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Abstract

We propose a theoretical framework for assessing whether a forecast model estimated over

one period can provide good forecasts over a subsequent period. We formalize this idea by

defining a forecast breakdown as a situation in which the out-of-sample performance of the

model, judged by some loss function, is significantly worse than its in-sample performance. Our

framework, which is valid under general conditions, can be used not only to detect past forecast

breakdowns but also to predict future ones. We show that main causes of forecast breakdowns are

instabilities in the data generating process and relate the properties of our forecast breakdown

test to those of structural break tests. The empirical application finds evidence of a forecast

breakdown in the Phillips’ curve forecasts of U.S. inflation, and links it to inflation volatility

and to changes in the monetary policy reaction function of the Fed.
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1 Introduction

This paper proposes a new method for evaluating a forecasting model for a macroeconomic or

financial variable. There is a large literature claiming that certain models are good at predicting

macroeconomic variables such as output growth and inflation (Stock and Watson, 2003 and Clark

and McCracken, 2006) and that a range of variables have predictive power for stock market returns

(e.g., the references in Goyal and Welch, 2004 and Campbell and Thompson, 2005). These claims

are based either on some measure of a model’s in-sample fit (most of the literature on stock return

predictability), or on the model’s out-of-sample performance (e.g., Stock and Watson, 2003). The

robustness of these results has been however recently challenged. On the one hand, Goyal andWelch

(2004) showed that, for models of stock returns, good in-sample fit does not necessarily imply good

out-of-sample performance. On the other hand, even models that fare well out-of-sample may

not do so when different subsamples are considered (Stock and Watson, 2004). Underlying these

findings is the possibility that the economy - and the forecasting ability of models - may not be

stable over time.

From the perspective of the forecaster, it is thus important to know whether a model estimated

over one period can provide good forecasts over a subsequent period. The goal of this paper is to

develop a formal testing framework for answering this question. Note that our question is different

from asking whether the model is a good approximation of the data-generating process, or whether

it produces forecasts that are optimal for a given loss function. Rather, our concern is with whether

the model’s future performance is consistent with what is expected based on its past performance,

which hinges on the success of the model at adapting to changes in the economy. This in turn

reflects a desire to mimic the environment faced by actual forecasters, where models are likely

misspecified, variables are difficult to forecast, and data-generating processes may be unstable,

so that consistency with expected performance can be viewed as a minimal requirement that a

forecasting model should satisfy.

Formally, we define a forecast breakdown as a situation in which the out-of-sample performance

of a forecast model, judged by some loss function, is significantly worse than its in-sample perfor-

mance. We propose a forecast breakdown test for detecting whether a forecast model broke down

in the past and further suggest a procedure for predicting future forecast breakdowns.

Our notion of a forecast breakdown is a formalization and generalization of what Clements and

Hendry (1998, 1999) called a “forecast failure”, described as a “deterioration in forecast performance

relative to the anticipated outcome” (Clements and Hendry, 1999, p. 1). We formalize the definition

of a forecast breakdown by comparing the model’s out-of-sample performance to its in-sample

performance computed in one of three ways: (1) over a fixed initial sample (“fixed” scheme); (2)

over a rolling window that includes only most recent observations (“rolling scheme”); and (3) over
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an expanding window that includes all observations from the beginning of the sample (“recursive

scheme”). The fixed scheme presumes an interest in comparing performance before and after a

specific date, whereas the rolling and recursive schemes mimic forecasting in real time.

We propose a forecast breakdown test based on the intuition that, in the absence of a forecast

breakdown, the difference between expected out-of-sample and in-sample performance should be

close to zero. We provide the appropriate estimator for the asymptotic variance needed in the

construction of the tests statistic, that depends on the forecasting scheme. Our test is valid under

general assumptions. In particular, we allow the data to be heterogeneous (e.g., the variables in

the model can have time-varying marginal distributions) and impose only weak restrictions on the

loss function used for evaluation and on the type of estimators used in constructing the forecasts.

In the paper, we focus on the case in which parameter estimation uncertainty is asymptotically

irrelevant, which occurs, for example, in the common situation in which the same loss function is

used for estimation and evaluation (e.g., OLS and quadratic loss). In the appendix, we present

the general result for non-vanishing estimation uncertainty. From a technical point of view, we

use a similar asymptotic framework to that developed by West (1996), although we generalize it

beyond the covariance stationarity assumptions in West (1996). This generalization is of separate

theoretical interest in itself, and it is crucial in our framework because our emphasis on structural

instability is incompatible with the assumption of covariance stationarity.

A further contribution aims at understanding the causes of forecast breakdowns. We show

that forecast breakdowns are caused by instability in the model’s parameters as well as by other

instabilities in the data-generating process, such as changes in the variance of the disturbances for

a quadratic loss. We also investigate the role of overfitting - which we define as the difference be-

tween in-sample and out-of-sample performance present in finite samples when parameter estimates

minimize the in-sample loss - and propose a simple correction to the test statistic that eliminates

its effects.

The two closest literatures to the present paper are the literature on forecast optimality test-

ing (e.g., Mincer and Zarnowitz, 1969, Patton and Timmermann, 2006, Elliott, Komunjer and

Timmermann, 2005) and the literature on structural break testing (e.g., Andrews, 1993; Dufour,

Ghysels and Hall, 1994; Elliott and Muller, 2006). Regarding the former, we point out that the

same theory derived here can be applied to forecast optimality testing, after suitably redefining

the loss function and the null hypothesis. For example, a forecast unbiasedness test is related to

a forecast breakdown test assessing whether the first moment properties of the forecast errors are

consistent in-sample and out-of-sample. A forecast rationality test can be obtained following our

procedure for predicting forecast breakdowns. Our tests for forecast unbiasedness and forecast

rationality take into account estimation uncertainty (unlike Elliott, Komunjer and Timmermann,

2005, but like West and McCracken, 1998), and extend the validity of West and McCracken (1998)

3



to an environment in which the forecast losses are not necessarily stationary.

Regarding the relationship with the structural break testing literature, we note that the focus of

our forecast breakdown test is on stability of forecast performance, which is loss-specific and allows

for model misspecification. This makes our test flexible and widely applicable. For a particular loss,

for example a quadratic loss, and under correct specification, we show that a forecast breakdown is

caused by breaks in the conditional mean parameters and/or in the unconditional variance of the

model errors (note that GARCH does not cause a forecast breakdown, as long as the unconditional

variance is constant). This means that one could in principle indirectly test for a forecast breakdown

by testing jointly for structural breaks in the parameters and in the variance. However, this indirect

approach fails to recognize that these two types of breaks could affect the forecast performance in

opposite directions and therefore not necessarily cause a deterioration in the forecast performance

of the model. For example, a forecast bias induced by a break in parameters could be in part or fully

offset by a decrease in the variance of the errors, in a way that leaves the mean squared forecast error

unchanged. Further, we show that forecast breakdowns can be caused by larger parameter breaks

than those captured by a structural break test, and thus a structural break test may find a break

that is too small to affect the forecast performance. A final advantage of the forecast breakdown

test is its robustness to the presence of unstable regressors, whereas most structural break tests

cannot distinguish between instability in model’s parameters and instability in the distribution of

the regressors (Hansen, 2000).

Another difference with structural break tests is that they typically focus on past stability.

Instead, an innovation of our approach with useful practical implications is the possibility of pre-

dicting future forecast breakdowns. This relates our approach to that in Pesaran, Pettenuzzo and

Timmermann (2006) and Koop and Potter (2007), who model breaks in parameters as functions

of a latent variable. An advantage of our framework is that it is general and flexible, since it does

not require correct specification of the model and it allows the user to directly link the forecast

performance for a specific loss function to observable, rather than latent, economic variables.

To illustrate the methods proposed in this paper, we investigate whether there is evidence of a

forecast breakdown in the Phillips curve model for predicting inflation in the United States. Using

both real-time and revised data, we find some empirical evidence in favor of a forecast breakdown

in the Phillips curve. We further investigate whether monetary policy parameters would have been

useful predictors of forecast breakdowns and find that inflation volatility as well as changes in the

monetary policy behavior of the Fed played a key role.
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2 Detecting forecast breakdowns

2.1 Description of the environment

Let W ≡ {Wt : Ω −→ Rs+1, s ∈ N, t = 1, . . . , T} be a stochastic process defined on a complete
probability space (Ω,F , P ) and partition the observed vector Wt as Wt ≡ (Yt,X 0

t)
0, where Yt : Ω→

R is the variable of interest and Xt : Ω→ Rs is a vector of predictors.

We generate a sequence of τ−step-ahead forecasts of Yt+τ using an out-of-sample procedure,
which involves dividing the sample of size T into an in-sample window of sizem and an out-of-sample

window of size n = T −m− τ + 1. Which data constitute the in-sample window depends on the

forecasting scheme. We allow for three forecasting schemes: (1) a fixed forecasting scheme, where

the in-sample window includes observations indexed 1, . . . ,m; (2) a rolling forecasting scheme,

where the in-sample window at time t contains observations indexed t − m + 1, . . . , t; and (3) a

recursive forecasting scheme, where the in-sample window includes observations indexed 1, . . . , t.

We let ft(bβt) be the time-t forecast produced by estimating a model over the in-sample window
at time t, with bβt indicating the k × 1 parameter estimate. We assume that multi-step forecasts
are produced by the “direct method” (that is, the model specifies the relationship between Yt and

Xt−τ ). Each time−t forecast corresponds to a sequence of in-sample fitted values ŷj(bβt), with j

varying over the in-sample window.

The forecasts are evaluated by a loss L (·), with each out-of-sample loss Lt+τ (bβt) ≡ L(Yt+τ , ft(bβt))
corresponding to in-sample losses Lj(bβt) ≡ L(Yj , ŷj(bβt)). For example, for the linear model Yt =
X 0
t−τβ + εt estimated by OLS, the parameter estimate is bβt = ¡Pm−τ

s=1 XsX
0
s

¢−1Pm−τ
s=1 XsYs+τ

for the fixed scheme; bβt = ¡Pt−τ
s=t−m+1XsX

0
s

¢−1Pt−τ
s=t−m+1XsYs+τ for the rolling scheme andbβt = ¡Pt−τ

s=1XsX
0
s

¢−1Pt−τ
s=1XsYs+τ for the recursive scheme. The out-of-sample loss corresponding

to the forecast at time t is Lt+τ (bβt) ≡ L(Yt+τ ,X
0
t
bβt) and the corresponding in-sample losses are

Lj(bβt) ≡ L(Yj ,X
0
j−τ
bβt), where j = τ + 1, . . . ,m for the fixed scheme; j = t−m+ τ + 1, . . . , t for

the rolling scheme and j = τ + 1, . . . , t for the recursive scheme.

2.2 Forecast breakdown test

As motivated in the introduction, we define a forecast breakdown as a deterioration in the out-of-

sample performance of the forecast model relative to its in-sample performance. We formalize this

idea by defining a “surprise loss” at time t+ τ as the difference between the out-of-sample loss at

time t+ τ and the average in-sample loss:

SLt+τ (bβt) = Lt+τ (bβt)− L̄t(bβt), for t = m, . . . , T − τ , (1)
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where L̄t(bβt) is the average in-sample loss computed over the in-sample window implied by the

forecasting scheme. We then consider the out-of-sample mean of the surprise losses

SLm,n ≡ n−1
T−τX
t=m

SLt+τ (bβt), (2)

and propose a test based on the idea that, if a forecast is reliable, this mean should be close to

zero. Specifically, we test

H0 : E

Ã
n−1

T−τX
t=m

SLt+τ (β
∗)

!
= 0, (3)

where β∗ (defined formally in assumption A3) is the pseudo-true value of the parameter estimate,

assumed to be constant under the null hypothesis.

The forecast breakdown test statistic is

tm,n,τ = n1/2 SLm,n/σ̂m,n, (4)

where the expression for the asymptotic variance estimator σ̂2m,n is given in Section 2.6.

A level α test rejects the null hypothesis whenever tm,n,τ > zα, where zα is the (1 − α) − th

quantile of a standard normal distribution. In the remainder of the paper, we focus on a one-

sided test to reflect the assumption that a lower-than-expected loss may be desirable and thus does

not constitute a forecast breakdown. In certain applications, however, a two-sided test may be

desirable. For example, for an investor forming a portfolio based on forecasts of stock returns, the

precision of the forecast is a key determinant of how much risk exposure to accept. Hence, if the

out-of-sample forecast error variance is smaller than anticipated, this results in an opportunity cost:

had the forecaster known about the lower forecast error variance, he could have chosen a different

portfolio allocation.1 The asymptotic justification for the forecast breakdown test is provided by

Theorem 2.

2.3 A step-by-step procedure to implement the forecast breakdown test

The following step-by-step procedure shows how to implement the forecast breakdown test for a

forecast horizon τ , a linear model with k regressors (Yt = X 0
t−τβ+ εt), a quadratic loss Lt+τ (bβt) =³

Yt+τ −X 0
t
bβt´2, and under the assumption of covariance stationarity of Lt.

• Step 1: Compute the sequence of OLS estimators bβt, t = m, m + 1, ..., T − τ , by regressing

Yt on Xt−τ , where:

- Recursive scheme: bβt = ¡Pt−τ
s=1XsX

0
s

¢−1Pt−τ
s=1XsYs+τ .

- Rolling scheme: bβt = ¡Pt−τ
s=t−m+1XsX

0
s

¢−1Pt−τ
s=t−m+1XsYs+τ .

- Fixed scheme: bβt = bβm = ¡Pm−τ
s=1 XsX

0
s

¢−1Pm−τ
s=1 XsYs+τ .

1We thank Allan Timmermann for point out the desirability of two-sided tests in such applications.
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• Step 2: Compute the sequence of in-sample average losses, L̄t(bβt), t = m, . . . , T − τ , where:

- Recursive scheme: L̄t(bβt) = t−1
Pt−τ

j=1

³
Yj+τ −X 0

j
bβt´2 .

- Rolling scheme: L̄t(bβt) = m−1
Pt−τ

j=t−m+1

³
Yj+τ −X 0

j
bβt´2 .

- Fixed scheme: L̄t(bβt) = m−1
Pm−τ

j=1

³
Yj+τ −X 0

j
bβt´2 .

• Step 3: Compute the sequence of out-of-sample losses, Lt+τ (bβt), for t = m, . . . , T − τ :

Lt+τ (bβt) = ³Yt+τ −X 0
t
bβt´2 .

• Step 4: Calculate SLm,n ≡ n−1
PT−τ

t=m SLt+τ (bβt), where SLt+τ (bβt) = Lt+τ (bβt)− L̄t(bβt).
• Step 5: Estimate the asymptotic standard deviation σ̂m,n as

p
λSLL

n , where: λ = 1 + n
m for

the fixed scheme; for the rolling scheme, λ = 1− 1
3

¡
n
m

¢2 if n < m and λ = 2
3
m
n if n ≥ m; λ = 1 for

the recursive scheme; SLL
n is a heteroskedasticity- and autocorrelation-consistent (HAC) estimator

applied to the sequence of demeaned out-of-sample losses, eLt+τ ≡ Lt+τ (bβt)− n−1
PT−τ

j=mLj+τ (bβj),
t = m, ..., T − τ , for example: SLL

n =
Ppn−1

j=−pn+1

³
1− | jpn |

´
n−1

PT−τ
t=m+j

eLt+τ
eLt+τ−j , where pn is a

bandwidth that increases with the sample size (Newey and West, 1987).

• Step 6: Compute the test statistic tm,n,τ = n1/2 SLm,n/σ̂m,n.

• Step 7: If a correction for overfitting is desired (Section 4), consider instead the test statistic:
tcm,n,τ =

¡
n1/2 SLm,n − c

¢
/σ̂m,n, where c = 2γ tr

³
(T − τ)−1

³
ΣT−τt=1 XtX

0
t

´ bV β
T

´
; γ = n1/2 /m for

the fixed and rolling schemes; γ = n−1/2 ln(1+n/m) for the recursive scheme and bV β
T is a consistent

estimator of the asymptotic variance of bβT = ³PT−τ
s=1 XsX

0
s

´−1PT−τ
s=1 XsYs+τ . For example, under

the additional assumption of conditional homoskedasticity, c = 2γk (T − τ)−1
PT−τ

t=1

³
Yt+τ −X 0

t
bβT´2 .

2.4 Relationship with the literature

Our definition of forecast breakdowns formalizes the notion of reliability of a forecasting model as

a systematic difference between the model’s in-sample and out-of-sample performance. Some of the

advantages of this definition of reliability are that it is loss-specific and that it allows for model

misspecification. This means that our approach is tailored to the forecaster’s decision-making

problem.

For a specific loss function, and assuming correct specification, one could in principle relate

our forecast breakdown test to existing tests for breaks in model parameters. For example, we

will consider the simple case of a quadratic loss, a fixed forecasting scheme, a linear model Yt =

X 0
t−1βt + εt, with independent and identically distributed regressors and errors, and assume there

is a one-time break of size n−1/4∆β in βt and a one-time break in the variance of the errors

of size n−1/2∆σ2, occurring at the same time. We will show that in this case the numerator of

one of our test statistics (the overfitting-corrected forecast breakdown test) in expectation equals

∆σ2 + .5∆β0E(XtX
0
t)∆β, which implies that both a "large" break in parameters and a "small"

7



break in error variance can make the test statistic be greater than zero, and thus result in a

forecast breakdown. This decomposition suggests that one could in principle test for a forecast

breakdown by jointly testing for a break in β and a break in the variance of the errors. This

however fails to recognize that these two types of breaks may have opposite effects on the forecast

performance, and thus not necessarily result in a forecast breakdown (e.g., it could happen that

∆σ2 ≤ − .5∆β0E(XtX
0
t)∆β). One can further see that a forecast breakdown is caused by breaks

in parameters of greater magnitude than those considered by previous structural break tests such

as, e.g., Elliott and Muller (2006) (i.e., here the breaks are of magnitude n−1/4∆β rather than

n−1/2∆β). As a result, previous tests may detect breaks that do not necessarily cause forecast

breakdowns. A final difference is that most existing structural break tests are only valid under the

restrictive and unrealistic assumption that the marginal distribution of the regressors is constant

over time. Our test, in contrast, is robust to the presence of instability in the marginal distribution

of the regressors.

Besides relating our approach to detecting past forecast breakdowns to previous structural break

tests, we can further relate our approach to predicting future forecast breakdowns (Section 5) to the

literature that predicts future structural breaks in model’s parameters by modeling the parameter

evolution using a meta distribution for the breaks (e.g., Pesaran, Pettenuzzo and Timmermann,

2006 and Koop and Potter, 2007). A drawback of the latter approach is that it relies on the

specification for the meta distribution of the parameters being correct. We instead propose directly

relating the difference between in-sample and out-of-sample performance (for a given loss function)

to explanatory variables, and use this relationship to forecast the future behavior of the forecast

losses. This allows us to answer empirically relevant questions such as, for example, whether the

reliability of a forecasting model for inflation depends on observable indicators of the monetary

i.i.d. regime, which is the goal of our empirical application. This question is not readily answered

within the structured framework of Pesaran, Pettenuzzo and Timmermann (2006) and Koop and

Potter (2007), which assumes that parameter changes are driven by a latent variable that defines

different regimes for all the parameters in the model.2

Finally, we show that our framework embeds tests for forecast unbiasedness and forecast ratio-

nality, as those analyzed, among others, by Elliott, Komunjer and Timmermann (2005). Unlike

Elliott, Komunjer and Timmermann (2005), however, our tests take into account parameter esti-

mation uncertainty, which, if neglected, can lead to significant size distortions (see also West and

McCracken, 1998).

2Similarly to the forecast breakdown test, for the case of predicting future forecast breakdowns the two approaches

capture breaks of different magnitudes, and thus it may happen that the Pesaran, Pettenuzzo and Timmermann (2006)

or Koop and Potter (2007) procedure predicts a break in model’s parameters that does not necessarily imply a future

forecast breakdown.
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2.5 Assumptions

We make the following assumptions:

A1. {Wt} is mixing with α of size −r/(r − 2), r > 2;
A2. (a) Lt(β) is measurable and twice continuously differentiable with respect to β; (b) Under

H0 in (3) below, in a neighborhood N of β∗, there exists a constant D < ∞ such that for all t,

supβ∈N |
¯̄
∂2Lt(β)/∂β∂β

0¯̄ | < mt, for a measurable mt such that E (mt) < D.

A3. Under H0, supt≥m||bβt − β∗ − B∗tH
∗
t || →a.s. 0, where bβt is k × 1, B∗t is a (non stochas-

tic) k × q matrix of rank k, such that supt≥1|B∗t | < ∞; H∗
t = m−1

Pm
s=1 hs(β

∗) (fixed scheme),

H∗
t = m−1

Pt
s=t−m+1 hs(β

∗) (rolling scheme), H∗
t = t−1

Pt
s=1 hs(β

∗) (recursive scheme) for a q× 1
orthogonality condition hs(β

∗) such that E (hs(β∗)) = 0;

A4. supt≥1E||[Lt(β
∗), ∂Lt(β

∗)/∂β, h0t(β
∗)]0||2r <∞, where ∂Lt(β

∗)/∂β is 1× k;

A5. E (∂Lt(β
∗)/∂β) is finite and constant for all t;

A6. var
³
T−1/2

PT
t=1 Lt(β

∗)
´
> 0 for all T sufficiently large;

A7. m,n→∞, n
m → π, 0 ≤ π <∞.

Comments: 1. Assumption A1 restricts the memory in the data (ruling out, e.g., unit root

processes) but allows the data to be heterogeneous, for example permitting the marginal distribution

of the regressors to change over time. This is a more general assumption than the assumption of

stationarity made in the majority of the structural break testing literature.

2. Assumption A2 is the same as Assumption A1 of West (1996), allowing for a number of loss

functions typically used in the forecast evaluation literature. The assumption of differentiability is

adopted for convenience and can be relaxed along the lines of McCracken (2000).

3. Assumption A3 is related to Assumption A2 of West (1996), permitting a number of esti-

mation procedures for the model’s parameters, including OLS, (quasi-) maximum likelihood and

GMM. For example, for OLS estimation of the parameters in the linear model Ys = X 0
sβ
∗ + εs,

s = 1, . . . , t, we have B∗t =
³
E
³
t−1

Pt
s=1XsX

0
s

´´−1
and hs(β

∗) = Xsεs. For maximum likelihood

estimation, B∗t is the expectation of the inverse of the Hessian evaluated at β
∗ and H∗

t is the score.

The assumption also states that under the null hypothesis of no forecast breakdown the pseudo-

true values of the parameters are constant (note that we do not assume correct specification of the

model under the null hypothesis).

4. Assumption A5 restricts the heterogeneity of the means of the loss derivatives, and is trivially

satisfied when the loss used for estimation is the same as the loss used for evaluation, in which case

E (∂Lt(β
∗)/∂β) = 0 for all t. The assumption ensures that estimation uncertainty is asymptotically

irrelevant, which leads to a simple expression for the asymptotic variance estimator for the forecast

breakdown test. Proposition 10 in the appendix shows how the forecast breakdown test is modified

when one relaxes this assumption.
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5. Assumption A7 shows that our asymptotic theory assumes that the in-sample and out-

of-sample sizes go to infinity at the same rate, or that the in-sample size grows faster than the

out-of-sample size. This assumption ensures that the test statistic has an asymptotically normal

distribution for all forecasting schemes. This assumption can in principle be relaxed to let n grow

to infinity faster than m, but there are complications that arise in the case of a rolling scheme. We

discuss this in greater detail in Section 4 below.

2.6 Asymptotic variance estimators

This section shows how to construct a valid asymptotic variance estimator for the forecast break-

down test statistic (4) and provides the asymptotic justification for the forecast breakdown test. We

consider two estimators: a general estimator that allows the losses to be heterogeneous (Theorem

2) and an estimator that is easier to compute, imposing the additional assumption that the losses

are covariance stationary (Corollary 3).

The following algorithm shows the steps involved in constructing the general asymptotic variance

estimator. The basic intuition is to note that the average surprise loss (2) is a weighted average

of in-sample and out-of-sample losses, with weights depending on m, n and on the forecasting

scheme. When estimation uncertainty is asymptotically irrelevant, σ̂2m,n is simply a (rescaled)

HAC estimator of the variance of this weighted average. As we show in Proposition 10 in the

appendix, when estimation uncertainty matters, σ̂2m,n contains additional terms that depend on

the estimator used.

Algorithm 1 (General variance estimator) Construct the following: (1) a 1 × T vector of

in-sample and out-of-sample losses, with element Lt, t = 1, ..., T :

L ≡ [L1(bβm), . . . , Lm(bβm)| {z }
m

, Lm+1(bβm+1), . . . , Lm+τ−1(bβm+τ−1)| {z }
τ−1

, Lm+τ (bβm), . . . , LT (bβT−τ )| {z }
n

]

and the corresponding vector eL of demeaned losses, where eLt ≡ Lt − T−1
PT

j=1 Lj ;
3 (2) a 1 × T

vector of weights, depending on the forecasting scheme, with element wL
t , t = 1, ..., T :

Fixed : wL

1×T
= [− n

m
, . . . ,− n

m| {z }
m

, 0, . . . , 0| {z }
τ−1

, 1, 1, . . . , 1| {z }
n

];

3The first m terms of L are in-sample losses from the first estimation window and the last n terms are out-of-

sample losses. For the fixed scheme L ≡ [L1(βm), ..., Lm(βm)

m

, 0, ..., 0

τ−1

, Lm+τ (βm), ..., LT (βm)

n

]. For the rolling and

recursive schemes, each of the middle τ − 1 terms is an in-sample loss from the estimation sample ending at the

corresponding date.
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Rolling (n < m): wL

1×T
= [− 1

m
, . . . ,− n

m| {z }
n

,− n

m
, ...,− n

m| {z }
m−n

,−n− 1
m

, . . . ,−n− τ + 1

m| {z }
τ−1

, 1− n− τ

m
, . . . , 1− 1

m| {z }
n−τ

,

1, . . . , 1| {z }
τ

];

Rolling (n ≥ m) : wL

1×T
= [− 1

m
, . . . ,−m

m| {z }
m

,−m
m
, . . . ,−m

m| {z }
τ−1

, 0, . . . , 0| {z }
n−m−τ+1

, 1− m− 1
m

, . . . , 1− 1

m| {z }
m−1

, 1, . . . , 1| {z }
τ

];

Recursive: wL

1×T
= [−am,0, . . . ,−am,0| {z }

m

,−am,1, . . . ,−am,τ−1| {z }
τ−1

, 1− am,τ , . . . , 1− am,n−1| {z }
n−τ

, 1, . . . , 1| {z }
τ

];

am,j =
1

m+ j
+

1

m+ j + 1
+ . . .+

1

T − τ
;

The general HAC asymptotic variance estimator is

σ̂2m,n ≡ (T/n)

⎛⎝T−1
TX
t=1

(wL
t
eLt)

2 + 2T−1
pTX
j=1

vT,j

TX
t=j

wL
t
eLtw

L
t−j eLt−j

⎞⎠ , (5)

with weights vT,j and bandwidth pT appropriately chosen (as in, e.g., Andrews, 1991 or Newey and

West, 1987).

Theorem 2 (Asymptotic justification of the forecast breakdown test) Given assumptions

A1-A7, under H0 in (3), tm,n,τ
d→ N(0, 1), where tm,n,τ is defined in (4) and σ̂2m,n in (5).

4

The use of a HAC estimator for the asymptotic variance is motivated by the possible presence

of serial correlation in the forecast losses. This is easy to see for a quadratic loss, in which case the

presence of GARCH will induce serial correlation in the losses.

Corollary 3 (Variance estimator under covariance-stationarity) Given assumptions A1-A7,

further assume that Γj ≡ cov (Lt(β
∗), Lt−j(β

∗)) depends on j but not on t under H0.
5 Then,

σ̂2m,n = λSLL
n , (6)

where

Forecasting scheme λ

Fixed 1 + n
m

Rolling, n < m 1− 1
3

¡
n
m

¢2
Rolling, n ≥ m 2

3
m
n

Recursive 1

(7)

4A Matlab code computing σ̂m,n can be downloaded from http:\\www.econ.ucla.edu\giacomin or

http:\\www.econ.duke.edu\~brossi.
5 In the case of quadratic loss, this rules out time-variation in the unconditional fourth moments of the forecast

errors.
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and

SLL
n = n−1

T−τX
t=m

eL2t+τ + 2n−1 pnX
j=1

vn,,j

T−τX
t=m+j

eLt+τ
eLt+τ−j ,

with eLt+τ ≡ Lt+τ (bβt)−n−1PT−τ
j=m Lj+τ (bβj) and vn,j , pn appropriately chosen (e.g., Andrews, 1991

or Newey and West, 1987).

As we discussed in Section 2.2, if L (e) = e, with e the forecast error, the forecast breakdown

test becomes a forecast unbiasedness test. In this case, Corollary 3 gives the correct variance

estimator for the forecast unbiasedness test and shows that, for a recursive scheme, the estimator

does not necessitate an adjustment and is simply a HAC estimator of the variance of the average

out-of-sample forecast error. For the fixed and rolling schemes, instead, the estimator must be

adjusted.6

3 Causes of forecast breakdowns

To gain some insight into the causes of forecast breakdowns, we analyze the expectation of the

numerator of the forecast breakdown test statistic (4)7. For simplicity, in this section we assume

that parameters are estimated by maximum likelihood and let L (·) indicate the loss used for
estimation. We further define β∗t as E (∂Lt (β∗t ) /∂β) = 0, t = 1, 2, . . . , T, and let Σj denote the

relevant sample average depending on the forecasting scheme: Σj = t−1
Pt

j=1 for the recursive

scheme, Σj = m−1
Pt

j=t−m+1 for the rolling scheme, and m−1
Pm

j=1 for the fixed scheme. Also,

let bβt, β∗j β∗t+τ denote intermediate points between ³bβt, β∗t´, ¡β∗t , β∗j¢ , ¡β∗t , β∗t+τ¢ respectively. The
following proposition decomposes the expectation of the numerator of our test statistic into various

components, grouped into the three categories of parameter instabilities, other instabilities and

estimation uncertainty.

6 It is easy to verify that, for the forecast unbiasedness test, our estimator coincides with the estimator proposed

by McCracken (2000) for the various forecasting schemes.
7We implicitly make the assumption that such expectation exists.
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Proposition 4 (Causes of forecast breakdowns)

E

Ã
n−1/2

T−τX
t=m

SLt+τ (bβt)
!

= E

Ã
n−1/2

T−τX
t=m

µ
Lt+τ

¡
β∗t+τ

¢
−
X

j
Lj

¡
β∗j
¢¶!

| {z }
“other instabilities”

+ n−1/2
T−τX
t=m

E

Ã
∂Lt+τ

¡
β∗t+τ

¢
∂β

!¡
β∗t − β∗t+τ

¢
| {z }

“parameter instabilities I”

−n−1/2
T−τX
t=m

X
j
E

Ã
∂Lj

¡
β∗j
¢

∂β

!¡
β∗t − β∗j

¢
| {z }

“parameter instabilities I”

(8)

+.5n−1/2
T−τX
t=m

⎡⎣¡β∗t − β∗t+τ
¢0
E

⎛⎝∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

⎞⎠ ¡β∗t − β∗t+τ
¢

| {z }
“parameter instabilities II”

−
X

j

¡
β∗t − β∗j

¢0
E

⎛⎝∂2Lj

³
β∗j

´
∂β∂β0

⎞⎠ ¡β∗t − β∗j
¢⎤⎦

| {z }
“parameter instabilities II”

+n−1/2
T−τX
t=m

E

∙µ
∂Lt+τ (β

∗
t )

∂β

¶³bβt − β∗t

´¸
| {z }

“estimation uncertainty I”

+n−1/2
T−τX
t=m

E

("³bβt − β∗t

´0 ∂2Lt(bβt)
∂β∂β0

− ∂Lt (β
∗
t )

∂β
+

∂Lt (β∗t )
∂β

#³bβt − β∗t

´)
| {z }

“estimation uncertainty II”

+.5n−1/2
T−τX
t=m

E

"³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´#
| {z }

“estimation uncertainty III”

.

The component “other instabilities” captures any changes in the data-generating process -

beyond parameter instabilities - that result in a non-constant expected loss. The “parameter

instabilities I” component captures instabilities of the type β∗t − β∗ = Op

¡
n1/2

¢
(which are the

same instabilities considered by the structural break testing literature), whereas the “parameter

instabilities II” component captures instabilities of the type β∗t − β∗ = Op

¡
n1/4

¢
. Note that, when

the loss functions used for estimation and for evaluation are equal, the component “parameter

instabilities I” disappears due to E
¡
∂Lt+τ

¡
β∗t+τ

¢
/∂β

¢
= 0, implying that forecast breakdowns are

in this case caused by parameter instabilities of greater magnitude than those considered by the

structural break testing literature. We formally show this result in the next proposition, which

compares the forecast breakdown test and Elliott and Muller’s (2006) test in the simple situation

in which the only source of a forecast breakdown is a break in the model’s parameters. Besides

showing that Elliott and Muller’s (2006) test detects smaller parameter breaks than those causing

13



a forecast breakdown, Proposition 5 illustrates the lack of robustness of Elliott and Muller’s (2006)

test to breaks in the marginal distribution of the regressors, whereas the forecast breakdown test

is proven to be robust.

Proposition 5 (Comparison with Elliott and Muller’s (2006) test) Suppose y = Ξb + ε,

where Ξ = diag ([X0, ...,XT−1]), Xt scalar and εt ∼ i.i.d.(0, 1), independent of Xt. Let X =

[X0, ...,XT−1]
0 , y = [y1, ..., yT ]0, ε = [ε1, ..., εT ]0, M = IT −X (X 0X)−1X 0, IT the (T × T ) identity

matrix, eT a (T × 1) vector of ones and 0T a (T × 1) vector of zeros. Consider the scenarios:
(a) (break in parameters, constant mean of regressors) Xt = eXt ∼ i.i.d.

¡
0, σ2X

¢
and the t-th element

of b is β + T−α∆β · 1 (t ≥ m).

(b) (break in mean of regressors, constant parameters) Xt = eXt +∆μ
X · 1 (t ≥ m) and b = βeT .

The effect of (a) and (b) on Elliott and Muller’s (2006) test and on the forecast breakdown test is:

1. Elliott and Muller (2006). The test builds on ξT ≡ T−1/2
h
e0[sT ], 0

0
[(1−s)T ]

i £
IT ⊗ V −1X

¤
Ξ0My,

where VX is a scaling factor and ξT ⇒ V −1X σX [B(s)− sB(1)] ≡ ξ when ∆β = ∆μX = 0,

with B (.) a standard Brownian Motion. In the scenarios above: (a) If α = 1/2, ξT ⇒ ξ +

V −1X σ2X

hR s
0 gβ (k) dk − s

R 1
0 gβ (k) dk

i
where gβ (s) = ∆β · 1

³
s ≥ (1 + π)−1

´
, t = [sT ]; (b) ξT ⇒

V −1X

R s
0 [σX + gX (r)] dB(r)−V −1X

¡R s
0

£
σ2X + g2X (r)

¤
dr
¢ ³R 1

0

£
σ2X + g2X (r)

¤
dr
´−1 ³R 1

0 [σX + gX (r)] dB(r)
´
,

where gX (s) = ∆μX · 1
³
s ≥ (1 + π)−1

´
, t = [sT ] . The limiting distribution only equals ξ if

∆μX = 0.

2. Forecast breakdown test. For a quadratic loss, in Proposition 4 we have:

(a) breaks in parameters affect the "parameter instability II" component if α ≤ 1/4.
(b) breaks in the mean of the regressors only affect the component "parameter estimation uncertainty

II", which is asymptotically negligible.

The remaining components in the decomposition in Proposition 4 are due to estimation uncer-

tainty, and thus do not affect the asymptotic distribution of the forecast breakdown test statistic.

It is nonetheless worthwhile to examine their effect in finite samples. First of all, note that, when

the estimation and evaluation losses are equal, the “estimation uncertainty II” component is a

quadratic form, and is thus always positive. Intuitively, this is because in this case the average in-

sample loss computed at the parameter estimates is minimized by construction, and is thus smaller

than the expected out-of-sample loss in finite samples. We therefore interpret this component as a

measure of “overfitting”.

The following proposition illustrates the decomposition in Proposition 4 when there are both

breaks in parameters and breaks in the variance of the errors, for the special case of a linear

regression model, a fixed forecasting scheme and a quadratic loss. It also shows that the presence

of ARCH does not cause a forecast breakdown.
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Proposition 6 (Special case: linear model with ARCH and quadratic loss) Let L (e) =

L (e) = e2 and consider a fixed forecasting scheme, and a model Yt = X 0
t−1βt

+ εt, where: εt =

σtut; the (k × 1) vector Xt−1 is i.i.d. with E (XtX
0
t) ≡ J ;βt = β + n−1/4∆β · 1 (t ≥ m); σ2t =

σ2 + n−1/2∆σ2 · 1 (t ≥ m) + αε2t−1 (∆σ
2 can be negative) and ut is i.i.d.(0,1). This specification

allows for ARCH and two types of structural breaks: a break in the conditional mean parameters

at time m (from β to β +∆β), and a break in the unconditional variance of the errors at time m

(from σ2/ (1− α) to
¡
σ2 +∆σ2

¢
/ (1− α)). We have:

E
³
n1/2 SLm,n

´
=

∆σ2

1− α| {z }
“other instabilities”

+
1

2
∆β0J∆β| {z }

“parameter instabilities II”

+ 2
n1/2

m

σ2

1− α
k| {z } .

“overfitting"

(9)

Comments: 1. From (9), we see that a forecast breakdown can be caused by a “small”

positive break in the variance of the disturbances and/or a “large” break (positive or negative) in

the conditional mean parameters.

2. Expression (9) implies that the breaks in parameters and variance of the errors could have

opposite effects on the forecast performance, and thus not necessarily cause a forecast breakdown

(e.g., if ∆σ2 ≤ −.5∆β0J∆β). In other words, our test directly captures the bias-variance tradeoff
that exists between breaks in the model’s parameters (which result in biased forecasts) and breaks

in the variance of the errors (which, if negative, lower the forecast error variance). An indirect

approach that jointly tests for breaks in parameters and variance may instead detect both breaks

and thus incorrectly conclude that the forecast performance of the model necessarily deteriorates.

3. Under assumption A7, the overfitting component is present only in finite samples and is

proportional to the number of parameters, the variance of the disturbances and the factor n1/2/m.

We discuss the effects of overfitting on the properties of the forecast breakdown test in greater

detail in the next section, which proposes an overfitting-corrected version of the test.

4 An overfitting-corrected forecast breakdown test

We propose a simple correction to the forecast breakdown test statistic (4) that eliminates the

systematic difference between in-sample and out-of-sample loss that is present in finite samples

when a quadratic loss is used for both estimation and evaluation. As we show in the Monte Carlo

simulations in Section 7.1 below, this will substantially improve the finite sample behavior of the

forecast breakdown test.

The overfitting-corrected test consists of subtracting from the numerator of our test statistic an

estimate of the “estimation uncertainty II” component in (8), interpreted as a measure of overfitting.

Using similar reasonings to those in the proof of Proposition 6, we obtain an estimate of this

component in the context of a linear model with covariance-stationary regressors, Yt = X 0
t−τβ+ εt.
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The test statistic is modified as:

tcm,n,τ =
³
n1/2 SLm,n − c

´
/σ̂m,n; (10)

c = 2γ tr

µ
X 0X

T
· bV β

T

¶
,

where: γ = n1/2/m for the fixed and rolling schemes and γ = n−1/2 ln(1 + n/m) for the recursive

scheme; X ≡ [X 0
1, . . . ,X

0
T−τ ];

bV β
T is a consistent estimator of the asymptotic variance of the full-

sample parameter estimate, bV β
T =dvar(T 1/2 bβT ); σ̂m,n is as in Theorem 2 or Corollary 3.

The γ component in (10) allows us to discuss the conditions under which overfitting is asymp-

totically irrelevant in the various schemes. For all schemes, assumption A7 ensures that γ → 0 as

n and m grow, but, as noted by a referee, this assumption is in principle stronger than necessary.

In an additional appendix, available upon request, we prove that the results of Theorem 2 are

still valid for the recursive and fixed schemes when π = ∞ regardless of the rates at which n and

m grow. For the rolling scheme, however, the overfitting component may become asymptotically

relevant, depending on the rate at which n goes to infinity relative to m. Intuitively, this is due

to the fact that the test statistic divides the overfitting component by σm,n, whose asymptotic

behavior is dictated by λ in (7). One can easily show that for the fixed and recursive schemes the

overfitting component always goes to zero when divided by σm,n whereas for the rolling scheme it

only goes to zero when n grows slower than m3/2. When n grows faster than m3/2, the overfitting

component becomes asymptotically relevant, and the test statistic diverges. These considerations

have implications for the finite sample properties of our test. In particular, we expect the forecast

breakdown test to display size distortions for the rolling scheme when n is much larger than m,

and the overfitting correction to eliminate such distortions. This will be confirmed by the results

in Section 7.1 below.

It is finally worth noting that, under the assumption of conditional homoskedasticity, bV β
T =

σ2(T−1X 0X)−1 and the overfitting correction simply becomes

c = 2γk var(εt), (11)

Direct calculations show that in this case tcm,n,τ may be equivalently obtained by redefining the

surprise losses as the difference between the out-of-sample loss and the average in-sample loss

penalized using Akaike’s information criterion (AIC).8

8To see this, note that (for the fixed scheme) the AIC penalizes the in-sample log-likelihood as logLm + 2k/m,

which corresponds to penalizing the in-sample loss as Lm(1 + exp(2k/m)) ' Lm(1 + 2k/m). The claim then follows

from redefining SLt+τ as Lt+τ − Lm(1 + 2k/m).
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5 Predicting future forecast breakdowns

The forecast breakdown test detects whether a forecast method broke down in the past. A question

that may be of further interest to forecasters is whether the forecast method will break down in

the future. This is of course related to finding past breakdowns: if the surprise losses had positive

mean in the past, one could plausibly expect them to continue being positive in the near future.

However, it is possible that one could find additional information that predicts whether there will

be a forecast breakdown. For example, the surprise losses may be persistent (in the case of a

quadratic loss, for example, the presence of GARCH in the data will induce serial correlation in

the surprise losses) or they may be correlated with indicators of the state of the economy.

The idea is to find variables that predict the difference between in-sample and out-of-sample

performance by regressing the surprise losses on a set of explanatory variables, including, e.g., a

constant, lagged surprise losses, economically meaningful variables such as business cycle leading

indicators, measures of stock market volatility, interest rates etc.

Denote by Zt the r×1 vector collecting such variables and let bδn be the OLS parameter estimate
obtained by estimating the predictive regression

SLt+τ (bβt) = Z
0
tδ + εt+τ (12)

over the out-of-sample period t = m, . . . , T − τ , where the regression always includes a constant.

In order to verify whether δ is significant in (12), a Wald test can be performed by considering

the test statistic Wm,n,τ = nbδ0nΩ̂−1m,n
bδn, with Ω̂m,n given in Proposition 7 below and rejecting H0

wheneverWm,n,τ > χ2r,1−α, where χ
2
r,1−α is the (1−α)−th quantile of a χ2r distribution. Proposition

7 below provides the asymptotic justification for the test.

To analyze the behavior of the surprise losses over time, one may further consider the plot of

the fitted values {Z 0
t
bδn}T−τt=m from the regression (12) together with a one-sided (1−α)% confidence

interval:
µ
Z
0
t
bδn − zα

³
Z 0t

³
Ω̂m,n/n

´
Zt

´1/2
,+∞

¶
, where zα is the (1−α)−th quantile of a standard

normal distribution.

Proposition 7 (Asymptotic justification of the Wald test) Let Zt = [1, z
0
t]
0 and ezt ≡ zt− z,

z ≡ n−1
PT−τ

t=m zt. Under assumptions A1- A7, further suppose that, under H0:

B1. {zt}T−τt=m and {Lt(β
∗)}Tt=1 are fourth order stationary;

B2. z →
p
E (zt) ;

B3. Szz ≡ n−1
PT−τ

t=m eztez0t →p Σzz ≡ E [eztez0t] non-singular;
B4. For some d > 1, supt≥1E ||z0t, Lt(β

∗)||4d <∞.9

9This assumption ensures that third and fourth order cumulants are finite. The assumption is trivially satisfied

if the variables are normal, and it is a standard assumption — see Brillinger (1981, p. 26, Assumption 2.6.1). Also,

note that fourth order stationarity implies covariance stationarity.
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Let bΩm,n =

Ã
1 −z0S−1zz
0 S−1zz

!Ã bσ2m,n ΛSL,zL

ΛS
zL,L

S
zL,zL

!Ã
1 −z0S−1zz
0 S−1zz

!0
(13)

where bσ2m,n is defined in Corollary 3,

Szz ≡ n−1
T−τX
t=m

eztez0t + n−1
pnX
j=1

vn,j

T−τX
t=m+j

¡eztez0t−j + ezt−jez0t¢ ;
S−1
zL,L

≡ n−1
T−τX
t=m

ezteL2t + n−1
pnX
j=1

vn,j

T−τX
t=m+j

³ezteLt
eLt−j + ezt−j eLt−j eLt

´
;

S−1
zL,zL

≡ n−1
T−τX
t=m

eztez0teL2t + n−1
pnX
j=1

vn,j

T−τX
t=m+j

³ezteLt
eLt−jez0t−j + ezt−j eLt−j eLtez0t´ ;

eLt, pn and vn,j as in Algorithm 1;

Λ ≡
£
π−1 ln (1 + π)

¤
(recursive scheme);

Λ ≡ 1− π/2 (rolling scheme, n ≤ m);

Λ ≡ (2π)−1 (rolling scheme, n > m);

Λ ≡ 1 (fixed scheme),

Then Wm,n,τ
d→ χ2r under H0 : E

³
n−1

PT−τ
t=m Zt · SLt+τ (β

∗)
´
= 0.10

Corollary 8 (Asymptotic justification of the Wald test under conditional homoskedasticity)

Given assumptions A1-A7, further suppose that, under H0, E
³eLt (β

∗) eLt−j (β
∗) | {zt}T−τt=m

´
≡ γLLj .

Then: bΩm,n =

Ã
σ2m,n + z0S−1zz SzL,zLS

−1
zz z −z0S−1zz SzL,zLS

−1
zz

−S−1zz SzL,zLS
−1
zz z S−1zz SzL,zLS

−1
zz

!
. (14)

Comments: 1. When a quadratic loss is used for estimation and evaluation, equation (12)

can be interpreted as a forecast rationality regression, by letting L(e) = e in (1), where e is

the forecast error (since in this case L̄t(bβt) = 0). Proposition 7 thus provides the appropriate

asymptotic variance estimator for the forecast rationality test, and shows that a correction is only

required for the standard error of the intercept (which is the same correction that applies to the

forecast unbiasedness test; see the comment after Corollary 3 of West and McCracken, 1998). This

result could be easily generalized to the class of loss functions examined in Elliott, Komunjer and

Timmermann (2005) by redefining L as L (e) = [1 (e < 0)− α] |e|p−1, where the parameters α and
p are defined in their equation 1, and provided the same loss function is used for estimation and

10Matlab code to implement the Wald test under the assumptions of Proposition 7 is available at

http://www.econ.duke.edu/~brossi/ or http://www.econ.ucla.edu/giacomin/
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evaluation. Our Proposition 7 thus gives an estimator of the asymptotic variance for a forecast

rationality test that, unlike that proposed by Elliott, Komunjer and Timmermann (2005), takes

into account the effects of parameter estimation uncertainty (this is the same as the estimator

suggested by West and McCracken, 1998). Neglecting parameter estimation uncertainty can result

in considerable size distortions, as our Monte Carlo simulation in Section 7.2 will show.

2. Note that Zt having explanatory power in (12) does not necessarily imply a forecast break-

down. This has to do with the fact that equation (12) models the conditional expectation of the

surprise losses, whereas a forecast breakdown occurs when the unconditional expectation of the

surprise losses is different from zero. The hypothesis of a forecast breakdown can thus still be

tested in (12) by a t-test on the intercept. The goal of further modelling the conditional mean of

the surprise losses is to be able to forecast how much the future losses differ from their expectation,

by relating systematic differences between in-sample and out-of-sample performance to economic

variables. Note that, for a quadratic loss, the losses reflect forecast error variances and thus the idea

of expressing surprise losses as functions of explanatory variables is reminiscent of an ARCH-type

model where the variance dynamics depend on economic variables, as in Glosten, Jagannathan and

Runkle (1993). Our approach, however, not only captures dynamics in scale parameters, but also

in location parameters.

3. Our approach to predicting future forecast breakdowns may be further related to Pesaran,

Pettenuzzo and Timmermann (2006) and Koop and Potter (2007), who model the breaks in location

and scale parameters of a model as functions of a latent variable that defines different regimes.

The main difference is that we model directly the difference between out-of-sample and in-sample

performance, for a particular loss function, by relating it to observable explanatory variables and

that we do not need to assume that the underlying forecasting model is correctly specified. For a

quadratic loss, this may be thought of as trying to contemporaneously characterize breaks in scale

and location parameters for the forecasting model, and expressing them as functions of observables,

rather than of a latent variable.

6 Implications of forecast breakdowns

A natural question that arises if a forecast breakdown is detected or predicted is whether the forecast

model should be changed or not. In general, the answer to this question depends on the type of

forecast (point, interval, density) and on the type of loss function (symmetric or asymmetric).

For example, when the forecast is a point forecast and the loss function is symmetric, finding a

forecast breakdown does not necessarily imply that the model should be changed. The reason is

that the forecast breakdown could be caused by instabilities - such as increases in the variance of

the disturbances - that do not affect the optimal forecast (for a symmetric loss, the optimal point

19



forecast does not depend on the variance, unlike for an asymmetric loss, as shown by Christoffersen

and Diebold, 1997). Since the forecast breakdown test cannot distinguish among the different types

of instabilities, the finding of a forecast breakdown does not necessarily suggest changing the model.

However, even though a change in the variance may not affect the optimal forecast, it will affect

the prediction interval associated with the point forecast, increasing the likelihood of large forecast

errors. For a decision maker committed to prevent such large forecast errors, therefore, this would

be relevant. In conclusion, we can say that when the loss is asymmetric or when the forecaster

is interested in accompanying the point forecast with some measure of its uncertainty, then the

finding of a forecast breakdown indicates unreliability of the forecast, regardless of its cause.

7 Monte Carlo evidence

We analyze the size and power properties of our forecast breakdown test in finite samples, and

compare them to the properties of structural break tests (Elliott and Muller, 2006, henceforth

EM). We further compare the size properties of commonly used forecast rationality tests and those

of our corrected forecast rationality test (see comment after Corollary 8).

7.1 Size properties of forecast breakdown tests

We investigate the size of the forecast breakdown test, in particular with regards to its robustness

to the presence of conditionally heteroskedastic disturbances and to the presence of instability in

the marginal distribution of the regressors. We let the data-generating process (DGP) be:

Yt = 2.73− 0.44Xt−1 + εt, (15)

εt = σtut,

σ2t = 1 + αε2t−1, ut ∼ i.i.d.N(0, 1),

and consider two experiment designs. The first (MC1) has α = 0 and i.i.d. regressors and errors:

Xt, ut ∼ i.i.d.N(0, 1), independent of each other. The second (MC2), inspired by our empirical

application to the Phillips curve model of U.S. inflation, letsXt be monthly U.S. unemployment and

lets α = .5.11 The DGP specification and parameters are from Staiger, Stock and Watson (1997).

We use an actual time series for unemployment in order to generate data that exhibit realistic and

possibly heterogeneous behavior. Throughout, we restrict attention to the one-step-ahead forecast

horizon and use a quadratic loss for both estimation and evaluation.

11The unemployment series is the seasonally adjusted civilian unemployment rate from FRED II. The results are

robust to higher values of α, even close to one.
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For each pair of in-sample and out-of-sample sizes (m,n) and for each of 5000 Monte Carlo

replications, we generate T = m + n data as in (15). In MC2, we use the first T data in the

unemployment time series, starting from 1948:1. We estimate the model Yt = β1 + β2Xt−1 + et

by OLS using either a fixed, a rolling or a recursive forecasting scheme. We consider the forecast

breakdown test for the three forecasting schemes, using either the general asymptotic variance

estimator of Theorem 2 (tm,n,τ ) or the estimator of Corollary 3 (tstatm,n,τ ) (the truncation lags for the

HAC estimators are pT = pn = 0 in MC1 and pT = pn = [n1/3] in MC2, where [·] indicates the
integer value). Table 1(a) contains the rejection frequencies of our tests for various (m,n) pairs.

Table 1(b) reports the rejection frequencies for the overfitting-corrected tests.

[TABLE 1(a) AND 1(b) HERE]

The forecast breakdown test has good size properties for large in-sample and out-of-sample sizes

(m,n ≥ 100). The tstatm,n,τ test is well-sized, if conservative. Both tests (in particular tm,n,τ ) tend

to over-reject when the in-sample size is small (m = 50), especially for the rolling scheme, which

may become quite unreliable when m is small. Also note that, for a given m, the size distortions

for the rolling scheme become more severe as n grows. This reflects the fact that, when n grows

faster than m3/2, the test statistic for the rolling scheme diverges due to the overfitting component

becoming asymptotically non-negligible, as we discussed in Section 4. Table 1(b) also documents

that this problem can be overcome by using our overfitting-corrected test, which has good finite

sample properties for all forecasting schemes and in-sample and out-of-sample sizes. Comparing

the results from MC1 and MC2, we see that the forecast breakdown test is robust to the presence

of possibly heterogeneous regressors and of ARCH errors.

We further perform a small Monte Carlo experiment that illustrates the greater robustness

of the forecast breakdown test relative to the EM test in the presence of breaks in the marginal

distribution of the regressors. We consider the case in which the null hypothesis of no break in the

conditional mean parameters is satisfied but there is a break of size ∆β in the mean of the regressor

occurring at time τT :

Yt = Xt−1 + εt,

Xt = Zt +∆β · 1(t ≥ τT ), Zt, εt ∼ i.i.d. N(0, 1) and independent.

We let T = 100, ∆β vary between 1 to 16, and consider τ = .75 and τ = .95.We plot the empirical

rejection frequencies of both our recursive forecast breakdown test (the overfitting-corrected esti-

mator for m = 50 and using the variance estimator from Corollary 3) and the EM test over 5000

Monte Carlo replications in Figure 1, for a 10% nominal size.

[FIGURE 1 HERE]
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The figure clearly shows that the EM test exhibits size distortions which depend not only on

the magnitude of the break, but also on its location. The performance of the forecast breakdown

test, instead, is affected neither by the presence of a break in the regressor, nor by its location.

7.2 Size properties of forecast rationality tests

Finally, we document size distortions of conventional forecast rationality tests and the good size

properties of a test based on the variance estimator of Proposition 7 and on the correction for

overfitting. The DGP is: Yt = β0 + β1Xt + εt, where β0 = β1 = 0, εt ∼ i.i.d.N(0, 1), Xt ∼
i.i.d.N(0, 1) and forecasts are based on a model with a constant and Xt estimated using the various

forecasting schemes. The forecast rationality test is performed by estimating the regression: et+1 =

δ0 + δ1Zt + ut, where et+1 is the estimated out-of-sample forecast error and Zt ∼ i.i.d.N(0, 1)

independent of Xt. Table 2 reports rejection frequencies of a forecast rationality test that uses

conventional OLS standard errors (not taking estimation uncertainty into account, as in, e.g.,

Elliott, Komunjer and Timmermann, 2005), labeled “unadjusted”, and of the corresponding test

using our variance estimator (14) with L(e) = e, labeled “adjusted”. The nominal size is 5%. As

the columns labeled “unadjusted” in Table 2 show, both a standard t-test on δ0 (tδ0) and a Wald

test on both δ0 and δ1 (W ) have considerable size distortions except for the recursive scheme,

whereas a t-test on δ1 (tδ1) has no size distortions for any scheme. The columns labeled “adjusted”

show instead that our variance estimator yields a test with correct size.

[TABLE 2 HERE]

7.3 Power properties

In this section we consider various sources of forecast breakdowns and analyze the power of the

tests considered in Section 7.1 and of a forecast unbiasedness test for the recursive scheme forecasts

(UNB). In all designs, we estimate the model Yt = α + et by OLS and consider a quadratic

and a linex loss for evaluation. The total sample size T and the in-sample size m for the forecast

breakdown and the unbiasedness tests are specified in each design. In all cases, m is set at the time

of the first break, which represents the “worst-case scenario” from the perspective of a forecaster.

Design 1: Changes in mean. We consider either one-time or recurring changes in mean. The

first corresponds to a single structural break in mean

Yt = βA · 1 (t > T/2) + εt, εt ∼ i.i.d.N(0, 1). (16)

We let (T,m) = (300, 150). In the recurring change DGP, we let Yt = μt + εt, where μt switches

between −βA and βA every 50 periods and let (T,m) = (600, 50).
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Design 2: Changes in variance. Again, we consider both one-time and recurring changes. The

one-time change DGP is

Yt = εt, εt ∼ i.i.d.N
¡
0, σ2t

¢
(17)

where σ2t = 1 + βA · 1 (t > T/2). We choose (T,m) = (300, 150). In the recurring changes case, we

let σ2t switch between 1 and (1 + βA) every 50 periods, and let (T,m) = (600, 50). In this case,

we omit a comparison with Elliott and Muller’s (2006) test because their test focuses on breaks in

conditional mean parameters rather than variance.

Design 3: Other DGP changes. Here we assume that the conditional mean undergoes a one-

time change but the two specifications are not nested, so that structural break tests are not optimal

in this context. We let

Yt = βA · 1 (t ≤ T/4)− 3βA · 1 (T/4 < t ≤ T/2) +Xt · 1 (t > T/2) + εt, (18)

Xt = .6Xt−1 + ηt, εt, ηt ∼ i.i.d.N (0, 1) independent.

We consider (T,m) = (400, 100).

[FIGURE 2 HERE]

For all designs, we obtain power curves by letting βA vary between 0 and 2 and considering

5000 Monte Carlo replications. Figure 2(a) shows that the forecast breakdown test has power

against changes in mean. In the case of a permanent break in mean (upper left panel), the forecast

breakdown test has lower power than both the EM and the UNB tests, but its power improves when

the losses used for estimation and evaluation differ (upper right panel). In the case of recurring

changes in mean (lower panels), the forecast breakdown test with a rolling scheme has the highest

power. When the permanent change in DGP is as in Design 3 (Figure 2(c), right panel), the power

loss of the forecast breakdown relative to the EM and UNB tests is substantially lower. Figure

2(b) shows that the forecast breakdown test has power against changes in variance. The one-sided

nature of the test implies that only increases in variance (Figure 2(b), upper panels) or, to a lesser

extent, recurring changes in variance (Figure 2(b), lower panels) can cause forecast breakdowns.

Decreases in variance, obtained by substituting βA with −βA in design 2, instead do not cause

forecast breakdowns, as can be seen from the left panel of Figure 2(c).

8 The Phillips curve and inflation forecast breakdowns

The Phillips curve as a forecasting model of inflation has traditionally been a useful guide for

monetary i.i.d. in the United States, and its forecasting ability is thus of practical relevance. The

model relates changes in inflation to past values of the unemployment gap (the difference between

the unemployment rate and the NAIRU) and past values of inflation. The forecasting ability of
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the Phillips curve as well as its stability have been investigated in a number of works, including

Staiger, Stock and Watson (1997), Stock and Watson (1999) and Fisher, Liu and Zhou (2002). The

latter, in particular, conclude that the forecasting ability of the Phillips curve depends upon the

period: the Phillips curve appears to forecast well one year ahead during the 1977-1984 period but

not during the 1993-2000 period. Thus, as an empirical application of the methods proposed in

this paper, we investigate the robustness of the Phillips curve to forecast breakdowns.

Following Stock and Watson (1999), let πτt = (1200/τ) ln (Pt/Pt−τ ) denote the τ -period inflation

in the price level Pt reported at an annual rate, πt denote monthly inflation at an annual rate at

time t (πt ≡ π1t = (1200) ln (Pt/Pt−1)), and ut denote the unemployment rate. Then the Phillips

curve can be expressed as:

πτt+τ − πt = θ0 + θ1 (L)ut + θ2 (L) (πt − πt−1) + εt+τ (19)

where θ0 implicitly embodies a time-invariant NAIRU, and θ1 (L) and θ2 (L) are lag polynomials

with qu and qπ lags, respectively.

When analyzing whether unemployment was a useful predictor for inflation, it is important to

assess its predictive ability using data that were available to the policy-makers at that time. For

example, Ghysels, Swanson and Callan (2002) analyze the performance of monetary i.i.d. rules in

the presence of real-time data, and note their relationship with changes in the Fed Chairmen. For

this reason, we use real-time data from the Federal Reserve Bank of Philadelphia database. The

data are discussed in Croushore and Stark (2001). Since the real-time series of consumer prices from

the same data set is available only from the 1994 vintage, for this series we use the Swanson, van

Dijk, and Callan dataset (available at http://econweb.rutgers.edu/nswanson/realtime.htm). We

focus on seasonally adjusted inflation, as in Stock and Watson (1999). The data are from 1961:1

(with a first vintage in 1978:2) until 2001:12. Due to the data limitations, we restrict estimation

from 1978:2 until 2001:12, using quarterly vintages.12

The first column of Table 3 reports the p-values of the forecast breakdown test of Section 2.2

for a quadratic loss and a rolling scheme with m = 60 (so that the one-step ahead forecasts begin

in 1993:1, corresponding to the change in monetary i.i.d. identified in Fisher et al., 2002). We

consider forecast horizons τ = 3 and τ = 12 months and several choices of qu and qπ. The row

labeled “BIC” reports results for the case in which the lag length is determined by the Bayesian

Information Criterion (BIC) (assuming that all regressors have the same number of lags). The

12The sample used in Fisher et al. (2002) begins in January 1977 and that used in Stock and Watson (1999) begins

in January 1959. Note that while in the real-time database unemployment is revised at a quarterly frequency, data

are still available at a monthly frequency. However, there will be missing data if one tried to extend the quarterly

data to a monthly frequency. For this reason, we calculated the annualized inflation rate at a monthly frequency,

then used observations only for February, May, August and November, which correspond to the available vintage

quarters.
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table shows strong evidence of a forecast breakdown at the one year horizon when using real-time

data, whereas there is little evidence of forecast breakdowns at shorter horizons. Because of small

sample concerns associated with real-time data, we repeat the above exercise using revised monthly

data. We consider the most recent observations collected by the Philadelphia Fed (2004:8) for both

seasonally unadjusted CPI and unemployment. The largest available sample for both variables is

from 1948:1 until 2004:6. The second column in Table 3 shows that the forecast breakdown test

finds some evidence of a forecast breakdown at the one month horizon, but not at longer horizons.

[TABLE 3 HERE]

Given the evidence in favor of forecast breakdowns in the Phillips curve, we next investigate

its possible economic causes. Fisher et al. (2002) argue that periods of low inflation volatility and

periods after regime shifts in monetary i.i.d. appear to be associated with changes in the forecasting

ability of the Phillips curve. Thus, we construct a forecasting model that relates the surprise losses

to inflation volatility and to a measure of changes in the monetary i.i.d. behavior of the Fed. We

estimate inflation volatility (bσ2π,t) as the sample variance of the change in the annual inflation over
a rolling window of size 241.13 To measure changes in the monetary i.i.d. behavior of the Fed, we

consider rolling two-step efficient GMM estimates (with two-stage least squares in the first step)

of the coefficients of the Federal Fund Rate (FFR) reaction function to the output gap and to the

deviation of inflation from its target proposed by Clarida, Gali and Gertler (2000), given by

E (rt − (1− ρ) [rr∗ − (β − 1)π∗ + βπt,k + γxt,q] + ρ (L) rt−1|=t) = 0, (20)

with rt the nominal FFR; πt,k the annualized percentage change in the price level between t and

t+k; xt,q the average output gap between t and t+ q, defined as minus the percentage deviation of

actual unemployment from its target (a fitted quadratic function of time); and =t the information

set at time t. As in Clarida et al. (2000), we let ρ (L) ≡ ρ1 + ρ2L, rr
∗ be the average FFR over

the estimation window, and we choose as instruments a constant and four lags of the following

variables: inflation, output gap, FFR, commodity price inflation, M2 growth rate, spread between

the long-term bond rate and the three-month Treasury Bill rate.14 k and q are set at 1 quarter. Our

measures of changes in monetary i.i.d. behavior are sequences of estimates of β, γ and ρ ≡ ρ(1) in

13 I.e. we use lagged values of the sample variance of (πτt+τ − πt) as a potential predictor.
14Unlike in Clarida et al. (2000), the long-term bond rate used here is not FYGL because that series has been

discontinued. Our proxy for the long-term bond rate is instead the ten-year monthly rate of interest on government

securities provided by the Fed (we checked that in the overlapping portion with FYGL the data look similar). Similar

problems lead us to choose the 3-month U.S. Treasury Bills quoted on the secondary market as a proxy for the

3-month Treasury Bill rate. Finally, for commodity prices we used n.s.a. CPI for all items all urban consumers

(U.S. city average) and we collected data for M2 from the Federal Reserve Board database. The abuse of notation in

denoting the degree of inflation aversion by β is to make our notation consistent with that of Clarida et al. (2000).
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(20) over a rolling window of size 241. Even though our database is different from that of Clarida

et al. (2000), our parameter estimates - which we do not report to conserve space - are similar.

We next investigate whether the estimates of the FFR reaction function coefficients and inflation

volatility are useful predictors of inflation forecast breakdowns. Table 4 shows estimates of the

coefficients in the following equation:

SLt+τ = δ0 + z0tδ1 + εt+τ (21)

where zt is either bβt, bγt, bρt (the rolling estimates of the parameters in (20)), or bσ2π,t, and τ = 1, 3, 12
months. The table reports estimates of δ1 and (in parentheses) the p-values associated with testing

whether δ1 equals zero.15 It is clear that the degree of inflation target smoothing operated by the

central bank (bρt) and the degree of inflation volatility (bσ2π,t) explain the behavior of the surprise
losses at the 12 month horizon, whereas inflation volatility and the degree of the Fed’s risk aversion

to the unemployment gap (bγt) are significant at the one month horizon. We also estimate (21)
with zt = (bβt, bγt, bρt) and find strong evidence of joint significance at horizons of one and twelve
months (last column of Table 4). To conclude, Figure 3 plots the sequence of surprise losses cSLt+12

along with its one-sided 95% confidence band, and shows empirical evidence of forecast breakdowns

during the Volker era (1979:3-1987:7) but not during the Greenspan era (1987:7 onwards).

[TABLE 4 AND FIGURE 3 HERE]

9 Conclusion

This paper proposed a method for detecting and predicting forecast breakdowns, defined as a

situation in which the out-of-sample performance of a forecast model is significantly worse than its

in-sample performance. Unlike the literature evaluating a forecasting model from the perspective

of whether it produces optimal forecasts, we focus on whether the model’s forecast performance -

measured by a general loss function - is consistent with expectations based on the model’s earlier

fit. The analysis of the possible causes of forecast breakdowns reveals the prime role played by

instabilities in the data-generating process in causing forecast breakdowns, thus establishing a link

between this paper and the structural break testing literature. Among the differences, we note that

our approach is loss-specific and thus directly captures the effect of various types of instabilities on

the model’s forecast performance, whereas an indirect approach that tests for those instabilities may

give misleading conclusions. A further advantage of our approach is that it allows the forecaster to

predict future forecast breakdowns, by directly relating the differences between out-of-sample and

in-sample performance to observable economic variables.

15The test statistic is implemented with Newey and West’s (1987) HAC estimator with a bandwidth equal to n1/3

and the p-values are calculated from (8).
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While our method is a first step towards assessing how well a forecasting model adapts to

changes in the economy, an important question that we touched upon but that deserves further

investigation is what to do in case a forecast breakdown is detected or predicted. We leave this

avenue of research for future work.
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Appendix. Proofs

Notation 9 Let L∗t ≡ Lt(β
∗), ∂L∗t ≡ ∂Lt(β

∗), t = 1, . . . , T ; eL∗t ≡ L∗t − E (L∗t ) ; f∂L∗t = ∂L∗t −
E (∂L∗t ) ; Dt+τ ≡ ∂Lt+τ (bβt)/∂β−∂L̄t(bβt)/∂β, t = m, . . . , T−τ a 1×k vector; D∗t+τ ≡ ∂SLt+τ (β

∗)/∂β;

D̃∗t+τ = D∗t+τ−E(D∗t+τ ). For a matrix A, |A| = maxi,j |aij |. Limits are for m,n→∞. Let h denote

the q × T matrix of orthogonality conditions, with element ht, t = 1, ..., T :

h ≡ [h1(bβm), . . . , hm(bβm)| {z }
m

, hm+1(bβm+1), . . . , hT−τ (bβT−τ )| {z }
n−1

, 0, . . . , 0| {z }
τ

];

h∗t ≡ ht(β
∗); Bt a consistent estimate of B∗t from assumption A3, substituting bβt for β∗;

Recursive wh

1×qT
= [bm,0, . . . , bm,0| {z }

m

, bm,1, . . . , bm,n−1| {z },
n−1

0, . . . , 0| {z }
τ

], where

bm,j =
Dm+τ+jBm+j

m+ j
+

Dm+τ+j+1Bm+j+1

m+ j + 1
+ . . .+

DTBT−τ
T − τ

; (22)

Rolling (n ≥ m) : wh

1×qT
= [

Dm+τBm

m
, . . . ,

P2m−1
t=m Dt+τBt

m| {z }
m

,

P2m
t=m+1Dt+τBt

m
, . . . ,

PT−τ
t=n Dt+τBt

m| {z }
n−m

,

PT−τ
t=n+1Dt+τBt

m
, . . . ,

DTBT−τ
m| {z }

m−1

, 0, . . . , 0| {z }
τ

].

Rolling (n < m): wh

1×qT
= [

Dm+τBm

m
, . . . ,

PT−τ
t=mDt+τBt

m| {z }
n

,

PT−τ
t=mDt+τBt

m
, . . . ,

PT−τ
t=mDt+τBt

m| {z }
m−n

,

PT−τ
t=m+1Dt+τBt

m
, . . . ,

DTBT−τ
m| {z }

n−1

, 0, . . . , 0| {z }
τ

].
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Fixed: wh

1×qT
= [

Bm
PT−τ

t=mDt+τ

m
, . . . ,

Bm
PT−τ

t=mDt+τ

m| {z }
m

, 0, . . . , 0| {z }
T−m

]

VT =

Ã
V LL
T V Lh

T

V Lh
T V hh

T

!
, where (23)

V LL
T ≡ T−1

TX
t=1

(wL
t
eLt)

2 + 2T−1
pTX
j=1

vT,j

TX
t=j

wL
t
eLtw

L
t−j eLt−j ; (24)

V hh
T ≡ T−1

TX
t=1

wh
t hth

0
tw

h0
t + T−1

pTX
j=1

vT,j

TX
t=j

³
wh
t hth

0
t−jw

h0
t−j + wh

t−jht−jh
0
t−jw

h0
t

´
; (25)

V Lh
T ≡ T−1

TX
t=1

wL
t
eLth

0
tw

h0
t + T−1

pTX
j=1

vT,j

TX
t=j

³
wL
t
eLth

0
t−jw

h0
t−j +wL

t−j eLt−jh
0
t−jw

h0
t

´
, (26)

with pT and vT,j appropriately defined (cf. Andrews, 1991 or Newey and West, 1987).

Assumption A5’. T−1
PT

t=1E (∂Lt(β
∗)/∂β) <∞ for all T.

Proposition 10 (Generalization of forecast breakdown test) Given assumptions A1-A4, A5’,

A6, A7, if VT in (23) is p.d., σ̂m,n =
q
(T/n) (V LL

T + V hh
T + 2V Lh

T ), V LL
T , V hh

T and V Lh
T given in

(24)-(26). Then, tm,n,τ
d→ N(0, 1) under H0 in (3).

Lemma 11 (a) R1 ≡ n−1/2
PT−τ

t=m
eD∗t+τB∗tH∗

t = op(1);

(b) R2 ≡ .5n−1/2
PT−τ

t=m

³bβt − β∗
´0 ³

∂2SLt+τ (β
∗
t )/∂β∂β

0
´³bβt − β∗

´
= op(1), where β∗t is an inter-

mediate point between bβt and β∗.

Proof of Lemma 11. (a) We focus for simplicity on the recursive scheme. The proofs for

the fixed and rolling schemes are similar. Direct calculations show that R−1/21

PT
t=1 w̃

h
t h
∗
t , where

w̃h = [cm,0, . . . , cm,0| {z }
m

, cm,1, . . . , cm,n−1| {z }
n−1

, 0, . . . , 0| {z }
τ

], cm,j =

n−jX
i=1

eD∗m+τ+j+i−1B∗m+j+i−1
m+ j + i− 1 .

We will show thatE
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´2 p→ 0 from which the result follows because convergence

in mean square implies convergence in probability.

First note that w̃h
t can be written as a weighted average of the scores: w̃

h
t = T−1

PT
j=1

f∂L∗jPt,j .
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For example, w̃h
1 = cm,0 = T−1

PT
j=1

f∂L∗jP1,j with (non stochastic) weights
P1 = T [dm,0, . . . , dm,0| {z }

m

, dm,1, . . . , dm,τ−1| {z }
τ−1

,
B∗m
m
− dm,τ , . . . ,

B∗m+n−τ−1
m+ n− τ − 1 − dm,n−1| {z }
n−τ

,

B∗m+n−τ
m+ n− τ

, . . . ,
B∗T−τ
T − τ| {z }

τ

], where

dm,j =

n−jX
i=1

B∗m+j+i−1

(m+ j + i− 1)2
.

Similar expressions can be derived for cm,j , j = 1, . . . , n − 1. Therefore, E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´2
=

E
³
n−1/2

PT
t=1

h
T−1

PT
j=1

f∂L∗jPt,jih∗t´2 . We have
E
³
n−1/2

PT
t=1

h
T−1

PT
j=1

f∂L∗jPt,jih∗t´2 = A1T +A2T +A3T , where

A1T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

E
¡
h∗0t h

∗
s

¢
E
³f∂L∗iPt,iP 0s,jf∂L∗0j ´ ,

A2T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

h
E
³
h∗0t P

0
t,i
f∂L∗0i ´E ³h∗0s P 0s,jf∂L∗0j ´+E

³
h∗0t P

0
s,j
f∂L∗0j ´E ³h∗0s P 0t,if∂L∗0i ´i ,

A3T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

κ(t, t− s, t− i, t− j),

where κ(t, t− s, t− i, t− j) is the fourth cumulant

κ(t, t− s, t− i, t− j) = E
³
h∗0t h

∗
s
f∂L∗iPt,iP 0s,jf∂L∗0j ´−E

¡
h∗0t h

∗
s

¢
E
³f∂L∗iPt,iP 0s,jf∂L∗0j ´

−E
³
h∗0t P

0
t,i
f∂L∗0i ´E ³h∗0s P 0s,jf∂L∗0j ´−E

³
h∗0t P

0
s,j
f∂L∗0j ´E ³h∗0s P 0t,if∂L∗0i ´ .

Note that |A1T | ≤
¡
nT 2

¢−1PT
t=1

PT
s=1

PT
i=1

PT
j=1 |E (h∗0t h∗s)|

¯̄̄
E
³f∂L∗iP supi P sup 0j

f∂L∗0j ´¯̄̄ . Redefin-
ing f∂L∗iP supi as f∂L∗i , we thus have |A1T | ≤ ¡nT 2¢−1PT

t=1

PT
s=1 |E (h∗0t h∗s)|

PT
i=1

PT
j=1

¯̄̄
E
³f∂L∗i f∂L∗0j ´¯̄̄

≤
¡
nT 2

¢−1
C2

³P∞
j=0 jα(j)

1−1/2r
´2
, where C2 is some positive and finite constant and α(j) are the

mixing coefficients. As shown by Davidson (1994, p. 210),
P∞

j=0 jα(j)
1−1/2r is positive and finite,

which implies that A1T → 0. A similar argument can be used to show that A2T → 0. For A3T , we

have

|A3T | ≤
¡
nT 2

¢−1 ∞X
s=1

∞X
i=1

∞X
j=1

sup
t≥1

|κ(t, t− s, t− i, t− j)|→ 0,

since
P∞

s=1

P∞
i=1

P∞
j=1 supt≥1 |κ(t, t− s, t− i, t− j)| < ∞, by assumptions A1 and A4, as shown

by Andrews (1991).
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(b) For some a, 0 < a < .5, C a positive constant, mt defined in assumption A2(b) and denoting

by mt the mean of the m0
ts over the relevant in-sample window at time t, we have

R2 =

¯̄̄̄
¯.5n−1/2

T−τX
t=m

t1−a
³bβt − β∗

´0Ã
ta−1

∂2SLt+τ (β
∗
t )

∂β∂β0

!³bβt − β∗
´¯̄̄̄¯

≤ C sup
m≤t≤T−τ

|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1

¯̄̄̄
¯∂2SLt+τ (β

∗
t )

∂β∂β0

¯̄̄̄
¯

≤ C sup
m≤t≤T−τ

|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1
Ã¯̄̄̄
¯∂2Lt+τ (β

∗
t )

∂β∂β0

¯̄̄̄
¯+

¯̄̄̄
¯∂2Lt(β

∗
t )

∂β∂β0

¯̄̄̄
¯
!

≤ C sup
m≤t≤T−τ

|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1 (mt+τ +mt) = op(1)

by Lemmas A1(a) and A3(b) of West (1996), Assumption A2(b) and Markov’s inequality.

Lemma 12 T
nV

LL∗
T ≡ var

³
n−1/2

PT
t=1w

L
t
eL∗t´ > 0 for all T sufficiently large.

Proof of Lemma 12. We prove Lemma 12 for the recursive scheme. The proofs for the fixed

and rolling schemes are similar. First consider 0 < π <∞. Write T
nV

LL∗
T = var(A1+A2+A3+A4),

where A1 = −n−1/2am,0(eL∗1 + . . . + eL∗m); A2 = −n−1/2 ³am,1
eL∗m+1 + . . .+ am,τ−1eL∗m+τ−1´ ; A3 =

n−1/2
h
(1− am,τ ) eL∗m+τ + . . .+ (1− am,n−1) eL∗T−τi ;

A4 = n−1/2
³eLT−τ+1 + . . .+ eLT

´
.We first show that |cov(Ai, Aj)|→ 0 for i 6= j. Since am,j ≤ am,0,

|cov(A1, A2)| ≤ n−1a2m,0|cov(
Pm

t=1
eL∗t ,Pm+τ−1

t=m+1
eL∗t )| | ≤ n−1a2m,0

Pm
t=1

Pτ−1
j=1 |E(L̃∗t L̃∗t+j)|

≤ n−1a2m,0C
P∞

j=0 jα(j)
1−1/2r by Corollary 6.17 of White (2001), where C is some positive and

finite constant and α(j) are the mixing coefficients. By Davidson (1994), p. 210,
P∞

j=0 jα(j)
1−1/2r is

positive and finite. Further, a2m,0 → ln2(1+π), which is finite (cf. West, 1996, pg. 1082). As a result,

cov(A1, A2)→ 0. Using analogous reasonings and the fact that 1−am,t−m ≤ 1 for all t, one can show
that |cov(Ai, Aj)| → 0 for the remaining (i, j) pairs. We thus have that var

³
n−1/2

PT
t=1w

L
t
eL∗t´

can be approximated by
P4

i=1 var(Ai) and the desired result follows from the fact that, e.g.,

var(A1) = (m/n)a2m,0var(m
−1/2Pm

t=1
eL∗t ) > 0 since m/n → π−1 > 0, a2m,0 → ln2(1 + π) > 0, and

var(m−1/2
Pm

t=1
eL∗t ) > 0 by assumption A6. When π = 0 it is sufficient to show that var (A3) ≥

(1− am,0)
2 var

³
n−1/2

PT−τ
t=m+τ L̃

∗
t

´
> 0 since (1− am,0)→ 1 and var

³
n−1/2

PT−τ
t=m+τ L̃

∗
t

´
> 0.

Proof of Proposition 10. A second order mean value expansion of SLt+τ (bβt) = Lt+τ

³bβt´−
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L̄t

³bβt´ around β∗ gives

n1/2

"
n−1

T−τX
t=m

SLt+τ (bβt)−E

Ã
n−1

T−τX
t=m

SLt+τ (β
∗)

!#
(27)

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

∂SLt+τ (β
∗)

∂β

³bβt − β∗
´

+.5n−1/2
T−τX
t=m

³bβt − β∗
´0 ∂2SLt+τ (β

∗
t )

∂β∂β0

³bβt − β∗
´

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t +

n−1/2
T−τX
t=m

eD∗t+τB∗tH∗
t + .5n−1/2

T−τX
t=m

³bβt − β∗
´0 ∂2SLt+τ (β

∗
t )

∂β∂β0

³bβt − β∗
´

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t + op(1)

where β∗t is some intermediate point between bβt and β∗ and where we have used assumption A3

and Lemma 11. We show that, under H0,µ
T

n
VT

¶−1/2
n−1/2

"
T−τX
t=m

SLt+τ (β
∗) ,

T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t

#0
d→ N(0, I2),

from which the theorem follows. Direct calculations show that¡
T
nVT

¢−1/2
n−1/2

hPT−τ
t=m SLt+τ (β

∗) ,
PT−τ

t=m E
¡
D∗t+τ

¢
B∗tH

∗
t

i0
= V

−1/2
T T−1/2

hPT
t=1w

L
t L

∗
t ,
PT

t=1w
h∗
t h∗t

i0
,

where wh∗
t equals wh with bβt, Bt, Dt+τ replaced respectively by β∗, B∗t and E(D∗t+τ ). Under H0,

we have T−1/2
PT

t=1w
L
t L

∗
t = T−1/2

PT
t=1w

L
t
eL∗t , since T−1/2PT

t=1w
L
t E (L

∗
t )T

−1/2

E
³
n−1

PT−τ
t=m SLt+τ (β

∗)
´
= 0. We show that

V
∗−1/2
T T−1/2

"
TX
t=1

wL
t
eL∗t , TX

t=1

wh∗
t h∗t

#0
d→ N(0, I2),

where V ∗T = var

µ
T−1/2

hPT
t=1w

L
t
eL∗t ,PT

t=1w
h∗
t h∗t

i0¶
. The result follows from the fact that VT −

V ∗T
p→ 0, due to consistency of bβt for β∗ under H0. We verify that the zero-mean vector sequence

{
h
V
∗−1/2
T wL

t
eL∗t , V ∗−1/2T wh∗

t h∗t

i0
}Tt=1 satisfies the conditions of Wooldridge and White’s (1988) Cen-

tral Limit Theorem for mixing processes. Since Zt ≡
h
V
∗−1/2
T wL

t
eL∗t , V ∗−1/2T wh∗

t h∗t

i
is a function

of only a finite number of leads and lags of Wt, it follows from Lemma 2.1 of White and Do-

mowitz (1984) that it is mixing of the same size as Wt. For the first component of Zt, we have

E|V ∗−1/2T wL
t
eL∗t |2r <∞ by assumption A4 and by the fact that V ∗T is p.d. and |wL

t | <∞ for all t (for
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the fixed and rolling schemes, this follows from assumption A7; for the recursive scheme, it follows

from the fact that am,j ≤ am,0 → ln(1+π) <∞, as shown in the proof of Lemma 12). For the sec-

ond component of Zt, writing wh∗
t = T−1

PT
j=1E

³
∂L∗j

´
Pt,j - using similar reasonings as those in

the proof of Lemma 11-(a) - we have E|V ∗−1/2T wh∗
t h∗t |2r = E|V ∗−1/2T T−1

PT
j=1E

³
∂L∗j

´
Pt,jh

∗
t |2r ≡

E|λth∗t |2r. Note that |λt,i| <∞ for all t, i, by assumption A5’, by Pt,j having bounded components

(as shown in the proof of Lemma 11-(a)) and by V ∗T p.d. Further, by Minkowski’s inequality,

E|V ∗−1/2T wh∗
t h∗t |2r = E|λ0th∗t |2r = E|

qX
i=1

λt,ih
∗
t,i|2r ≤ [

qX
i=1

|λt,i|(E|h∗t,i|2r)1/2r]2r <∞

by assumption A4. This implies that V ∗−1/2T T−1/2
hPT

t=1w
L
t
eL∗t ,PT

t=1w
h∗
t h∗t

i0 d→ N(0, I2). The

desired result then follows from consistency of VT for V ∗T due to bβt − β∗
p→ 0 under H0.

Proof of Theorem 2. Given A5, E
¡
D∗t+τ

¢
= E (∂SLt+τ (β

∗)/∂β) = E (∂Lt+τ (β
∗)/∂β) −

E
¡
∂Lt(β

∗)/∂β
¢
= 0, expression (27) reduces to n−1/2

PT−τ
t=m [SLt+τ (β

∗)−E (SLt+τ (β
∗))]+op (1) .

The result then follows from reasonings analogous to those in the proof of Proposition 10 and from

Lemma 12.

Lemma 13 For am,j as defined in Algorithm 1, we have: (i) am,j ' ln(m+ n − 1/ (m+ j)); (ii)

n−1
Pn−1

j=τ am,j ' 1− π−1 ln(1 + π); (iii) n−1
Pn−1

j=τ a
2
m,j ' 2

£
1− π−1 ln(1 + π)

¤
− π−1 ln(1 + π).

Proof of Lemma 13. (i) am,j =
Pn−1

i=j (m+ i)−1 '
R n−1
j (m + x)−1dx = ln(m + n −

1/ (m+ j)); (ii) n−1
Pn−1

j=τ am,j ' n−1
R n−1
τ ln (m+ n− 1/ (m+ x)) dx =

n−1 [n− 1− τ − (m− τ) ln(m+ n− 1/ (m+ τ))]→ 1− π−1 ln(1 + π);

(iii) n−1
Pn−1

j=τ a
2
m,j ' n−1

R n−1
τ ln2 (m+ n− 1/ (m+ x)) dx =

n−1
£
2(n− τ)− 2(m+ τ) ln(m+ n− 1/ (m+ τ))− (m+ τ) ln2(m+ n− 1/ (m+ τ))

¤
→ 2

£
1− π−1 ln(1 + π)

¤
− π−1 ln(1 + π).

Proof of Corollary 3. We show that lim var(n−1/2
PT

t=1w
L
t
eL∗t ) = λ∗

P∞
j=−∞ Γj , where

λ∗ = 1 + π for the fixed scheme; λ∗ = 1− (1/3)π2 for the rolling (n < m) scheme; λ∗ = (2/3)π−1

for the rolling (n ≥ m) scheme; λ∗ = 1 for the recursive scheme. The desired result then follows

from λSLL
n being a consistent estimator of λ∗

P∞
j=−∞ Γj under H0. For conciseness, we focus on the

recursive scheme. As shown in the proof of Lemma 12, var(n−1/2
PT

t=1w
L
t
eL∗t ) =P4

i=1 var(Ai).We

have var(A1) = (m/n) a2m,0var(m
−1/2Pm

t=1
eL∗t ) and thus lim var(A1) = π−1 ln(1 + π)

P∞
j=−∞ Γj

by Lemma 13-(i). Further, var (A2) = n−1var
³
am,1

eL∗m+1 + . . .+ am,τ−1eL∗m+τ−1´ → 0 since

τ is fixed. For A3, it follows from West (1996), pg. 1082-1083, (with (1 − am,j) substitut-

ing am,j) that var(A3) = n−1d0
Pn−2

j=−n+2 Γj + o(1), where d0 =
Pn−1

j=τ (1 − am,j)
2. By Lemma

13, n−1d0 = (n− τ) /n − 2n−1
Pn−1

j=τ am,j + n−1
Pn−1

j=τ a
2
m,j → 1 − π−1 ln(1 + π), and thus lim

var(A3) =
£
1− π−1 ln(1 + π)

¤P∞
j=−∞ Γj . Finally, var(A4) = n−1var(eLT−τ+1 + . . . + eLT ) → 0
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since τ is fixed. In sum, we have var(n−1/2
PT

t=1w
L
t
eL∗t ) =P∞

j=−∞ Γj and thus λ
∗ = 1. The proofs

for the fixed and rolling schemes follow from similar reasonings.

Proof of Proposition 4. A mean value expansion of n−1/2
PT−τ

t=m SLt+τ (bβt) ≡
n−1/2

PT−τ
t=m

h
Lt+τ

³bβt´− Lt

³bβt´i around β∗t gives:

n−1/2
T−τX
t=m

SLt+τ (bβt) = n−1/2
T−τX
t=m

SLt+τ (β
∗
t ) + n−1/2

T−τX
t=m

µ
∂Lt+τ (β

∗
t )

∂β
− ∂Lt (β

∗
t )

∂β

¶³bβt − β∗t

´
+

+.5n−1/2
T−τX
t=m

³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´
(28)

where bβt is an intermediate point between β∗t and bβt. Note also that:
Lt+τ (β

∗
t ) = Lt+τ

¡
β∗t+τ

¢
+

∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
+ (29)

+.5
¡
β∗t − β∗t+τ

¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢

Lj (β
∗
t ) = Lj

¡
β∗j
¢
+

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢
+ (30)

+.5
¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢
where β∗t+τ is an intermediate point between β

∗
t and β

∗
t+τ , and β

∗
j is an intermediate point between

β∗t and β∗j . From (29) and (30) above, it follows that

SLt+τ (β
∗
t ) = Lt+τ

¡
β∗t+τ

¢
−
X

j
Lj

¡
β∗j
¢
+

+
∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
−
X

j

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢
+.5

⎡⎣¡β∗t − β∗t+τ
¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢⎤⎦ (31)

−.5
X

j

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢
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Substituting (31) into (28) gives:

n−1/2
T−τX
t=m

SLt+τ (bβt) = n−1/2
T−τX
t=m

µ
Lt+τ

¡
β∗t+τ

¢
−
X

j
Lj

¡
β∗j
¢¶

(32)

+n−1/2
T−τX
t=m

"
∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
−
X

j

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢#

+.5n−1/2
T−τX
t=m

⎡⎣¡β∗t − β∗t+τ
¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢

−
X

j

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢⎤⎦
+n−1/2

T−τX
t=m

µ
∂Lt+τ (β

∗
t )

∂β
− ∂Lt (β

∗
t )

∂β

¶³bβt − β∗t

´
+.5n−1/2

T−τX
t=m

³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´
Note that, since 0 = ∂Lt

³bβt´ /∂β = ∂Lt (β∗t ) /∂β +
³
∂2Lt(bβt)/∂β∂β0´³bβt − β∗t

´
, then

∂Lt+τ (β
∗
t ) /∂β − ∂Lt (β

∗
t ) /∂β = ∂Lt+τ (β

∗
t ) /∂β −∂

¡
Lt (β

∗
t )− Lt (β∗t )

¢
/∂β+³bβt − β∗t

´0 ³
∂2Lt(bβt)/∂β∂β0´. Therefore, by taking expectations of (32), we have (8).

Proof of Proposition 5. 1. Consider first Elliott and Muller’s (2006) qLL test, where

qLL = bv0 [Ga −Me] bv, bv = V
−1/2
X ΞMy and Ga and Me are deterministic matrices.16 Note that,

when ∆β = ∆μX = 0, the DGP satisfies Elliott and Muller’s (2006) Conditions 2 and 3. Their The-

orem 4 shows that qLL involves functionals of T−1/2
h
e0[sT ], 0

0
[(1−s)T ]

i £
IT ⊗ V −1X

¤
Ξ0My, where VX =

E
³
T−1

PT
j=1X

2
t ε
2
t

´
, which in the case∆β = ∆μX = 0 becomes T−1/2

h
e0[sT ], 0

0
[(1−s)T ]

i £
IT ⊗ V −1X

¤
Ξ0Mε⇒

ξ, so that the asymptotic distribution of qLL under the null hypothesis follows directly by apply-

ing their Lemma 2. Under our two scenarios we have: (a) My = MΞ (∆βιT + βeT ) + Mε =

MΞ∆βιT +Mε, where ιT is a (T × 1) vector s.t. its t-th component is one if t ≥ m and zero

otherwise. The result follows by using results similar to those in Rossi (2005, Section 4). (b)

My =MΞβeT +Mε =Mε. The result follows from

ξT = T−1/2V −1X

[sT ]X
j=1

Xjεj − T−1V −1X

[sT ]X
j=1

X2
j

⎛⎝T−1
TX
j=1

X2
j

⎞⎠−1 T−1/2 TX
j=1

Xjεj

⇒ V −1X

Z s

0
[σX + gX (r)] dB(r)

−V −1X

µZ s

0

£
σ2X + g2X (r)

¤
dr

¶µZ 1

0

£
σ2X + g2X (r)

¤
dr

¶−1µZ 1

0
[σX + gX (r)] dB(r)

¶
,

16 In order to develop intuition, we abstract from the fact that VX should be estimated, and we standardize all

variances to equal one.
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by applying Lemma 1 in Cavaliere (2004) and results from the proof of Theorem 4 in Elliott and

Muller (2006). Since in this case VX = σ2X +
R 1
0 g

2
X (s) ds, the limiting behavior of ξT becomes the

same as Elliott and Muller (2006) if ∆μX = 0 as:

V −1X

Z s

0
[σX + gX (r)] dB(r)− V −1X

µZ s

0

£
σ2X + g2X (r)

¤
dr

¶

×
µZ 1

0

£
σ2X + g2X (r)

¤
dr

¶−1µZ 1

0
[σX + gX (r)] dB(r)

¶
= V −1X σX

∙Z s

0
dB(r)− s

Z 1

0
dB(r)

¸
= V −1X σX [B (s)− sB (1)] .

2. Using the decomposition of the forecast breakdown test in Proposition 5 we have: (a) since the

variance of εt is constant, the “other instabilities” component is zero; since E (∂Lt (β
∗
t ) /∂β) = 0 ∀t,

the “parameter instabilities I” component is zero; all “estimation uncertainty” components vanish

asymptotically, which means that only the “parameter instabilities II” component remains, which

is: (1/2)n−1/2
PT−τ

t=m E[(β − (β + n−α∆β))0 σ2X (β − (β + n−α∆β)) ] = (1/2)n1/2−2ασ2X∆β
2. This

components does not vanish asymptotically provided α ≤ 1/4. (b) The "other instabilities" term
does not depend on Xt; the "parameter instabilities" components are unaffected because β∗t = β

∀t; since ∂Lt+τ (β) /∂β = −2Xt+τ

¡
Yt+τ −X 0

t+τβ
¢
is uncorrelated with

³bβt − β
´
, the “estimation

uncertainty I” component is zero. Given that the loss function for estimation and evaluation is the

same, the only component that (b) will affect is "estimation uncertainty II", which becomes:

n1/2E
³bβm − β

´0Ã
2m−1

mX
s=1

X2
s

!³bβm − β
´

= 2(n1/2/m)E

Ã
m−1

mX
s=1

X2
s

!−1Ã
m−1/2

mX
s=1

Xsεs

!2

Since
¡
m−1

Pm
s=1XsX

0
s

¢−1 ¡
m−1/2

Pm
s=1Xsεs

¢2 ⇒ ³R 1/(1+π)
0

£
σ2X + g2X (r)

¤
dr
´−1

×
³R 1/(1+π)
0 [σX + gX (r)] dB(r)

´2
, the component vanishes asymptotically provided (n1/2/m)→ 0.

Proof of Proposition 6. Since E (∂Lt (βt) /∂β − ∂Lt (βt) /∂β) = 0 ∀t, the “parameter in-
stabilities I” component is zero. The “parameter instabilities II” component is

(1/2)n−1/2
PT−τ

t=m E
h¡
β −

¡
β + n−1/4∆β

¢¢0
J
¡
β −

¡
β + n−1/4∆β

¢¢i
= (1/2)∆β0J∆β and the “other

instabilities” component is n−1/2
PT−τ

t=m E
³
ε2t+τ −Σjε2j

´−1/2
= n−1/2

PT−τ
t=m(

¡
σ2 + n−1/2∆σ2

¢
/ (1− α)

− Σjσ2/ (1− α)) = n−1/2
PT−τ

t=m n−1/2∆σ2/ (1− α) = ∆σ2/ (1− α) . Since ∂Lt+τ (βt) /∂β =

−2Xt+τ

¡
Yt+τ −X 0

t+τβt
¢
is uncorrelated with

³bβt − βt

´
, the “estimation uncertainty I” component

is zero. Since E
¡
∂2Lj (β) /∂β∂β

0¢ = E
¡
∂2Lj (β) /∂β∂β0

¢
= 2J ∀j, the “estimation uncertainty
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III” component in (8) is also zero. Finally, the “estimation uncertainty II” component equals

n1/2E
³bβm − β

´0Ã
2m−1

mX
s=1

XsX
0
s

!³bβm − β
´

= 2(n1/2/m)E

Ã
m−1/2

mX
s=1

Xsεs

!0Ã
m−1

mX
s=1

XsX
0
s

!−1Ã
m−1/2

mX
s=1

Xsεs

!
' 2

³
n1/2/m

´
σ2k/ (1− α) .

since (1− α)σ−2
¡
m−1/2

Pm
s=1Xsεs

¢0 ¡
m−1

Pm
s=1XsX

0
s

¢−1 ¡
m−1/2

Pm
s=1Xsεs

¢
' χ2k (strictly speak-

ing, the equality holds under a normality assumption on the ε0s).

Proof of Proposition 7. We focus on the recursive scheme and, for simplicity, assume

that zt is scalar. Let bδ∗n ≡
Ã
1 −z0S−1zz
0 S−1zz

!Ã
SL

∗
m,n

n−1
PT−τ

t=m ezt(SL∗t+τ − SL
∗
m,n)

!
. Given B2 and B3,

var
³
n1/2bδ∗n´ =

Ã
1 −E (zt)0Σ−1zz
0 Σ−1zz

!
var

Ã
n−1/2

PT−τ
t=m

¡
SL∗t+τ −E

¡
SL∗t+τ

¢¢
n−1/2

PT−τ
t=m ezt ¡SL∗t+τ −E

¡
SL∗t+τ

¢¢ !Ã 1 −E (zt)0Σ−1zz
0 Σ−1zz

!0
+op (1). As shown in Corollary 3, the upper diagonal element σ2m,n of var

³
n1/2bδ∗n´ can be con-

sistently estimated under H0 by σ̂2m,n, given in the same corollary. Letting eLt ≡ Lt−E (Lt) , the re-

maining elements are as follows: (I) var
³
n−1/2

PT−τ
t=m ezt ¡SL∗t+τ −E

¡
SL∗t+τ

¢¢´
= var

³
n−1/2

PT−τ
t=m ezteL∗t+τ´

+var
³
n−1/2

PT−τ
t=m ezt ³t−1Pt

j=1
eL∗j´´−2cov ³n−1/2PT−τ

t=m ezteL∗t+τ , n−1/2PT−τ
t=m ezt ³t−1Pt

j=1
eL∗j´´ .

Each element of the second term goes to zero by arguments similar to those in Lemma A4(a) of West

(1994) under Assumption B1. The typical element of the third term is n−1
PT−τ

t=m

PT−τ
s=m

Pt
j=1 s

−1eκ4 (j, s, τ),
where eκ4 (j, s, τ) ≡ E

heziteL∗t+τ eL∗jezisi is the fourth order cumulant, and τ is fixed. Therefore,¯̄̄
n−1

PT−τ
t=m

PT−τ
s=m

Pt
j=1 s

−1eκ4 (j, s, τ)¯̄̄≤ n−1
PT−τ

t=mm−1
PT−τ

s=m

Pt
j=1 |eκ4 (j, s, τ)| ≤ m−1

P∞
s=−∞

P∞
j=−∞

|eκ4 (j, s, τ)|→
p
0 by Assumptions A7 and B4. Hence, var

³
n−1/2

PT−τ
t=m ezt ¡SL∗t+τ −E

¡
SL∗t+τ

¢¢´
→
pP∞

j=−∞E
³ezteL∗t+τ eL∗t+τ−jezt−j´.

(II) cov
³
n−1/2

PT−τ
t=m

¡
SL∗t+τ −E

¡
SL∗t+τ

¢¢
, n−1/2

PT−τ
t=m ezt ¡SL∗t+τ −E

¡
SL∗t+τ

¢¢´
= A1n +A2n −

A3n −A4n, where A1n ≡ n−1cov
³PT−τ

t=m
eL∗t+τ ,PT−τ

t=m ezteL∗t+τ´, A2n ≡ n−1cov(
PT−τ

t=m t−1
Pt

j=1
eL∗j ,PT−τ

t=m t−1
Pt

j=1 ezteL∗j ), A3n ≡ n−1cov
³PT−τ

t=m t−1
Pt

j=1
eL∗j ,PT−τ

t=m ezteL∗t+τ´, A4n ≡ n−1cov(
PT−τ

t=m
eL∗t+τ ,PT−τ

t=m

Pt
j=1 t

−1Pt
j=1 ezteL∗j ). Consider each term separately: (i)A1n = n−1

PT−τ
t=m

PT−τ
s=mE

³eL∗t+τez0seL∗s+τ´→pP∞
j=−∞E

³eL∗t+τez0t−j eL∗t+τ−j´; (ii) |A2n| = ¯̄̄n−1PT−τ
t=m

Pt
j=1

PT−τ
s=m

Ps
k=1 s

−1t−1E
³eL∗jez0seL∗k´¯̄̄

≤ n−1
PT−τ

t=m

Pt
j=1

PT−τ
s=m

Ps
k=1 s

−1t−1
¯̄̄
E
³eL∗jez0seL∗k´¯̄̄ ≤ n−1

PT−τ
t=m

PT−τ
s=mm−2

Pt
j=1

Ps
k=1

¯̄̄
E
³eL∗jez0seL∗k´¯̄̄ ≤

n−1
³PT−τ

t=m

PT−τ
s=mm−2

´³P∞
j=−∞

P∞
k=−∞

¯̄̄
E
³eL∗jez0seL∗k´¯̄̄´ →p 0 by Assumptions A7 and B4; (iii)

A3n = n−1
PT−τ

t=m

Pt
j=1

PT−τ
s=m t−1E

³eL∗jez0seL∗s+τ´→p £1− π−1 ln (1 + π)
¤P∞

j=−∞E
³eL∗t+τez0t−j eL∗t+τ−j´

from similar reasonings to those in Lemma A6 inWest (1996); (iv) Letting eκ3 (j, s) ≡ E
³eL∗t+τez0seL∗j´,

38



we have |A4n| =
¯̄̄
n−1

PT−τ
t=m

PT−τ
s=m

Ps
j=1 s

−1E
³eL∗t+τez0seL∗j´¯̄̄ ≤

n−1
PT−τ

s=m s−1
PT−τ

t=m

Ps
j=1

¯̄̄
E
³eL∗t+τez0seL∗j´¯̄̄ ≤ m−1

P∞
s=−∞

P∞
j=−∞ |eκ3 (j, s) | →p 0 by Assumption

B4 and Lemma A1(a) of West (1996).

Therefore, cov
³
n−1/2

PT−τ
t=m

¡
SL∗t+τ −E

¡
SL∗t+τ

¢¢
, n−1/2

PT−τ
t=m ezt ¡SL∗t+τ −E

¡
SL∗t+τ

¢¢´
→
p

P∞
j=−∞E

³eL∗t+τez0t−j eL∗t+τ−j´ − £1− π−1 ln (1 + π)
¤P∞

j=−∞E
³eL∗t+τez0t−j eL∗t+τ−j´ =£

π−1 ln (1 + π)
¤P∞

j=−∞E
³eL∗t+τez0t−j eL∗t+τ−j´ . We have therefore shown that

Ωm,n ≡ var
³
n1/2bδ∗n´ =

Ã
1 −E (zt)0Σ−1zz
0 Σ−1zz

!Ã
σ2m,n ΛΣL∗,zL∗

ΛΣ
zL∗,L∗ Σ

zL∗,zL∗

!Ã
1 −E (zt)0Σ−1zz
0 Σ−1zz

!0

where Λ =
£
π−1 ln (1 + π)

¤
, Σ

L∗,zL∗ ≡
P∞

j=−∞E
³eL∗t+τez0t−j eL∗t+τ−j´ , ΣzL∗,zL∗ ≡P∞

j=−∞E
³ezteL∗t+τ eL∗t+τ−jezt−j´. Consistency of bΩm,n for Ωm,n and the asymptotic distribution

under H0 then follow from reasonings analogous to those in the proof of Corollary 3.

Proof of Corollary 8. When the losses are conditionally homoskedastic, then A1n →
p
0, and

A3n →
p
0 in the proof of Proposition 7, which implies ΣzL∗,L∗ = 0. Thus,

Ωm,n =

Ã
1 −E (zt)0Σ−1zz
0 Σ−1zz

!Ã
σ2m,n 0

0 ΣzL∗,zL∗

!Ã
1 −E (zt)0Σ−1zz
0 Σ−1zz

!0

=

Ã
σ2m,n +E (zt)

0Σ−1zz ΣzL∗,zL∗Σ
−1
zz E (zt) −E (zt)

0Σ−1zz ΣzL∗,zL∗Σ
−1
zz

−Σ−1zz ΣzL∗,zL∗Σ
−1
zz E (zt) Σ−1zz ΣzL∗,zL∗Σ

−1
zz

!
.

Confidence bands for SLt+τ can be easily obtained from

[1, z0t]
0 bδ|zt ∼ N([1, z0t]

0 δ, σ2m,n+[zt −E (zt)]
0Σ−1zz ΣzLΣ

−1
zz [zt −E (zt)]). If furthermore data are i.i.d.,

Σ−1zz ΣzLΣ
−1
zz = Σ

−1
zz γ

LL
0 .
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Figure 1(a). Size of FB and EM tests. Break in regressor at time .75T
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Figure 1(b). Size of FB and EM tests. Break in regressor at time .95T
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Figure 2(a). Power functions
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Figure 2(b). Power functions
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Figure 2c. Power functions
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Figure 3. Fitted surprise losses
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Table 1(a). Size of FB test. Nominal size .05

MC1

tm,n,τ tstatm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .113 .144 .097 .064 .096 .058

50 100 .152 .297 .121 .077 .244 .071

50 150 .168 .492 .128 .080 .440 .075

100 50 .072 .071 .065 .049 .052 .047

100 100 .096 .109 .081 .057 .075 .055

100 150 .101 .143 .086 .060 .117 .059

150 50 .044 .046 .040 .036 .038 .035

150 100 .064 .072 .058 .046 .052 .043

150 150 .069 .087 .065 .047 .066 .046

MC2

tm,n,τ tstatm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .122 .159 .111 .047 .093 .051

50 100 .017 .276 .143 .047 .191 .054

50 150 .197 .386 .143 .040 .248 .051

100 50 .062 .075 .062 .035 .044 .036

100 100 .092 .100 .085 .035 .051 .035

100 150 .116 .133 .102 .036 .087 .041

150 50 .042 .046 .041 .033 .035 .032

150 100 .062 .071 .060 .030 .035 .029

150 150 .076 .085 .069 .029 .043 .031

Notes to Table 1(a). The table reports rejection frequencies over 5000 Monte Carlo replications of the

forecast breakdown test of Section 2.2, using either the asymptotic variance estimator of Algorithm 1 (tm,n,τ )

or the estimator of Corollary 3
¡
tstatm,n,τ

¢
, both tests implemented with either a fixed, rolling or recursive

scheme. The experiment designs MC1 and MC2 are described in Section 7.1 and m and n denote in-sample

and out-of-sample sizes, respectively.
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Table 1(b). Size of overfitting-corrected FB test. Nominal size .05

MC1

tcm,n,τ tstat,cm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .064 .053 .053 .031 .031 .028

50 100 .085 .056 .066 .031 .042 .032

50 150 .095 .068 .065 .034 .053 .029

100 50 .043 .040 .038 .029 .030 .027

100 100 .057 .057 .052 .030 .036 .031

100 150 .068 .055 .056 .032 .041 .033

150 50 .031 .030 .027 .024 .024 .022

150 100 .050 .047 .046 .032 .031 .030

150 150 .058 .053 .053 .038 .035 .034

MC2

tcm,n,τ tstat,cm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .097 .106 .086 .032 .053 .039

50 100 .130 .142 .107 .026 .094 .035

50 150 .147 .184 .107 .022 .119 .030

100 50 .053 .059 .049 .033 .038 .033

100 100 .081 .081 .074 .029 .039 .028

100 150 .109 .092 .092 .029 .062 .034

150 50 .038 .041 .037 .032 .036 .032

150 100 .053 .063 .051 .026 .032 .027

150 150 .079 .079 .074 .029 .038 .029

Notes to Table 1(b). The table reports rejection frequencies over 5000 Monte Carlo replications of

the overfitting-corrected forecast breakdown (FB) test of Section 4, using either the asymptotic variance

estimator of Algorithm 1 (tcm,n,τ ) or the estimator of Corollary 3
³
tstat,cm,n,τ

´
, both tests implemented with

either a fixed, rolling or recursive scheme. The experiment designs MC1 and MC2 are described in Section

7.1 and m and n denote in-sample and out-of-sample sizes, respectively.
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Table 2. Size of forecast rationality tests. Nominal size .05

Unadjusted Adjusted

m n Fixed Rol. Rec. Fixed Rol. Rec.

tδ0

50 50 0.172 0.021 0.052 0.054 0.053 0.052

50 100 0.266 0.002 0.050 0.056 0.053 0.050

50 150 0.321 0.000 0.048 0.052 0.058 0.048

100 50 0.111 0.044 0.056 0.056 0.052 0.055

100 100 0.172 0.018 0.053 0.053 0.051 0.053

100 150 0.215 0.004 0.050 0.051 0.048 0.050

150 50 0.101 0.053 0.059 0.061 0.059 0.061

150 100 0.136 0.037 0.054 0.055 0.055 0.054

150 150 0.177 0.016 0.050 0.052 0.047 0.049

tδ1

50 50 0.060 0.062 0.061 0.064 0.062 0.062

50 100 0.055 0.053 0.054 0.051 0.053 0.051

50 150 0.048 0.050 0.049 0.049 0.050 0.049

100 50 0.055 0.054 0.054 0.052 0.052 0.052

100 100 0.056 0.056 0.056 0.056 0.057 0.057

100 150 0.045 0.048 0.045 0.049 0.049 0.049

150 50 0.062 0.062 0.062 0.061 0.060 0.061

150 100 0.057 0.056 0.057 0.057 0.056 0.057

150 150 0.051 0.051 0.050 0.050 0.050 0.051

Wald

50 50 0.148 0.040 0.059 0.065 0.071 0.069

50 100 0.220 0.024 0.058 0.055 0.054 0.057

50 150 0.276 0.017 0.051 0.050 0.053 0.048

100 50 0.102 0.050 0.058 0.066 0.061 0.063

100 100 0.146 0.035 0.057 0.057 0.057 0.056

100 150 0.179 0.018 0.048 0.048 0.049 0.048

150 50 0.097 0.062 0.066 0.068 0.072 0.069

150 100 0.115 0.047 0.058 0.060 0.061 0.059

150 150 0.148 0.031 0.053 0.048 0.053 0.052

Notes to Table 2. The table reports rejection frequencies over 5000 Monte Carlo replications of forecast

rationality tests. We consider t-tests of significance of the intercept (tδ0) and the slope coefficient (tδ1),

as well as a test of joint significance of both coefficients (Wald) in the forecast rationality regression (12).
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Forecast errors are obtained using either a fixed, rolling or recursive scheme and in each case the tests

are implemented using either the usual OLS variance estimator (“unadjusted”) or the asymptotic variance

estimator of Corollary 8 (“adjusted”). The experiment design is described in Section 7.1 andm and n denote

in-sample and out-of-sample sizes, respectively.

Table 3. P-values of forecast breakdown test

Real-time data Revised data

qu qπ tm,n,τ tm,n,τ

τ = 1

1 1 - - 0.004

1 3 - - 0.021

3 1 - - 0.009

3 3 - - 0.039

BIC - - 0.021

τ = 3

1 1 0.000 0.256

1 3 0.562 0.326

3 1 0.450 0.434

3 3 0.572 0.524

BIC 0.874 0.475

τ = 12

1 1 0.001 0.111

1 3 0.000 0.312

3 1 0.002 0.756

3 3 0.001 0.948

BIC 0.001 0.591

Notes to Table 3. The table reports p-values for the forecast breakdown test (tm,n,τ ) of Theorem 2. We

used a rolling scheme with m = 60, n = 95 for real-time data, and m = 241 and T = 546 for revised data.

The forecast horizons are τ = 1, 3 and 12 months (since real-time data are only available at a quarterly

frequency, in this case we only report results for τ = 3 months and τ = 12 months). qu and qπ are the

number of lags used for unemployment and for inflation, respectively. The row labeled “BIC” reports results

for the case in which the lag length is determined by the BIC with a maximum of three lags.
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Table 4. Explaining forecast breakdowns by monetary policy

changes and inflation variance

δ1 Wm,n,τ

τ qu qπ zt = bβt zt = bγt zt = bρt zt = bσ2π,t zt = (bβt, bγt,bρt)0
1 1 1 -2.285 1.828 19.770 -1.019 9.533

(0.156) (0.018) (0.795) (0.024) (0.023)

1 3 -2.348 1.612 6.484 -0.892 7.386

(0.159) (0.037) (0.933) (0.051) (0.061)

3 1 -2.306 1.712 13.957 -0.980 8.397

(0.148) (0.028) (0.856) (0.031) (0.039)

3 3 -2.354 1.513 1.977 -0.866 6.623

(0.153) (0.050) (0.980) (0.059) (0.085)

BIC -2.187 1.654 6.272 -0.855 7.286

(0.185) (0.046) (0.938) (0.071) (0.063)

3 1 1 -1.806 -0.404 -114.2 -1.713 1.985

(0.531) (0.785) (0.249) (0.000) (0.576)

1 3 -1.837 -0.267 -122.4 -1.716 2.077

(0.519) (0.858) (0.238) (0.000) (0.557)

3 1 -1.651 -0.568 -128.8 -1.705 2.337

(0.575) (0.706) (0.201) (0.010) (0.506)

3 3 -1.657 -0.415 -136.1 -1.702 2.386

(0.570) (0.782) (0.195) (0.000) (0.496)

BIC -1.608 -0.642 -141.4 -1.613 2.602

(0.590) (0.669) (0.175) (0.001) (0.457)

12 1 1 -1.304 -0.105 -199.5 -1.876 6.268

(0.578) (0.942) (0.040) (0.000) (0.099)

1 3 -1.639 -0.417 -192.0 -1.641 6.778

(0.480) (0.776) (0.032) (0.000) (0.079)

3 1 -0.679 -0.863 -256.5 -1.878 7.162

(0.797) (0.592) (0.026) (0.000) (0.067)

3 3 -0.960 -1.108 -250.9 -1.661 8.445

(0.708) (0.488) (0.017) (0.000) (0.038)

BIC -0.903 -0.789 -246.5 -1.810 7.308

(0.729) (0.620) (0.024) (0.000) (0.063)
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Notes to Table 4. The table reports the coefficient estimates of δ0 and δ1 in equation (21), for different

choices of zt. bβt, bγt and bρt are rolling estimates of the structural parameters in the monetary policy reaction
function of the Fed described in 20, and bσ2π,t is a rolling estimate of volatility of inflation changes. The

numbers within parentheses are the p-value of the test of significance of the individual coefficient. The last

column reports the Wald test statistic Wm,n,τ introduced in Section 5 (with a HAC bandwidth equal to

n1/3) and its associated p-value (in parentheses). qu and qπ are, respectively, the number of lags used for

unemployment and for inflation. Rows labeled “BIC” report results for the case in which the lag length is

determined by the BIC with a maximum of three lags. τ is the forecast horizon.
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