Report, 2005, available at http://year2005.annualreport.publishing.uwa.edu.au/welcome.   

. . 

. 1 ½  
0 

-69 

-100 

-50 

 

 

 

Pay ratio ijR  

 Parity ij 100π ×  

 

Percentage difference 

100 log R
ij

×  

( )ij ijP =100 R -1′ ×  

0 .0 0 3 7 .0 0 4 6 .3 8 4 9 .7 2 5 6 .7 4

3 7 .0 0 0 .0 0 9 .3 8 1 2 .7 2 1 9 .7 4

4 6 .3 8 9 .3 8 0 .0 0 3 .3 3 1 0 .3 5

4 9 .7 2 1 2 .7 2 3 .3 3 0 .0 0 7 .0 2

5 6 .7 4 1 9 .7 4 1 0 .3 5 7 .0 2 0 .0 0

 
 

− 
 − −
 

− − − 
 − − − − 
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FIGURE 2 
 

STEPS AND GRADIENT OF THE REMUNERATION SCHEDULE, 
ACADEMIC EXECUTIVES, THE UNIVERSITY OF WESTERN AUSTRALIA, 2005 
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TABLE 2 
 

ACADEMIC EXECUTIVE REMUNERATION AND REVENUE, 
AUSTRALIAN UNIVERSITIES, 2005 

 Remuneration at level ($’000) 
University 

1 2 3 4 5 

Revenue 
($’m)

A. First Quartile 

1. USC 335 185 175 165 165               51 

2. SCU 375 285 225 225 215             110 

3. Canberra 435 335 295 245 235             123 

4. Ballarat 325 215 205 195 195             133 

5. SQ 345 305 215 195 175             153 

6. Murdoch 405 265 235 235 215             196 

7. JCU 345 235 235 185 185             214 

8. ECU 795 175 165 115 105             217 

      

Means 420 250 219 195 186 150

       

B. Second Quartile 

9. Wollongong 465 315 235 235 235             273 

10. Swinburne 255 205 205 195 195             275 

11. CQ 485 235 225 215 195             276 

12. Tasmania 365 225 215 215 185             286 

13. CSU 325 245 245 225 195             294 

14. Victoria 475 305 305 295 275             328 

15. Newcastle 445 345 345 275 215             339 

16. Western Sydney 515 285 285 285 215             356 

       

Means 416 270 258 243 214 303

       

C. Third Quartile 

17. SA 465 295 265 255 235             375 

18. LaTrobe 415 365 305 295 295             384 

19. Macquarie 435 295 285 285 285             391 

20. UTS 515 415 315 295 255             412 

21. Griffith 335 315 305 295 245             432 

22. Deakin 515 355 295 275 265             436 

23. Curtin 475 215 175 165 165             442 

24. Adelaide 595 425 285 265 255             477 

       

Means 469 335 279 266 250 419

       

D. Fourth Quartile 

25. UWA 485 335 305 295 275             509 

26. RMIT 435 375 315 315 255             591 

27. ANU 558 303 288 288 258             608 

28. NSW 605 385 245 225 215             775 

29. Queensland 955 525 395 365 345             913 

30. Sydney 575 485 375 365 345          1,022 

31.  Monash 615 575 565 465 455          1,041 

32.  Melbourne 855 605 605 525 265          1,212 

       
Means  635 448 387 355 302 834

      
Grand Mean 485 326 285 265 238 426

              
  Source: 2005 Annual Reports of Universities.
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TABLE 3 
ACADEMIC EXECUTIVE REMUNERATION, 

MEANS, COVARIANCES AND CORRELATIONS, 
AUSTRALIAN UNIVERSITIES, 2005 

 

 Geometric Mean  
Covariance matrix ×  100 

(Level) 
 

Correlation matrix 
(Level) 

Level Logarithmic 
Standard 

Error 
Dollars 
(‘000) 

 1 2 3 4 5  1 2 3 4 5 

(1) (2) (3) (4)  (5) (6) (7) (8) (9)  (10) (11) (12) (13) (14) 

A. First Quartile 

1 5.9962 0.0969 402  7.516 -2.035 -1.550 -3.902 -4.482  1.000 -0.338 -0.331 -0.627 -0.697 

2 5.4978 0.0776 244   4.822 3.279 4.173 3.907   1.000 0.876 0.837 0.759 

3 5.3733 0.0603 216    2.908 3.316 3.340    1.000 0.857 0.836 

4 5.2493 0.0803 190     5.155 5.237     1.000 0.984 

5 5.2024 0.0829 182      5.495      1.000 

B. Second Quartile 

1 6.0071 0.0807 406  5.210 2.749 2.219 2.325 1.457  1.000 0.699 0.566 0.714 0.525 

2 5.5836 0.0609 266   2.971 2.515 2.042 1.493   1.000 0.849 0.831 0.713 

3 5.5359 0.0608 254    2.953 2.242 1.241    1.000 0.915 0.594 

4 5.4808 0.0504 240     2.032 1.285     1.000 0.741 

5 5.3571 0.0430 212      1.478      1.000 

C. Third Quartile 

1 6.1375 0.0568 463  2.585 1.190 -0.349 -0.599 -0.217  1.000 0.358 -0.122 -0.204 -0.081 

2 5.7937 0.0732 328   4.283 3.059 2.898 2.514   1.000 0.831 0.767 0.726 

3 5.6162 0.0629 275    3.163 3.219 2.716    1.000 0.992 0.912 

4 5.5696 0.0645 262     3.329 2.845     1.000 0.931 

5 5.5086 0.0592 247      2.804      1.000 

D. Fourth Quartile 

1 6.4222 0.0877 615  6.160 4.184 4.033 3.158 1.355  1.000 0.696 0.541 0.499 0.247 

2 6.0769 0.0857 436   5.872 6.368 5.131 3.239   1.000 0.875 0.831 0.603 

3 5.9106 0.1062 369    9.017 7.544 4.299    1.000 0.986 0.647 

4 5.8405 0.0901 344     6.497 3.569     1.000 0.632 

5 5.6836 0.0783 294      4.905      1.000 

E. All 

1 6.1408 0.0510 464  8.318 5.286 4.306 3.606 2.373  1.000 0.595 0.518 0.423 0.314 

2 5.7380 0.0544 310   9.475 8.068 8.123 6.695   1.000 0.909 0.893 0.831 

3 5.6090 0.0510 273    8.308 8.173 6.300    1.000 0.960 0.835 

4 5.5350 0.0522 253     8.731 6.964     1.000 0.900 

5 5.4379 0.0463 230      6.854      1.000 
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TABLE 4 
PAY PARITY MATRICES, 

ACADEMIC EXECUTIVES, AUSTRALIAN UNIVERSITIES, 2005 
(Standard errors in parentheses) 

 

 Levels    

Row Level 
 1 2 3 4 5 

 Average 

(1)  (2) (3) (4) (5) (6)  (7) 

  
A. First Quartile 

1  
           0.00 

 49.84  (14.32)  62.29  (13.00) 74.69  (16.00) 79.38  (16.57)     53.24  (11.85) 

2  -49.84  (14.32)           0.00  12.44  (3.83) 24.85  (4.51) 29.54  (5.59)     3.40  (3.71) 

3  -62.29  (13.00) -12.44  (3.83)            0.00 12.41  (4.23) 17.10  (4.64)    -9.05   (2.03) 

4  -74.69  (16.00) -24.85  (4.51) -12.41  (4.23)           0.00   4.70  (1.48)  -21.45   (4.33) 

5  -79.38  (16.57) -29.54  (5.59) -17.10  (4.64)  -4.70  (1.48)             0.00  -26.14   (5.04) 

 

B. Second Quartile 

1  
           0.00 

 42.35  (5.79)  47.12  (6.82)  52.63  (5.69) 
65.00  (6.87) 

  41.42  (4.71) 

2  -42.35  (5.79)             0.00    4.77  (3.34)  10.28  (3.39) 22.65  (4.28)    -0.93  (2.28) 

3  -47.12  (6.82)   -4.77  (3.34)              0.00    5.51  (2.50) 17.87  (4.94)    -5.70  (2.82) 

4  -52.63  (5.69) -10.28  (3.39)   -5.51  (2.50)            0.00 12.37  (3.43)  -11.21  (1.63) 

5  -65.00  (6.87) -22.65  (4.28) -17.87  (4.94) -12.37  (3.43) 0.00  -23.58  (3.25) 

 

C. Third Quartile 

1  
            0.00 

 34.38  (7.49)  52.13  (8.98) 56.79  (9.43) 
62.89  (8.53) 

  41.24  (6.68) 

2  -34.38  (7.49)             0.00  17.75  (4.08) 22.41  (4.77) 28.51  (5.07)     6.86  (3.03) 

3  -52.13  (8.98) -17.75  (4.08)             0.00   4.66  (0.82) 10.76  (2.59)  -10.89  (2.42) 

4  -56.79  (9.43) -22.41  (4.77)   -4.66  (0.82)             0.00   6.11  (2.35)  -15.55  (2.92) 

5  -62.89  (8.53) -28.51  (5.07) -10.76  (2.59)  -6.11  (2.35)            0.00  -21.66  (2.66) 

         

 
 
 

(Continued on next page) 
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TABLE 4 (Continued) 
PAY PARITY MATRICES, 

ACADEMIC EXECUTIVES, AUSTRALIAN UNIVERSITIES, 2005 
(Standard errors in parentheses) 

 

 Levels   

Row Level 
 1 2 3 4 5 

 Average 

(1)  (2) (3) (4) (5) (6)  (7) 

 
 
 
 

D. Fourth Quartile 

1  
            0.00 

 34.53  (6.77)  51.16  (9.43)  58.18  (8.90) 73.86  (10.22)   43.55  (6.45) 

2  -34.53   ( 6.77)            0.00  16.63  (5.19)  23.64  (5.13) 39.33   (7.33)     9.01  (2.92) 

3  -51.16  (9.43) -16.63  (5.19)             0.00    7.01  (2.31) 22.70  (8.16)     -7.61  (3.94) 

4  -58.18  (8.90) -23.64  (5.13)   -7.01  (2.31)             0.00 15.69  (7.30)  -14.63  (3.29) 

5  -73.86  (10.22) -39.33  (7.33) -22.70  (8.16) -15.69  (7.30)           0.00  -30.32  (5.79) 

          
E. All  

1                0.00  40.28  (4.75)  53.17  (5.00) 60.57  (5.54) 
         70.28  (5.71) 

 44.86  (4.04) 

2  -40.28  (4.75)            0.00  12.90  (2.27) 20.29  (2.48)          30.01  (3.03)    4.58  (1.65) 

3  -53.17  (5.00) -12.90  (2.27)            0.00   7.40  (1.47)         17.11  (2.83)   -8.31  (1.48) 

4  -60.57  (5.54) -20.29  (2.48)   -7.40  (1.47)             0.00           9.71  (2.28) -15.71  (1.72) 
5  -70.28  (5.71) -30.01  (3.03) -17.11  (2.83) -9.71  (2.28)           0.00  -25.42  (2.26) 
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TABLE 5 
 

COLUMNS OF PAY PARITY MATRIX AND COVARIANCE MATRICES, 
ACADEMIC EXECUTIVES, AUSTRALIAN UNIVERSITIES, 2005, 

FIRST QUARTILE 

 

  Column of Π  matrix  
Covariance matrix 

(Level) 

Level  
Point 

estimate 
Standard 

error 
 1 2 3 4 5 

(1)  (2) (3)  (4) (5) (6) (7) (8) 

A. Column 1 

1  0.000 0.000  0.000 0.000 0.000 0.000 0.000 

2  -49.844 14.322   2.051 1.798 2.203 2.243 

3  -62.286 13.001    1.690 2.036 2.111 

4  -74.692 15.998     2.560 2.642 

5  -79.383 16.574      2.747 

          

B. Column 2 

1  49.844 14.322  2.051 0.000 0.254 -0.152 -0.191 

2  0.000 0.000   0.000 0.000 0.000 0.000 

3  -12.443 3.827    0.146 0.086 0.122 

4  -24.848 4.515     0.204 0.247 

5  -29.539 5.593      0.313 

          

C. Column 3 

1  62.286 13.001  1.690 -0.107 0.000 -0.345 -0.421 

2  12.443 3.827   0.146 0.000 0.061 0.024 

3  0.000 0.000    0.000 0.000 0.000 

4  -12.406 4.228     0.179 0.186 

5  -17.096 4.639      0.215 

          

D. Column 4 

1  74.692 15.998  2.560 0.356 0.524 0.000 -0.083 

2  24.848 4.515   0.204 0.118 0.000 -0.043 

3  12.406 4.228    0.179 0.000 -0.007 

4  0.000 0.000     0.000 0.000 

5  -4.691 1.484      0.022 

          

E. Column 5 

1  79.383 16.574  2.747 0.504 0.636 0.105 0.000 

2  29.539 5.593   0.313 0.191 0.066 0.000 

3  17.096 4.639    0.215 0.029 0.000 

4  4.691 1.484     0.022 0.000 

5  0.000 0.000      0.000 

 
                    Note: All entries are to be divided by 100. 
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TABLE 6 
 

DEVIATIONS FROM MEAN REMUNERATION AND COVARIANCE 
MATRIX, ACADEMIC EXECUTIVES, AUSTRALIAN UNIVERSITIES, 

2005, FIRST QUARTILE 

 

  Deviation from mean  
Covariance matrix 

(Level) 

Level  
Point 

estimate 
Standard 

error 
 1 2 3 4 5 

(1)  (2) (3)  (4) (5) (6) (7) (8) 

1  53.241 11.851  1.405 -0.254 -0.122 -0.484 -0.544 

2  3.397 3.712   0.138 0.016 0.061 0.040 

3  -9.045 2.027    0.041 0.025 0.040 

4  -21.451 4.333     0.188 0.210 

5  -26.142 5.043      0.254 

 
  Note: All entries are to be divided by 100. 
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TABLE  7 
DIFFERENCES IN PAY PARITY MATRICES, 

ACADEMIC EXECUTIVES, AUSTRALIAN UNIVERSITIES, 2005 

 Differences  Standard errors of differences  t-statistics  

 
A. First vs Second Quartiles 

0.00 7.50 15.16 22.06 14.39  0.00 15.44 14.68 16.98 17.94  - 0.49 1.03 1.30 0.80 

 0.00 7.67 14.56 6.89   0.00 5.08 5.65 7.04   - 1.51 2.58 0.98 

  0.00 6.90 -0.78    0.00 4.91 6.77    - 1.40 -0.11 

   0.00 -7.67     0.00 3.73     - -2.05 

    0.00      0.00      - 

 
B. First vs Third Quartiles 

0.00 15.46 10.16 17.91 16.49  0.00 16.16 15.80 18.57 18.64  - 0.96 0.64 0.96 0.88 

 0.00 -5.31 2.44 1.03   0.00 5.59 6.56 7.55   - -0.95 0.37 0.14 

  0.00 7.75 6.33    0.00 4.31 5.31    - 1.80 1.19 

   0.00 -1.42     0.00 2.78     - -0.51 

    0.00      0.00      - 

 
C. First vs Fourth Quartiles 

0.00 15.31 11.13 16.52 5.52  0.00 15.84 16.0599 18.31 19.47  - 0.97 0.69 0.90 0.28 

 0.00 -4.19 1.21 -9.79   0.00 6.4472 6.84 9.22   - -0.65 0.18 -1.06 

  0.00 5.39 -5.61    0.00 4.82 9.38    - 1.12 -0.60 

   0.00 -10.99     0.00 7.45     - -1.48 

    0.00      0.00      - 

                 

 
 

(Continued on next page) 
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TABLE  7 (Continued) 

TESTS OF DIFFERENCES IN PAY PARITY MATRICES, 
ACADEMIC EXECUTIVES, AUSTRALIAN UNIVERSITIES, 2005 

 Differences  Standard errors of differences  t-statistics  

 
 

D. Second vs Third Quartiles 

0.00 7.97 -5.01 -4.15 2.10  0.00 9.47 11.26 11.01 10.95  - 0.84 -0.44 -0.38 0.19 

 0.00 -12.97 -12.12 -5.86   0.00 5.27 5.85 6.63   - -2.46 -2.07 -0.88 

  0.00 0.85 7.11    0.00 2.63 5.57    - 0.32 1.28 

   0.00 6.26     0.00 4.16     - 1.51 

    0.00      0.00      - 

                 

 
 

E. Second vs Fourth Quartiles 

0.00 7.81 -4.04 -5.54 -8.87  0.00 8.91 11.64 10.57 12.31  - 0.88 -0.35 -0.52 -0.72 

 0.00 -11.85 -13.36 -16.68   0.00 6.17 6.15 8.49   - -1.92 -2.17 -1.97 

  0.00 -1.50 -4.83    0.00 3.40 9.53    - -0.44 -0.51 

   0.00 -3.32     0.00 8.07     - -0.41 

    0.00      0.00      - 

 
F. Third vs Fourth Quartiles 

0.00 -0.15 0.97 -1.39 -10.97   10.10 13.02 12.97 13.31  - -0.01 0.07 -0.11 -0.82 

 0.00 1.121 -1.24 -10.82    6.60 7.00 8.91   - 0.17 -0.18 -1.21 

  0.00 -2.36 -11.94     2.45 8.56    - -0.96 -1.40 

   0.00 -9.58      7.67     - -1.25 

    0.00 
 

           - 

 
Note:  1.  The rows and columns of each matrix refer to levels of remuneration. 
 2. Except for the t-statistics, all entries are to be divided by 100. 
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