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Abstract:  
We study the restrictions implied by optimal policy DSGE models for the volatility of 
observable endogenous variables. Our approach uses a parametric family of singular 
models to discriminate which volatility sample outcomes have zero probability of being 
generated by an optimal policy. Thus the set of volatility outcomes generated by the 
model is not of measure zero even if there are no random deviations from optimal 
policymaking. This methodology is applied to a new Keynesian business cycle model 
widely used in the optimal monetary policy literature, and its implications for the 
assessment of US monetary policy performance over the 1984-2005 period are 
discussed. 
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1 Introduction

The business cycle theory that has become prevalent in the last two decades assumes that business

cycle volatility is the result of exogenous shocks. Fiscal and monetary policy can affect the propagation

of these shocks throughout the economy, and the resulting volatility in aggregate economic variables.

A central question in assessing the historical performance of monetary and fiscal policies is

how to distinguish the amount of economic volatility that is an efficient outcome given the shocks

driving the business cycle - that is, the volatility that would obtain conditional on the optimal policy

- and the volatility resulting from suboptimal policymaking. Because exogenous shocks are typically

unobservable, any assessment of the policy performance must rely on the restrictions implied by a

DSGE model for the co-movement of observable endogenous variables.

This paper investigates the restrictions implied by optimal policy DSGEmodels for the volatility

of observable endogenous variables. Optimal policy DSGE models are by construction singular - they

predict the time series for one variable is a nonstochastic function of other variables’ time series. Unless

random deviations from optimal policy are introduced, the data will reject the restrictions of optimal

policy models almost surely. We propose a way to use singular models to define a set of outcomes with

nonzero probability, in terms of observable variables’ volatilities. While this set of outcomes, which we

label the optimal policy space, can be used as a diagnostic tool to distinguish from historical outcomes

bad policies from bad luck, we rather use it as a tool to understand the restrictions implied by optimal

policymaking in DSGE models.

A DSGE model defines a map M between the shocks vector Ut covariance matrix ΣU and the

endogenous variables vector Yt covariance matrix ΣY . Typically, the mapM implies that any volatility

sample outcome has a nonzero probability of being generated by the model.

This is the consequence of two assumptions macroeconomists often make. First, business cycle

models are solved using a linear approximation, resulting in equilibrium law of motion of the form,

at its simplest, Yt = AUt. Second, the linear solution is assumed nonsingular by ensuring that the

number of exogenous shocks and observable endogenous variables are identical. In optimal policy

models, this implies including a random shock in the policy optimality condition. Then, regardless of

the restrictions imposed by optimal policymaking on the model A, any outcome Yt can be explained

by some random vector Ut, since for any given nonsingular model and covariance outcome ΣY it holds

ΣU = A
−1ΣYA0−1.

Rather than building the map M as a linear function of ΣU for a nonsingular model with
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random deviations from the optimal policy, we include in the argument β of the map M also some of

the deep parameters of the DSGE model, and build the map M(β) for a parametric family of optimal-

policy singular models. Therefore, the set of volatility outcomes generated by optimal policymaking

- the image of M(β) - is not of measure zero. At the same time, the nonlinearity of the map implies

that there may exist volatility outcomes with zero probability.

We use this approach to show how truly optimal policy would restrict the volatility outcome for

observable variables in a widely used monetary business cycle model. Based on this model, the 1985-

2004 sample observation for US macroeconomic variables would have zero probability of being generated

by optimal policymaking. Given our methodology can only identify the set of sample outcomes with

zero probability, but cannot determine the likelihood that an outcome belonging to the optimal policy

space was in fact generated by optimal policymaking, we interpret this result as evidence that popular

models used to provide monetary policy prescriptions impose tighter restrictions on the behaviour of the

economy than is readily apparent. Intuitively, alternative models belonging to a parametric family may

imply a very different mapping between the volatility of exogenous shocks and endogenous variables -

and very different impulse responses conditional on a one standard deviation exogenous shock. Yet the

same models may be unable to generate very different sets of unconditional volatility outcomes. This

is indeed the case for the parametric family of DSGE models we examine.

The paper is organized as follows. Section 2 defines the optimal policy space. Section 3

introduces a simple example to illustrate the restrictions on the volatility outcomes imposed by the

optimal policy space, and evaluates the US policy performance. Section 4 discusses related literature

and section 5 concludes.

2 The Optimal Policy Space

Let the map M(β) associate to any DSGE model parameter space the set of the endogenous variables’

volatility outcomes. The image of M(β) conditional on the optimal policy is a set no larger than the

image conditional on all possible policies. In general, M(β) is defined as the map between the model’s

parameters and all the entries in the covariance matrix ΣY . In the following we specializeM(β) to map

into the main diagonal of ΣY only. This assumption is without loss of generality, and allows a useful

graphical representation of the image of M(β). It is convenient to start with some formal definitions.

Definition 1 Let β be a vector of parameters, p a policy rule and Z(β;p) a law of motion for n

endogenous variables conditional on policy p. Let the vector-valued function M(β;p) : D ⊆ Rr → Rn
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associated with Z(β;p) map every vector β ∈ Rr to a unique vector of variances for the n endogenous

variables. Define the set Vp as the image of M(β;p). The set Vp is called the volatility space for

model Z conditional on policy p and parameter vector β.

Definition 2 Define the set Vo as the volatility space Vp associated with M(β;o) conditional on the

optimal policy p = o. The set Vo is called the optimal policy space.

In most business cycle models, for an appropriate choice of n it holds that Vo ⊆ Rn and

Vo Ã Rn−1 for n > 1, so that Vo is a non-trivial n−dimension subset of Rn. In this case Vo describes

a set of volatility outcomes (σ2Y1 , ..., σ
2
Yn
) which is a proper subset of the volatility space, and which is

not of measure zero. In the following, we will say that an optimal policy imposes ’tight restrictions’ on

Vo if for any given (σ2Y1 , ..., σ
2
Yn−1

) belonging to the optimal policy space for the variables (Y1, ..., Yn−1),

the range of values for σ2Yn belonging to Vo is bounded.

2.1 The Linear Case

Assume M(β;o) is a linear map and is equal to:

M(β;o) = Cβ (1)

where β is an r × 1 vector and C is an n × r matrix. For an unrestricted vector β two outcomes

are possible. When the matrix C is of rank n its columns span the space Rn. Then Vo = Rn and

necessarily Vo = Vp for any policy p such that rank(C) = n. When C is of rank s < n its columns

span the subspace Rs and Vo is a s-dimension hyperplane.

For a linear model and β including only the entries for the exogenous shocks’ covariance matrix

the map M(β;o) can be written as in eq. (1). Let the model associated with M(β;o) be described

by the stationary law of motion Yt = AUt where Yt is an n × 1 vector of endogenous variables with

covariance matrix ΣY and Ut is an m× 1 vector of exogenous shocks with covariance matrix ΣU . For

β ≡ vec(ΣU ) we can write

M(β;o) = T (A⊗A) vec(ΣU) (2)

where T is an n×nn matrix with unitary value at entry [i, (i− 1)n+ i]ni=1 and zero otherwise, so that

M(β;o) is equal to the diagonal of ΣY . If A is of rank n the linear map vec(ΣY ) = (A⊗A) vec(ΣU )

spans the space defined by the vectorization of n×n positive semi-definite symmetric matrices, and the

matrix T (A⊗A) is of rank n. Because ΣU is a positive semi-definite symmetric matrix, M(β;o) does
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not span Rn. It will though span Rn+ , since M(β;o) is just the main diagonal of ΣY , and any vector

g ∈ Rn+ is the main diagonal of at least one positive semi-definite matrix. If A is of rank s < n, also

T (A⊗A) is of rank s < n. This is the case of a singular model, where Vo is a s-dimension hyperplane

in Rn. Therefore, conditional on the model A either all vectors [σ2Y1 , σ
2
Y2
, ..., σ2Yn ]

0 belong to the optimal

policy space (and Vo is an improper subset of Rn+) if s = n, or any vector [σ2Y1 , σ
2
Y2
, ..., σ2Yn ]

0 almost

surely does not belong to the optimal policy space if s < n.

2.2 The General Case

Assume any model parameter k is allowed to belong to the domain ofM so that β = [vec(ΣU), k1, ..., kh]0

and M(β;o) is a nonlinear vector-valued function M : D ⊆ Rr → Rn. Recall that for M(β;o) = Cβ

and β unrestricted only two outcomes are possible in the linear case: either Vo = Rn, or Vo is a

lower-dimension hyperplane. When M(β;o) is a nonlinear function, it is possible for Vo to be a proper

subset of Rn and at the same time not to be contained in any lower-dimension subspace, even if the

associated Z(β;o) model’s law of motion is described by the linear map Yt = AUt and A is of rank

s < n. This property ensures that in general Vo is a non-trivial subset of Rn. Effectively, verifying

whether an outcome (σ2Y1 , ..., σ
2
Yn
) is optimal amounts to checking whether a vector [σ2Y1 , σ

2
Y2
, ..., σ2Yn ]

0

belongs to the image of the function M(β;o). If M(β;o) were bijective this could be established by

checking whether the value of the inverse function M−1(σ2Y1 , σ
2
Y2
, ..., σ2Yn) for a given outcome belongs

to the domain D of M(β;o). Since M(β;o) is generally surjective but not injective, its inverse must

be computed employing numerical methods.

Notice that if β = vec(ΣU ) and the model is singular, any outcome (σ2Y1 , ..., σ
2
Yn
) does not

belong to Vo almost surely, whereas if the model is nonsingular any outcome (σ2Y1 , ..., σ
2
Yn
) belongs to

Vo with probability one. By including in β behavioral parameters in addition to the entries in ΣU ,

the set Vo of a singular model can be of nonzero measure in Rn - intuitively, the nonlinearity of the

mapping M(β;o) allows Vo to be "large" or "small" with respect to Rn.

In the linear case we saw that when rank(C) = s < n (as will happen whenever rank(A) =

s < n) Vo is a s-dimension hyperplane, implying M(β;o) can be rewritten as a map between vectors

in Rs and vectors in Rn even if the domain of M(β;o) is Rr, r > s. A similar notion can be extended

to the case when M(β;o) is nonlinear using the following definitions (Baxandall and Liebeck, 1986):

Definition 3 A function M : S ⊆ Rs → Rn is smooth if it is a C1 function and if for all g ∈ S the

Jacobian JM,g is of maximum possible rank min(s, n).
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Definition 4 A subset K ⊆ Rn is called a smooth s − surface if there is a region of S in Rs and a

smooth function ρ : S ⊆ Rs → Rn such that ρ(S) = K.

The latter definition implies that if a smooth ρ(S) exists the image K of M(β;o) : D ⊆ Rr →

Rn can be parametrically described by a vector-valued function ρ of s variables. The smoothness

condition on ρmeans that the Jacobian matrix of ρ at any point in the domain has at least s independent

column vectors. When for all g ∈ D it holds that rank(JM,g) = n, then for S = D the function

ρ(S) ≡M(β;o) maps into a smooth n− surface and the probability that [σ2Y1 , σ
2
Y2
, ..., σ2Yn ]

0 ∈ Vo = K

is non-zero. On the contrary, when rank(JM,g) = s < n the functionM(β;o) cannot describe a smooth

n − surface in Rn and the image K will be a smooth s − surface described by ρ : S ⊆ Rs → Rn.

The constant rank theorem (Conlon, 2001) ensures existence of ρ(S). In this case any given vector

[σ2Y1 , σ
2
Y2
, ..., σ2Yn ]

0 almost surely does not belong to the optimal policy space.

3 A Monetary Policy Example

Consider a log-linear new Keynesian model, as in Walsh (2005) and Benigno and Woodford (2005),

describing the dynamics of inflation πt, the interest rate it, the welfare-relevant output gap ext = yt−y∗t ,

where yt is output and y∗t is its efficient level:

ext = − 1
ϕ
(it −Etπt+1 − ernt ) +Et(ext+1) (3)

πt − γπt−1 = λext + eβEt(πt+1 − γπt) + λut (4)

where ϕ is the coefficient of relative risk aversion for the representative household divided by the con-

sumption share of output, eβ is the household’s discount rate, λ is a function of behavioral parameters.
It is assumed that a constant share of firms can adjust the price in each period, while the remaining

share indexes the price to a fraction γ of last period’s aggregate inflation rate. The variables ut and ernt
are linear combinations of all the exogenous shocks (a technology shock at, a tax shock τ t, a government

spending shock Gt), and are correlated. The appendix provide details on the model’s derivation, and

the mapping between the reduced form and structural parameters.

Let the policymaker’s objective function be:

Wt = −
1

2
ΩEt

∞X
i=0

eβi ©αex2t+i + (πt+i − γπt+i−1)
2
ª

(5)
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The parameter α specifies how the policymaker trades off fluctuations in output gap and inflation.

While we assume that α depends on exogenous policymaker preferences, Wt is a second order approx-

imation to the representative household’s utility for α = α∗, where α∗ is a well-defined function of the

model’s deep parameters.

In order to illustrate the main result, it is useful to start from a simplified model where γ = 0

and appropriate transfers ensure that the steady state is efficient. Then the model in eqs. (3), (4),

(5) simplifies to the basic new Keynesian model, as found for example in Clarida, Gali and Gertler

(1999), where movements in ernt can be interpreted as ’demand shocks’, since they are not correlated
with ut, and can be perfectly offset by the policymaker. The time-consistent solution to the optimal

policy problem requires:

πt = −
α

λ
ext (6)

The law of motion for πt, ext under the optimal policy is:
πt = αqut ; ext = −λqut

When ut is described by an AR(1) stochastic process with autocorrelation parameter ρu, we

obtain q = 1

λ2+α(1−βρu)
. In this model any outcome (σ2πt , σ

2
xt
) could be generated by an optimal policy

for α, σ2ut ∈ [0,∞]. Using definition 1 and 2, the optimal policy space of the variables (πt, ext) associated
with Z(β;o) for β = [σ2ut , α]

0 is Vo = R2
+
. Since any vector [σ2πt , σ

2
xt
]0 belongs to the image of M(β;p)

for p = o any outcome can be generated by an optimal policy.

Consider the optimal policy space of the variables (πt, ext, it) for β = [σ2ut , σ2rnt , σutrnt , α]0. The
law of motion for (πt, it) implies:

σ2πt =
³α
λ

´2
σ2xt (7)

σ2it =
³α
λ
γπ

´2
σ2xt + σ2rnt − 2αqγπσutrnt (8)

where γπ =
£
ρu + ϕλ

α(1− ρu)
¤
. The optimal policy space is a 3 − surface, and is a proper subset of

R3
+
even if we allow the covariance σutrnt to be nonzero, since for given (σ

2
πt , σ

2
xt) the value of σ

2
it
is

bounded by below, as shown in eq. (8). But σ2it does not have an upper limit for any given (σ
2
πt , σ

2
xt),

so the range of observable outcomes for σ2it is infinite. Figure 1 shows a subset of the hyperplanes in

Vo. The set Vo is composed by an infinite number of hyperplanes, each indexed by a value for σ2rnt .

Optimal policymaking puts tight restrictions on Vo for the set of endogenous variables (πt, yt, it),
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as shown in figure 2. The parameterization for ϕ, λ, eβ, ρu follows Walsh (2005). Since yt = y∗t+ ext it
holds that:

yt = −
∙

1

ϕ(1− ρa)
ernt + ext¸ (9)

where the technology shock at is an AR(1) stochastic processes with autocorrelation parameter ρa.
1

The set Vo ⊆ R3
+
for (πt, yt, it) includes a bounded set of outcomes for σ2it conditional on any(σ

2
πt , σ

2
xt).

The intuition for the result is straightforward. Even if conditional on the optimal policy demand shocks

do not affect πt and ext, they affect yt and it. As a consequence, for given σ2πt optimal outcomes where

σ2yt is larger imply that σ
2
it
is larger too. Cost-push shocks increase the volatility of all three variables.

Optimal outcomes do not align on a two-dimension hyperplane because for different combina-

tions (σ2ut , σ
2
rnt
, α) there may exist more than one outcome for σ2it corresponding to the same outcome

for (σ2πt , σ
2
yt). Nevertheless, parameterizations where Vo ⊆ R2

+
do exist. Conditional on the optimal

policy (6), define:

M(β;o) ≡

⎡⎢⎢⎢⎣
σ2πt

σ2yt

σ2it

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

α2q2σ2ut

λ2q2σ2ut +
1

ϕ2(1−ρa)2
σ2rnt
− 2

ϕ(1−ρa)
λqσutrnt

(αqγπ)
2 σ2ut + σ2rnt

− 2αqγπσutrnt

⎤⎥⎥⎥⎦
where β = [σ2ut , σ

2
rnt
, σutrnt , α]

0. The set Vo for this model is a 3 − surface, as can be checked by

computing det[JM,g], and as shown in figure 2. If ρu = ρa = 0, using the definitions of q and γπ we

obtain:

M(β;o) ≡

⎡⎢⎢⎢⎣
σ2πt

σ2yt

σ2it

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

α2(λ2 + α)−2σ2ut

λ2(λ2 + α)−2σ2ut +
1
ϕ2
σ2rnt
− 2

ϕ
λ

λ2+α
σutrnt

(ϕλ)2(λ2 + α)−2σ2ut + σ2rnt
− 2ϕ λ

λ2+α
σutrnt

⎤⎥⎥⎥⎦ (10)

Eq. (10) shows that σ2yt =
1
ϕ2
σ2it for any value of λ and ϕ. Therefore the Jacobian of M(β;o) has

two proportional columns for any β. Since rank(JM,g) = 2 over the domain D, the optimal policy

space cannot be a 3− surface. The image K can be parameterized by the function ρ : S ⊆ R2 → R3:

ρ(S) ≡

⎡⎢⎢⎢⎣
g1

g2

ϕ2g2

⎤⎥⎥⎥⎦
1Eq. (9) also assumes the government spending shock Gt is an AR(1) stochastic process with autocorrelation parameter

ρG = ρa and steady state government spending is zero.
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where g1 = α2(λ2 + α)−2σ2ut and g2 = λ2(λ2 + α)−2σ2ut +
1
ϕ2
σ2rnt
− 2

ϕ
λ

λ2+α
σutrnt . In this case, Vo is a

2− surface in R3, implying any outcome is suboptimal almost surely.

In general, by finding the appropriate combination of n endogenous variables, it may be possible

to obtain an optimal policy space conditional on a model Z(β;o) that includes only a bounded set of

outcomes for at least one variable. The complement set V Co = Rn+\Vo includes only suboptimal

outcomes. Since the optimal policy space is defined in terms of variance of observable variables, it can

be used to assess the restrictions of the optimal policy model for observable economic volatility.

3.1 Optimal Policy Restrictions from the New Keynesian Model and U.S. Mone-

tary Policy

As an illustration of our methodology, consider the optimal policy space for the variables (πt, yt, it)

conditional on the model in eqs. (3), (4), (5) and β = [σat , στ t , σatτ t , α]
0. 2 We allow for endogenous

inflation persistence by setting γ = 0.5 and consider an economy with a distorted steady state, so

that any shock will affect all the endogenous variables, and consider the time-consistent optimal policy.

While this is a stylized model, it is widely used in theoretical and empirical work. Figure 3 plots Vo

(similar in shape to the plot in figure 2) together with the outcome (σπt , σyt , σit) for the US over the

period 1984:1 - 2005:1. There is no combination of the volatility of exogenous shocks and policymaker

preferences that could have generated the observed (σUSπt , σ
US
yt , σUSit ) as an optimal policy outcome.

Enlarging the parametric family of singular models leaves the result for the US sample un-

changed. We build the function M(β;o) for β = [σat , στ t , χ, γ, θ, ν]
0 where χ is the share of firms that

cannot optimally adjust the price in each period, γ is the fraction of last period’s aggregate inflation

rate to which the share χ of firms indexes the price, θ is the firms’ demand elasticity, ν is the inverse

of labor supply wage elasticity. We assume the policymaker maximizes the representative household’s

utility. Table 1 reports the range of variation for the model’s parameters. The mapping still results in

(σUSπt , σ
US
yt , σUSit ) /∈ Vo. 3 Including additional parameters in β may eventually result in a large enough

optimal policy space such that (σUSπt , σ
US
yt , σUSit ) ∈ Vo, but does not need to because of the nonlinearity

of the mapping M(β;o).

2Using β = [σat , σGt , στt , α]
0 would generate the same image for M(β;o). To ease the reading of the plot in figure 2

the set Vo is defined in terms of the standard deviation of a variable rather than of its variance.
3We verified that (σUSπt , σ

US
yt , σ

US
it ) /∈ Vo by searching for a vector β = [σat , στt , χ, γ, θ, ν, ]

0 such that (σπt , σyt , σit)
is in the ±2.5% interval around the data point (σUSπt , σ

US
yt , σ

US
it ). Allowing for a range of variation in (σπt , σyt , σit) lets

us account for the numerical error in the approximation to M(β; o). The map M(β; o) is computed through a discrete
approximation over 3,686,000 simulated data points. We verified that admissable parameter values outside the range in
table 1 result in outcomes further away from the historical observation for the US.
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The result can be explained by two observations. First, all the model parameterizations imply

different responses of endogenous variables to exogenous shocks. But many of the resulting models

are nearly observationally equivalent in terms of unconditional volatility outcomes (σπt , σyt , σit). A

measure of volatility is a coarse, low-level characterization of the behaviour of endogenous variables.

What does change across model parameterizations is the mapping between the volatility of exogenous

shocks and endogenous variables. That is, the same outcome (σπt , σyt , σit) can be generated with

alternative parameterizations by different vectors [σat , στ t , χ, γ, θ, ν]
0. Second, changes in a parameter

do not necessarily add useful degrees of freedom to enlarge Vo. For example, in the optimal policy

space for (σπt , σxt , σit) of the basic new Keynesian model a change in λ is observationally equivalent

to a change in α, since the relationship between ext and πt and between ext and it in eqs. (7) and (8)

depends on the ratio α/λ.

The difficulty in finding a model within the parametric family such that the US outcome belongs

to the optimal policy space has two alternative interpretations. First, US monetary policymaking was

indeed suboptimal. After all, the building of the optimal policy space does allow for any possible

parameterization in the vector [σat , στ t , χ, γ, θ, ν]
0, including parameterizations that may be inconsistent

with available empirical evidence. Moreover, the optimal policy space has by construction weak power

against detecting suboptimal policies: historical outcomes may belong to Vo even if they are the result

of period-by-period suboptimal policies. Finally, it can be shown that the outcome (σUSπt , σ
US
yt , σUSit )

does not belong to Vo for a number of alternative policies, including the timeless perspective optimal

commitment policy, or the policymaker adopting the the wrong objective function and assuming γ = 0

in eq. (5), or even the policymaker adopting an objective function quadratic in π, ext and ∆it, for any
relative weight of the three objectives.

Second, the DSGE model propagation mechanism is incomplete or inaccurate. Conditional

on optimal monetary policy, it puts implausible restrictions on the endogenous variables’ variances.

This conclusion leads to question whether the optimal policy prescriptions derived from stylized DSGE

models such as the one used are appropriate to guide real-world policymaking.

4 A Probabilistic Interpretation

Consider an optimal policy DSGE model with associated law of motion Z(β;o) described by the linear

map Yt = AUt where A is an n × r matrix. Partition the vector β into βσ = [σU1,t , ...σUr,t ] and

βk = [k1, k2, ...ks]. It is assumed the matrix A is a function of βk, a vector of structural parameters of
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the model.

In general, when r < n the support of the probability measure associated with the random

vector Yt lies on an r−dimension hyperplane in Rn. The sample space Ωr is a null set with respect

to Lebesgue measure in Rn, and a density function is not defined with respect to the n−dimension

Lebesgue measure, while it exists with respect to Lebesgue measure in Rr for events belonging to

the r−dimension sample space Ωr. This is the relevant sample space for most DSGE models used in

business cycle analysis, and for every optimal policy model by construction, since optimal policy implies

movements in the policy instrument can be written as a function of endogenous variables only, so that

r < n.

If r < n and Ut is normally distributed, the random vector Yt is said to have a singular normal

distribution. With a slight abuse of notation, we can write Yt ∼ Nn[AμU , AΣUA
0]. A singular normal

distribution has a covariance matrix with rank strictly smaller than the dimension of the random vector.

4 To each parameter vector βk corresponds a null set Ωr(βk) in R
n. Since the sample space Ωr is not

a function of βσ, a set Vo(βk) = M(βk, βσ;o) can be associated with Ωr(βk). Section 2 showed that

Vo(βk) and Ωr(βk) have the same dimension, since if Yt has singular covariance matrix with rank r,

the set Vo(βk) is a r-dimension hyperplane in R
n.

The space Vo encompasses all sets Vo(βk) for any parameterization of the vector βk. Notice

that since Vo simply maps entries of A and ΣU into ΣY , the set Vo can be built regardless of the rank

of ΣU . On the contrary, we cannot define a joint density for the model Z(β;o) since the sample space

is the null set in Rn, nor can we write a likelihood function for an observed sample.

A vector ΣY in Rn belonging to Vo must also belong to Vo(βk) for some βk, and therefore ΣY is

the outcome of an optimal policy singular model. A model may impose restriction on ΣU , for example

requiring that the structural shocks Ut be uncorrelated, and ΣU diagonal. The set Vo satisfying these

restrictions is thus the population optimal policy space. If the vector βσ includes all the elements of ΣU

we can build a sample optimal policy space, and incorporate the impact of small sample uncertainty.

In the example discussed in section 3, assuming β = [σat , στ t , σatτ t , α]
0 implies the set Vo includes all

the realizations of the random vector (σπt , σyt , σit) for any possible sample draw from the distribution

of the random vector Ut, regardless of the population value for ΣU . Therefore Vo is the space of all

possible sample outcomes (Sπt , Syt , Sit) for (σπt , σyt , σit). If a sample observation (Sπt , Syt , Sit) does

not belong to Vo, then the sample {Yt}Tt=0 does not belong to the sample space Ωr(βk) for any βk.

4While a likelihood function for Yt does not exist, various authors have proposed methods for maximum likelihood
estimation of singular systems. See Bierens (2007), Kwakernaak (1979), Lai (2008).
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The optimal policy space depicted in figure 3 is in fact drawn without imposing any restriction

on ΣU . The result implied by figure 3 that (SUS
πt , S

US
yt , SUS

it
) /∈ Vo has the interpretation that the

sample {πt, yt, it}Tt=0 such that (Sπt , Syt , Sit) = (SUS
πt , S

US
yt , SUS

it
) does not belong to the sample space

of the data-generating process in eqs. (3), (4), (5) for all possible values of the preference parameter

α. An equivalent way of stating the same result is that, while unconditionally the probability of any

draw for (σπt , σyt , σit) is always nonzero (and a confidence ellipse could be computed using standard

statistical results for random sampling), no amount of sampling uncertainty could have generated the

draw (SUS
πt , S

US
yt , SUS

it
) conditional on our assumptions for the data generating process. Whatever the

amount of sampling uncertainty, and the true population value for (σπt , σyt , σit), the data imply the

model is false: either the propagation mechanism in eqs. (3), (4) is mistaken, or the policymaker

deviated from the optimal policy in a way that the optimal policy space is able to discriminate.

The set Vo computed earlier for β = [σat , στ t , χ, γ, θ, ν]
0 imposed the restriction that ΣU

be diagonal, thus it did not include all possible sample outcomes (Sπt , Syt , Sit). Building Vo ac-

counting for sample uncertainty is straightforward, but computationally burdensome. For the case

β = [σat , στ t , χ, γ, θ, ν]
0 we perform a different exercise, that illustrates the impact of the covariance

matrix singularity on the optimal policy space. Assume the observable interest rate iobst is described

by

iobst = it + wt

where wt is random variable with variance σ2wt =
x
100σ

2
it
. The value x gives the variance of the variable wt

as a percent share of the variance of the unobservable variable it, which is assumed to behave according

to the optimal policy. In the econometric literature wt is assumed to represent a measurement error.

It can be interpreted as summarizing the volatility in iot which is not explained by the DSGE model.

By adding a third source of randomness, we enlarge the set Vo of optimal policy outcomes, and

obtain a measure of how large deviations of the observed σit from the volatility implied by the optimal

policy need to be to have a nonzero probability of observing a given (σπt , σyt , σit) conditional on the

data-generating process in eqs. (3), (4), (5) and on all possible vectors β = [σat , στ t , σwt , χ, γ, θ, ν]
0.

Given our model, we can now ask what is the probability of a population value (σπt , σyt , σit)

equal to the US observation and belonging to Vo for different values of x. The probability is calculated for

the standard deviation of a variable zt belonging to the 5% interval [bLzt,US , b
H
zt,US

] centered around the

observation SUS
zt . Finally, let V i

o ⊆ R+ be the optimal policy space for the variable it and V π,y
o ⊆ R2+

be the optimal policy space for the variables (πt, yt). To scale the result we compute the probability

12



of an outcome σit ∈ [bLit,US , b
H
it,US

] belonging to V i
o conditional on any value within the 5% interval for

(σπt , σyt) belonging to V
π,y
o . Formally, we compute

Pr

⎧⎨⎩
h
(σit ∈ V i

o) ∩ (bLit,US ≤ σit ≤ bHit,US)
i
|

[(σπt , σyt) ∈ V πy
o ∩ (bLπt,US ≤ σπt ≤ bHπt,US) ∩ (b

L
yt,US

≤ σyt ≤ bHyt,US)]

⎫⎬⎭
Figure 4 plots the conditional probability against the variance σ2wt as a percent share x of the

variance σ2it . Allowing for a third source of randomness implies that the US observation outcome can

be the result of optimal policymaking, even without allowing for sampling uncertainty. The variable

x provides a simple measure of the additional randomness needed for the US observation to belong to

Vo.

5 Related Literature

A growing literature investigates the fit of micro-founded DSGE models to the data conditional on

an optimal monetary policy. Research focused on forward and backward-looking small macroeconomic

models used in monetary policy work. Soderstrom et al. (2002) use informal calibration to match a new

Keynesian model dynamics to US data. Dennis (2004), Favero and Rovelli (2003) and Salemi (2006)

estimate structural models subject to the restriction that the policy rule minimizes the policymaker

loss function.

Given a time series for the observables (Y1t ...Ynt) with covariance matrix ΣY the approach

adopted by these authors produces estimates for the deep parameters, the policymaker preferences,

and a time series for a vector of shocks with nonsingular covariance matrix such that the theoretical

model can generate the historical data, and such that a given function, depending on the econometric

technique adopted, is maximized. This also implies that there will exist an estimated parameter vector,

including random deviations from the optimal policy, such that the historical volatility outcome can

be generated by the model.

Salemi (2006) shows how to use the nonsingular model estimation approach to compute a

statistical test for optimal policymaking. The optimal policy imposes cross-equation restrictions on the

estimated parameters, and their impact on the likelihood of the model can be exploited for testing. The

optimal policy space is instead built exploiting the restrictions imposed by truly optimal policymaking

in a parametric family of singular models on the volatility of observable variables. Compared to the

estimation assumptions, the singular-model approach makes stronger assumptions on the behaviour
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of the policymaker, who is assumed to always implement the optimal policy. On the other hand, it

relaxes the demand on the data fit since policies that are period-by-period suboptimal may still result

in volatility outcomes belonging to the optimal policy space.

Clearly a three-equations model, as the one adopted in this paper, can only provide a stylized

description of the economy’s behaviour. Yet small optimal policy DSGE models are estimated to gain

insight into the preferences of the policymaker, and are often relied upon by economists to illustrate

and generate policy prescriptions and guidelines. Computing the optimal policy space for such models

provides important insights into the restrictions on the data that the models imply.

6 Conclusions

This paper studied the restrictions implied by optimal policy DSGE models for the volatility of ob-

servable endogenous variables.

Our approach relies on the restrictions imposed by optimal policymaking on the variance of the

endogenous variables in singular models. To generate a non-trivial set for the volatility of observable

variables - which we label the optimal policy space - we introduce variation in the behavioral parameters

when building the set of outcomes consistent with the model. We show that a DSGE model can be

associated with a well-defined subset of all the possible volatility outcomes, which is not of measure

zero. This is the result of the nonlinearity of the mapping between a DSGE model parameter space

and the implied volatility of the endogenous variables. Nonsingular models, which assume random

perturbations to optimal policymaking, imply no observable outcome has zero probability.

We illustrated our method by building the optimal policy space of a widely used new Keynesian

model. Conditional on this model, recent US monetary policymaking would have zero likelihood of being

the result of optimal policymaking. Since this approach has by construction low power in discriminating

optimal policy outcomes, we interpret the result as evidence that widely used optimal policy models

can only be consistent with a very limited set of volatility outcomes, regardless of the parameterization

adopted.
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New Keynesian model parameter range for US optimal policy space

γ χ v θ

0.2-0.82 0.1-0.66 0.1-1.17 4-16

Table 1: New Keynesian model parameter space used to compute optimal policy space Vo =M(β; o)

for β = [σat , στ t , χ, γ, θ, ν]
0. Other parameters are set as in Walsh (2005). Model is described by the time-

consistent solution to maximization of eq. (5) given eqs. (3), (4) and assuming the policymaker’s objective

function maximizes the utility of the representative household. Parameter χ is the share of firms that cannot

optimally adjust the price in each period, γ is the fraction of last period’s aggregate inflation rate to which the

share χ of firms indexes the price, θ is the firms’ demand elasticity, ν is the inverse of labor supply wage elasticity.

Parameter values outside the range in table 1 result in outcomes (σπt , σyt , σit) further from the historical US

observation for the sample 1984:1-2005:1.
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Figure 1: Sample optimal policy hyperplanes in the optimal policy space Vo for the variables

(πt, ext, it) and for β = [σ2ut , σ2rnt , α]0 using the baseline new Keynesian model. Each hyperplane is
indexed by a value for σ2rnt .
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Figure 2: A subset of the optimal policy space Vo for the variables (πt, yt, it) and for

β = [σ2ut , σ
2
rnt
, α]0 using the baseline new Keynesian model.
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Figure 3: A subset of the optimal policy space Vo for the variables (πt, yt, it) and for

β = [σ2ut , σ
2
rnt
, α]0 using a new Keynesian model with endogenous inflation persistence and a distorted

steady state. The plot shows the historical volatility outcome for the US over the period 1984:1 -

2005:1. Output yt is detrended seasonally adjusted non-farm business sector real GDP. Inflation πt is

seasonally adjusted CPI inflation. Interest rate it is 3-month government bond. All data is sampled

at quarterly intervals. Rates are not annualized.
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belonging to the optimal policy space V π,y
o . Horizontal axis measures variance of the measurement

error for observed interest rate iobst as a percent share of the variance for the optimal interest rate it,

given by σ2wt =
x
100σ

2
it
.

20



7 Appendix: Solution of the Benigno and Woodford (2005) Model

Consider the New Keynesian model for inflation πt, output gap xt, interest rate it as described in Walsh

(2005) and Benigno and Woodford (2005):

xt = − 1
ϕ
(it −Etπt+1 − rnt ) +Et(xt+1) (11)

πt − γπt−1 = λxt + eβEt(πt+1 − γπt) (12)

xt = yt − ynt

where rnt is the Wicksellian real rate of interest, yt is output, y
n
t is the level of output that would

obtain in the flexible-price equilibrium, ϕ is the coefficient of relative risk aversion for the representative

household divided by the consumption share of output, eβ is the household’s discount rate. It is assumed
that a constant share of firms can adjust the price in each period, while the remaining share indexes

the price to a fraction γ of last period’s aggregate inflation rate. When prices can optimally adjust in

every period the rational expectation equilibrium solution for ynt and rnt does not depend on it :

ynt = φ1Gt + φ2at + φ3τ t

rnt = φ4Et(y
n
t+1 − ynt ) + φ5Et(Gt+1 −Gt)

φ1 =
ϕ

ω + ϕ

φ2 =
ζ(1 + v)

ω + ϕ

φ3 =
[τ/(1− τ)]

ω + ϕ

φ4 = ϕ

φ5 = (1− sC)

ω = ζ(1 + v)− 1

The variable Gt is defined as exogenous government consumption (in log-deviations from the

steady state), at is an exogenous productivity shock, τ t is an exogenous income tax shock. The

parameter ζ is the elasticity of firm output with respect to labor input, v is the inverse of the wage

elasticity of labor supply, ω is the inverse of the elasticity of firm marginal cost with respect to output,

τ is the steady state tax rate, sC is the consumption steady state share of output, ϕ is the coefficient
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of relative risk aversion for the representative household divided by sC . The elasticity of inflation with

respect to xt is given by:

λ =
(1− χ)(1− χeβ)

χ(1 + θω)
(ω + ϕ)

In the absence of transfers to correct the steady state distortions arising from taxes and imperfect

competition, or in the case τ t 6= 0, the efficient level of output y∗ is different from yn and is given by:

y∗t = w1y
n
t +w2Gt + w3τ t

w1 =
ω + ϕ+Φ(1− ϕ)

ξ

w2 =
Φσ

(ω + ϕ)ξsC

w3 = τ/(1− τ)ξ

ξ = (ω + ϕ) +Φ(1− ϕ)− Φσ(s
−1
C − 1)

(ω + ϕ)

Φ = 1− θ − 1
θ
(1− τ)

where θ is the firms’ demand elasticity. The second order approximation to the utility of the

household can be written as:

Wt = −1
2
ΩEt

∞X
i=0

eβi ©αex2t+i + (πt+i − γπt+i−1)
2
ª

(13)

ext = (yt − y∗t )

where ext is the welfare-relevant output gap. Wt is equal to the household’s welfare for α = α∗

where

α∗ =
λ

w1θ

The model in (11), (12) can be expressed in terms of the endogenous variables appearing in the
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objective function (13):

ext = − 1
ϕ
(it −Etπt+1 − ernt ) +Et(ext+1) (14)

πt − γπt−1 = λext + eβEt(πt+1 − γπt) + λut (15)

ernt = φ4Et(y
∗
t+1 − y∗t ) + φ5Et(Gt+1 −Gt)

ut = y∗t − ynt

The variable ut is a linear combination of all the exogenous shocks. The variable Φ is a measure

of the steady state distortions in the economy. If appropriate transfers ensure, as is often assumed,

that the steady state is efficient, then Φ = 0. Benigno and Woodford (2005) show that in this case

w1 = 1, w2 = 0, and

ut = w3τ t

Assume γ = 0. Then the problem faced by the optimal policymaker can be written as:

Max − 1
2
ΩEt

∞X
i=0

eβi ©αex2t+i + π2t+i
ª

(16)

st ext = − 1
ϕ
(it −Etπt+1 − ernt ) +Et(ext+1) (17)

πt = λext + eβEtπt+1 + λut (18)

ut = w3τ t (19)

ernt = φ4Et

∙
ϕ(Gt+1 −Gt) + ζ(1 + v)(at+1 − at)

ω + ϕ

¸
+ φ5Et(Gt+1 −Gt) (20)

In this model movements in at or Gt can be interpreted as ’demand shocks’ since they affecternt but not ut, therefore do not affect the trade-off between the stabilization objectives and can be
perfectly offset by the policymaker. The variable ut takes the interpretation of a ’cost push’ shock,

and depends only on movements in τ t. Assuming, as in eq. (9), that sC = 1, Gt = ρGGt−1 + εGt ,
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at = ρaat−1 + εat , εt ∼ iid , ρG = ρa it holds:

ernt = φ4Et(y
∗
t+1 − y∗t )

y∗t = − 1

ϕ(1− ρa)
ernt (21)

Eq. (21) holds also for sC < 1 and Gt = 0 ∀ t or for sC < 1 and ρg = 1.

The optimal time-consistent policy is given by the FOC:

πt − γπt−1 = −
α

λ
(1 + eβγ)xt

The timeless perspective optimal commitment policy is given by the FOC:

πt − γπt−1 =
³
−α
λ

´
(xt − xt−1)

Baseline parameterization The parameterization follows Walsh (2005) unless otherwise stated in

the main text.

χ = 0.66

γ = 0.5eβ = 0.99

ϕ = 0.16

φ = 1.5

θ = 7.88

sC = 0.8

v = 0.49

τ = 0.2

ρa = 0.95

ρG = 0.95

ρτ = 0.95
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