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Abstract

We propose new methods for comparing the out-of-sample forecasting performance of
two competing models in the presence of possible instabilities. The main idea is to develop a
measure of the relative local forecasting performance for the two models, and to investigate its
stability over time by means of statistical tests. We propose two tests (the Fluctuation test and
the One-time Reversal test) that analyze the evolution of the models' relative performance over
historical samples. In contrast to previous approaches to forecast comparison, which are based
on measures of global performance, we focus on the entire time path of the models' relative
performance, which may contain useful information that is lost when looking for the model
that forecasts best on average. We apply our tests to the analysis of the time variation in the
out-of-sample forecasting performance of monetary models of exchange rate determination
relative to the random walk.
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1 Introduction

This paper proposes new techniques for comparing the out-of-sample forecasting performance of
competing models in the presence of instabilities. The main insight of the paper is that, in unstable
environments, it is plausible that the relative forecasting performance of models may itself change
over time. Existing techniques for forecast comparison do not account for this possibility, in spite
of the mounting empirical evidence (e.g. Stock and Watson (2003a)) suggesting instability in
the forecasting performance of econometric models relative to naive benchmarks.1 For example,
Stock and Watson (2003a) report that a model using housing price in�ation as a predictor for
Consumer Price in�ation worked quite well in 1971-1984, but it performed signi�cantly worse
than an autoregressive model in 1985-1999 in the U.S. as well as in other countries. Similarly,
the short term interest rate helped predict in�ation in France before 1984 but its forecasting ability
disappears when considering the period 1985-1999. In short, the forecasting success of a model
relative to a competitor seems to be linked to speci�c periods in time, and there are numerous
situations in which there has been a reversal in the relative forecasting ability of two competing
models.
Existing econometric techniques are inadequate for conducting forecast evaluation in an envi-

ronment characterized by instability. In fact, it is common in forecasting to select the model with
the best global forecasting performance, which in practice amounts to selecting the model that
forecasts best on average over the in-sample sample period or over the (simulated) out-of-sample
period (see, e.g. Rissanen, 1982; Wei, 1992; and Inoue and Kilian, 2006). The latter approach has
also motivated the development of tests of overall predictive ability such as Diebold and Mariano
(1995), West (1996), McCracken (2000), Clark and McCracken (2001), Clark and West (2006)
and Giacomini and White (2006). In the presence of structural instability, however, the relative
performance of the two models may itself be time-varying, and thus averaging this evolution over
time will result in a loss of information. For example, a forecaster may select the model that per-
formed best on average over a particular historical sample, ignoring the fact that the competing
model produced more accurate forecasts when considering only the recent past.
This paper proposes two techniques that are useful for forecasters interested in analyzing the

evolution in the performance of two competing forecasting models over historical samples. The
�rst technique introduces a measure of the local relative forecasting performance of the models,

1In the authors' words: �Forecasts based on individual indicators are unstable. Finding an indicator that predicts
well in one period is no guarantee that it will predict well in later periods. It appears that instability of predictive
relations based on asset prices (like many other candidate leading indicators) is the norm.� (Stock and Watson, 2003,
p. 789).
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and tests whether it equals zero at each point in time by means of an out-of-sample Fluctuation test.
The test is easily implemented by plotting the (standardized) sample path of the relative measure
of local performance, together with critical values which, if crossed, signal that one of the models
outperformed its competitor at some point in time. The Fluctuation test, although convenient to
obtain, does not however specify an alternative hypothesis, and therefore might have lower power
than a test designed for a speci�c alternative hypothesis. We thus further provide a test of the null
hypothesis that the two models perform equally well at each point in time against the alternative
that there is a one-time break in the relative performance, and propose a method for estimating the
timing of the break. We call this the One-time Reversal test.
We illustrate the usefulness of our techniques in the analysis of the out-of-sample forecasting

performance of exchange rate models driven by economic fundamentals relative to a random walk
benchmark. Since the seminal papers by Meese and Rogoff (1983a,b), it is well-known that the
random walk forecasts exchange rates better than any model with economic fundamentals, such as
money, output, or interest rate differentials. As shown by Rossi (2006), the estimates of exchange
rate models with economic fundamentals are plagued by parameter instabilities. Using in-sample
Granger-causality tests that are robust to parameter instability, she shows that it is possible to re-
ject the null hypothesis of a random walk for selected countries and fundamentals. We examine the
implications of this �nding for forecasting exchange rates out-of-sample in unstable environments.
We consider two models of exchange rate determination: the Uncovered Interest Rate Parity model
and a model with Taylor rule fundamentals. We �nd widespread evidence that the relative fore-
casting performance has changed over time. The general pattern revealed by our methods is that
the British Pound and Deutsche Mark exchange rates were predictable in the late Eighties, but
such predictability has disappeared in more recent years. We �nd that conventional out-of-sample
forecast comparison tests (such as the test proposed by Clark and West (2006)) do �nd empirical
evidence in favor of models with economic fundamentals for selected countries, as reported by
Molodtsova and Papell (2007). However, we also �nd that the relative forecasting performance
has changed over time. In fact, our procedures indicate that the Deutsche Mark and the British
Pound exchange rates were predictable in the late Eighties, but such predictability has disappeared
in the Nineties. We show that conventional out-of-sample tests would have been unable to uncover
such evidence in favor of models with economic fundamentals.
The paper is organized as follows. Section 2 discusses a simple example that motivates our

procedure. Section 3 presents the econometric methodologies. Section 4 shows some Monte
Carlo evidence on the performance of our procedures in small samples, and Section 5 presents the
empirical results. Section 6 concludes.
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2 Motivating example

Consider a researcher who is interested in assessing whether exchange rates are forecastable by
using macroeconomic fundamentals. For example, Uncovered Interest Rate Parity (UIRP) implies
that currencies' appreciations/depreciations should re�ect interest rate differentials between coun-
tries. Therefore, interest rate differentials should predict exchange rate changes. One might be
interested in testing whether such a model provides any forecasting improvements relative to a
simple random walk benchmark, according to which exchange rate changes are unpredictable.
Focusing on monthly data from 1973:3 to 2008:1 for the Dollar/British Pound exchange rate,

for example, one would �nd that the square root of the out-of-sample Mean Square Forecast Error
(MSFE) equals 0.0245 for the random walk and 0.0249 for the UIRP model. One would thus
conclude that the UIRP model produces less accurate forecasts than the random walk, when con-
sidering the models' average performance over the whole out-of-sample period.2

However, the relative forecasting performance of the two models has changed considerably
over the sample. Figure 1(a) depicts a sequence of differences between the MSFE of the random
walk and the MSFE of the UIRP model computed over rolling windows of 50 observations. Each
MSFE difference is rescaled by its standard deviation, to abstract from unit of measurement issues.
Positive (negative) values of such differences indicate that the economic model produces better
(worse) forecasts than the random walk. Interestingly, in the late Eighties, the UIRP model's
forecasts were more accurate than the random walk forecasts. However, during the Nineties as
well as in most recent years, the random walk produced consistently better forecasts than the
UIRP model. That is why, when we consider the relative MSFE over the whole out-of-sample
period, we �nd that the random walk is better on average: the negative MSFE differences observed
during the Nineties more than offset the positive MSFE differences observed in the late Eighties.
This highlights one of the most important points of this paper: looking at global (or average)
relative forecasting performance may hide important information about the relative forecasting
performance of the two models over time.

INSERT FIGURE 1(a) HERE

This paper proposes two techniques for extracting information about the time variation in the
models' relative forecasting performance. The �rst involves measuring the models' local relative

2These results are based on the actual empirical application of this paper. See Section 5 for more details. The
standard deviation of the difference of the Mean Squared Errors (MSE) is such that one would not reject the null
hypothesis that the two models have equal predictive ability.
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performance as the out-of-sample MSFE differences computed over rolling windows (the local rel-
ative MSFE). We provide critical values for testing the null hypothesis that the local relative MSFE
equals zero at each point in time (rather than on average over the whole sample, which is the null
hypothesis considered by previous literature, such as, e.g., Diebold and Mariano (1995) and West
(1996)). We call this the Fluctuation test, which emphasizes the analogy between our procedure
and the �uctuation tests for parameter stability proposed by Ploberger and Kramer (1992); see
also Brown, Durbin and Evans (1975) and Chu, Hornik and Kuan (1995). Figure 1(b) shows how
to implement the Fluctuation test in the simple example considered in this section. It reports the
(standardized) local relative MSFE for the UIRP and the random walk models, as well as the criti-
cal value for testing the null hypothesis that the two models have equal out-of-sample performance
at each point in time, against the alternative that the UIRP performs better at least at one point in
time. Since the local relative MSFE exceeds the critical value in the early part of the sample, we
reject the null hypothesis, and conclude that there were periods during which the UIRP produced
better forecasts than the random walk (from Figure 1(b), this seems to have occurred primarily in
the late Eighties).
The second technique that we propose is a test for the null hypothesis that the relative forecast-

ing performance is equal at each point in time against the joint alternative that either one of the two
forecasts was always better or that there was a reversal in the relative forecasting performance at
one (unknown) point in time. We call this the One-time Reversal test. When the test rejects the null
hypothesis, our technique allows the researcher to estimate the time of the reversal. For the data
discussed above, the One-time Reversal test rejects the null hypothesis that the relative forecast-
ing performance is equal at each point in time, and �nds evidence of a reversal. The dashed line
in Figure 1(b) shows the path of the estimated relative performance, suggesting that the reversal
occurred around 1989.

INSERT FIGURE 1(b) HERE

3 Econometric methodology

3.1 Notation and de�nitions

We �rst introduce the notation and discuss the assumptions about the data, the models and the
estimation procedures. We are interested in comparing two h�step ahead forecasts for the variable
yt ; which we assume for simplicity to be a scalar. The �rst model is characterized by parameters
� and the second model by parameters 
 :
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We assume that the researcher has divided the sample of size T into an in-sample portion of
size R and an out-of-sample portion of size P , and obtained two competing sequences of h�step
ahead out-of-sample forecasts. For a general loss function L ; we thus have a sequence of P out-
of-sample forecast loss differences,

�
1L t

�b� t�h;R;b
 t�h;R�	TtDRCh
�
�
L.1/.yt ;b� t�h;R/� L.2/.yt ;b
 t�h;R/	TtDRCh , which depend on the realizations of the variable

and on the in-sample parameter estimates for each model,b� t�h;R andb
 t�h;R . These parameters are
estimated only once, using a sample including data indexed 1; :::; R (�xed scheme) or re-estimated
at each t D R C h; :::; T over a window of R data including data indexed t � h � R C 1; :::; t � h
(rolling scheme).
We de�ne the local relative loss for the two models as the sequence of out-of-sample loss

differences computed over centered rolling windows of size m (without loss of generality, we
assume m to be an even number):

m�1
tCm=2�1X
jDt�m=2

1L j .b� j�h;R;b
 j�h;R/; t D R C h C m=2; :::; T � m=2C 1:
3.2 The Fluctuation test

We make the following assumptions.

Assumption 1: Let � 2 [0; 1] :
(a)

n
P�1=2

PRChC[� P]
tDRCh 1L t.b� t�h;R;b
 t�h;R/o obeys a Functional Central Limit Theorem;

(b) � 2 DlimP!1E.P�1=2
PT
tDRCh 1L t.b� t�h;R;b
 t�h;R//2 > 0

(c) m=P ! � 2 .0;1/ as m !1; P !1; whereas R <1; h <1.

Note that we do not impose restrictions on the estimation methods used to produce the forecasts
for the two models. This is because we adopt the same asymptotic framework as Giacomini and
White (2006), which allows the competing models to be nested or non-nested and estimated by
general estimation procedure. The only requirement is the use of a rolling or �xed estimation win-
dow scheme in producing the out-of-sample forecasts. Giacomini and White (2006) also provide
primitive conditions for Assumption 1(a), which allow the data to be mixing and heterogeneous.
Proposition 1 describes the procedure for deriving the out-of-sample Fluctuation test.

Proposition 1 (Fluctuation test) Suppose Assumption 1 holds. Let

FOOSt;m D b��1m�1=2 tCm=2�1X
jDt�m=2

1L j .b� j�h;R;b
 j�h;R/; (1)
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t D R C h C m=2; :::; T � m=2C 1; whereb� 2 is a HAC estimator of � 2; for example
b� 2 D q.P/�1X

iD�q.P/C1
.1� ji=q.P/j/P�1

TX
jDRCh

1L j
�b� j�h;R;b
 j�h;R�1L j�i �b� j�i�h;R;b
 j�i�h;R� ;

(2)
and q.P/ is a bandwidth that grows with P (e.g., Newey and West, 1987). Under the null hypoth-
esis H0 : E

�
1L t

�b� t�h;R;b
 t�h;R�� D 0 for all t D R C h; :::; T;
FOOSt;m H)

�
B .� C �=2/� B .� � �=2/

�
=
p
�; (3)

where t D [� P] ; m D [�P] and B .�/ is a standard univariate Brownian motion. The critical
values for a signi�cance level � are � k�, where k� solves

Pr
�
sup
�

���B .� C �=2/� B .� � �=2/� =p��� > k�� D �: (4)

The null hypothesis is rejected against the two-sided alternative E
�
1L t

�b� t�h;R;b
 t�h;R�� 6D 0
when maxt

��FOOSt;m
�� > k�:

Critical values for testing H0 against the one-sided alternative E
�
1L t

�b� t�h;R;b
 t�h;R�� > 0 can
be similarly obtained as a solution to Pr

�
sup�

�
B .� C �=2/� B .� � �=2/

�
=
p
� > k�

	
D �; in

which case the null is rejected when maxt FOOSt;m > k�. Simulated values of .�; k�/ for both the
one-sided and the two-sided case are reported in Table 1 for various choices of �.

INSERT TABLE 1 HERE

The test statistic FOOSt;m in (1) is equivalent to Diebold and Mariano's (1995) and Giacomini
and White's (2006) (unconditional) test statistic, computed over rolling out-of-sample windows
of size m: Similar reasonings to those in the proof of Proposition 1 can be used to show that any
other test statistic commonly used for out-of-sample predictive ability testing could be used in (1),
as long as its asymptotic distribution is normal. In particular, one could substitute FOOSt;m with
the test statistics proposed by West (1996) or by Clark and West (2006), which are respectively
applicable to non-nested and nested models. The fundamental differences in the two approaches
is that they test two different null hypotheses: the null hypothesis in West (1996) and Clark and
West (2006) concerns forecast losses that are evaluated at the population parameters, whereas in
Giacomini and White (2006) the losses depend on estimated in-sample parameters. This re�ects
the different focus of the two approaches on comparing forecasting models (West and Clark and
West (2006)) versus comparing forecasting methods (Giacomini and White (2006)). The adoption
of West's (1996) asymptotic framework would involve replacing b� in (2) with an estimator of the
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asymptotic variance that re�ects the contribution of estimation uncertainty (see Theorem 4.1 of
West (1996)). Also note that West's (1996) approach allows the parameters to be estimated using a
recursive scheme, in addition to a rolling or �xed scheme. For the nested case, the use of the Clark
andWest (2006) test statistic instead of (1), in practice amounts to replacing1L j .b� j�h;R;b
 j�h;R/
in (1) with its corrected version (see their equation (3.1)).

Algorithm 2 (Clark and West (2006) and West (1996) Fluctuation test) I. Rolling window case.
Let W OOS

t;m denote a sequence of either West's (1996) test statistic (Theorem 4.1) (for non-nested
models) or the statistic in equation (3.1) of Clark and West (2006) (for nested models). Both statis-
tics are for h-step-ahead forecasts computed over rolling windows of size m and centered at time t
(that is, on observations t � m=2; :::; t C m=2� 1), for t D R C h C m=2; :::; T � m=2C 1:
(a) For West's (1996) test the null hypothesis is rejected when maxt

��m1=2W OOS
t;m

�� > k� (using
two-sided critical values from Table 1).
(b) For Clark and West's (2006) test the null hypothesis is rejected when maxtm1=2W OOS

t;m > k�
(using one-sided critical values from Table 1).
II. Recursive window case. Let W OOS

t denote a sequence of West's (1996) test statistics for h-
steps ahead forecasts calculated over recursive windows (with an initial window of size R/ for
t D R C h C m=2; :::; T � m=2 C 1: The null hypothesis is rejected when maxt

��W OOS
t

�� >
krec�

q
T�R
t

�
1C 2 t�RT�R

�
, where

�
�; krec�

�
are .0:01; 1:143/ ; .0:05; 0:948/ and .0:10; 0:850/ :3

3.3 The One-time Reversal test

The assumptions that guarantee validity of the test against a one-time reversal in the forecasting
performance are the same as those for the Fluctuation test. The following proposition gives the
justi�cation for this test.

Proposition 3 (One-time Reversal test) Suppose Assumption 1 holds. Let QLR�P D supt 8
�
P .t/ ;

3The proofs follow from an argument similar to that of Proposition 1 and are therefore omitted. The critical values
for the recursive window case follow from Brown et al. (1975).

8



t 2 f[0:15P] ; ::: [0:85P]g ; 8�P .t/ D LM1 C LM2 .t/ ; where

LM1 D b��2P�1 " TX
jDRCh

1L j .b� j�h;R;b
 j�h;R/
#2

LM2 .t/ D b��2P�1 .t=P/�1 .1� t=P/�1 [ tX
jDRCh

1L j .b� j�h;R;b
 j�h;R/
� .t=P/

TX
jDRCh

1L j .b� j�h;R;b
 j�h;R/]2;
b� 2 a HAC estimators of the asymptotic variance � 2 D var �P�1=2PT

jDRCh 1L j .b� j�h;R;b
 j�h;R/� ;
for example

b� 2 D q.P/�1X
iD�q.P/C1

.1� ji=q.p/j/P�1
TX

jDRCh
1L j .b� j�h;R;b
 j�h;R/1L j�i �b� j�i�h;R;b
 j�i�h;R� :

(5)
Consider the null hypothesis:

H0 : E
�
1L t.b� t�h;R;b
 t�h;R/� D 0;

for every t D R C h; :::; T : We have QLR�P H) sup
�

h
BB.� /2
�.1��/ C B .1/

2
i
; where t D [� P], and

B .�/ and BB .�/ are, respectively, a standard univariate Brownian motion and a Brownian bridge.
The null hypothesis is rejected when QLR�P > k�: The critical values .�; k�/ are: .0:05; 9:8257/ ;
.0:10; 8:1379/, .0:01; 13:4811/ :4

The intuition behind this test is that it jointly tests whether the relative forecasting performance
is stable over time and equal to zero. It can be thought of a test of globally equal forecasting ability
that detects situations in which there is a one-time reversal. This approach is reminiscent of that
in Rossi (2005b), who proposed optimal tests for these joint hypotheses when comparing the in-
sample relative performance of two nested models. The results in this paper are different because
we focus on the relative out-of-sample forecasting performance of either nested or non-nested
models.
Among the advantages of this approach, we have that: (i) when the null hypothesis is rejected,

it is possible to evaluate whether the rejection is due to instabilities in the relative performance or
to a model being constantly better than its competitor; (ii) if such instability is found, it is possible

4The test against a one-time reversal is implemented with trimming values 0.15 and 0.85. Such trimming values
are a conventional choice for the implementation of Andrews' (1993) test (cfr. Stock and Watson, 2003b).
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to estimate the time of the reversal in the relative performance; (iii) the test is designed to have
power against one-time breaks in the relative performance. This is achieved by using the following
procedure for a test with overall signi�cance level �:
(i) test the hypothesis of equal performance at each time by using the statistic QLR�P from

Proposition 3 for a signi�cance level �;
(ii) if the null is rejected, compare LM1 and supt LM2 .t/ ; t 2 f[0:15P] ; ::: [0:85P]g ;with the

following critical values: .3:84; 8:85/ for � D 0:05; .2:71; 7:17/ for � D 0:10, and .6:63; 12:35/
for a D 0:01: If only LM1 rejects then there is evidence in favor of the hypothesis that one model
is constantly better than its competitor. If only LM2 rejects, then there is evidence that there are
instabilities in the relative performance of the two models but neither is constantly better over the
full sample. If both reject, then it is not possible to attribute the rejection to a unique source.5

(iii) estimate the time of the break by t� D argmaxt2f0:15P;:::;0:85Pg LM2 .t/.
(iv) to extract information on which model to choose, we suggest to plot the time path of the

underlying relative performance as:(
1
t�
Pt�

jDRCh 1L j .b� j�h;R;b
 j�h;R/; for t � t�
1

.P�t�/
PT

jDt�C11L j .b� j�h;R;b
 j�h;R/; for t > t�
The estimator of the timing of the break in point (iii) above is analogous to the estimator proposed
by Bai (1997) for estimating the timing of a break in the unconditional mean of a variable yt , where
in our case yt D 1L t.b� t�h;R;b
 t�h;R/. Using similar reasonings to those in Giacomini and White
(2006), it is easy to show that this choice of yt satis�es Bai's (1997) assumptions. For example, if
the data are mixing,b� t�h;R and b
 t�h;R are also mixing because they are measurable functions of
the �nite (because R is kept �xed) history of a mixing process, and thus yt satis�es Assumption
A6(b) of Bai (1997). By the same reasoning, it is also easy to see how the One-Time Reversal test
could be generalized to detect multiple changes in relative performance by following, for example,
the sequential procedure suggested by Bai and Perron (1998).
The Fluctuation test and the One-Time Reversal test have trade-offs. If the researcher is willing

to specify the alternative of interest (in this case, a one-time break in the relative performance),
then the latter test can be implemented. Furthermore, it allows the researcher to estimate the
time of the break. The Fluctuation test, on the other hand, does not require the researcher to

5This procedure is justi�ed by the fact that the two components LM1 and LM2 are asymptotically independent
� see Rossi (2005b). Performing two separate tests does not result in a test with equal power against all deviations
from the null hypothesis, but it is nevertheless useful to heuristically disentangle the causes of rejection of the null
hypothesis of equal performance at each point in time. The critical values for LM1 are from a chi-square with one
degree of freedom, whereas those for LM2 are from Andrews (1993).
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specify an alternative, and therefore might be preferable for researchers who do not have one. The
two tests also have tradeoffs in terms of their power. For example, if there are multiple breaks,
the Fluctuation test should reveal their presence, whereas the One-Time Reversal test would only
identify the largest break. The extension of the latter test to the case of multiple breaks requires
the researcher to determine the number of breaks under the alternative hypothesis, in which case
the test can be expected to have greater power than the Fluctuation test. Overall, one can view the
Fluctuation test as a "robust" method, but its robustness may however come at the cost of possible
power losses.

4 Monte Carlo evidence

In this section, we analyze the size and power properties of the Fluctuation and One-Time Reversal
tests, relative to the full-sample Giacomini and White (2006) (henceforth GW) and the full-sample
Clark and West (2006) (henceforth CW) tests, which focus on average performance over the whole
out-of-sample period. Our goal is threefold. First, to understand whether our tests have comparable
size to the GW and CW tests when the competing models have equal performance over time.
Second, to compare the power properties of the tests when the relative performance is not equal but
is constant over time, and to illustrate situations in which the Fluctuation and One-Time Reversal
tests, unlike the GW and CW tests, have the ability to detect time variation in relative performance.
Third, to investigate how the size and power of the Fluctuation test depend on the choice of the
parameters R (in-sample size), P (out-of-sample size) and � (D m=P; with m the size of the
rolling window used to construct the test statistics).

4.1 Size properties

Suppose the data-generating process (DGP) is

Yt D � t X t C "t ; (6)

X t D :5X t�1 C �t ;

�t ; "t � i id N .0; 1/; independent of each other.

We compare one-step ahead out-of-sample forecasts from the model (6), estimated in-sample under
the assumption that � is constant, to forecasts from a model that assumes Yt to be a zero-mean
white noise. This setup is meant to represent a plausible comparison between a fundamental-based
model for the exchange rate and a random walk benchmark, which is the case considered in this

11



paper's empirical application (Yt should be interpreted as the log-exchange rate �rst differences).
The time-t forecasts implied by the two models are:

f .1/t;R D b� t;RX tC1 and
f .2/t;R D 0;

where b� t;R is the in-sample parameter estimate based on a rolling window of size R; and where
we assume for simplicity that X tC1 is known at time t:
We analyze the size properties of the Fluctuation test in both the GW and the CW frameworks,

which amount to imposing different null hypotheses. In the GW case, it is easy to show that values

of � t that satisfy the null hypothesis H0 : E
��
YtC1 � f .1/t;R

�2�
D E

��
YtC1 � f .2/t;R

�2�
can be

obtained by setting:

� tC1 D

�Pt
jDt�RC1 � j X2j

�2Pt
jDt�RC1 X2j

C � 2

2
Pt

jDt�RC1 � j X2j
; t D R; :::; T � 1:6 (7)

Note that in this situation the two models have equal relative performance at each point in time
in spite of the fact that the DGP parameters are time-varying. We �rst generate a time series X t
as in (6), and initialize the time series of � t by letting � t D 0:05 for t D 1; :::; R: For each pair
of in-sample and out-of-sample sizes .R; P/ with R; P D 20; 50; 150; we generate T D R C P
observations for Yt that satisfy equations (6) and (7). We then implement the Fluctuation test using
� D m=P D :1; :3; :7; :9, where m is the window size, and the One-Time Reversal test.
In the CW case, the null hypothesis is H0 : � t D 0 for all t; and therefore we generate data that

satisfy the null hypothesis by letting Yt D "t :
The rejection frequencies over 5000 Monte Carlo replications are contained in Table 2 below.

INSERT TABLE 2 HERE

The GW Fluctuation test has a mild tendency to under-reject for most values of �; with the
exception of � D :1; in which case the test is oversized. The One-Time Reversal test is slightly
undersized when R is small relative to P , but correctly sized when P and R are similar. All
tests perform best when the in-sample and out-of-sample sizes are of comparable magnitude. The

6This is obtained by �rst showing that E
��
YtC1 � f .1/t;R

�2�
D

�
� tC1 �

Pt
jDt�RC1 � j X2jPt
jDt�RC1 X2j

�2
X2tC1C

� 2X2tC1Pt
jDt�RC1 X2j

C� 2,

and E
��
YtC1 � f .2/t;R

�2�
D �2tC1X

2
tC1C�

2 setting the two expressions equal to each other, and then solving for � tC1:
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CW Fluctuation test has no size distortions for samples that are suf�ciently large, but exhibits
considerable size distortions in small samples when � D :1 (which is due to the estimation window
being too small for the normal approximation to be valid).

4.2 Power properties

We now investigate the power of the three tests above in relation to the full-sample tests. We
consider two scenarios. In the �rst, the performance of the two models is not equal but is constant
over time whereas in the second scenario there is time variation in the relative performance. In all
cases the power curves are obtained over 5000 Monte Carlo replications. Both the Fluctuation and
the full-sample tests are derived in either the GW or the CW frameworks, which correspond to two
different Monte Carlo designs.

4.2.1 Unequal but constant performance

For the GW Fluctuation test, we generate data under the alternative hypothesis by following the
procedure explained in Section 4.1 for .R; P/ D .150; 150/ and by letting � 2 decrease from its
value of 1 under the null hypothesis to � 2 D :1: The effect of this is a reduction in the variance of
the parameter estimateb� t;R , which results in a more accurate forecast for the larger model. Figure
2(a) shows the power curves for the GW, One-Time Reversal and GW Fluctuation tests (the latter
for � D :3 in the top panel and � D :7 in the bottom panel).
For the CW Fluctuation test, we generate data under the alternative hypothesis by letting � t be

constant over the sample but with values increasing from 0 to 1. Figure 2(d) reports the results for
this case.

INSERT FIGURES 2(a) AND 2(d) HERE

Figure 2(a) shows that the GW Fluctuation and One-Time Reversal tests have lower power than
the GW test when the relative performance is constant over time, but that the power loss for the
Fluctuation test is smaller for larger �: Figure 2(d) shows that similar conclusions hold for the CW
Fluctuation test relative to the full-sample CW test.

4.2.2 Time-varying relative performance

We consider the situation in which there is one break in the relative performance of the two models
during the out-of-sample period, induced by a break in the DGP parameter. For both the GW
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Fluctuation and the CW Fluctuation tests, we generate the data as:

Yt D ��X t � 1 .t � R C � P/C �X t � 1 .t > R C .1� �/P/C "t ; "t � i id N .0; 1/;

where X t is as in (6) and .R; P/ D .150; 150/: In this situation, the relative performance of the
models changes at t D R C � P:We consider � D 1=3 and � D 2=3 for the GW case and � D 1=2
for the CW case. These parameter choices ensure that the two models perform equally well on
average over the out-of-sample period. We obtain power curves for the various tests by letting the
size of the break increase from � D 0 to � D 1 in increments of :05: Figure 2(b) shows the power
curves for the full-sample GW, the One-Time Reversal and the GW Fluctuation test (the latter for
� D :3; in the top panel and � D :7 in the bottom panel) when the break occurs at � D 1=3; Figure
2(c) shows the power curves for a break occurring at � D 2=3I Figure 2(e) shows the power curves
for the CW Fluctuation test and the full sample CW test.

INSERT FIGURE 2(b), 2(c) and 2(e) HERE

The power curves bear out the prediction that the Fluctuation and One-Time Reversal tests are
able to detect the change in relative performance for the two models, whereas the full-sample tests
may incorrectly conclude that the models are equally accurate, regardless of the magnitude of the
break. The Fluctuation test has higher power than the One-Time Reversal test for small values
of � and for breaks occurring towards the beginning of the out-of-sample period. Note that the
power of the Fluctuation test diminishes (and converges to that of the full-sample GW test) as �
increases. Figure 2(e) similarly shows that the Fluctuation test implemented with the CW test has
power to detect changes in the relative performance, whereas the full-sample CW test may have
no power at all.

4.3 Summary of Monte Carlo results

The simulation results suggest that the Fluctuation test has good size and power properties when
implemented using a rolling window size that is a small - but not too small - fraction of the out-
of-sample size (e.g., � D m=P D :3). In such cases, the test has comparable properties to the
full-sample tests when the two models perform equally well, it involves a relatively small loss of
power relative to the full-sample test when the relative performance is unequal but constant over
time, and is able to detect time variation in relative performance, whereas the full-sample test may
incorrectly conclude that the models are equally accurate.
The One-Time Reversal test can also detect time variation in relative performance. It has

comparable power to that of the Fluctuation test against the alternative of unequal but constant
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relative performance. It has higher power than the Fluctuation test when the latter is implemented
using large values of � and when the break occurs towards the end of the sample.

5 Empirical evidence on the time variation in the out-of-sample

relative forecasting performance of exchange rate models

A vast literature has analyzed the out-of-sample forecasting performance of exchange rate models
since the seminal papers by Meese and Rogoff (1983a,b). Even though the Meese-Rogoff stylized
fact that a random walk predicts exchange rates better than conventional macroeconomic models
is still alive, there are a variety of conjectures regarding why that might be the case. These include
the presence of parameter instabilities in predictive regressions. As shown by Rossi (2006), para-
meter instability plagues the estimation of exchange rate models. Such instability might confound
results of in-sample Granger-causality tests of whether the macroeconomic fundamentals predict
future exchange rates changes. By using Granger-causality tests that are robust to parameter insta-
bility, Rossi (2006) rejects the hypothesis that exchange rates are random walks in-sample. Kilian
and Taylor (2003) arrive at the same conclusion on the basis of an in-sample test that allows for
nonlinearities in the data generating process (which is equivalent to parameter instabilities in pre-
dictive regressions). As an additional economic motivation for our analysis, Timmermann (2008)
suggests that, as a result of ef�cient markets where investors are constantly searching for arbitrage
opportunities, one would not expect to �nd constant predictability patterns.
Given the widespread instabilities detected by in-sample tests and the promising �nding that,

when such instabilities are correctly taken into account, it is possible to reject the random walk
model, we proceed to examine the implications of these �ndings for forecasting exchange rates
out-of-sample by using the techniques developed in this paper.
We consider two models of exchange rate determination: the conventional Uncovered Interest

Rate Parity (UIRP) model and the model with Taylor rule fundamentals considered by Molodtsova
and Papell (2007). The latter report that evidence of short-term predictability of exchange rates
appears to be stronger with the Taylor rule model than with the UIRP model. The two models
are speci�ed as follows. Let the logarithm of the bilateral nominal exchange rate (determined as
the domestic price of foreign currency) be denoted by st . The one�step-ahead change in st can be
modeled as a function of its deviation from the current level of the macroeconomic fundamental:

stC1 � st D � C �zt C "tC1 (8)
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where zt D ft�st , and ft is the long-run equilibrium level of the nominal exchange rate determined
by the macroeconomic fundamental.7 In the UIRP model,

ft D
�
it � i�t

�
C st ; (9)

where
�
it � i�t

�
is the short-term interest differential between the home and the foreign countries.

In the model with Taylor fundamentals, the home country interest rate follows a Taylor rule (see
Taylor, 1993):

it D � t C �
�
� t � �

T �C 
 ygapt C r; (10)

where � t is the in�ation rate, �T is the target level of in�ation, y
gap
t is the output gap,8 and r

is the equilibrium level of the real interest rate. A similar condition applies to the foreign coun-
try. Let asterisks denote the variables in the foreign country. If the coef�cients of the home and
foreign Taylor rule are similar (the "symmetric Taylor rule with homogeneous coef�cients and no
smoothing" case considered in Molodtsova and Papell, 2007), then by taking their differences:

it � i�t D .1C �/
�
� t � �

�
t
�
C 


�
ygapt � ygap�t

�
: (11)

Therefore, in the exchange rate model with Taylor rule fundamentals, by substituting (11) into (9),
we have

ft D .1C �/
�
� t � �

�
t
�
C 


�
ygapt � ygap�t

�
C st : (12)

We estimate the models using monthly data for output, interest rates, and in�ation from the
IMF's International Financial Statistics database from 1973:3 to 2008:1.9 The exchange rate series
are from the Federal Reserve Bank of St. Louis. The countries that we consider are: Japan,
Switzerland, Australia, Canada, Great Britain, Sweden, Denmark, Germany, France, Italy, the
Netherlands, and Portugal. We recursively estimate the parameters of the two models over rolling

7We do not consider multi-step ahead changes in the exchange rate because the tests of out-of-sample forecast
comparisons do have a non-normal distribution when the number of steps ahead is non-negligible and the regressor zt
is highly persistent (as it is in our data). See Rossi (2005a).

8The output gap is the percentage difference between actual and potential output at time t , where potential output is
measured by the linear time trend in output. The coef�cients of the linear time trend are re-estimated as the parameters
of the model are re-estimated through time, and their estimation is based only on variables available in the information
set of the forecaster at the time in which the forecast is made.

9The data are the same as in Molodtsova and Papell (2007), and are: the seasonally adjusted industrial production
index for output, and the 12-month difference of the CPI for the annual in�ation rate.
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windows of 50 observations starting from 1983:2.10 All tests are one-sided: the null hypothesis is
that, for each country, the model with fundamentals has the same MSFE as the random walk; the
alternative is that the model with fundamentals forecasts better than the random walk.

INSERT TABLES 3 AND 4 HERE

Table 3 reports the p-values of the average tests of equal predictive ability via the GW and
the CW tests. For completeness, Table 4 reports the corresponding average out-of-sample MSFE
differences (divided by their standard deviation). We consider both the full sample (1973:3-2008:1)
and the sub-sample considered by Molodtsova and Papell (2007), namely 1973:1-2004:10. We
note that the GW test does not reject the null hypothesis that the models with fundamentals and the
random walk have the same predictive ability. The CW test instead rejects the null in favor of the
model with fundamentals for Japan and Canada at the 10% signi�cance level, and for the UIRP for
the U.K. The latter results provide interesting evidence in favor of the model with fundamentals,
and are Molodtsova and Papell's (2007) most important piece of evidence in favor of short horizon
predictive ability of exchange rates.
How robust are these �ndings? Rogoff and Stavrakeva (2008) show that the results may depend

on the initial estimation point as well as the size of the rolling window. In other words, the relative
forecasting performance of the models might have changed over time, and we address this issue
by using our tests.

INSERT FIGURES 3 AND 4 HERE

We focus on the UIRP model. Figures 3(a) and 4(a) report results for the GW Fluctuation test
for Germany and the U.K. Figures 3(b) and 4(b) report results for the CW Fluctuation test. The
�gures report both the Fluctuation test statistic (constructed using a centered moving window) as
well as the one-sided critical value at 5% (the constant line). Positive values of the test statistic
indicate that the model with fundamentals is better than the random walk. Our procedure points
out that there have been periods in which the Deutsche Mark and the British Pound have been
predictable, and this happened at the beginning of the out-of-sample period, in the late Eighties.
However, such evidence has disappeared in the Nineties. Interestingly, by comparing these results
with Table 4, note that average tests of predictive ability would have been incapable to uncover
such favorable evidence in favor of the UIRP model in the Deutsche Mark case.
10Our theoretical results hold as long as the number of out-of-sample forecast error differences withing the esti-

mation window is large enough for the asymptotic theory to apply. However, our sample is pretty small. In order to
strike a balance between the two, we choose a window of 50 observations, that should allow our approximations to be
suf�ciently precise.
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INSERT FIGURE 5 HERE

For the British Pound, Figure 5 shows results for the One-time Reversal test. The test clearly
identi�es a reversal in the relative forecasting ability of the two models around 1989 from a sit-
uation where the model with fundamentals forecasts best to a situation where the random walk
forecasts best. The pattern is similar to that reported in Figure 4, except that the Fluctuation test
�smooths out� the measure of relative performance over time.
Overall, we interpret our empirical results as pointing towards a worsening of the performance

of the models with fundamentals relative to the random walk in the most recent years, to the point
that measures of average performance would overstate the recent predictive ability of the economic
models.

6 Conclusions

We introduce newmethods for assessing the possible presence of time variation in the relative fore-
cast performance of two models. A companion paper, Giacomini and Rossi (2007), considers the
problem of comparing the in-sample performance of competing models in unstable environments.
Our techniques can be generally applied to nonlinear, dynamic, nested or non-nested forecasting
models.
We proposed two tests: a Fluctuation test, which does not require specifying the nature of the

instability under the alternative hypothesis, and a One-Time Reversal test, when the alternative is
of a single, permanent break in the relative performance of the two models.
A natural question to ask is what a forecaster should do if the tests �nd instability in the relative

performance of competing models. The paper does not investigate this issue in depth, but possible
strategies can be devised if one is willing to specify the nature of the instability. For example,
in case of a one-time permanent break (or a �nite number of such breaks), the forecast strategy
suggested by our One-Time Reversal test is to select the forecast that is most accurate in the
period after the break. Alternatively, the Fluctuation test may reveal that one model performs
better in certain periods and the competing model is more accurate in other periods, in which case
a combination forecast may be more robust to structural instability than either of the individual
forecasts. A forecast combination with time-varying weights (e.g., Elliott and Timmermann, 2005)
would in this case be a natural way to accommodate underlying instability in the relative forecast
performance of the models.
We illustrate the usefulness of our techniques by analyzing the time variation in the relative
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forecasting performance of exchange rate models with economic fundamentals relative to the ran-
dom walk. Our techniques uncover a sharp worsening in the forecasting ability of the Uncovered
Interest Rate Parity model around 1989. Existing tests of equal predictive ability, that consider
only average predictive ability over the out-of-sample period, would miss this interesting stylized
fact.
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7 Appendix - Proofs

Proof of Proposition 1. Let
P

j �
PtCm=2�1

jDt�m=2 for t D R C h C m=2; :::; T � m=2C 1:We have

��1m�1=2
X
j
1L j .b� j�h;R;b
 j�h;R/

D .m=P/�1=2
 
��1P�1=2

tCm=2�1X
jDRCh

1L j .b� j�h;R;b
 j�h;R/� ��1P�1=2 t�m=2�1X
jDRCh

1L j .b� j�h;R;b
 j�h;R/
!
:

By Assumption 1(a), we have

��1m�1=2
X
j
1L j .b� j�h;R;b
 j�h;R/ H) �

B .� C �=2/� B .� � �=2/
�
=
p
�:

The statement in the proposition then follows from the fact that, under H0,b� in (2) is a consistent
estimator of � (Andrews, 1991, and Newey and West, 1987).
Proof of Proposition 3. Note that, by Assumption 1(a), under the null hypothesis:

��1P�1=2
TX

jDRCh
1L j .b� j�h;R;b
 j�h;R/ H) B .1/ (13)

��1 .t=P/�1=2 .1� t=P/�1=2 [P�1=2
tX

jDRCh
1L j .b� j�h;R;b
 j�h;R/

� .t=P/ P�1=2
TX

jDRCh
1L j .b� j�h;R;b
 j�h;R/]

H) ��1=2 .1� �/�1=2 [B .� /� �B .1/ ] D ��1=2 .1� �/�1=2 BB .� / (14)

where (13) and (14) are asymptotically independent since cov .B .1/ ;BB .� // D 0. Then, by the
Continuous Mapping Theorem, we have:

LM1 C LM2 .t/ H) B .1/2 C ��1 .1� �/�1 BB .� /2

and the result follows.

22



8 Tables and Figures

Figure 1(a). Rolling MSFE differences (standardized)
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Figure 1(b). Test statistics proposed in this paper
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Figure 1 shows the Fluctuation test statistics, obtained as the (standardized) difference between

the MSFE of the random walk and the MSFE of the UIRP model calculated over rolling

windows (upper panel) as well as the Fluctuation test's one sided critical value and the path

of relative performance implied by the One-Time Reversal test (bottom panel).
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Figure 2(a). Power of Fluctuation, full-sample GW and One-Time Reversal tests.
Unequal but constant relative performance
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Figure 2(a) shows the rejection frequencies of the Fluctuation, GW and One-Time Reversal tests in

the case of a constant but unequal relative forecasting performance of the competing models.

� D m=P with m and P D 150 denoting the rolling window and out-of-sample sizes, respectively.
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Figure 2(b). Power of Fluctuation, full-sample GW and One-Time Reversal tests.
Break in relative performance at R C 1
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Figure 2(b) shows the rejection frequencies of the Fluctuation, GW and One-Time Reversal tests

in the case of a break in the relative performance at time RC13 P; for .R; P/ D .150; 150/.
R and P denote in-sample and out-of-sample size, respectively, and � D m=P with m the rolling window size.
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Figure 2(c). Power of Fluctuation, full-sample GW and One-Time Reversal tests.
Break in relative performance at R C 2
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Figure 2(c) shows the rejection frequencies of the Fluctuation, GW and One-Time Reversal tests

in the case of a break in the relative performance at time RC23 P; for .R; P/ D .150; 150/.
R and P denote in-sample and out-of-sample size, respectively, and � D m=P with m the rolling window size.
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Figure 2(d). Power of CW Fluctuation test and full-sample CW test.
Unequal but constant relative performance.
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Figure 2(e). Power of CW Fluctuation test and full-sample CW test.
Break in relative performance.
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Figures 2(d,e) show the rejection frequencies of the CW Fluctuation test and the

full-sample CW test in the case of a break in relative performance at time RC12 P; for .R; P/ D .150; 150/.
R and P denote in-sample and out-of-sample size, respectively, and � D m=P with m the rolling window size.
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Figure 3(a): GW Fluctuation test, Deutsche Mark
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Figure 3(b): CW Fluctuation test, Deutsche Mark
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Figure 3 shows the Fluctuation test statistics and the critical value of the Fluctuation test.

Positive values of the Fluctuation statistic imply that the economic model is better than the random walk.
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Figure 4(a): GW Fluctuation test, U.K. Pound
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Figure 4(b): CW Fluctuation test, U.K. Pound
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Figure 4 shows the Fluctuation test statistics and the critical value of the Fluctuation test.

Positive values of the Fluctuation statistic imply that the economic model is better than the random walk.
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Figure 5. One-time Reversal test, U.K. Pound
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Figure 5 shows the Fluctuation test statistics and the path of relative performance

implied by the One-time Reversal test.

Positive values imply that the economic model forecasts better than the random walk.
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Table 1. Asymptotic critical values
for the Fluctuation test (k�)

Two-sided test One-sided test
� �

� 0.05 0.10 0.05 0.10

.1 3.393 3.170 3.176 2.928

.2 3.179 2.948 2.938 2.676

.3 3.012 2.766 2.770 2.482

.4 2.890 2.626 2.624 2.334

.5 2.779 2.500 2.475 2.168

.6 2.634 2.356 2.352 2.030

.7 2.560 2.252 2.248 1.904

.8 2.433 2.130 2.080 1.740

.9 2.248 1.950 1.975 1.600

Table 1 reports critical values for the Fluctuation test of Proposition 1.
� denotes the nominal size of the test and � D m=P where m denotes the size of the rolling window and

P the out-of-sample size
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Table 2. Empirical size of Fluctuation and One-Time Reversal tests.
Nominal size .05

A. Fluctuation test
GW Fluctuation CW Fluctuation

P P
R 20 50 150 R 20 50 150

� D :1 20 0.18 0.15 0.13 20 0.97 0.47 0.11
50 0.17 0.17 0.17 50 0.98 0.47 0.11
150 0.16 0.16 0.19 150 0.98 0.49 0.13

P P
R 20 50 150 R 20 50 150

� D :3 20 0.04 0.04 0.04 20 0.19 0.08 0.05
50 0.04 0.04 0.04 50 0.20 0.07 0.05
150 0.04 0.05 0.06 150 0.21 0.08 0.06

P P
R 20 50 150 R 20 50 150

� D :5 20 0.03 0.03 0.02 20 0.08 0.05 0.05
50 0.03 0.03 0.02 50 0.08 0.05 0.04
150 0.04 0.04 0.04 150 0.09 0.05 0.05

P P
R 20 50 150 R 20 50 150

� D :7 20 0.03 0.02 0.02 20 0.05 0.04 0.05
50 0.03 0.03 0.02 50 0.06 0.05 0.05
150 0.03 0.03 0.03 150 0.06 0.05 0.05

P P
R 20 50 150 R 20 50 150

� D :9 20 0.03 0.02 0.02 20 0.05 0.04 0.05
50 0.03 0.03 0.03 50 0.05 0.05 0.05
150 0.04 0.04 0.04 150 0.05 0.05 0.05

B. One-Time Reversal test
P

R 20 50 150
20 0.04 0.04 0.04
50 0.04 0.05 0.05
150 0.03 0.05 0.0732



Table 2 reports empirical rejection frequencies for the GW and CW Fluctuation tests (for various values

of� D m=P; wherem denotes the size of the rolling window used to construct the Fluctuation test statistic
and P the out-of-sample size) and for the One-time Reversal test. R denotes the in-sample size. The data-
generating process is described in Section 4.1.

Table 3. P-values of full-sample tests

GW CW
1973:3-2004:10 1973:3-2008:1 1973:3-2004:10 1973:3-2008:1
Taylor UIRP Taylor UIRP Taylor UIRP Taylor UIRP

Japan 0.75 0.69 0.80 0.69 0.07 0.06 0.07 0.06
Canada 0.15 0.20 0.23 0.37 0.00 0.00 0.01 0.02
Switzerland - - 0.84 - - 0.85 - - 0.18 - - 0.17
U.K. 0.77 0.72 0.80 0.74 0.27 0.08 0.29 0.08
France 0.77 0.98 0.82 0.98 0.19 0.83 0.34 0.83
Germany 0.89 0.83 0.88 0.83 0.57 0.20 0.56 0.20
Italy 0.92 0.75 0.93 0.75 0.14 0.31 0.14 0.31
Sweden 0.96 1.00 0.93 1.00 0.35 0.95 0.16 0.94
Australia - - 0.76 0.42 0.76 - - 0.19 0.28 0.19
Denmark - - - - - - - - - - - - - - - -
The Netherl. 0.96 - - 0.95 - - 0.67 - - 0.65 - -
Portugal 0.99 - - 0.99 - - 0.52 - - 0.52 - -
Table 3 reports p-values of the full-sample GW and CW tests. The tests compare the models with funda-

mentals, either the model with Taylor-rule fundamentals or the UIRP model, to a random walk benchmark.
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Table 4. Out-of-sample MSFE
differences (standardized)

1973:3-2004:10 1973:3-2008:01
Taylor UIRP Taylor UIRP

Japan -0.66 -0.49 -0.85 -0.49
Canada 1.04 0.85 0.72 0.33
Switzerland - - -1.01 - - -1.01
U.K. -0.74 -0.57 -0.85 -0.65
France -0.74 -2.01 -0.90 -2.01
Germany -1.23 -0.96 -1.18 -0.96
Italy -1.43 -0.66 -1.45 -0.66
Sweden -1.80 -3.34 -1.48 -3.51
Australia - - -0.70 - - -0.70
Denmark - - - - - - - -
The Netherl. -1.72 - - -1.69 - -
Portugal -2.22 - - -2.22 - -

Table 4 reports the MSFE of the random walk minus the MSFE of the economic model. The difference

has been rescaled by the standard deviation of the MSFE differences so that it is comparable to the test

statistic considered by Diebold and Mariano (1995).

34


