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Abstract.

This paper is a comprehensive comparison of existing methods for construct-
ing confidence bands for univariate impulse response functions in the presence of
high persistence. Monte Carlo results show that Kilian (1998a), Wright (2000),
Gospodinov (2004) and Pesavento and Rossi (2005) have favorable coverage prop-
erties, although they differ in terms of robustness at various horizons, median
unbiasedness, and reliability in the possible presence of a unit or mildly explosive
root. On the other hand, methods like Runkle’s (1987) bootstrap, Andrews and
Chen (1994), and regressions in levels or first differences (even when based on
pre-tests) may not have accurate coverage properties. The paper makes recom-
mendations as to the appropriateness of each method in empirical work.
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1. Introduction

Impulse response functions (IRFs) are the most commonly used tool to evaluate

the effect of shocks on macroeconomic time series. Confidence intervals (CIs) for

IRFs are commonly based on L
..
utkepohl’s (1990) asymptotic normal approximation or

bootstrap approximations to that distribution (see Runkle (1987) and Kilian (1998a,

1999)). The properties of these traditional approximations, however, may crucially

depend on whether the series are assumed to be stationary or integrated. The objec-

tive of this paper is to provide a comprehensive comparison of methods available in

the literature, and to give constructive recommendations to empirical macroecono-

mists who need to estimate IRFs and construct their confidence bands in the presence

of a root close to unity.

Until recently, many researchers dealing with the possibility of a root close to

unity chose to specify autoregressions either in levels or first differences. However,

even when standard methods of inference are justified asymptotically, in practice

confidence bands may have poor coverage properties in small samples in the presence

of highly persistent variables, as shown by Kilian and Chang (2000), Ashley and

Verbrugge (2001), Rossi (2005), and Pesavento and Rossi (2005). This literature

shows that there are cases when none of the traditional methods applied to regressions

in levels or first differences are a good choice. Unit root pre-tests do not solve the

problem, as the actual coverage of IRF bands obtained after a pre-test can be quite

different from the nominal one (see Cavanagh et al. (1995) and Elliott (1998) for a
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discussion of the theoretical reasons behind the poor performance of unit root pre-

tests). We will show in Section 3 that even unit root pre-tests with high power will

not result in inference with the correct rejection probabilities.

It is well known that most macroeconomic variables have roots that are close to

unity, so it is unsettling that traditional methods may fail exactly in the situations

typical of most macroeconomic applications. Given the deficiencies of traditional

methods, the recent literature has moved in the direction of devising methods that

are robust to the presence of variables with roots equal or slightly less than one. In

the context of the IRF, in particular, there have been some advances in the attempt

to solve the problem of constructing confidence intervals with coverage rates that

are close or bounded by the nominal rate even when variables are highly persistent.

Andrews and Chen (1994) propose a median unbiased method to estimate the pa-

rameters of an AR process from which median unbiased estimates for the IRFs can

be computed (see also Andrews, 1993). Alternative methods based on bootstrap

approximations are recommended by Kilian (1998a) and Hansen (1999). Whereas

the former attempts to extend the range of statistical models for which the bootstrap

works, the latter proposes a grid bootstrap method for local to unity processes. More

recently, Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2005) have

suggested the use of local-to-unity devices to obtain better approximations to the

IRFs’ distribution. Wright (2000) proposes to construct confidence bands based on

Bonferroni bounds, while Gospodinov (2004) relies on the inversion of a likelihood
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ratio test in which the constrained estimate exploits a null hypothesis on the value

of the IRF at some horizon of interest. Both Wright (2000) and Gospodinov (2004)

focus on univariate IRFs. Finally, Pesavento and Rossi (2005) derive analytic ap-

proximations to multivariate IRFs CI by using local-to-unity approximations at long

horizons.

Given the diversity of recently developed methods, the empirical macroeconomist

is left with a variety of choices. But what are their relative strengths and their

weaknesses? Which method should be chosen by the researcher facing a specific

problem? This paper provides an answer to these questions by comparing existing

methods for constructing confidence intervals for univariate IRFs in the presence of

highly persistent processes. Although the currently proposed robust methods have

been used in empirical applications1 and some comparisons have been proposed by

the original authors, to our knowledge, none has provided a systematic comparison.

While the current literature agrees on the need to use robust methods for inference, it

is important that we understand the relative performance of the different approaches,

so we can provide guidance to practitioners. This paper aims at providing such a

guide.

We focus on IRFs in univariate models. Although it is common to think of IRFs

in the context of multivariate models, there are relevant empirical applications in

1Some examples are Murray and Papell (2002), Rossi (2004), Lopez, Murray and Papell (2003)
for half-life deviations from Purchasing Power Parity, and Wright (2000) for impulse response of
aggregrate output.
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univariate models. Typical examples are the evaluation of the persistence of shocks

on aggregate output (Diebold and Rudebusch, 1989, and Campbell and Mankiw,

1987) or of the effect of shocks on real exchange rates as a measure of the deviations

of the nominal exchange rates from their PPP level (see Murray and Papell,2002;

Kilian and Zha, 2002; Busetti et al., 2005, and references therein). Furthermore,

some of the methods that we compare are available only for univariate models.2

The reminder of this article is organized as follow. Section 2 briefly reviews

each of the existing methods and their implied assumptions. Section 3 compares the

coverage probabilities of the recently proposed methods with traditional approaches,

including autoregressions in levels or first differences and autoregressions based on

unit root pre-tests. Section 4 concludes.

2. Review of Robust Methods

Consider the standard scalar autoregression

a (L) yt = εt (1)

where εt is a mean zero independent and identically distributed (i.i.d.) with variance

equal to σ2, t = 1, 2, ...T , where T is the total sample size.3 For sake of simplicity of

exposition, let’s ignore deterministic terms which are irrelevant in the construction

2A comparison of some of the methods that can be generalized to the multivariate case is presented
in Pesavento and Rossi (2005).

3The i.i.d. assumption is stronger than needed, but convenient for expository purposes.
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of the impulse response function of yt. If we isolate the largest root, the process in

(1) can be equivalently written as

(1− ρL) yt = θ (L) εt, (2)

where θ (L) = 1+θ1L+θ2L
2+ ... and the roots of θ (L) are all outside the unit circle,

so there is no more than one root equal to one. Define the impulse response function

at horizon h as the effect of a shock of size σ in εt on yt+h: IRFh =
∂yt+h
∂εt

.

When the largest root in the process (2) is one or close to one, traditional approx-

imations like the delta method (whether based on analytical solutions or simulations)

or the standard bootstrap approximations may provide confidence intervals for IRFh

with poor coverage properties. Several methods have been proposed in the current

literature to deal with this problem.

To improve on the traditional bootstrap approach, Kilian (1998a) proposes a

bias-adjusted bootstrap method for constructing confidence intervals for persistent

but stationary autoregressions. Kilian (1998b) recognizes the need to account for the

small-sample bias and skewness of the small-sample distribution of the IRF estimator.

The bias-adjusted bootstrap is based on bias corrected estimates of the autoregressive

parameters. Kilian (1998a,b) shows that the bias-adjusted bootstrap provides a

significant improvement in coverage accuracy over the standard bootstrap and the

delta method. At the same time, the bias adjustment may not work well in the case

in which a deterministic trend is present, and the method is not designed for the case
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in which ρ is exactly equal to one.

As an alternative method for correcting small sample bias, Andrews and Chen

(1994) propose the use of an approximated median unbiased estimate of the coefficient

on the lagged variable in level in the ADF regression to simulate IRFs quantiles. The

CI for the IRF is obtained by simulating the IRFs based on the corrected coefficients,

and then taking the (α/2) th and (1− α/2) th quantiles of that distribution as the

end points (cfr. Murray and Papell (2001)).4

Pesavento and Rossi (2005), Wright (2000) and Gospodinov (2004) rely on local

to unity approximations of the largest root of the process to obtain approximations

that perform better in small samples. Pesavento and Rossi (2005) propose a method

that relies on a local to unity approximation to the asymptotic distribution of the

IRF. The method is implemented by recognizing that, under the premise that ρ,

(the largest root of yt) is close to one, it can be modeled as local to unity, so that

ρ = 1+c/T . Assuming that the lead time of the IRF is a fixed fraction of the sample

size, so that h
T →

T→∞
δ, the IRF can be approximated by ecδθ (1) . Although c, the

local to unity parameter, cannot be consistently estimated, methods for constructing

valid confidence intervals for c are available (e.g., Stock, 1991) by simply inverting

the ADF test for the null of ρ = 1. A confidence interval for the IRF can then

be constructed by using the confidence interval for c, say [cL, cu], and a consistent

estimate of θ (1) , as
h
ecLδ θ̂ (1) , ecUδ θ̂ (1)

i
. As stated in Pesavento and Rossi (2005),

4We are grateful to C. Murray for providing the codes to implement the Andrews and Chen’s
method.
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this method relies on the largest root being close to one and on the lead time being

large relatively to the sample size. We should then not expect this method to work

well at short horizons or when the process in (1) is strictly stationary.

Gospodinov (2004) notes that the localizing constant c in autoregressive models

can be consistently estimated under a sequence of null hypotheses that restrict the

value of the impulse response at each horizon. As in Pesavento and Rossi (2005), the

local to unity assumption together with the assumption that the lead time of the IRF

is a fixed fraction of the sample size, allows him to derive an asymptotic distribution

intended to approximate better the behavior of the LR test in models with one

persistent root. Confidence bands for the IRF at each horizon can then be constructed

by inverting the acceptance region of the LR test, LRT = T ln (SSR0/SSR) , where

SSR0 and SSR are the sum of squares of the restricted and the estimated residuals.

By construction, inverting LRT will result in one sided confidence intervals. To

construct two-sided confidence intervals, Gospodinov (2004) suggests inverting the

statistics LR±T = sgn [ψh (ρ̂)− ψh (eρ)]√LRT where sgn (·) denotes the sign of the

expression in the brackets, ψ (L) = a (L)−1 = (1− ρL)−1 θ (L), and ρ̂ and eρ are the
unrestricted and the restricted estimates respectively. As in Pesavento and Rossi

(2005), the key assumption for the validity of this approach is that ρ is close to

one. Even though the asymptotic distribution of the LR test is derived under the

assumption that h
T →

T→∞
δ, Gospodinov (2004) shows that the coverage of his one

sided LRT test is good even for short horizons. Table 2 shows that, for the two-sided
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test
¡
LR±T

¢
, the results may be sensitive to the horizon of the IRF.

Wright (2000) also relies on a local to unity approximation of the largest root

and constructs a (1− α) confidence interval for c (let’s denote it byCα) by inverting

the acceptance region of the ADF test. For each point ci in Cα, a (1− α) confidence

interval for the IRF can be computed by the delta method treating c as fixed and

running an autoregression on (1− ρiL) yt where ρi = 1 + ci
T . Let this confidence

interval be [IRFL (ci) , IRFU (ci)] . By the Bonferroni inequality, the confidence in-

terval constructed as
·
inf

ci∈Cα
IRFL (ci) , sup

ci∈Cα
IRFU (ci)

¸
has coverage that is at least

equal to 2 (1− α) − 1. By the nature of the Bonferroni inequality, Wright’s (2000)

method controls coverage in the sense that the the coverage will never be less than

the nominal one, but, as we will see in our simulations and as it is shown in Wright

(2000), it can be quite conservative. As Pesavento and Rossi’s (2005) and Gospodi-

nov’s (2004), Wright’s (2000) approach performs well only when ρ is close to one, so

that yt can be well approximated by a local to unity process.

In the next section, we compare the performance of these recent robust meth-

ods and compare them to the more traditional bootstrap and asymptotic normal

approximation. An alternative method not considered here is Hansen’s (1999) grid

bootstrap. Gospodinov (2004) and Rossi (2005) already analyzed Hansen’s (1999)

small sample properties for confidence intervals for half-lives and IRFs, and show

that the grid bootstrap is inferior in most reasonable situations. For this reason we

do not include Hansen’s methods here.
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3. Monte Carlo Evidence on Coverage Accuracy

The goal of this section is to compare the empirical coverage probabilities of the

methods described in the previous section with the traditional methods in a simple

Monte Carlo experiment. The “traditional” methods include the standard bootstrap

of Runkle (1987), and the asymptotically normal approximation of L
..
utkepohl (1991)

when the practitioner decides to run the regression in levels or in first differences. We

also consider the common procedure of deciding between levels and first differences

based on the outcome of a unit root pre-test, where the pre-test can either be the

standard ADF test or the more powerful ADF-GLS test. In this case, if the nominal

coverage rate is 0.90, we do a first stage pre-test of size 5%, and then construct

a 95% IRF confidence band in a second stage. If the two stages of the pre-test

were independent, the final coverage should be roughly 0.90. Due to the lack of

independence of the two steps, the total coverage is not 0.90, but in practice nobody

really corrects for that.

The Monte Carlo design is as follows. Let the DGP be: Πpj=1 (1− λjL) yt = �t,

where �t ∼ iidN (0, 1), λj are the possible roots of the process, and λ1 ≡ ρ = 1+c/T is

the largest root. We abstract from small sample problems associated with the choice

of the lag length (cfr. Ivanov and Kilian, 2005) by assuming that p is known. All the

methods fit an autoregression or and ADF regression (depending on the method) with

an intercept. The nominal coverage is 0.90, T = 100, and the number of Monte Carlo

replications is 5, 000 with the exception of Gospodinov’s (2004) method, which is
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computationally intensive. In the latter case, we only did 1, 000 replications. Runkle

(1987) is implemented with 2,000 bootstrap replications, whereas Kilian’s (1998a)

bias corrected bootstrap is implemented with additional 2, 000 bootstrap replications

and the “bootstrap after bootstrap” short-cut. For the levels, first difference and pre-

test-based methods, we compute the coverage by simulating the normal asymptotic

distribution of the parameters 5, 000 times and by taking the 5th and 95th percentile

of the simulated IRFs.

We consider a variety of representative AR(2) processes, where ρ = (0.99, 0.97, 0.95)

and λ2 = (0, 0.4, 0.8), and the horizons of the IRF are (5, 10, 20, 30). We chose to keep

the Monte Carlo design simple enough to shed light on when each method’s perfor-

mance worsens, while at the same time rich enough to highlight the most important

insights regarding the performance of the various methods. In fact, the simplicity

coming from considering only two separate roots (one that captures the effects of per-

sistence local to a unit root, and one that captures any additional stationary serial

correlation) allows us to understand their respective roles without the complications

coming from additional serial correlation, but, at the same time, is rich enough to

understand the separate effects of increasing the persistence (ρ) and of increasing the

additional serial correlation (λ2). Tables 1-3 report the percentages of samples in

which the true value of the IRF lays above (“up”) and below (“low”) the estimated

CI’s for each method for various values of h. We also report the value of δ, the ratio

between the IRF horizon and the sample size because our analysis focuses on small
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samples, so the horizon per se is less important than its ratio to the available sample

size. For example, in a sample of 100 monthly observations, a horizon of 12 months

would corresponds to δ = 0.12. The nominal value of each one-sided rejection rate in

the Tables is 0.05, so that the total nominal coverage of the CI is 90%.

The results show that standard methods (levels, first differences, and pre-test-

based methods) don’t work well in general in the presence of a persistent root (see

Table 1). The IRF confidence bands based on estimating an AR in levels slightly over

reject and are highly asymmetric: almost all of the rejections happen on the upper

tail. We say that an IRF is median unbiased if 50% of the distribution (pointwise

in the horizon) lies above its estimate, and that a two-sided, (1− α) nominal CI

for the IRF is median unbiased is the rejection frequencies on each tail are equal

to α/2. Therefore, the IRF confidence bands based on estimating an AR in levels

are not median unbiased. This reflects the bias in the parameter ρ estimated from a

regression in levels. In fact, the estimate of this parameter will be downward biased in

small samples, therefore over-rejecting in the region close to non-stationarity (i.e. the

upper side of the CI).5 Estimating an AR in first differences gives the correct coverage

only when ρ = 1 (for brevity not reported). As ρ moves away from unity, confidence

intervals computed from the VAR in first differences start to behave poorly, with

coverage that approaches zero as the horizon increases. Similarly, pre-tests show

5The rejection frequencies are based on a Monte Carlo approximation to the distribution of the
IRF bands, and not on an analytic application of the delta method. The latter would perform much
worse in practice, and was therefore not included.
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bad coverage properties too, unless the root is exactly unity. However, the root is

in general unknown to the researcher, thus limiting the practical usefulness of such

approaches. In fact, for large enough (though less than one) values of ρ, pre-tests have

low power to reject the hypothesis of a unit root, and select an AR in first difference

most of the times. As expected, different pre-tests have significantly different coverage

properties. The better coverage rate of the ADF-GLS test relative to the ADF test

reflects the higher power of ADF-GLS test against alternatives that are close to one.

Therefore, if a researcher has to choose between using an ADF pre-test and using an

ADF-GLS pre-test, he should use the latter. As ρ moves further away from unity,

the pre-tests are able to reject the hypothesis of a unit root more often, and their

coverage improves.

Methods designed to solve the problems of standard methods typically rely on

better approximations to the small sample distribution of the IRFs, either by using

the bootstrap or by using iterative methods. Results for such methods are reported

in Table 2. Table 2 shows that Runkle’s bootstrap does not provide an accurate

approximation to the small sample distribution of the IRFs, and it will result in

confidence intervals with coverage below the nominal level. This result might be sur-

prising given that we know from Inoue and Kilian (2002) that the standard bootstrap

approximation should work well for estimating AR(2) processes. However, here we

are really interested in the small sample performance, and the bias is introduced by

the inaccurate estimate of the largest root which plays a key role at making infer-
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ence on IRF at horizons that are large relative to the sample size.6 Also, the CIs

are highly asymmetric, rejecting only on one side. Finally, as shown in Inoue and

Kilian (2002), when the data generating process does include a constant or a time

trend, Runkle (1987) bootstrap’s performance is even worse. Andrews and Chen’s

(1994) method performs well in the close to stationary case and at short horizons,

but quickly worsens as soon as the largest root approaches unity and the amount

of serial correlation (λ2) becomes non-negligible. The quality of the approximation,

while quite erratic, seems to worsen as the horizon and the degree of additional serial

correlation introduced by θ (L) increase. This is not surprising: Andrews and Chen

(1994) also reported similar results (see their Table 2, last DGP). Furthermore, as

Murray and Papell (2001) point out, this method is computationally very intensive.

Kilian’s (1998a) improved bootstrap method, on the other hand, works very well

in terms of overall coverage. However, the tail probabilities of its bias-corrected CI

are also highly asymmetric, and, thus, it might be unappealing if the objective is to

obtain median unbiased CI’s. Furthermore, it is well known that the performance

of the bootstrap worsens if the DGP includes deterministic components (especially

time trends), and its validity so far has only been established for weakly stationary

processes. To summarize, we found that both Andrews and Chen (1994) and Runkle

(1987) generally have coverage closer to the nominal level the smaller the largest root

6The argument is really similar to the small sample properties of inference on AR(2) processes
based on asymptotic approximations, as in Sims et al. (1990): both AR(2) coefficients may have
standard normal asymptotic distributions, but at long horizons the largest root drives the asymptotic
distribution, which becomes non-standard, as explained in Phillips (1998) and Rossi (2005).
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and the degree of additional serial correlation are.

Methods that rely on the local to unity approximation seem to perform better

than Andrews and Chen (1994) and Runkle’s bootstrap (see Table 3). Wright’s

(2000) method is conservative, but effectively controls coverage. Also, in unreported

results, we found that its performance is poor in the presence of an explosive root

(since it imposes a unit upper bound on “ρ”). Gospodinov’s (2004) one-sided test,

labeled “Gospodinov (I)” in Table 3, has coverage that is close to the nominal level

for various horizons, even short ones. However, by construction the test will reject

only on one side and never reject on the other. Gospodinov’s two sided test, labeled

“Gospodinov (II)”, can be used if the goal is to design a symmetric CI. Unfortunately,

the inversion of LR±T can result in a coverage below 90%, at times as low as 70%,

especially for short horizons and when the second root of the process is large. Finally,

Pesavento and Rossi’s (2005) method (see the last columns of Table 3) has coverage

close to nominal at medium to long horizons (that is, δ ≥ 0.10) and it is median

unbiased, with similar rejection probabilities on both sides. However, by construction,

its coverage is not accurate at short horizons, as discussed in Section 2.7

To summarize, when the largest root of an AR process is close to unity, levels,

first differences, pre-tests and Runkle’s bootstrap should in general be avoided. If

there is evidence of high persistence and serial correlation beyond the largest root,

7Since in this paper we were interested mainly in comparing the performances of the various
methods at long horizons, we implemented Pesavento and Rossi’s (2005) long horizon method, which
is designed to work well at long horizons but not necessarilty at short horizons. For an extension
that improves the performance of this method at short horizons, see Pesavento and Rossi (2005).
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Andrews and Chen (1994) might perform poorly. The researcher instead may rely

on Kilian (1998a), Gospodinov (2004), Wright (2000) or Pesavento and Rossi (2005).

Kilian’s (1998a) method is a good choice if the researcher knows the process does not

have an exact unit root, nor an explosive one, and if the researcher cares about total

coverage, although the CI’s will not be median unbiased. If the researcher wants

to be completely agnostic about the largest root and use a method that is likely to

produce IRF bands with coverage close to the nominal one whether the root is one or

close to one, then Wright (2000), Gospodinov’s (2004) method (I) or Pesavento and

Rossi (2005) should be used as follows. If the researcher is only interested in one-

sided IRF bands and is satisfied with median biased CIs, then Gospodinov’s (2004)

one-sided method could be used, which works well at both short and long horizons.

In the more common situation in which the researcher is interested in two-sided IRF

bands, Wright’s (2000) and Pesavento and Rossi (2005) are the two available options,

with the following trade-offs. Wright’s (2000) is a good choice if the researcher is

interested in CIs at both short and long horizons and is satisfied with a conservative

CI. Pesavento and Rossi (2005) provides median unbiased CIs no matter whether the

root is unity or close to unity (even mildly explosive),8 but is advised in general only

for horizons that are bigger than ten percent of the sample size.9

8 In unreported results, we also compared the length of the confidence bands of the different
methods we considered above. To make a fair comparison, since some methods impose an upper
bound of unity on the largest root, we impose the upper bound on all methods. We found that there
are not huge differences between Wright (2001), Kilian (1998a) and Pesavento and Rossi (2004).

9Pesavento and Rossi’s (2005) “robust” method could be used instead if the researcher is interested
in short horizons. However, that method is conservative. See Pesavento and Rossi (2005) for more
details.
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4. Conclusions

This paper is a guide for empiricists who face the problem of computing confidence

bands for univariate impulse response functions when variables are highly persis-

tent. We confirm previous results and show that traditional methods (asymptotic

normal approximations and the standard Runkle’s (1987) bootstrap) may be highly

unreliable. Even inference based on unit root pre-tests with high power will not re-

sult in inference with the correct rejection probabilities. We compare a number of

methods that have been recently developed to provide more robust approximations

in the presence of variables with roots equal or slightly less than one. The Monte

Carlo results show that, among the preferred methods, Kilian (1998a) is a good

choice for a researcher who knows that the process does not have a unit root, nor

an explosive one, and cares only about total coverage, as it may not deliver median

unbiased CIs. Wright’s (2000) is a good choice if the researcher is interested in CIs at

both short and long horizons and is satisfied with a conservative CI. Pesavento and

Rossi’s (2005) method tends to provide median unbiased CIs with accurate coverage

no matter whether the root is unity or close to unity (even mildly explosive), but is

advised in general only for horizons that are bigger than ten percent of the sample

size. Gospodinov’s (2004) method (I) can be used to construct one sided confidence

intervals, but it performs well at both short and long horizons.
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Table 1: Comparison of coverage of IRF confidence bands:
Traditional asymptotic methods (L

..
utkepohl) and pre-tests

Levels Differences Pre-test: ADF ADF-GLS
ρ λ2 h δ low up low up low up low up
0.99 0 5 0.05 0.018 0.125 0.094 0.031 0.039 0.054 0.049 0.028

10 0.1 0.017 0.108 0.207 0.009 0.096 0.050 0.127 0.021
20 0.2 0.018 0.101 0.624 0.000 0.339 0.048 0.477 0.018
30 0.3 0.020 0.100 0.942 0.000 0.592 0.049 0.828 0.019

0.4 5 0.05 0.029 0.119 0.068 0.046 0.032 0.051 0.038 0.035
10 0.1 0.019 0.122 0.111 0.027 0.048 0.053 0.068 0.027
20 0.2 0.018 0.106 0.317 0.004 0.144 0.047 0.214 0.018
30 0.3 0.021 0.101 0.608 0.001 0.327 0.045 0.470 0.016

0.8 5 0.05 0.107 0.047 0.143 0.028 0.084 0.018 0.091 0.014
10 0.1 0.026 0.115 0.058 0.054 0.024 0.054 0.033 0.033
20 0.2 0.015 0.141 0.090 0.041 0.034 0.066 0.048 0.036
30 0.3 0.015 0.131 0.171 0.024 0.071 0.059 0.104 0.030

0.97 0 5 0.05 0.014 0.132 0.285 0.003 0.111 0.061 0.173 0.022
10 0.1 0.014 0.106 0.900 0.000 0.455 0.054 0.724 0.019
20 0.2 0.019 0.099 1.000 0.000 0.547 0.052 0.862 0.018
30 0.3 0.021 0.097 1.000 0.000 0.548 0.049 0.862 0.019

0.4 5 0.05 0.022 0.129 0.123 0.018 0.045 0.057 0.069 0.026
10 0.1 0.018 0.120 0.465 0.002 0.201 0.058 0.311 0.022
20 0.2 0.017 0.109 0.992 0.000 0.554 0.054 0.844 0.021
30 0.3 0.022 0.104 1.000 0.000 0.563 0.054 0.856 0.021

0.8 5 0.05 0.087 0.053 0.149 0.024 0.070 0.023 0.092 0.014
10 0.1 0.025 0.126 0.107 0.034 0.033 0.053 0.057 0.028
20 0.2 0.015 0.130 0.351 0.006 0.143 0.061 0.226 0.025
30 0.3 0.016 0.117 0.809 0.000 0.410 0.056 0.636 0.024

0.95 0 5 0.05 0.011 0.127 0.631 0.001 0.210 0.070 0.402 0.031
10 0.1 0.014 0.106 1.000 0.000 0.430 0.058 0.784 0.027
20 0.2 0.018 0.094 1.000 0.000 0.432 0.051 0.785 0.023
30 0.3 0.019 0.092 1.000 0.000 0.431 0.048 0.785 0.022

0.4 5 0.05 0.016 0.148 0.210 0.010 0.056 0.073 0.115 0.033
10 0.1 0.014 0.120 0.870 0.000 0.342 0.064 0.634 0.028
20 0.2 0.017 0.107 1.000 0.000 0.429 0.057 0.783 0.022
30 0.3 0.020 0.102 1.000 0.000 0.429 0.053 0.783 0.020

0.8 5 0.05 0.066 0.060 0.147 0.020 0.058 0.025 0.079 0.011
10 0.1 0.020 0.122 0.163 0.018 0.047 0.058 0.082 0.023
20 0.2 0.017 0.115 0.771 0.000 0.314 0.059 0.550 0.025
30 0.3 0.019 0.098 0.999 0.000 0.484 0.051 0.810 0.021

Percentage of times the true IRF lays above or below the CI. Nominal values are 5% on each side.

T=100
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Table 2: Comparison of coverage of IRF bands:
Methods designed to provide better approximations

to the small sample distribution of the IRFs
Runkle Andrews-Chen Kilian

ρ λ2 h δ low up low up low up
0.99 0 5 0.05 0.01 0.15 0.00 0.15 0.02 0.10

10 0.1 0.00 0.21 0.00 0.17 0.00 0.12
20 0.2 0.00 0.22 0.00 0.16 0.00 0.13
30 0.3 0.00 0.22 0.00 0.16 0.00 0.13

0.4 5 0.05 0.01 0.13 0.01 0.13 0.03 0.06
10 0.1 0.00 0.18 0.00 0.17 0.01 0.08
20 0.2 0.00 0.20 0.00 0.16 0.00 0.09
30 0.3 0.00 0.19 0.00 0.15 0.00 0.10

0.8 5 0.05 0.00 0.16 0.02 0.06 0.02 0.07
10 0.1 0.00 0.20 0.00 0.14 0.02 0.07
20 0.2 0.00 0.24 0.00 0.18 0.01 0.09
30 0.3 0.00 0.24 0.00 0.18 0.00 0.10

0.97 0 5 0.05 0.00 0.14 0.00 0.14 0.02 0.11
10 0.1 0.00 0.17 0.00 0.14 0.00 0.12
20 0.2 0.00 0.17 0.00 0.13 0.00 0.12
30 0.3 0.00 0.17 0.00 0.13 0.00 0.12

0.4 5 0.05 0.01 0.14 0.01 0.13 0.03 0.08
10 0.1 0.00 0.18 0.00 0.13 0.01 0.10
20 0.2 0.00 0.17 0.00 0.11 0.00 0.11
30 0.3 0.00 0.16 0.00 0.10 0.00 0.11

0.8 5 0.05 0.00 0.15 0.03 0.06 0.03 0.07
10 0.1 0.00 0.19 0.01 0.12 0.02 0.08
20 0.2 0.00 0.20 0.01 0.09 0.01 0.10
30 0.3 0.00 0.17 0.00 0.05 0.00 0.10

0.95 0 5 0.05 0.00 0.12 0.00 0.15 0.02 0.09
10 0.1 0.00 0.14 0.00 0.14 0.01 0.11
20 0.2 0.00 0.14 0.00 0.12 0.01 0.11
30 0.3 0.00 0.14 0.00 0.12 0.01 0.11

0.4 5 0.05 0.01 0.13 0.01 0.12 0.03 0.08
10 0.1 0.00 0.15 0.00 0.11 0.01 0.10
20 0.2 0.00 0.14 0.00 0.09 0.00 0.10
30 0.3 0.00 0.13 0.00 0.09 0.00 0.10

0.8 5 0.05 0.00 0.14 0.03 0.06 0.03 0.07
10 0.1 0.00 0.17 0.01 0.10 0.03 0.08
20 0.2 0.00 0.17 0.02 0.06 0.01 0.10
30 0.3 0.00 0.14 0.01 0.03 0.00 0.10

Notes: as per Table 1
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Table 3: Comparison of coverage of IRF bands:
Methods based on local to unity approximations

Wright Gospodinov (I) Gospodinov (II) Pesavento-Rossi
ρ λ2 h δ low up low up low up low up
0.99 0 5 0.05 0.01 0.06 0.00 0.10 0.07 0.05 0.05 0.07

10 0.1 0.00 0.07 0.00 0.10 0.07 0.05 0.05 0.06
20 0.2 0.01 0.05 0.00 0.10 0.07 0.06 0.05 0.06
30 0.3 0.02 0.05 0.00 0.10 0.07 0.08 0.06 0.06

0.4 5 0.05 0.01 0.04 0.00 0.11 0.16 0.05 0.07 0.14
10 0.1 0.00 0.06 0.00 0.09 0.10 0.05 0.05 0.06
20 0.2 0.00 0.05 0.00 0.09 0.07 0.05 0.05 0.05
30 0.3 0.01 0.04 0.00 0.09 0.07 0.05 0.06 0.05

0.8 5 0.05 0.03 0.01 0.00 0.07 0.29 0.03 0.31 0.09
10 0.1 0.00 0.05 0.00 0.09 0.21 0.05 0.06 0.17
20 0.2 0.00 0.08 0.00 0.08 0.12 0.05 0.04 0.10
30 0.3 0.00 0.08 0.00 0.08 0.09 0.05 0.05 0.07

0.97 0 5 0.05 0.00 0.04 0.00 0.09 0.08 0.05 0.05 0.05
10 0.1 0.01 0.04 0.00 0.09 0.08 0.05 0.06 0.05
20 0.2 0.04 0.05 0.00 0.09 0.08 0.05 0.06 0.05
30 0.3 0.05 0.05 0.00 0.09 0.08 0.06 0.06 0.05

0.4 5 0.05 0.00 0.05 0.00 0.09 0.14 0.05 0.05 0.11
10 0.1 0.00 0.03 0.00 0.07 0.11 0.04 0.05 0.06
20 0.2 0.02 0.04 0.00 0.08 0.10 0.04 0.06 0.06
30 0.3 0.04 0.05 0.00 0.08 0.10 0.04 0.06 0.06

0.8 5 0.05 0.02 0.01 0.00 0.06 0.30 0.03 0.25 0.08
10 0.1 0.00 0.05 0.00 0.07 0.22 0.04 0.04 0.13
20 0.2 0.00 0.03 0.00 0.07 0.15 0.03 0.04 0.07
30 0.3 0.00 0.02 0.00 0.06 0.12 0.03 0.05 0.07

0.95 0 5 0.05 0.00 0.04 0.00 010 0.07 0.05 0.04 0.05
10 0.1 0.02 0.05 0.00 0.10 0.07 0.05 0.05 0.05
20 0.2 0.04 0.05 0.00 0.10 0.07 0.05 0.05 0.06
30 0.3 0.05 0.06 0.00 0.09 0.07 0.06 0.05 0.06

0.4 5 0.05 0.00 0.04 0.00 0.08 0.12 0.04 0.03 0.09
10 0.1 0.00 0.03 0.00 0.08 0.12 0.03 0.04 0.06
20 0.2 0.03 0.04 0.00 0.08 0.10 0.04 0.05 0.06
30 0.3 0.05 0.05 0.00 0.08 0.13 0.02 0.06 0.06

0.8 5 0.05 0.01 0.02 0.00 0.06 0.27 0.03 0.18 0.08
10 0.1 0.00 0.04 0.00 0.06 0.20 0.04 0.03 0.11
20 0.2 0.00 0.02 0.00 0.06 0.16 0.03 0.04 0.07
30 0.3 0.01 0.02 0.00 0.05 0.16 0.03 0.06 0.06

Notes: as per Table 1.


