
A Unified Analysis of Rational Voting with Private Values

and Group-Specific Costs∗

Curtis R. Taylor

Department of Economics

Duke University

Box 90097

Durham, NC 27708

E-mail: crtaylor@econ.duke.edu

Huseyin Yildirim†

Department of Economics

Duke University

Box 90097

Durham, NC 27708

E-mail: yildirh@econ.duke.edu

February 5, 2010

Abstract

We provide a unified analysis of the canonical rational voting model with privately

known political preferences and costs of voting. Focusing on type-symmetric equilib-

rium, we show that for small electorates, members of the minority group vote with a

strictly higher probability than do those in the majority, but the majority is strictly

more likely to win the election. As the electorate size grows without bound, equilib-

rium outcome is completely determined by the individuals possessing the lowest cost of

voting in each political group. We relate our equilibrium characterization to Myerson’s

Poisson games, and examine the potential uniqueness of equilibrium.

JEL Classifications: C72, D72, D82.

Keywords: costly voting, free-riding incentive, coordination problem, underdog

effect.

1 Introduction

Rational voting theory, originally proposed by Downs (1957) in decision-theoretic terms,

and later formulated by Ledyard (1981, 1984), and Palfrey and Rosenthal (1983, 1985) in

game-theoretic terms, lays out the most basic incentives to vote and assumes that each agent

trades off the net benefit of winning discounted by the probability of casting the pivotal

∗We thank the advisory editor, two referees, John Aldrich, Han Hong, Ozgur Kibris, Mike Munger,
Thomas Palfrey, and especially Martin Osborne for comments and discussions. This paper is a substantially

revised version of the one circulated under “ A Characterization of Voter Turnout in Large Elections”. All

remaining errors are ours.
†Corresponding author.
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vote against the cost of voting.1 Despite severely underestimating turnout rate in large

electorates [Palfrey and Rosenthal (1985)], rational voting theory is still widely believed to

yield empirically reasonable comparative statics even in its purest form.2 Perhaps this is

why there is a renewed interest in the theory’s applications. Most notably, Campbell (1999)

applies the theory to rationalize election upsets by demonstrating that the minority group

is likely to win the election if the electorate size is sufficiently large and if the minority

is composed of agents with relatively low cost-benefit ratios. In a small electorate with

ex ante symmetric agents, Börgers (2004) shows that voluntary participation may lead to

too much turnout from the social viewpoint. Krasa and Polborn (2009) extend Börgers’

analysis to asymmetric groups and large electorates, and point to the potential benefits of

mandatory voting policies.3 In two related papers, Goeree and Grosser (2007) and Taylor

and Yildirim (2010) examine the impact of releasing information about the distribution of

political preferences through pre-election polls, political stock markets, etc. on equilibrium

electoral outcomes and welfare.

While providing valuable insights, these papers have also recorded some important —

and at times startling — theoretical results. For instance, Goeree and Grosser (2007) for

small electorates, and Krasa and Polborn (2009), and Taylor and Yildirim (2010) for large

electorates have noted that even in the presence of a clear majority, each alternative is

equally likely to win the election in a type-symmetric equilibrium, which is also the basis

for Campbell’s finding. In addition, there seems to be a common understanding that an

agent’s vote becomes less pivotal as electorate size grows and/or others vote with a greater

probability. Finally, despite the inherent coordination problem among the supporters of

each alternative, Börgers (2004) establishes the uniqueness of type-symmetric equilibrium.

It is, however, often difficult to discern what factors drive these results and how robust

they are, given that each paper employs a costly voting model with a varying degree of

generality. The present paper aims to fill in this gap by providing a unified analysis while

taking the celebrated “paradox of not voting” as given. The model we analyze is a gener-

alization of Börgers (2004) and a slight variation of Palfrey and Rosenthal (1985). There

are  agents divided randomly into two groups: supporters of alternative  and supporters

1See Aldrich (1997), Blais (2000), Feddersen (2004), and Merlo (2006) for excellent overviews of the

literature.
2See, Hansen, Palfrey and Rosenthal (1987) for empirical evidence, and Levine and Palfrey (2007) for

experimental evidence in favor of this model.
3On the same topic, also see Ghosal and Lockwood (forthcoming).
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of alternative . These political preferences are distributed independently across agents.

Moreover, within each group the costs of voting are also independently distributed. Each

agent privately knows both his realized preference and voting cost.4 Most significantly,

this generalization allows for group-specific cost distributions with potentially different sup-

ports. An agent receives a net benefit normalized to 1 if his preferred alternative wins, and

0 otherwise. Agents decide whether to vote or abstain simultaneously, and ties are broken

by a fair coin toss. As is common in the literature, we focus on type-symmetric equilibrium.

Our main result pertaining to small electorates formalizes the “underdog effect”: given

the same cost distribution, the members of the minority group vote with a strictly higher

probability than do those in the majority.5 Nonetheless, the majority never completely

loses its initial advantage. This contrasts with the political neutrality findings of Goeree

and Grosser (2007), and Taylor and Yildirim (2010) when voting costs are assumed fixed

and equal for all agents.6 As electorate size grows without bound, consistent with Campbell

(1999), and Krasa and Polborn (2009), we show that only the agents with the lowest possible

costs vote, independent of the distributions of preferences and costs. Moreover, unlike Krasa

and Polborn, by allowing for different cost supports across the two political groups, we

discover that each alternative is equally likely to win the election if and only if the lower

bounds of the supports are equal. Otherwise, the group with a cost advantage (in the sense

of the lowest possible cost) is strictly more likely to win, as intuition suggests.

Our equilibrium characterization of large elections also bridges a gap between the costly

voting model with a fixed population size and Myerson’s Poisson games with a random

population [Myerson (1998, 2000)]. We demonstrate that a large election can be considered

a Poisson game — in Myerson’s sense — where the population mean is the sum of equilibrium

limit turnouts for each group and an appropriately defined probability of voting for each

alternative in terms of these limits, which is, in general, different from the initial distribution

of preferences.7

4As in the Ledyard-Palfrey-Rosenthal model, agents in our private-values setup are also differentiated by

their intrinsic preferences over political alternatives. Hence, we do not study the information aggregation

problem that is the focus of common-value models such as Feddersen and Pesendorfer (1997), Krishna and

Morgan (2008), and Razin (2003).
5To be sure, the underdog effect has been articulated in several empirical and experimental studies, the

most recent being Levine and Palfrey (2007); but, to our knowledge, it has not been formally shown in a

framework as general as ours.
6Such an underdog effect is not present in Börgers (2004) due to ex ante symmetry.
7Myerson (1998, pp. 386-92) makes a similar point but within a numerical example with a fixed cost of

voting.
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Finally, we establish a sufficient condition for equilibrium uniqueness, which is satisfied

if agents are sufficiently symmetric. In doing so, we demonstrate that Börgers’ (2004)

uniqueness result with symmetric agents is robust to small perturbations.

The rest of the paper is organized as follows. In the next section, we set up the formal

model, followed by the equilibrium characterizations for small and large electorates in Sec-

tions 3 and 4, respectively. In Section 5, we examine the question of equilibrium uniqueness,

and we gather some concluding remarks in Section 6. The proofs not appearing in the text

have been relegated to the Appendix.

2 The Model

There are  ≥ 2 agents who may cast a vote in an election between two alternatives,  =
. Each agent  privately knows his 2-dimensional type,  = ( ), consisting of his

political preference  ∈ {} and his cost of voting . Political preferences are inde-

pendently drawn from a Bernoulli distribution with  ∈ (0 1) representing the probability
of alternative , and conditional on these preferences, the agents who favor alternative

 pick their voting costs independently from the differentiable distribution () where

0() = ()  0 for all  ∈ [ ] ⊂ R+. Note that we allow voting costs across the

two political groups to differ not only in their densities but also in their supports.8 Upon

privately observing their types, agents simultaneously choose whether to vote for their pre-

ferred alternative or to abstain. The election is decided by a simple majority rule and ties

are broken by a fair coin toss. Agent  receives a gross payoff normalized to 1 if  wins;

and 0 otherwise.

Action/Outcome  wins  loses

Abstain 1 0

Vote 1−  −
Table 1: Ex Post Payoffs of Agent 

As is clear from Table 1, abstaining strictly dominates voting for one’s less preferred alter-

native, resulting in “sincere” voting in this setup.9 In order to rule out trivial equilibria

in which it is a dominant strategy for all agents in some political group to abstain or for

8 If  = , then supports must, of course, be the same, but the converse is not true.
9Unlike a private values election, sincere voting, in general, does not obtain in equilibrium with common-

values. However, Krishna and Morgan (2008) have shown that if voting is costly, then there always exists

an equilibrium with sincere voting.
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all to vote with certainty, we assume 0   
1
2
 . All aspects of the environment are

common knowledge. In the analysis below, we frequently refer to political group  as the

majority and 0 as the minority if   0 , because, with   0 , the expected size of

group  is strictly greater than that of group 0.10

3 Equilibrium in Small Electorates

As is standard in the costly-voting literature, we concentrate on type-symmetric Bayesian

Nash Equilibrium (BNE) in which all agents preferring alternative  follow the same equi-

librium strategy. It is straightforward to verify that in a type-symmetric BNE, agents adopt

a cutoff strategy in which a player favoring  votes if and only if his cost is less than some

critical level, ∗. In order to characterize such a BNE, denote the ex ante probability that

a type  agent11 votes by  ≡ (
∗
), and the ex ante probability that an agent votes

for alternative  by  ≡ . Hence, the ex ante probability that an agent abstains is

(1 −  − 0). Now, recall that the number of ways  other agents can vote for , 
0 can

vote for 0, and − 1−  − 0 can abstain is given by the trinomial coefficientµ
− 1

 0 − 1−  − 0

¶
≡ (− 1)!

!0!(− 1−  − 0)!


Given this, the net expected utility from voting to an agent with voting cost, , and political

preference  may be written (see the proof of Lemma 1 in the Appendix)

∆ ≡ 1
2
 ( 0  )−  (1)

where

 ( 0  ) ≡
b−12 cX
=0

µ
− 1

  − 1− 2
¶



0(1−  − 0)

−1−2 (2)

+

b−22 cX
=0

µ
− 1

  + 1 − 2− 2
¶


+1
0 (1−  − 0)

−2−2

for  = ,  6= 0, and b·c is the usual operator that rounds a number to the lower integer
when necessary.

10This terminology is commonly used in the literature, e.g., Campbell (1999), Goree and Grosser (2007),

and Krasa and Polborn (2009).
11To avoid repetition, we sometimes abuse terminology and say "type"  to refer to one’s political type

only, keeping in mind type also includes his cost.
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To understand expression (1), observe that  ( 0  ) is the probability that a type

 agent casts a decisive vote; i.e., that his vote is pivotal in determining the outcome when

each of the other − 1 agents: votes for  with probability , votes for 0 with probability
0 , and abstains with probability 1 −  − 0 . In particular, his vote may be pivotal for

one of two reasons corresponding to the two summations in (2). First, if  of the other

agents vote for ,  vote for 0, and  − 1 − 2 abstain, then the agent in question will
break a tie by voting. The first summation in (2) is, therefore, the probability that the

agent breaks a tie that would otherwise occur. Second, if  agents vote for alternative ,

 + 1 vote for 0, and  − 2 − 2 abstain, then the agent in question will create a tie by
voting. The second summation in (2) is, therefore, the probability that the agent in question

creates a tie when alternative 0 would otherwise have won. When his vote breaks a tie, the

probability that alternative  is implemented rises from 12 to 1, and when his vote creates

a tie, the probability that  is implemented rises from 0 to 12. This accounts for the factor

12 in (1). Of course, when an agent votes, his net expected benefit must also account for

his voting cost, .

An important step in understanding equilibrium voting behavior now, and the possibility

of equilibrium uniqueness later, is to derive some basic properties of the pivot probability.

To our knowledge, these properties have not been recorded elsewhere, except for the special

case of  = 0 .

Lemma 1. For ( 0) ∈ (0 )× (0 0) where  0 =  and  6= 0,

(i)  ( 0  )−  (0   ) =
 0 − 

(ii) 
0

 ( 0  ) =


½
0   = 2

 − 0    2


(iii) 


 ( 0  )  0, if  ≥
µ
1− 1

b2 c
¶
0 

(iv)  ( 0  )   ( 0  + 2), but  (  )   (  + 1).

To aid with discussion, it is worth repeating that  ( 0  ) is the probability that

the vote of an isolated type  agent is pivotal given the voting probabilities of the other

− 1 agents. Now, to understand part (i) of the lemma, suppose   0 . In this case, it

is likely that alternative  has more votes than 0, and therefore a vote for  (which widens

the expected lead) is less apt to be pivotal than a vote for 0 (which narrows it). Part (ii)
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says that an increase in the probability of voting for alternative 0 makes a vote for  more

likely pivotal because it closes the gap in voting probabilities between the two alternatives.

Hence, the pivot probability of a vote for  is nonmonotonic in the probability of voting for

0, peaking at the point where 0 = .
12

Part (iii) reveals that the vote of an isolated type  agent is less apt to be pivotal when

the probability that all other type  agents vote increases, provided they vote with higher

probability than type 0 agents (i.e., when the gap in voting probabilities increases). The

converse is, however, not necessarily true. In other words, if   0 , it is not necessarily

true that the vote of an isolated type  agent is more apt to be pivotal when  increases

(i.e., the gap in voting probabilities decreases). Part (iii) implies that an agent views his

vote as a substitute to the voting probability of others’ who share his political preference, so

long as this probability is not too far behind the probability for the competing alternative,

and as a complement otherwise.13

Finally, part (iv) reveals that a vote for  becomes less apt to be pivotal when the

electorate size increases by two. Intuition suggests that as the electorate grows, the pivot

probability should decrease for all . This turns out not to be true in general. For some fixed

pair ( 0), a type  agent’s vote actually may be more likely to be pivotal as  increases

by one.14 This nonmonotonicity is a consequence of the different ways ties can occur when

 is odd or even, and seems to be especially relevant in small electorates. Nonetheless, the

monotonicity of the pivot probability is restored, if one takes increments by two rather than

one, or compute it on a particular path such as  = 0 , as in Börgers (2004), Goeree

and Grosser (2007), and Taylor and Yildirim (2010). The latter plays a crucial role in

establishing equilibrium uniqueness for these papers — an issue we address in Section 5.

In a type-symmetric equilibrium, the net expected payoff of a type  agent with the

cutoff cost, ∗, must satisfy

1

2
 (∗ 

∗
0  )− ∗ ≤ 0 and

∙
1

2
 (∗ 

∗
0  )− ∗

¸
(∗ − ) = 0 . (3)

To understand why, note that if 1
2
 (∗ ∗0  )− ∗  0, then a type  agent would not

be indifferent but would prefer to vote with certainty, violating the definition of ∗ as a cost
12This makes sense, because if 0 = , then each alternative is equally likely to win, making a vote for

 decisive with the highest probability.
13Note that since 


 (  )  0 and 

0
 (  ) = 0, it follows that 


 (  )  0, as

found in Börgers (2004), Goeree and Grosser (2007), and Taylor and Yildirim (2010).
14As an example, let  be even and  + 0 = 1. Then,  ( 0  ) −  ( 0   + 1) =

−1

2




2
−1

 

2

0 (1− 2) Hence,  ( 0  )   ( 0  + 1) whenever  
1
2
.
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cutoff. Conversely, if 1
2
 (∗ ∗0  ) − ∗  0, then the agent would prefer to abstain with

certainty or would have ∗ = . Finally, if 
∗
  , then the agent would, by the definition

of ∗, vote for some cost realizations, but because
1
2
 , not for all. Thus, in equilibrium,

he must be indifferent at the cutoff cost.

Given  ≡ (
∗
),  ≡ , and defining

Φ( 0) ≡ 

µ
1

2
 ( 0  )

¶
− 


,

we can rewrite (3):

Φ(
∗
 

∗
0) ≤ 0 and ∗Φ(

∗
 

∗
0) = 0 (4)

Finding an equilibrium, therefore, amounts to finding a pair (∗ 
∗
) ∈ [0 ]× [0 ]

that satisfies (4).

Proposition 1. There exists a type-symmetric equilibrium, and every type-symmetric

equilibrium has the following properties:

(i) ∗  1 for all ; and ∗  0 for some .

(ii) If ∗ = 0, then   0 .

(iii) If  =  and   , then 0  ∗  ∗; ∗  ∗  0; and 1
2
 Pr{

wins}  1.

(iv) If  = , and  first-order stochastically dominates , then ∗ ≤ ∗; 
∗
 ≤

∗; and 0  Pr{ wins} ≤ 1
2
.

Proof. Let Ψ( ) ≡ ((
1
2
 (  ) (

1
2
 (  )). From (4), it is

clear that an equilibrium pair (∗ 
∗
) is a fixed point of Ψ. Since Ψ maps the

compact and convex set [0 ]× [0 ] into itself, and it is continuous in this region,
by Brouwer’s fixed theorem, there exists a type-symmetric equilibrium. Next, we

prove each part in turn.

(i) Suppose, to the contrary, ∗ = 1, or equivalently ∗ = (6= 0) for some . Then,

since 1
2
 , we have Φ( 

∗
0)  0, which, from (4) implies ∗ = 0, yielding a

contradiction. Hence, ∗  1 for all . Next, suppose ∗ = 0, or ∗ = 0 for all .

Then, Φ(0 0) = 

¡
1
2

¢
 0, contradicting (4). Thus, ∗  0 for some .
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(ii) Let ∗ = 0 for some . Then, 
∗
0  0 by part (i). By (3), this means

1
2
 (0 ∗0  )− ≤

0 and 1
2
 (∗0  0 ) − ∗0 = 0 where ∗0  0 . From (2), note that  (0 ∗0  ) =

(1− ∗0)
−1 + (− 1)∗0(1− ∗0)

−2 and  (∗0  0 ) = (1− ∗0)
−1, which together

require ∗0+
−1
2
∗0(1− ∗0)

−2 −  ≤ 0, and imply ∗0   because 
∗
0 ∈ (0 1).

(iii) Suppose  =  =  and   , but, to the contrary, 
∗
 ≤ ∗. We make

two observations. First,  =  implies  = , and thus 
∗
 

∗
  0 by part

(ii). Second,
∗



∗

. Together with (4), the latter requires (1

2
 (∗ 

∗
 )) 

(1
2
 (∗ 

∗
 )), which, given 0  0, implies  (∗ 

∗
 )   (∗ 

∗
 ), and

∗  ∗, by part (i) of Lemma 1, yielding a contradiction. Hence, 
∗
  ∗.

Given ∗  ∗  0, we have  (∗ 
∗
 )   (∗ 

∗
 ) by Lemma 1, andΦ(

∗
 

∗
) =

Φ(
∗
 

∗
) = 0 by (4). Since (

1
2
 (∗ 

∗
 ))  (1

2
 (∗ 

∗
 )) and 

∗
 ≡ ∗


, (4) fur-

ther reveals ∗  ∗. To complete the proof of part (iii), note that

Pr{ wins} =
1

2

b2 cX
=0

µ


  − 2
¶
(∗)

(∗0)
(1− ∗ − ∗0)

−2 (5)

+

b+12 cX
=1

−1X
0=0

µ


 0 −  − 0

¶
(∗)

(∗0)
0(1− ∗ − ∗0)

−−0 

Given ∗  ∗, it is clear that Pr{ wins}  Pr{ wins}, and hence Pr{ wins}  1
2
.

Moreover, given ∗  1, Pr{ wins}  1.

(iv) Suppose  = , and  first-order stochastically dominates , but, to the con-

trary, ∗  ∗. This means 
∗
  0. By (4), we thus have

(
1

2
 (∗ 

∗
 ))−

∗

≤ 0 = (

1

2
 (∗ 

∗
 ))−

∗


 (6)

Given  = , (6) reveals that (
1
2
 (∗ 

∗
 ))  (

1
2
 (∗ 

∗
 )), which, be-

cause first-order stochastically dominates, requires that  (
∗
 

∗
 ) ≤  (∗ 

∗
 ).

Then, by Lemma 1, we have ∗ ≤ ∗, yielding a contradiction. Hence, 
∗
 ≤ ∗. Since

 = , this implies 
∗
 ≤ ∗. Finally, note from (5) that 0  Pr{ wins} ≤ 1

2
. ¥

Proposition 1 highlights some basic properties of a type-symmetric equilibrium.15 Part

(i) indicates that in equilibrium, no individual votes with certainty. This is because the

15The existence of a type-symmetric equilibrium is well-established in the literature, e.g., Ledyard (1984)

and Palfrey and Rosenthal (1985). Nevertheless, this is — to the best of our knowledge — the first formal

derivation of the equilibrium properties for a small electorate.
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maximum benefit from voting is 1
2
and 1

2
 . Part (i) also indicates that at least some

individuals are expected to vote. However, even though we have ruled out abstentions

due to high costs, i.e,  
1
2
, it is possible that members of some political group abstain

altogether for strategic reasons. Part (ii) reveals that if such full abstention occurs, the

main reason must be the individuals with low costs of voting in the rival group and not

necessarily the distribution of political preferences. Another important implication of part

(ii) is that if  = 0 , then the expected probability of voting is strictly positive for all

individuals irrespective of the cost and political preference distributions. Hence, the knife-

edge case of equal cost lower bounds, often assumed in the literature, seems to rule out the

interesting case of complete abstention by one group. In our analysis of large elections, this

knife-edge case will also be the source of a strong “neutrality” result.

Part (iii) formalizes the “underdog effect” alluded to in the introduction: given identical

cost distributions, an agent in the minority group is strictly more likely to vote. This is due

to the well-known tension between one’s incentives for winning the election and free-riding

on his fellow group members. Not surprisingly, the latter incentive is less pronounced in a

smaller group. Nonetheless, part (iii) shows that the underdog effect never outweighs the

initial majority advantage, and hence the majority is strictly more likely to win in a small

electorate. Part (iv) examines the counterpart of (iii). When each agent is equally likely to

support either alternative, the group whose members are more likely to have higher voting

costs is less likely to win the election.

Proposition 1 puts a perspective on recent studies of the costly-voting model with a

small electorate. As mentioned in the Introduction, Börgers (2004) examines the symmetric

setup in which  =  and  =  so that the underdog effect does not emerge. Goeree

and Grosser (2007), and Taylor and Yildirim (2010) allow for  6= , and show that

each group is equally likely to win the election. Part (iii) of Proposition 1 indicates that

their assumption of a fixed and equal voting cost for all agents plays a crucial role in this

“neutrality” result, because when there is cost uncertainty, the majority is strictly more

likely to win even if the cost distributions are identical.

The underdog effect identified in Proposition 1 raises an important question: Does an

increase in population size necessarily improve the majority’s chances of winning? To answer

this question, suppose  =  and   . Let Pr{ wins|} ≡ (∗() 
∗
() ) for

a pair of equilibrium strategies (∗() 
∗
()). Then, by adding and subtracting the term

10



(∗() 
∗
() +1), the change in the majority’s probability of winning can be written,

Pr{ |+ 1}− Pr{ |} = (∗() 
∗
() + 1)− (∗() 

∗
() )| {z }

()

+(∗(+ 1) 
∗
(+ 1) + 1)− (∗() 

∗
() + 1)| {z }

()



Hence, an increase in population size has two effects on group A’s probability of winning.

() represents the direct (scale) effect because strategies are kept equal, and () repre-

sents the strategic effect because population size is kept equal. The following lemma shows

that while the direct effect is always positive, the strategic effect can counteract and even

overwhelm this positive effect.

Lemma 2. Suppose  =  and   . Fix a pair of equilibrium voting strategies

(∗() 
∗
()). Then, ()  0 for all . Moreover, for an infinite subsequence of

, ()  0 and () + ()  0

Proof. Suppose  =  and   . Fix a pair of equilibrium voting strate-

gies (∗() 
∗
()). Define () ≡ (∗() 

∗
() ). By Proposition 1, 

∗
() 

∗()  0. Thus, () = 1
2
(∗() − ∗())

Pb
2
c

=0
!

(!)2(−2)! [
∗
()]

[∗()]
(1 −

∗()− ∗())
−2  0 and ()  1

2
for all . Moreover, given  = , we have

()→ 1
2
as →∞ by Proposition 2 below. This means (+1)−()  0 for some

; otherwise if (+1)− () ≥ 0 for all , then () would not converge to 1
2
. This

also means that (+ 1)− ()  0 for an infinite subsequence of ; otherwise there

would exist some   ∞ such that ( + 1) − () ≥ 0 for all  ≥ , contradicting

again the fact that () → 1
2
as  → ∞. By definition, () + ()  0 and thus

()  0 whenever (+ 1)− ()  0. ¥

Lemma 2 answers the question we posed: an increase in population size does not neces-

sarily improve the majority’s chances of winning. It says that there is an infinite subsequence

of population size under which the strategic effect due to strategic voting is sufficiently neg-

ative to diminish the probability of winning for the majority. Note that if there were no

strategic voting so that     0 were fixed, then clearly () = 0, and (  )

would monotonically increase and converge to 1 as  grows.16 To gain further insight and

16To be sure, Lemma 2 provides only a partial characterization of Pr{ wins|} in . A full characteri-

zation requires a full characterization of ∗() and ∗(), which, in light of Lemma 1, does not appear to
be feasible unless one is willing to make strong assumptions on preference and cost distributions.
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motivate our analysis of large elections, we briefly report a numerical example in which

()  0 for all  and it dominates ()  0 after  becomes sufficiently large, yielding a

hump-shaped winning probability for the majority.

Example 1. Let each agent draw his cost of voting independently from a uniform distri-

bution in (02 1), and  = 55. Solving numerically for equilibrium (unique in this

case for each ), we find:

 5 50 100 1 000 10 000 100 000 1 000 000

∗ 15661 07063 05454 02104 00641 00141 00019

∗ 13578 06207 04805 01876 00588 00136 00018

Pr{ } 53204 56492 57945 64064 68357 62688 52780

Table 2. Nonmonotonicity of winning probability in electorate size

Although many voting situations such as boards of directors and congressional commit-

tees involve small electorates, many others such as referendums are about large electorates,

which we investigate next.

4 Equilibrium in Large Electorates

We have three main objectives in this section. First, we want to determine if the limit

turnout depends on the initial distribution of political preferences. Second, we wish to

identify conditions (if any) under which the advantage from being the majority group or

the group with stochastically lower cost vanishes as the population becomes large. Third,

we would like to know if large elections with fixed population size can be interpreted as

Myerson’s Poisson games with an appropriately assigned distribution of political preferences.

We begin the analysis with the following well-known result:

Lemma 3. In equilibrium, lim→∞ ∗() = 0 and lim→∞[∗()] = ∗  ∞ for  =

.

As first shown by Palfrey and Rosenthal (1985), Lemma 3 establishes that the individ-

ual probability of voting, and thus the turnout rate, becomes negligible in large elections.

Moreover, the expected limit turnout for each alternative is finite. If it were infinite for

some alternative, then each vote would be negligible, and no individual would vote given a

strictly positive cost. But then, each vote would become pivotal with probability 1, yielding

a contradiction.
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Lemma 3 implies that in large elections, the equilibrium cutoff for each alternative must

be close to the lower bound of the cost distribution, which, together with (3), leads to:

Lemma 4. lim→∞
£
1
2
 (∗() ∗0() )

¤ ≤  (=  whenever ∗()  ) for  0 =

 and  6= 0.

In order to determine expected voter turnout in the limit, consider the situation facing

a representative agent favoring alternative  and suppose that the other − 1 agents vote
if and only if their costs are less than the equilibrium cutoff ∗(). Let −1 and −1
be the number of votes for alternatives  and , respectively. Furthermore, let 0−1 =

−1−−1−−1 be the number of abstentions. Using this notation, a type  agent’s

vote will be pivotal if and only if 0−1 = −1 (he breaks a tie) or 0−1 = −1+1

(he creates a tie). Hence, the equilibrium probability that his vote is pivotal can be written

 (∗() 
∗
0() ) = Pr{∗

0−1 = ∗
−1}+Pr{∗

0−1 = ∗
−1 + 1} (7)

Next, observe that (∗
−1

∗
0−1

∗
0−1) ∼Multinomial(∗() ∗0() 1−∗()−∗0()|−

1). Note that ∗
−1 and ∗

−1 are not independent for  ∞, but the following result
establishes independence in the limit.

Lemma 5. The limiting marginal distributions, ∗
∞ and ∗

∞ are independent Poisson

distributions with means ∗ and ∗, respectively. Hence, the limiting distribution

of ∗
∞ +∗

∞ is Poisson with mean ∗ +∗.

In light of Lemma 5, let (|) be the p.d.f. for a Poisson distribution with mean .

Recall that (|) = −
!

for  = 0 1    Combining (7) and Lemma 5, it follows that

lim
→∞ (∗() 

∗
0() ) = Pr{∗

0∞ = ∞}+Pr{∗
0∞ = ∗

∞ + 1}]

=

∞X
=0

(|∗)(|∗0) +
∞X
=0

(|∗)( + 1|∗0) (8)

≡ (∗
∗
0)

Together with Lemma 4, the equilibrium limiting turnouts, ∗ and ∗, must then

satisfy
1

2
(∗

∗
0)−  ≤ 0 ( =  if 

∗
  0) (9)

Proposition 2. Without loss of generality, suppose  ≤ . Then,

13



(i) there is a unique cost  ∈ (0 ) such that⎧⎨⎩
∗  ∗ = 0 if  ≤ 
∗  ∗  0 if     
∗ = ∗  0 if  = 

(ii) Given , 
∗
 is strictly decreasing and ∗ is weakly increasing in .

(iii) Given , the limiting probability, lim→∞ Pr{ }, is strictly decreasing in ,

and equal to 1
2
for  = .

Proof. Without loss of generality, suppose  ≤ . Using the Poisson density,

(∗
∗
0) = −(

∗
+

∗
)

" ∞X
=0

(∗
∗
)



(!)2
+∗0

∞X
=0

(∗
∗
)



!( + 1)!

#


Hence, (9) implies ∗ ≥ ∗. Given (0 0) = 1 and  
1
2
, (9) also implies ∗  0.

Moreover, ∗ = 0 if and only if 1
2
(0∗) −  ≤ 0 and 1

2
(∗ 0) −  = 0. Since

(0∗) = −
∗
(1 + ∗) and (∗ 0) = −

∗
 , this means ∗ = 0 if and only if

2[1 − ln(2)] ≤ 2. Note that for  ∈ (0 1), the function () = (1− ln) satisfies:
lim→0+ () = 0, lim→1− () = 1, ()   and 0()  0. Hence, there exists a unique

cost  ∈ (0 ) that solves 2[1 − ln(2)] = 2. Clearly, 2[1 − ln(2)] ≤ 2 for all
 ≤ , and

∗
 = 0 as a result. For  ∈ ( ], we have∗  0, and by (9), ∗ = ∗

if and only if  = , proving part (i).

Next, if  ≤ , then ∗ = 0 and 1
2
−

∗
 =  by part (i). Thus, ∗ is strictly

decreasing in . Now, suppose  ∈ ( ). Then, by part (i), ∗  ∗  0 that solve

1
2
(∗

∗
) =  and

1
2
(∗

∗
) = . Simple algebra shows that




(∗
∗
)  0;




(∗
∗
)  0;




(∗
∗
)  0; and




(∗
∗
)  0. From here, it follows

that ∗ is strictly decreasing and ∗ is strictly increasing in .

Finally, note that lim→∞Pr{ } =
∞P
=0

∞P
0=+1

(0|∗)(|∗)+1
2

∞P
=0

(|∗)(|∗).
It is easy to verify that the r.h.s. is strictly increasing in ∗ and strictly decreasing in 

∗
.

Part (iii) then follows from part (ii). ¥
Proposition 2 is a key result of this paper. The most important observation is that the

limit turnouts and the probability of winning are completely determined by the individuals

with the lowest cost of voting in each group — not by the distributions of voting costs,  or

political preferences, . This is because the free-rider problem in each group is amplified as

14



the electorate size grows, leaving only the lowest cost agents to vote. As part (i) indicates

however, one group may abstain altogether if the cost differential is sufficiently large, and

such a cost differential always exists. Nonetheless, because the limit turnout for each group

is finite, there is still a significant probability that the abstaining group will win.17If the cost

differential is not too high, Proposition 2 leads to the intuitive observation that the group

with the lowest possible cost is expected to turn out in larger number and thus more likely

to win the election. In addition, as the cost differential increases, so does the probability of

winning for the low-cost group.

Proposition 2 achieves the first two objectives set in the beginning of this section.

Namely, the limit turnout does not depend on the initial distribution of political prefer-

ences. In addition, in the limit, the majority group loses its initial advantage, and a group

benefits from a favorable cost distribution to the extent of its lowest cost vis-a-vis the rival’s.

The distinction between a large and small election becomes most transparent when

 = . The advantage from being in the majority or from having a favorable cost

distribution identified in Proposition 1 for a small election completely vanish in the limit,

making each alternative equally likely to win. Moreover, two large elections one with  = 5

and one with  6= 5 result in equal limiting turnouts.18 Hence, the widely held intuition

that elections with a more evenly split electorate should generate a greater expected turnout

appears to be a property of small elections.

Proposition 2 also unifies various results pertaining to large electorates in the costly

voting literature. For instance, it implies that an expected minority whose members are

likely to have lower cost-benefit ratios may end up winning the election if the electorate size

is sufficiently large. Indeed, this is what Campbell (1999), in rationalizing minority upsets

in elections, finds, though he doesn’t provide a complete asymptotic characterization. In

a sense, it is the “quality” — not the “quantity” — of supporters that counts in order to

win an election. In a more recent paper, Krasa and Polborn (2009), using a special case

of the present model where  =  and thus  = , investigate socially optimal

voting subsidies or nonvoting penalties, and have independently discovered that without

such interventions, each alternative wins a large election with probability 1
2
. Proposition 2

shows that the assumption of equal cost lower bounds is both necessary and sufficient for

17 In fact, if  ≤ , then lim→∞ Pr{ wins} = 1
2
Pr{∗ = 0} = .

18 In a previous version of this paper, we determined that if  =  =  and  is small, the aggregate

limit turnout can be approximated by 1

22
.
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this 1
2
result, pointing to its knife-edge nature. If the cost lower bounds are not equal, then

one still obtains the intuitive result that the group with a cost advantage is strictly more

likely to win a large election. Finally, Taylor and Yildirim (2010) who analyze the impact

of public information about the distribution of political preferences on election outcomes

and welfare, also uncover the 1
2
result to be the probability of winning in a large electorate

where each agent has a fixed and equal cost of voting, i.e., a degenerate cost distribution.19

Proposition 2 reveals that while the result would remain true with the introduction of a

nondegenerate cost distribution, if voting costs are fixed, then they must be equal in order

for neutrality to obtain. Said differently, in a large election, a model with equal fixed voting

costs and a model with symmetric cost uncertainty are strategically equivalent if and only

if the fixed voting cost in the first model equals the lowest possible cost in the second one.

By utilizing the Poisson characterization, we can also link the costly voting model to

Myerson’s Poisson games, and in the process answer the third point made in the beginning

of this section. Inspired mostly by large elections, Myerson (1998, 2000) introduced the

concept of Poisson games, where the number of players (the electorate size, here) is distrib-

uted according to a Poisson distribution with an exogenous mean, rather than being fixed.

However, as Myerson (2000, p.27) notes, because abstentions occur in equilibrium with

costly voting, this interpretation is nontrivial. In particular, the expected number of active

players, ∗, is endogenously determined by asymptotic equilibrium strategies. Moreover,

within the set of active players, it is incorrect to assume that the probability that an agent

votes for alternative  is  Rather, large elections analyzed here correspond to a Poisson

game where the mean population is ∗ +∗, and each agent favoring alternative  votes

with probability
∗

∗

+∗


, which is 1

2
in the special case of  = .

5 On the Uniqueness of Type-Symmetric Equilibrium

Armed with the characterization of the pivot probability in Lemma 1, we now establish a

sufficient condition for the uniqueness of type-symmetric equilibrium, which received some

attention in the costly voting literature. Börgers (2004) showed that when all agents are

ex ante symmetric, i.e.,  =  and  = , then the type-symmetric equilibrium is

unique. Goeree and Grosser (2007), and Taylor and Yildirim (2010) proved the uniqueness

of type-symmetric equilibrium in totally mixed strategies when  6=  and each agent

19As mentioned in the previous section, Goeree and Grosser (2007) also find the 1
2
result, but only for a

small electorate.
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has a fixed and equal cost of voting. Given the special structures in these investigations,

however, it is difficult to understand what drives the uniqueness result and whether or not

it is robust to (at least) small perturbations. In particular, all of these studies have utilized

two observations:  =  =  at an equilibrium, and the pivot probability along this

path, namely  ( ), is strictly decreasing in . Neither of these observations is true in

general, as we now know from Lemma 1 and Proposition 1 above. Intuitively though, the

uniqueness result should continue to hold if  and  are sufficiently close in equilibrium.
20

Proposition 3. There is at most one type-symmetric equilibrium that satisfies: 1− 1

b2 c ≤
∗
∗

≤ 1. Moreover, if  =  and 1 − 1

b2 c ≤


≤ 1, then there exists a unique

type-symmetric equilibrium.

Proof. We first make some preliminary observations. Fixing 0 ∈ [0 ], let b ≡
(0) ∈ [0 ] be a solution to Φ( 0) = 0. (0) exists because Φ(0 0) 

0, Φ( 0)  0, and Φ is continuous. Next, note that if

µ
1− 1

b2 c
¶
0 ≤ (0)

for some region of 0 , then (0) is single-valued and differentiable in this region;

because, by part (iii) of Lemma 1, Φ( 0) is strictly decreasing in  wheneverµ
1− 1

b2 c
¶
0 ≤ . More importantly, 

0
(0) =

 
0

 ( 0  ), which, by

part (ii) of Lemma 1, means 0(0) =  − 0 .

To prove the first part of the proposition, suppose there are two equilibria (∗ 
∗
) 6=

(∗∗  ∗∗ ) such that 1− 1

b2 c ≤
∗
∗

≤ 1 and 1− 1

b2 c ≤
∗∗
∗∗

≤ 1. Since, by definition of

an equilibrium, ∗ = (
∗
0) and ∗∗ = (

∗∗
0 ), we have

µ
1− 1

b2 c
¶
∗0 ≤ (

∗
0)

and

µ
1− 1

b2 c
¶
∗∗0 ≤ (

∗∗
0 ). This means that both equilibria are in the region of

( 0) in which (0) is single-valued and differentiable. Moreover, since both

equilibria are also in the region with  ≥ , it follows that 
0
() ≥ 0 and

0() ≤ 0, where equalities hold only when  = . Without loss of generality,

suppose ∗  ∗∗ . Then, (
∗
)  (

∗∗
 ), implying that 

∗
 ≥ ∗∗ . But, this

means (
∗
) ≥ (

∗∗
 ) and thus 

∗
 ≤ ∗∗ — a contradiction. Hence, ∗ = ∗∗ .

This implies ∗ = ∗∗ , because () is decreasing, yielding a contradiction to

(∗ 
∗
) 6= (∗∗  ∗∗ ). Hence, (

∗
 

∗
) = (

∗∗
  ∗∗ ).

20For  = 2, uniqueness obtains without any additional condition because, by Lemma 1,  ( 0  2) is

independent of 0 and so is Φ( 0  2).
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To prove the second part, note that Proposition 1 guarantees the existence of a type-

symmetric equilibrium, (∗ 
∗
). If, in addition,  =  and



≤ 1, then Propo-

sition 1 reveals that 0  ∗ ≤ ∗ and ∗ ≥ ∗. Thus, for any type-symmetric

equilibrium,



≤ 

∗



∗


=
∗
∗
≤ 1

If 1− 1

b2 c ≤


, then we have 1− 1

b2 c ≤
∗
∗

≤ 1 for any type-symmetric equilibrium,

which, by the first part of the proposition, must be unique. ¥
As suggested above, the potential source of multiple equilibria is that members of some

political group view their votes as complements rather than substitutes. In light of Lemma

1, such complementarity between the votes can occur only in the group whose members’ ex

ante probability of voting is far below the rival’s so that the free-rider incentive is not strong

enough to overwhelm the coordination incentive. The first part of Proposition 3 simply says

that when equilibrium voting strategies are sufficiently symmetric across the groups, the

free-rider incentive dominates for all individuals. The second part of Proposition 3 provides

a parametric condition under which a unique type-symmetric equilibrium obtains. In par-

ticular, it demonstrates that Börgers’ uniqueness result derived under complete symmetry,

i.e.,  =  and  =  is robust to (at least) small perturbations. That is, if agents

are sufficiently symmetric, then their equilibrium strategies are sufficiently close for the

free-rider incentive to dominate and make the equilibrium unique.

6 Concluding Remarks

There are two ways to interpret the contribution of this paper. First, it deepens our un-

derstanding of the rational choice theory of voting in its purest form, and second, by doing

so, it allows for richer and better grounded empirical and experimental investigation. Some

prominent recent developments in voting theory have been concentrated around a model

involving “group-based ethical voters” who care not only about their own payoff but also

the payoffs of others with similar political preferences (Feddersen (2004)). While we believe

the group-based approach shows some promise, we also believe there are further directions

in which rational voting theory can be fruitfully extended to better reflect reality.

For one, it would be useful to expand the notion of a pivotal vote to recognize the fact

that the vote counting process is imperfect.21 Hence, it would be edifying to extend the basic

21 In fact, in many states in the U.S. if a vote count is too close, then a recount is either triggered
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model to explicitly account for the vote counting technology, and to study its implications on

voter behavior. Another important assumption of the basic theory that could be profitably

relaxed is that costs of voting are independently distributed across citizens. There are many

factors such as weather and security concerns that influence costs of voting for large groups

of citizens. Hence, an extension that allows for cost correlation would also be valuable. We

leave these extensions for future work and conclude by remarking simply that there is still

a lot to discover in the context of rational voting theory.

automatically or may be demanded by the potential loser.
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A Appendix

Proof of Lemma 1: First, note that a type  agent’s expected payoffs from voting and

abstaining are given, respectively by

 1 =

−1X
=0

µ
− 1


¶
(1− )

−1−
X

=0

µ




¶
 (1− )

−

×
⎡⎣−1X
0=0

µ
− 1− 

0

¶

0
0 (1− 0)

−1−−0 +
µ
− 1− 



¶
0 (1− 0)

−1−−

+
1

2

µ
− 1− 

 + 1

¶
+10 (1− 0)

−2−−
¸
− 

and

 0 =

−1X
=0

µ
− 1


¶
(1− )

−1−
X

=0

µ




¶
 (1− )

−

×
⎡⎣−1X
0=0

µ
− 1− 

0

¶

0
0 (1− 0)

−1−−0 +
1

2

µ
− 1− 



¶
0 (1− 0)

−1−−

⎤⎦ 
To understand these expected payoffs, fix a type  agent, and let  be the number of

votes for alternative  excluding his, and 0 be the number of all votes for alternative 
0.

Clearly, if 0 ≤  − 1 and 0 ≥  + 2, then alternative  respectively wins and loses

with probability 1, regardless of the type  agent’s action. If 0 = , alternative  wins

with probability 1 if the type  agent in question votes, and wins with probability 1
2
if he

abstains and leaves the tie. Finally, if 0 =  + 1, alternative  loses with probability 1 if

the type  agent abstains; but may win with probability 1
2
if he votes. These events explain

the expressions in parentheses above. The first two summations in  1 and  0 account for

the distribution of preferences.

Next, subtracting  0 from  1 , the third summation inside parentheses cancel out, re-

ducing the net expected payoff to

∆ =  1 −  0 =

−1X
=0

µ
− 1


¶
(1− )

−1−
X

=0

µ




¶
 (1− )

− (A-1)

×
∙
1

2

µ
− 1− 



¶
0 (1− 0)

−1−−

+
1

2

µ
− 1− 

 + 1

¶
+10 (1− 0)

−2−−
¸
− 
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Now, recall  =  and define  = (1 − ). By substituting for these terms into

(A-1), and noting the following facts,

 =  −

(1− )
−1− = (1− )

(1− )
−1−−

(1− )
−1− = (1− )

+1(1− )
−2−− 

(A-1) further reduces to

∆ =
1

2

−1X
=0

⎡⎣µ− 1


¶ X
=0

µ




¶
 −

×
µµ

− 1− 



¶
0 

−1−−
0 +

µ
− 1− 

 + 1

¶
+10 −2−−0

¶¸
− 

=
1

2

b−12 cX
=0

−1X
=0

µ
− 1


¶µ




¶µ
− 1− 



¶
 0 

−
 −1−−0

+
1

2

b−22 cX
=0

−1X
=0

µ
− 1


¶µ




¶µ
− 1− 

 + 1

¶
 +10 − −2−−0 − 

Using the following two combinatorial identities:µ
− 1


¶µ




¶µ
− 1− 



¶
=

µ
− 1

  − 1− 2

¶µ
− 1− 2

 − 

¶
and µ

− 1


¶µ




¶µ
− 1− 

 + 1

¶
=

µ
− 1

  + 1 − 2− 2

¶µ
− 2− 2

 − 

¶


∆ becomes

∆ =
1

2

b−12 cX
=0

µ
− 1

  − 1− 2

¶
 0

−1X
=0

µ
− 1− 2

 − 

¶
− −1−−0

+
1

2

b−22 cX
=0

µ
− 1

  + 1 − 2− 2

¶
 +10

−1X
=0

µ
− 2− 2

 − 

¶
− −2−−0 − 

=
1

2

b−12 cX
=0

µ
− 1

  − 1− 2
¶



0( + 0)

−1−2

+
1

2

b−22 cX
=0

µ
− 1

  + 1 − 2− 2
¶


+1
0 ( + 0)

−2−2 − 
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where we also use the facts that

−1X
=0

µ
− 1− 2

 − 

¶
− −1−−0 =

−1X
=0

µ
− 1− 2

 − 

¶
− 

−1−2−(−)
0 = (+0)

−1−2

and

−1X
=0

µ
− 2− 2

 − 

¶
− −2−−0 =

−1X
=0

µ
− 2− 2

 − 

¶
− 

−2−2−(−)
0 = (+0)

−2−2

and, without loss of generality, change index of summations to  in the last equality. The

expressions in (1) and (2) then follows by simply observing that  +  = 1−  − .

Next, we proceed to Lemma 1. Let ( 0) ∈ (0 )× (0 0). Using the definition of
 ( 0  ) in (2) and canceling the first terms, part (i) follows because

 ( 0  )− (0   ) = (0−)
b−22 cX
=0

µ
− 1

  + 1 − 2− 2
¶



0(1−−0)−2−2

Differentiating  ( 0  ) with respect to 0 ,



0
 ( 0  ) =

b−32 cX
=0

(− 1)!
!( + 1)!(− 3− 2)!

+1
 0(1−  − 0)

−3−2

−
b−22 cX
=0

(− 1)!
!!(− 2− 2)!





0(1−  − 0)

−2−2

+

b−22 cX
=0

(− 1)!
!!(− 2− 2)!





0(1−  − 0)

−2−2

−
b−32 cX
=0

(− 1)!
!( + 1)!(− 3− 2)!




+1
0 (1−  − 0)

−3−2

Note that the second and third terms on the r.h.s. cancel out. The remaining two terms

can be rewritten



0
 ( 0  ) = ( − 0)

b−32 cX
=0

(− 1)!
!( + 1)!(− 3− 2)!





0(1−  − 0)

−3−2

where the summation is 0 for  = 2 for all ( 0).
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To prove part (iii), suppose  is odd and differentiate  ( 0  ) with respect to 

to obtain




 ( 0  ) =

−1
2X

=1

(− 1)!
( − 1)!!(− 1− 2)!

−1
 0(1−  − 0)

−1−2

−
−3
2X

=0

(− 1)!
!!(− 2− 2)!





0(1−  − 0)

−2−2

+

−3
2X

=1

(− 1)!
( − 1)!( + 1)!(− 2− 2)!

−1
 +10 (1−  − 0)

−2−2

−
−3
2X

=0

(− 1)!
!( + 1)!(− 3− 2)!




+1
0 (1−  − 0)

−3−2

Note that the first and the last terms cancel out. Separating the term for  = 0, the second

term can be re-written

−3
2P

=0

() = (− 1)(1−  − 0)
−2 +

−3
2P

=1

(). This implies




 ( 0  ) =

−3
2X

=1

µ


 + 1
0 − 

¶
(− 1)!

!!(− 2− 2)!
−1
 0(1−  − 0)

−2−2

−(− 1)(1−  − 0)
−2

A similar line of derivation shows that for an even , only the upper bound in the above

summation switches to −2
2
. Hence, for any  ≥ 2,




 ( 0  ) =

b2 c−1X
=1

µ


 + 1
0 − 

¶
(− 1)!

!!(− 2− 2)!
−1
 0(1−  − 0)

−2−2

−(− 1)(1−  − 0)
−2

Note that if  ≥
µ
1− 1

b2 c
¶
0 , then


+1

0 −  ≤ 0 for each  ∈ {1  ¥
2

¦ − 1}.
Together with 1−  − 0 6= 0, it follows that 

0
 ( 0  )  0.
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To prove part (iv), we begin by noting that

 ( 0  )−  ( 0  + 1) =

b−12 cX
=0

(− 1)!
(!)2(− 1− 2)!





0(1−  − 0)

−1−2

(A-2)

+

b−22 cX
=0

(− 1)!
!( + 1)!(− 2− 2)!




+1
0 (1−  − 0)

−2−2

−
b2 cX
=0

!

(!)2(− 2)!




0(1−  − 0)

−2

−
b−12 cX
=0

!

!( + 1)!(− 1− 2)!



+1
0 (1−  − 0)

−1−2

Before signing this expression, we suppose that  is odd, and re-write the third summa-

tion:

b2 cX
=0

!

(!)2(− 2)!




0(1−  − 0)

−2

=

−1
2X

=0

∙
1 +

2

− 2
¸

(− 1)!
(!)2(− 1− 2)!





0(1−  − 0)

−2

= (1−  − 0)

−1
2X

=0

(− 1)!
(!)2(− 1− 2)!





0(1−  − 0)

−1−2

+ 2

−1
2X

=1

(− 1)!
( − 1)!!(− 2)!





0(1−  − 0)

−2

= (1−  − 0)

−1
2X

=0

(− 1)!
(!)2(− 1− 2)!





0(1−  − 0)

−1−2

+ 2

−1
2
−1X

=0

(− 1)!
!( + 1)!(− 2− 2)!

+1
 +10 (1−  − 0)

−2−2
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Inserting this into (A-2) and canceling terms yield

 ( 0  )−  ( 0  + 1)

= ( + 0)

−1
2X

=0

(− 1)!
(!)2(− 1− 2)!





0(1−  − 0)

−1−2

+(1− 2)
−3
2X

=0

(− 1)!
!( + 1)!(− 2− 2)!




+1
0 (1−  − 0)

−2−2

−
−1
2X

=0

!

!( + 1)!(− 1− 2)!



+1
0 (1−  − 0)

−1−2

Now, noting !
!(+1)!(−1−2)! =

³
1 + 

−1−2 +
+1

−1−2
´

(−1)!
!(+1)!(−2−2)! , we re-write the

last summation in three terms. Moreover, we expand the first and second summations by

multiplying with (+0) and (1−2), respectively. Canceling and collecting terms then
reveal

 ( 0  )−  ( 0  + 1)

=

−1
2X

=0

(− 1)!
!( + 1)!(− 1− 2)!




+1
0 (1−  − 0)

−1−2

+( − 0)

−1
2X

=0

(− 1)!
(!)2(− 1− 2)!





0(1−  − 0)

−1−2

−( − 0)

−3
2X

=0

(− 1)!
!( + 1)!(− 2− 2)!




+1
0 (1−  − 0)

−2−2

For  = 0 , clearly  ( 0  )−  ( 0  + 1)  0. For  6= 0 , note that

 ( 0  )−  ( 0  + 2) = [ ( 0  )−  ( 0  + 1)]

+[ ( 0  + 1)−  ( 0  + 2)]

Performing similar decompositions to those above, it follows that  ( 0  )− ( 0  +
2)  0. ¥

Before proving Lemmas 2 and 3, we note the following useful result.

Lemma A1. Fix a pair ( ) ∈ [0 ]× [0 ] such that ( ) 6= (0 0). Then,
lim→∞  (  ) = lim→∞  (  ) = 0.
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Proof of Lemma A1. Fix a pair ( ) ∈ [0 ] × [0 ] such that ( ) 6=
(0 0). Let  and  be the number of votes for alternatives  and , respectively, and

0 = −− be the number abstentions. Clearly, (0) ∼Multinomial(  1−
 − |). By definition of the pivot probability in (2), this means

 (  ) = Pr{ = 0}+Pr{ = 1}

where ≡ − such that [] = (−) and  [] = [(1−
) + (1− ) + 2]. It is well-known (see, e.g., Arnold (1990), Th. 5.8) that

 −[]p
 []

→ (0 1),

which implies Pr{ = 0} → 0 and Pr{ = 1} → 0 as  → ∞. Hence,

 (  )→ 0. Re-labeling, it also follows that  (  )→ 0. ¥
Proof of Lemma 3. Suppose, to the contrary, lim→∞ ∗()  0. Since ∗() ∈

[0 ], by Bolzano-Weierstrass theorem, there is a subsequence b∗() that converges to
some   0. This implies: b∗()  0 for a sufficiently large , and together with Lemma A1,
 (b∗() ∗0() )→ 0 as →∞. Using (4), the latter further implies Φ(b∗() ∗0()) 
0 for a sufficiently large , and thus b∗() = 0 — a contradiction. Hence, lim→∞ ∗() = 0.

To prove the second part, suppose, to the contrary, lim→∞[∗()] = ∞. Then,

clearly ∗()  0 for a large  and thus Φ(
∗
() 

∗
0()) = 0. Moreover, for a fixed ,

we can use a multinomial decomposition for the pivot probability as in Lemma A1 above,

and find that  (∗() ∗0() ) becomes arbitrarily small as  gets large. In particular,
1
2
 (∗() ∗0() )   and Φ(

∗
() 

∗
0())  0 for a sufficiently large , yielding a

contradiction. Hence, lim→∞[∗()] ∞. ¥
Proof of Lemma 4. Immediately follows from Lemma 3 and eq.(3). ¥
Proof of Lemma 5. Note first that the marginal distribution of ∗

−1 conditional

on  is 
∗
−1| ∼Binomial(− 1−

∗()
1−∗


()
). Since, by Lemma 4, ∗()→ 0 and

∗()→ ∗ ∞ as →∞, we have

lim
→∞[∗

−1|] = ∗

Hence, (see, Arnold (1990), Th. 5.5)

∗
−1|

−→ Poisson(∗)
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which is independent of . The same argument shows

∗
−1|

−→ Poisson(∗)

As a result, the limiting distributions, of ∗
∞ and ∗

∞ are independent Poissons, and¡
∗
∞ +∗

∞
¢ ∼ Poisson(∗ +∗). ¥
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