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Abstract

An economic activity interacts with an endangered species. The activity

can be divided into mutually exclusive strata with different levels of inter-

action. Observing the activity in order to monitor interactions is costly.

It may be desirable to manage the activity with a probability model which

balances the benefit from the activity against the cost of the interaction

with the endangered specie instead. The model gives rise to a permit

scheme which fixates the risk of interaction over all strata and which uses

the market mechanism to optimally allocate the activity between strata.

The model can facilitate uncertainty in interaction rate estimates.
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1 Introduction

Many economic activities interact with endangered species. In the U.S., endan-

gered species interactions are treated under the Federal Endangered Species Act.

Economists have criticized the Endangered Species Act for disregarding the in-

centives it creates, for its lack of scope for cost-benefit analysis (List et al. 2006),

for its lack of attention to the distribution of costs, and how it ‘places endan-

gered species beyond the reach of economic tradeoffs, and [how] the economist

is relegated to helping find the least cost solution to achieve a biological-based

standard’ (Brown and Shogren 1998, pp. 3, 10). The main focus of our analysis

is exactly to find the least cost solution to achieve a standard through a market-

based approach. (Whether the standard arises from a biological assessment only

or a cost-benefit analysis is not of our primary interest here, although the latter

clearly would be preferable.) More specifically, we suggest a tradable permit

scheme which controls the risk of interactions between an economic activity and

an endangered species across areas, periods, or technologies (across strata). The

activity in the different strata is exposed to interactions at different levels. The

market-based permit scheme leads interactions (that is, costs) to where the ben-

efit of their cause (the economic activity; production) is maximized. Or rather,

production is lead to its most efficient strata.

The basis for the permit scheme is a probability model of endangered species

interactions. The model can be used to determine a level of activity which

complies with a given level of interactions (a given standard). When interactions

are spread over several strata with different interaction patterns or levels, the

model can further determine how the activity can distribute across the strata in

different ways, all complying with the given standard. A competitive market for

activity permits will lead the distribution of activity to economic efficiency. (In

theory, a fee or tax system would provide the same, efficient outcome under no

uncertainty. Fees have primarily been used to improve environmental quality,

however, while marketable permits primarily have been used to minimize costs

(Hahn 1989, p. 108).)

The proposed permit scheme bear resemblance with cap-and-trade systems

well-known from the pollution literature. Perhaps the most important difference

is that while in a typical cap-and-trade system, a hard cap which cannot be
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exceeded is enforced, our permit scheme implies only a soft cap, which is not

exceed with a chosen probability. A soft cap may be convenient with regard to

endangered species, which, by their very nature, are rare, and monitoring costs

may become prohibitive. A hard cap, on the contrary, requires close monitoring.

Further, a realistic environmental quality constraint should be formulated in

probabilistic terms given the stochastic nature of the externality (Beavis and

Walker 1983, pp. 103, 105). The permit scheme also bears resemblance with

water quality trading programs; see Shortle and Horan (2008) and references

therein.

An example of hard caps on endangered species is the caps placed on leatherback

and loggerhead turtles in the Hawaiian longline swordfish fishery. In order to

enforce the hard caps, onboard biological observers are present on each fishing

trip; 100% onboard observer coverage is required Gilman et al. (2007, p. 20).

The fishery is closed for the remainder of the season once a cap is met.

Over 20 years ago, Hahn (1989, p. 112) reported that marketable pollution

permits have a ‘demonstrable effect in cost savings without sacrificing envi-

ronmental quality’ and predicted a more widespread use. While pollution and

endangered species interactions are quite different issues, they do share struc-

tural properties like externality and incentive problems. Permits have not, how-

ever, become a regular instrument to help protect species: In 2002, only 3 % of

incentive-based approaches to encourage species habitat conservation on private

land in the U.S. involved market institutions, with permits representing only a

share (Shogren 2005, p. 10). There is potential for a wider use of marketable

permits when addressing endangered species conservation.

2 A Model of Endangered Species Interactions

The economic activity interacts with the endangered species in strata A and B.

(The model extends to any number of strata.) The strata can represent a spatial,

temporal, technological, or basically any dimension. Interactions are random

processes (see for example, Segerson 2007) and follow distributions pA(a) and

pB(b) in the two strata; a and b are vectors of distribution parameters. A given

level y of interactions is found safe, and the goal is to find levels of activity in
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the strata such that the interaction level is at or below the safe level. Since

interactions are random, the only way to guarantee that interactions stay below

any level is to prohibit the activity in entirety. (In theory, a random interaction

process can lead to any number of interactions on the first unit of activity. If

the number of possible interactions per unit of the activity is limited, however,

the level of allowable activity may be positive. In the following, we assume no

such limitation.) If we allow the safe level to be kept only with a probability

α, however, distributions pA and pB yields the levels XA and XB of allowable

activity in each stratum given that no activity occurs in the other stratum. That

is, the level XA of activity in stratum A results in interactions in stratum A at

or below the safe level with probability α (Prob(yA ≤ y) = α). Interactions are

above the safe level with probability 1 − α. Presumable, the choice variable α

would be set fairly close to one in many cases.

When the safe level holds only to a given probability, the environmental

quality constraint is formulated in probabilistic terms; we call it a soft cap.

Our formulation is essentially equivalent to the environmental quality standard

suggested already by Beavis and Walker (1983, see equation (4), p. 105) Figure

1 illustrates the idea behind the soft cap. The area market as the ‘Critical Area’

must remain smaller than α.

The levels of activity, XA and XB , corresponding to the given safe level of

interactions are corner solutions in the sense that all activity takes place in one

stratum. (To be sure, XA and XB depend on the probability distributions and

the probability level of success.) Typical efforts to protect endangered species

involve corner solutions through protection (closing) of strata to activity. It may

be desirable, however, to allow some activity in several strata, but still control

the level of interactions to the probability α. Given that the total level of

interaction y is the only level of interest, in other words, it is irrelevant in which

strata an interaction takes place, an exchange rule of activity between strata can

be set up. The rule is founded on probability distributions of interactions (pA

and pB), the safe level of interactions (y), and the success probability level (α).

The nature of the rule depend in particular on the probability distributions.

Before discussing the nature of the activity exchange rule, I want to mo-

tivate the need for exchange. Irrelevance of stratum of interaction is already
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Figure 1: Illustration of the soft cap with two different probability distributions.
The cap is reached when the ‘Critical Area’ is larger than α.

established. If also stratum of activity is irrelevant, activity should take place

in the stratum with highest allowable level of activity; if XA > XB , activity

should take place in stratum A. That is, activity should take place in the stra-

tum with lowest probability of interaction. If the activity has different levels of

profitability across strata, however, exchange may improve the total outcome.

A market-based allocation of activity between strata, where activity levels are

constrained to acceptable risk levels of endangered species interactions, is as

least a good as any centrally planned allocation.

3 A Permit Exchange System

When a safe level of interactions (y), corner solutions (XA, XB), and an ex-

change rule of activity between strata have been established, an activity market

can lead activity to the strata where it is most profitable. If the level of activity

is controlled through permits, where permits can be exchanged between strata

following the exchange rule of activity, a market for permits can be set up.

Given a competitive market , the market value of a permit in a given stratum

will be equal to the market value of an exchanged permit times the number
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of permits acquired from the exchange. An exchanged permit from stratum A

results in, say, n permits in stratum B. Say further that the market value of

a permit in stratum A is cA, and cB in stratum B. A competitive equilibrium

leads to

cA · 1 = cB · n

A market will force all permits in a stratum to the same price; the price can

however depend on a range of exogenous factors, like weather and the general

price level. In the particular case where (i) the exchange rule is linear, that

is, when permits are exchange at a fixed rate independent of the number of

permits exchanged, and independent of the number of permits already issued

for any strata, and (ii) the market value of a permit is independent on the

number of permits in the different strata (the activity has constant returns to

scale), all permits will flow to the strata with the highest market value of the

corner solution. The market value of a corner solution is given by ci ·Xi. For

example, if cA · XA > cB · XB , all permits will flow to stratum A. Potentially

more interesting situations occur if the exchange rule is nonlinear ((i) does not

hold) or if the activity has increasing or decreasing returns to scale ((ii) does

not hold).

The fundamental nature of the exchange rule is to maximize the number

of permits in one stratum, given the number of permits in all other strata and

the safe level of interactions. Generally, the exchange rule can depend on the

distribution of permits; the exchange scheme between two strata can be concave,

linear, or convex. The exchange rule depend on the joint probability distribution

D(yA, yB); yA and yB are interactions in the two strata. Formally, the joint

probability distribution is defined as the joint, cumulative distribution of the

two random processes yA and yB . Since stratum of interaction is irrelevant, the

only condition on interactions is

y ≥ yA + yB

where, again, y is the safe level of interactions. The condition securing the safe
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level of interactions with probability α is

D(yA, yB) ≥ α (1)

Equation (1) is equivalent with Prob(y ≥ yA+yB) ≤ α. Since the distribution of

interactions between strata is irrelevant, we may write D(y) without ambiguity.

The exchange rule dictates the exchange rate of permits between strata from

the following procedure. The number of permits in the two strata prior to the

exchange are xA and xB . Exchanging one permit from stratum A to stratum

B results in n stratum B permits such that both

D(y)[xA − 1, xB + n] ≥ α

and

D(y)[xA − 1, xB + n+ 1] < α

holds. That is, the safe level condition (1) holds for the new distribution of

permits, (xA − 1, xB + n), and the new number of permits is the maximum

allowable such that (1) holds; increasing it with one violates the safe level con-

dition. Thus, we can trace out the rule of exchange for permits between strata

when D(y) is known, or rather, when pA and pB are known.

The exchange rule has a simple, analytical representation when the proba-

bility distributions pA and pB are of specific types. Its numerical representation

is at any rate fairly simple; the appendix explains a numerical scheme which

provides the exchange rule for any pA(a) and pB(b). In the following, we discuss

a few, common distributions and the exchange rule which arises in the different

cases. We focus on distributions typically used to describe rare events, namely

the Poisson and the Negative Binomial distributions, but we also describe the

exchange rule from Normally distributed interactions. As it turns out, the key

element is how the parameters a and b relates to the joint distribution D(y); α

only dictates the level of the relation.
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3.1 Poisson Distributed Interactions

When the probability distributions of interactions, pA(a) and pB(b), are Poisson

distributions, the parameter vectors a and b have only one element.

pA(a) = Pois(a) =
ayAe−a

yA!

pB(b) = Pois(b) =
byBe−b

yB !

yA and yB are the number of interactions in the strata. The parameter element

must incorporate both the rate of interaction and the level of activity; let ri

denote the interaction rate per unit activity and xi the activity level in stratum

i. Then, a = rA · xA, and similarly b = rB · xB ; the distribution parameter is

the expected number of interactions, E[pA(a)] = a. Let Σy = yA +yB ; the total

number of interactions is the sum of interactions in the different strata, where

both yA and yB are Poisson distributed random variables with parameters a and

b. Σy is then a Poisson distributed random variable with distribution parameter

µ = a + b (see Ross 1985, p. 65, or Cameron and Trivedi 1998, p. 4). That

is, the joint probability distribution for yA and yB is a cummulative Poisson

distribution with parameter µ = a+ b;

D(yA, yB) = PoisCDF(a+ b)

To secure the safe level y with probability α, that is, condition (1), one is

required to find µ∗ such that

PoisCDF(µ∗) ≥ α

µ∗ is an implicit function of α. With µ∗ given, the exchange rule of activity is

then defined by

µ∗ = rA · xA + rB · xB (2)
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which is linear in the activity levels xA and xB . Let rA > rB . The exchange

rule is thus only an implicit function of α. From (2), we get

µ∗ = rAxA + rBxB

= rA(xA − 1) + rA + rBxB

= rA(xA − 1) + rB(xB +
rA
rB

)

That is, exchanging one unit of activity from stratum A to stratum B yields
rA
rB

units of activity in stratum B (rounded down to closest unit if necessary).

According to Greene (2003), the property that ‘sums of random variables

with a given distribution have that same distribution’ is called the contagion

property (p. 859). For the exchange rule to be linear in the activity levels,

the parameters of the sum distribution must also be the sum of the parameters

of the original distributions, a condition which does not hold for the binomial

distribution, for example (see Ross 1985, p. 64).

The exchange rule is linear when interactions are Poisson distributed random

variables (condition (i) above holds). The exchange rate of activity between

strata is the ratio of interaction rates and is independent of activity levels xi.

The corner solution in stratum i is given by Xi =
µ∗

ri
=

rjXj

ri
; see (2) with

xj 6=i = 0. If the market value of activity (ci) is independent of the level of

activity (see condition (ii) above), all activity flow to stratum i if and only if

ci
cj
>
ri
rj

(3)

since

ciXi > cjXj = cj
ri
rj
Xi ⇔

ci
cj
>
ri
rj

which uses the equalities

riXi = µ∗ = rjXj

3.2 Negative Binomially Distributed Interactions

When the probability distributions of interactions, pA(a) and pB(b), are Nega-

tive Binomial distributions, the parameter vectors a and b have two elements.
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The first element is the level of activity without interaction, n, the second is the

probability of no interaction per unit of activity, 1− r.

pA(a) = NegBin(nA, 1− rA) =

(
yA + nA − 1

nA − 1

)
(1− rA)nA (1− (1− rA))

yA

=

(
yA + nA − 1

nA − 1

)
(1− rA)nAryA

A

pB(b) = NegBin(nB , 1− rB) =

(
yB + nB − 1

nB − 1

)
(1− rB)nB (1− (1− rB))

yB

=

(
yB + nB − 1

nB − 1

)
(1− rB)nBryB

B

yi is, as before, the number of interactions in stratum i. In this setup, only

one interaction is possible per unit of activity and one can thus say that a unit

of activity is either a success or a failure, depending on whether an interaction

occurred (failure) or not (success). The setup may be cumbersome; notwith-

standing, it is analogous to the standard interpretation of the negative binomial

distribution.

To illustrate, the distribution NegBin(n, 1 − r) with n = 50 and r = 0.1 is

shown in Figure 2. At y = 5 it has NegBin(n, 1 − r)y=5 = 0.163, which means

that there is a 16.3% probability of 5 failures (interactions) before 50 successes

(no interactions) has occurred.

An analytical treatment of the exchange rule under negative binomially dis-

tributed interactions is, as far as we know, beyond reach. Numerical experi-

mentation, however, suggest that the exchange rule is linear as in the Poisson

distribution case (for the numerical scheme, see the appendix). The rule can

thus be represented similarly as the Poisson exchange rule (2):

φ∗ = sAxA + sBxB

φ∗, sA, and sB are all constants, but has a less immediate interpretation than

the constants in (2). The same development as earlier applies, however. Thus,

if si > sj , exchanging a permit from stratum i results in
si
sj

stratum j permits.

Corner solutions follow from φ∗ = siXi. Finally, if condition (ii) holds, all

activity flow to stratum i if and only if
ci
cj
>
si
sj

.
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Figure 2: The Negative Binomial distribution, NegBin(n, 1 − r) with n = 50
and r = 0.1.

3.3 Normally Distributed Interactions

Finally, we look at interactions which are normally distributed. The normal

distribution may not be the most ideal to model presumably rare events such

as endangered species interactions. For the sake of argument, however, let

the interactions follow normal distributions pA(a) = N(µA, σ
2
A) and pB(b) =

N(µB , σ
2
B). The joint distribution is then also normal with parameters xAµA +

xBµB and xAσ
2
A + xBσ

2
B (Ross 1985, p. 65). As before, xA and xB are the

activity levels in the two strata. We have

D(yA, yB) =

∫ y

−∞
N(xAµA + xBµB , xAσ

2
A + xBσ

2
B)dỹ

where ỹ = yA + yB . Let the number of interactions stay below the safe level y

with probability α for parameters (µ∗, σ
2

). We have

µ∗ = xAµA + xBµB

σ∗2 = xAσ
2
A + xBσ

2
B

The system is linear in the activity levels xA and xB as under Poisson distributed

interactions. The system is overdetermined, however. The first equation dictates
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that (assuming µA > µB) exchanging one unit of activity from stratum A to

stratum B yields
µA

µB
units of activity in stratum B (the development follows

that following equation (2)). Similarly, from the second equation, the exchange

should yield
σ2
A

σ2
B

units of activity in stratum B. The thightest constraint binds,

such that if
µA

µB
<
σ2
A

σ2
B

, the first equation dictates the exchange rule, and vice

versa.

Let
µA

µB
<
σ2
A

σ2
B

. As with the Poisson distributed interactions, all activity flow

to stratum i if an only if
ci
cj
>
µi

µj

which corresponds to (3).

4 Example: Poisson Distributed Turtle Inter-

actions

The drift gillnet fishery for shark and swordfish along the U.S. western coast

interacts with the endangered Pacific leatherback turtle (Carretta et al. 2004,

see Spotila et al. 2000 for more on the endangered leatherback turtle).1 The

interaction pattern can be modeled as a Poisson distributed random process

(Kvamsdal and Stohs 2009, pp. 102-103) and the fishery can be divided into

two mutually exclusive strata. The rate of interaction in the two strata are

approximately rA = 10 and rB = 1 per thousand units of fishing activity in the

two strata (Kvamsdal and Stohs 2009, p. 118; as the example is only meant to

illustrate the workings of a permit scheme across strata, the rates are, in order to

keep things simple, rounded to the nearest integer). The safe level of interactions

is, say, y = 5, and the safe level is required to be met with probability α = 95%.

Corner solutions, the maximum allowable level of fishing activity in each stratum

given no activity in the other stratum, are then XA = 261 and XB = 2613 units

of fishing activity. The exchange rule is linear (condition (i) above holds) and

follows (2); a stratum A permit can be exchanged for
rA
rB

= 10 stratum B

permits.

1The example in this section is similar to the example in Kvamsdal and Stohs (2009, pp.
118–119).
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In a competitive market for permits, the expected value of a permit equals its

market value (ci). If condition (ii) holds, that the market value is independent

of the number of permits in the two strata, all permits will be used in stratum

A if and only if
cA
cB

>
rA
rB

= 10

See (3). Kvamsdal and Stohs (2009) discuss the example further and demon-

strate how the permit scheme may improve, under certain conditions, the total

outcome in the fishery when compared to the current seasonal turtle conserva-

tion closure.

It may well be that condition (ii) holds for the swordfish fishery as the fishery

represents only a small share of the global swordfish catch. If condition (ii) does

not hold, however, permits may be active in both strata. To illustrate, let

the market value of stratum A permits decline in xA (the number of permits

in stratum A), cA = c0 − xA, while cB = 1. The exchange rule gives xA =
rA
rB
xB . In a competitive equilibrium, the market value of a permit times the

inverse exchange rate must equal the market value of the exchanged permit

(alternatively, the market value of a permit must equal the market value of a

permit in the other strata times the exchange rate);

cA ·
rB
rA

= cB

c0 − xA = cB ·
rA
rB

xA = c0 − cB ·
rA
rB

If c0 = 100, xA = 100 − 1 · 10

1
= 90 permits will be used in stratum A, and

xB = XB − xA ·
rA
rB

= 2613− 90 · 10 = 1713 permits will be used in stratum B.

Market values of permits are cA = c0 − xA = 10 and cB = 1.

5 Final Remarks

The main idea behind our paper is that if interaction rates between an economic

activity and an endangered species differ across strata, it is possible to construct

a marketable permit scheme which lets authorities determine and enforce (to
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a given probability) the overall level of interactions while a market mechanism

leads the distribution of activity towards the most efficient distribution.

We have formulated a requirement on the joint probability distribution (1)

which can be interpreted as a soft cap on interactions; the interaction level may

exceed the cap, but only with a small probability. We have also laid out a

simple algorithm which traces out an exchange rule of permits between strata.

The exchange rule keeps the interaction risk fixed. If interactions are described

through either Poisson or Normal distributions, however, the exchange rule is

linear. Numerical experimentation suggest that the exchange rule is also linear

with Negative Binomially distributed interactions. A linear exchange rule may

be valuable as it reduces the potential complexity of the permit scheme with

a non-linear exchange rule. While not completely comparable, our exchange

rules has a strikingly similarity to the ‘trade ratios’ Shortle and Horan (2008)

develop for water quality trading; see for example equation (4), p. 117, and the

surrounding discussion.

Perhaps the most critical assumption in our analysis is the requirement on

reliable interaction rate estimates. Uncertainty in interaction rate estimates

may be incorporated, however, by letting the probability distributions pi repre-

sent the joint probability distribution of parameter estimates and the estimated

distribution.

“[A] regulatory agency has three integrated tasks to develop a market for

[externality] trading that is consistent with the achievement of an environmental

goal” (Shortle and Horan 2008, p. 109). Restating the tasks for an interaction

permit market, the tasks are (a): Define the tradable commodities in the market,

(b): Define exchange rules between strata, (c): Limit the aggregate supply of

the commodities such that the the environmental goal is not violated (Shortle

and Horan 2008, pp. 109-110). Issuing activity permits and allowing exchange

according to the rules we have established would ensure the environmental goal

is met and completes the tasks outlined by Shortle and Horan (2008).

Boyd et al. (2000) has suggested so-called trading differentials in tradable

development rights schemes (see Parkhurst and Shogren 2005, p. 94 for a dis-

cussion). The aim of tradable development rights schemes is to help conserve

habitat for threatened species. The idea behind trading differentials is that areas
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which are more valuable as habitat trades for more in the market for develop-

ment rights than less valuable areas. The idea is similar to the permit scheme

suggested in this paper. The focus of our scheme is, however, interactions with

endangered species and not conservation of habitat. (To be sure, ‘interactions’

can be defined broadly enough to include degradation of habitat.) One may,

however, think of economic activities, such as fishing, which can take place in

the habitat of a species without necessarily degrading or destroying it.

An important issue we have not touched upon in our analysis is how the safe

level of interactions is determined. While it is beyond our scope to discuss it at

great length, we do agree with Shogren et al. (1999, p. 1258) in that ‘What is

the desired level of species protection?’ is an economic question; the safe level of

interactions should be subject to economic trade-offs. The assertion resonates

with the discussion in Beavis and Walker (1983, pp. 109-110)

Appendix

The numerical procedure is by no means ‘optimized’ with respect to computa-

tion time or elegance, but it is fairly simple to understand and implement. It

does not depend on type of distributions nor that distributions are of the same

kind.

To calculate the exchange rule for given distributions pA(a) and pB(b), the

first step is to find the corner solutions XA and XB . Let xA = 1 and xB = 0 and

calculate the cumulative probability at yA = y (the safe level of interactions). If

the probability exceeds the probability limit α, increase activity level xA with

one unit and repeat. The probability limit will be not be exceeded for the first

time at XA + 1. Reverse A and B to find XB . (If the exchange rule is known

to be linear, no more calculations are necessary, the linearity can alternatively

be controlled at some interior point.)

The exchange rule can now be traced out for all xi ∈ [0, Xi] with essentially

the same procedure: Initially, let xB = 1 and seek through xA as before. The

procedure produces, say, the activity level x̃A, and the exchange rule is repre-

sented by the pairs [x̃A, x̃B ]. (It is not necessary to compute both x̃A and x̃B

as the procedure is symmetric.) Notably, it is now necessary to calculate the
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joint probabilities D(y)[xA, xB = 1]. One way to calculate this is to compute

pA(a)[xA]′pB(b)[xB = 1]

where the first factor is a column vector, the second a row vector, and com-

pute the sum of skew diagonal (‘northeast’ direction) number y of the resulting

matrix.

The whole procedure can be tedious and slow, and often it can be enough to

compute the exchange rule at only a few interior points away from the corner

solutions. A Matlab-script which computes the exchange rule for the negative

binomial distribution case is available from the authors upon request.
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