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Abstract

Electronic academic journal websites provide new services of text and/or data
mining and linking, indispensable for e¢ cient allocation of attention among abun-
dant sources of scienti�c information. Fully realizing the bene�t of these services
requires interconnection among websites. Motivated by CrossRef, a multilateral
citation linking backbone, this paper performs a comparison between multilateral
interconnection through an open platform and bilateral interconnection, and �nds
that publishers are fully interconnected in the former regime while they can be par-
tially interconnected in the latter regime for exclusion or di¤erentiation motives.
Surprisingly, if partial interconnection arises for di¤erentiation motive, exclusion of
small publisher(s) occurs more often under multilateral interconnection. We also
�nd that in the case of multilateral interconnection, a for-pro�t platform induces
less exclusion than an open platform. Various other extensions are analyzed.
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�A wealth of information creates a poverty of attention and a need to allocate that
attention e¢ ciently among the overabundance of information sources that might consume
it�(Simon 1971, p. 40-41).

1 Introduction

Electronic publishing has been bringing fundamental changes in the market for academic
journals. It has induced publishers to switch from no bundling and no price discrimination
to bundling1 and price discrimination based on usage2 (McCabe, 2004). Furthermore, dig-
italization of text, data and image is transforming the system of academic communication
into an interactive one based on the new techniques of text, data and image mining and
linking.3 These techniques are extremely useful for the e¤ective dissemination of scienti�c
knowledge as the volume of scienti�c information grows exponentially. For instance, in
biology where large amount of data are accumulating on genes, proteins, etc., it is all but
impossible for a single researcher to keep pace with new information about just a handful
of genes even though he or she has access to information about 30 000 genes. The tech-
niques help researchers to make e¢ cient allocation of their attention among the abundant
information sources by allowing them to extract meaning from digitized text and data
and to search for the relevant information. The techniques are useful not only in data-rich
hard sciences but also have many applications in social sciences and humanities.4

Fully realizing the bene�t from techniques of text and data mining and linking requires
interconnection (i.e., interoperability) among di¤erent websites of scholarly publications
such that seamless cross-website search and navigation can be made. In this paper, we
study publishers�incentive to interconnect their journal websites. Although we focus on
the market for academic journals, our model can be applied more generally to situations
in which interconnection among competing �rms or information depositories generates
additional value.
Actually, a large number of publishers provide links through CrossRef, a not-for-pro�t

backbone o¤ering a collaborative reference linking service that allows users to click on a

1Large publishers engage in direct negotiations with each library (or a consortium of libraries), in
which they practice bundling and propose prices based on the individual characteristics of the library.
This practice is called �Big Deal�: see Edlin-Rubinfeld (2004) for more details.

2For instance, Derk Haank (2001), the CEO of Elsevier Science, says: �What we are basically doing
is to say that you pay depending on how useful the publication is for you� estimated by how often you
use it.�See also Bolman (2002) and Key Perspectives (2002) with regard to price discrimination.

3For instance, in biology there is a software which can recognize a two-dimensional image of a molecule
and search for all the articles studying the same molecule.

4For instance, �digitized corpus can be analyzed in ways scholars whose work is con�ned to printed
volumes are not able to explore.�(European Commission, 2007, p.15)
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citation and be taken directly to the target content. It currently has over 2,427 participat-
ing publishers and societies5 and more than 25 million content items are registered in the
CrossRef system.6 In particular, it allows publishers to avoid bilateral linking agreements
since a single agreement with CrossRef serves as a linking agreement with all participating
publishers.
Motivated by the practice of CrossRef, this paper performs a comparison between

interconnection through a multilateral platform and bilateral interconnection in terms of
publishers�incentives to interconnect, pro�ts and social welfare. In the case of multilat-
eral interconnection, we distinguish an open platform from a for-pro�t platform. An open
platform is de�ned as the one that provides interconnection service at cost. For instance,
CrossRef is a not-for-pro�t organization and charges nominal interconnection fees.7 An-
other example is OpenSocial, which is application programming interfaces (APIs) for
web-based social network applications, developed by Google along with MySpace. Ap-
plications implementing the OpenSocial APIs are interoperable with any social network
system that supports them. OpenSocial is managed by a not�for-pro�t corporation cre-
ated to sustain free and open development of OpenSocial speci�cations.8

As the main result, we �nd that interconnection through an open multilateral platform
leads to full interconnection while bilateral interconnections often lead to partial inter-
connection. However, the welfare implication of the result depends on whether publishers
are symmetric or not. In the case of symmetric publishers, not surprisingly, interconnec-
tion through an open multilateral platform leads to higher social welfare than bilateral
interconnections. However, in the case of asymmetric publishers, which is the main fo-
cus of our paper, the comparison is ambiguous since an open platform for multilateral
interconnection can lead to exclusion of small publisher more or less often than bilateral
interconnections depending on whether connectivity breakdown in bilateral interconnec-
tions occurs for an exclusion motive or a di¤erentiation motive. Furthermore, we �nd
that a for-pro�t platform for multilateral interconnection gives higher social welfare than
an open platform because the former induces exclusion less often than the latter.
Regarding interconnection among electronic academic journals, the U.K. Competition

Commission (2001) mentions big publishers�incentive not to provide links to other pub-

5The Board of Directors currently comprises representatives from AAAS (Science), Elsevier,
IEEE, John Wiley & Sons, Nature, Sage, Springer, University of California Press etc. See
http://www.crossref.org/01company/05board.html (accessed September 10, 2009).

6The statistics cited are from the annual report 2006-07 at
http://www.crossref.org/07annual/exec_letter.html

7Concerning the fees charged by CrossRef, see http://www.crossref.org/02publishers/20pub_fees.html.
8For more information, see http://sites.google.com/a/opensocial.org/opensocial/opensocial-

foundation
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lishers�websites in its report about the merger between Reed Elsevier (RE) and Harcourt:9

�... we had received some expressions of concerns from others in the industry that
RE might try to undermine its competitors by denying them links with ScienceDirect,
...(p.22)�.

The report on the market for academic journals commissioned by European Commis-
sion, Dewatripont et al. (2006), devotes a section to the issue of interoperability and
recommends to foster interoperability by supporting research and development. To our
knowledge, no paper has studied interconnection among academic journals in a formal
model.
Interestingly, academic journals di¤er from other typical networks (such as mobile

phone, Internet access, ATM cards) in their multi-homing nature. More precisely, a user
must get access to both publishers�websites in order to enjoy the bene�t from seamless
navigation across them while in the case of mobile phone networks, for instance, it is
enough to subscribe to one of them to bene�t from interconnection. There are other
industries such as railroads (for instance, Eurail), ski resorts, airlines etc. that share the
features of the academic journal industry in that facilitating navigation across networks
owned by di¤erent �rms generates signi�cant value to consumers. Furthermore, the anti-
competitive issue related to refusal to provide links to rivals in academic journals is similar
to the one in the well-known case, Aspen Skiing Company v. Aspen Highlands Skiing
Company, 472 U.S. 585 (1985), in which the former, owning three among all four ski
resorts in Aspen, refused to market all-Aspen ticket in order to weaken the competitive
position of the latter, who owned only one resort.
We study games of interconnection and pricing played by competing publishers. To

model price competition among publishers, we build on the common agency framework
of our previous work, Jeon and Menicucci (2006): assuming price discrimination based on
usage (and budget), we consider a situation in which for-pro�t publishers owning di¤erent
portfolio of journals compete to sell them to a library10 which faces a budget constraint.
Since we know from Jeon and Menicucci (2006) that each publisher has an incentive to
bundle his journals, we assume, without loss of generality, that all publishers practice
bundling.
In our model, there are three publishers (a large one, a middle one and a small one) and

each publisher competes for relative standing as in a Hotelling model since the industry
pro�t is equal to the budget of the library, which is given. We assume that the value
created by interconnection of any pair of bundles of journals exhibits economies of scale

9At the time of the merger, RE�s ScienceDirect was the most developed website and o¤ered access to
around 1,150 journals and Harcourt�s IDEAL o¤ered access to 320 journals.
10In section 7 we extend part of our analysis to the case of any number of heterogeneous libraries.
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and increases with the stand-alone value of each bundle in the pair.11 This implies that full
interconnection among all publishers improves the relative standing of the large publisher
and worsens that of the small one.
Since interconnection among �rms creates a coordination problem, multiple equilibria

are prevalent. We apply Coalition-Proof Nash Equilibrium (CPNE),12 introduced by
Bernheim, Peleg and Whinston (1987), to interconnection games and obtain either a
unique equilibrium or a unique equilibrium outcome.
When the budget is large enough that all publishers remain active regardless of in-

terconnection pro�les, we �nd that each publisher chooses to interconnect with all rival
publishers regardless of the mode of interconnection. This is because interconnection
strictly improves one�s relative standing compared to no interconnection. However, if the
small publisher can be excluded depending on interconnection pro�les, this might a¤ect
larger publishers�incentive to interconnect.
In the case of multilateral interconnection through an open platform, we �nd that the

possibility of exclusion does not a¤ect incentives to interconnect and all active publishers
are fully interconnected. Note �rst that since full interconnection among all publishers
weakens the small publisher�s relative standing, the latter is excluded more often than in
the absence of interconnection. If the large publisher (publisher 1), for instance, does not
interconnect, both publishers 2 and 3 respond by interconnecting through the platform,
which weakens 1�s relative standing while improving the rivals�standing.
Under bilateral interconnections, two publishers are interconnected if each of them

chooses to interconnect with the other. We �nd that connectivity breakdown may arise
for two di¤erent motives: exclusion motive or di¤erentiation motive. First, when the big
and the middle publishers are similar, in order to exclude the small one, the large one
(respectively, the middle one) may break connectivity with the small one while maintaining
connectivity with the middle one (respectively, the large one). In this case, the exclusion
of the small one occurs more often under bilateral interconnections than under multilateral
interconnection. Second, when the big one is much larger than the middle one, the big one
may break connectivity with the middle one while maintaining it with the small one. This
strategy allows the big one to improve its relative standing with respect to the middle one
(i.e., to further di¤erentiate itself from the middle one) since its gain from interconnecting
with the small one is much larger than the middle one�s gain. Then, the middle one
responds by maintaining connectivity with the small one. Therefore, surprisingly, a star

11This assumption is standard in the literature: the value of interconnection increases with the size of
the interconnected networks. Furthermore, in section 2, we give a microfoundation to this assumption.
12CPNE is used also by Dutta and Mutuswami (1997) and by Dutta, van den Nouweland and Tijs

(1998) in link announcement games a la Myerson (1991), and by Matutes and Padilla (1994) in the
context of ATM networks.
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network emerges with the small publisher at its center. This star network minimizes the
exclusion possibility of the small publisher.
From social welfare point of view, the open multilateral interconnection dominates

bilateral interconnections as long as the former does not lead to exclusion of the small
publisher (i.e. when the library�s budget is large enough). Otherwise, bilateral inter-
connections dominate the open multilateral interconnection and strictly so if the small
publisher becomes the center of a star network.
We also consider a hybrid interconnection game in which publishers can interconnect

both bilaterally and multilaterally (through an open platform) and use this framework to
study the large publisher�s incentive to introduce an open multilateral platform as was
the case with CrossRef. We �nd that this market provision of an open platform improves
welfare either by reducing exclusion or by expanding interconnection.
We also investigate multilateral interconnection through a monopoly for-pro�t plat-

form. We characterize the pro�t-maximizing fees and the resulting interconnection pro�le
using CPNE as a solution concept. We �nd that a for-pro�t platform generates higher
welfare than an open platform. If an open platform does not generate any exclusion, the
two platforms are equivalent in terms of social welfare; otherwise, a for-pro�t platform
generates less exclusion. Given that bene�ts from interconnections exhibit economies of
scale, free access to interconnection technology through an open platform ampli�es the
existing asymmetry to the detriment of the small publisher. On the contrary, a monopoly
for-pro�t platform may have an incentive to discriminate publishers in favor of the small
one in order to gather fees, especially when no interconnection status quo leads to exclu-
sion of the small one.
Finally, in the case of symmetric publishers, we �nd the same result that multilateral

interconnection through an open platform leads to full interconnection while bilateral in-
terconnections can lead to partial interconnection (and thereby exclusion of a publisher).
This result implies that the open multilateral interconnection dominates bilateral inter-
connection from social welfare point of view.
Interconnection (or compatibility) choice among �rms in network industries has been

a subject of intensive investigation in IO literature.13 The seminal papers on economics
of network externalities (Farrell and Saloner 1985, 1986, Katz and Shapiro, 1985) study
the compatibility issue. For instance, Katz and Shapiro (1985) show that a dominant �rm
may choose to remain incompatible with a rival because it will su¤er a substantial decline
in market share if it becomes compatible.14 More recently, the literature on two-way

13See for instance Church and Gandal (2005) for a recent survey.
14Farrell and Saloner (1985, 1986) examine a dynamic issue of how network externalities a¤ect the

adoption of a new technology and identify ine¢ ciency in terms of both �excess momentum�and �excess
inertia�.
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access pricing among telecommunication networks, initiated by Armstrong (1998) and
La¤ont-Rey-Tirole (1998a,b), studies how access prices a¤ect retail competition and in-
terconnection through telecommunications networks�choice of retail tari¤s. In addition,
Crémer-Rey-Tirole (2000) and La¤ont-Marcus-Rey-Tirole (2003) study interconnection
among Internet Backbone providers in a peering regime or in a regime of access pricing
respectively.15 A general �nding in the literature on interconnection without mediation
through access prices is that when networks are asymmetric, big networks might have
an incentive to make the networks incompatible since complete compatibility means that
big and small networks become equal (Katz-Shapiro, 1985, Crémer-Rey-Tirole, 2000). We
contribute to the literature by studying interconnection through an open (and a for-pro�t)
multilateral platform and comparing it with bilateral interconnection: the existing litera-
ture on interconnection typically considers two �rms and hence does not make distinction
between the two modes of interconnection.16

Our bilateral interconnection game is closely related to the literature on strategic
network formation (Myerson, 1991, Jackson and Wolinsky 1996, see, for survey, Goyal,
2007 and Jackson, 2008).17 Although it is standard in this literature to use pairwise
stability (Jackson and Wolinsky 1996) as a re�nement for Nash Equilibria, we use CPNE
since we �nd that in some cases there are multiple pairwise stable Nash equilibria. The
papers closest to ours in the literature are Goyal and Moraga-Gonzales (2001) and Goyal,
Moraga-Gonzales and Konovalov (2008) in that they study games in which a network
formation stage is followed by a price or quantity competition stage. Both papers study
formation of R&D networks when each �rm chooses the amount of cost-reducing R&D
investments after network formation.
The rest of the paper is organized as follows. Section 2 describes the model. Section 3

analyzes the pricing game given any interconnection pro�le. Section 4 de�nes CPNE and
studies multilateral interconnection through an open platform and bilateral interconnec-
tion. Section 5 studies the hybrid interconnection game and market provision of an open
platform. Section 6 studies multilateral interconnection through a for-pro�t platform.
Section 7 extends the analysis of open multilateral interconnection to multiple heteroge-
neous libraries. Section 8 studies symmetric publishers. Section 9 provides social welfare

15See Economides (2006) for a survey on the economics of the Internet Backbone market.
16To our knowledge, Matutes-Padilla (1994) and Crémer-Rey-Tirole (2000) are the only papers that

consider more than two �rms. However, none of them makes a distinction between a multilateral and a
bilateral interconnections.
17Our multilateral interconnection game is similar to the open membership game (Yi 1998, Belle�amme,

2000, Yi and Shin 2000), in which each player announces an address and the players choosing the same
address become members of a coalition. If we assume that there is a unique feasible address and each
player chooses between the address and no address, then we obtain our multilateral interconnection game.
Furthermore, Belle�amme (2000) and Yi and Shin (2000) use CPNE.
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analysis. Section 10 concludes the paper. For the sake of brevity, the appendix presents
the proofs of only some of our results, while the complete proofs are found in Jeon and
Menicucci (2009).

2 Model: Moves, information, preferences

We consider a game with three publishers and a library; publisher i is often simply denoted
by i, for i = 1; 2; 3. We consider pro�t-maximizing publishers and assume that they
practice pure bundling18 and price discrimination based on usage and budget; Bi denotes
i�s bundle. Since our analysis of the bilateral interconnection is complicated even with
one library, we consider the case of a single library. However, we extend the analysis of
an open multilateral interconnection to any number of heterogenous libraries (see section
7). Note that since publishers practice price discrimination based on usage and budget,
considering only one library does not involve loss of generality at the pricing stage.
In this section, we introduce the games that we analyze.

2.1 Games with and without interconnection

We study two games of interconnection, which di¤er depending on whether the intercon-
nection regime is multilateral or bilateral. In the case of multilateral interconnection, we
study in most sections interconnection through an open platform such as CrossRef and
analyze in section 6 interconnection through a for-pro�t platform. We here introduce
the game of multilateral interconnection through an open platform denoted by �m, the
game of bilateral interconnection denoted by �b and, as a benchmark, the game without
interconnection denoted by �0.
We �rst describe �m.

� (interconnection) In stage one, each publisher i (for i = 1; 2; 3) simultaneously
decides whether or not to interconnect through CrossRef; we let xi = 1 if he19 has
joined CrossRef, xi = 0 otherwise.

� (active/non-active) In stage two, after the moves at stage one have been observed
by all publishers and the library, each publisher simultaneously decides whether to
be active or not; we use A � f1; 2; 3g to denote the set of active publishers.

18We can mimic the arguments in the proof of Proposition 2(i) in Jeon and Menicucci (2006) to show
that, for each publisher, bundling the journals weakly dominates any alternative to pure bundling, such
as independent sales (for instance).
19We use �he�for a publisher.
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� (pricing) In stage three, after the moves at stage two have been observed by all
publishers and the library, each publisher i 2 A simultaneously chooses a price
Pi � 0 for Bi.

� In stage four, the library chooses bundles to buy from the set fBi : i 2 Ag.

In this game, by joining CrossRef a publisher makes multiple interconnections, i.e.
with all the other publishers who are members of CrossRef. Conversely, if publisher
i does not join CrossRef then he is not interconnected with any other publisher. We
use y � (y12; y13; y23) to represent the interconnection pro�le by de�ning y12 � x1x2,
y13 � x1x3 and y23 � x2x3. Clearly, yij = 0 or yij = 1, and yij = 1 means that i and j are
interconnected, while yij = 0 means there is no interconnection between them.

In �b, publisher i can refuse to interconnect with publisher j while being interconnected
with k(6= j). Formally, �b is such that:

� (interconnection) In stage one, each publisher i (for i = 1; 2; 3) simultaneously
chooses xij 2 f0; 1g and xik 2 f0; 1g which denote his willingness to interconnect
with publisher j and with publisher k(6= j), respectively.

Stages two, three and four are like in �m.

In �b, the variables in y � (y12; y13; y23) are de�ned as follows: y12 � x12x21, y13 �
x13x31 and y23 � x23x32. In �b, for instance, publishers 1 and 2 can interconnect among
themselves (i.e., x12 = x21 = 1) and at the same time 1 (2) can break connectivity
with 3 by choosing x13 = 0 (x23 = 0). In contrast, in �m, in order for 1 and 2 to be
interconnected, it is necessary that x1 = x2 = 1, and then 3 can interconnect with both
1 and 2 by choosing x3 = 1. Another interconnection con�guration of interest that does
not exist in �m but can exist in �b, for instance, is such that 3 is interconnected with
both 1 and 2 but 1 and 2 are not interconnected between themselves. This occurs if
(x12; x13) = (0; 1), (x21; x23) = (0; 1) and (x31; x32) = (1; 1), so that y = (0; 1; 1).
In order to isolate the e¤ects of interconnection, we �rst analyze (in section 3) as a

benchmark the game �0 in which interconnection is infeasible. This means that in �0

there is no stage one and the game starts with stage two; stages two-four are like in �m.
We use � to denote an unspeci�ed game in f�m;�b;�0g and for any � we let III represent
the subgame of � which starts in stage three, in which the active publishers choose prices
for their bundles and then the library makes her purchases. Clearly, III depends on the
active publishers and on the interconnection pro�le y, but we do not emphasize this fact
in the notation. Likewise, we use II to denote the subgame of � which starts in stage
two, in which (given y) each publisher chooses whether to be active or not and then III
starts.
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2.2 The agents�preferences

In order to determine the library�s purchases in stage four it is necessary to specify the
library�s preferences. A publisher�s website provides several services, which can be re-
grouped into two categories: basic service (reading, printing and downloading articles)
and advanced service (text and data mining and linking). Let bi represent the gross utility
that the library obtains from basic service after buying Bi. For most sections, we consider
asymmetric publishers with b1 > b2 > b3 > 0. The library�s utility from basic service
when it purchases Bi&Bj or B1&B2&B3 is bi + bj or b1 + b2 + b3, respectively.
The library�s utility from advanced service depends both on the bundles it buys and

on the interconnection pro�le among them. In case the library subscribes only to Bi, its
utility from advanced service is I(bi), where I(0) = 0 and I(:) is assumed to be strictly
increasing and strictly convex (for instance, I(b) = �b2 with � > 0); thus, the marginal
surplus from advanced service increases as bi becomes larger. If the library purchases
Bi&Bj, its utility from advanced service is I(bi+ bj) if yij = 1,20 is I(bi)+ I(bj) if yij = 0.
Notice that I(bi + bj) > I(bi) + I(bj) since I(:) is strictly convex; hence, interconnection
between two websites creates a positive value for the library.21 Finally, if the library buys
B1&B2&B3, its utility from advanced service is determined as follows:22

library�s utility from advanced
service if it buys B1&B2&B3

23 =

8>>><>>>:
I(b1) + I(b2) + I(b3) if y12 = y13 = y23 = 0
I(bi + bj) + I(bk) if yij = 1 and yik = yjk = 0

I(bi + bj) + I(bi + bk)� I(bi) if yij = yik = 1 and yjk = 0
I(b1 + b2 + b3) if y12 = y13 = y23 = 1

In order to simplify notation, we introduce Ui � bi + I(bi), U � (U1; U2; U3), U �
U1+U2+U3, Iij � I(bi+ bj)� I(bi)� I(bj) > 0 and I � (I12; I13; I23). While Ui represents
the �stand-alone�utility that the library obtains from Bi when yij = yik = 0, Iij is the
increase in surplus for the library, with respect to Ui + Uj, from interconnection between
i and j. The assumption b1 > b2 > b3 implies U1 > U2 > U3 and I12 > I13 > I23.
The library�s total utility from buying one or more bundles is given by its utility from

basic service plus the utility from advanced service, minus the money spent. We assume

20We may also add a parameter representing the quality of interconnection, but it would not a¤ect our
results while adding notational complexity.
21The value added by interconnection would be zero if I(:) were linear (i.e., if I(b) = �b) and would be

negative if I(:) were strictly concave. Therefore, we view convexity of I(:) as a reasonable assumption.
22By the strictly convexity of I(:), this utility increases as the number of interconnected websites

increases. We prove below, however, that the equilibrium prices are determined only by the library�s
payo¤ when it buys one or two bundle(s), and not by its payo¤ when it buys B1&B2&B3.
23For instance, when I(b) = �b2 with � > 0, we have: I(b1)+ I(b2)+ I(b3) = �

h
(b1)

2
+ (b2)

2
+ (b3)

2
i
,

I(bi+ bj) + I(bk) = I(b1) + I(b2) + I(b3) + 2�bibj , I(bi+ bj) + I(bi+ bk)� I(bi) = I(b1) + I(b2) + I(b3) +
2�bibj + 2�bibk, I(b1 + b2 + b3) = I(b1) + I(b2) + I(b3) + 2�bibj + 2�bibk + 2�bjbk.
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that the library has a �xed budget M > 0 which can be used only to buy journals.24

Therefore, publishers compete for the library�s budget and we assume that they have
complete information about (M;U; I).
If we assume M � U , then we �nd that in �0 (the benchmark without interconnec-

tion) there is no competition among publishers since publisher i = 1; 2; 3 can extract the
library�s full surplus from Bi by charging a price equal to Ui. While this fact suggests
to restrict attention to M < U , we actually assume M � U � I12, which is a su¢ cient
condition to remove the multiplicity of equilibrium prices in III that arises because of
interconnection.25 When we study asymmetric publishers, the two following assumptions
play an important role.

A1: I(:) is not too convex such that the following inequalities hold: U1 � U2 + I23,
U2 � U3 + I13, U3 � I12.

A1w: I(:) is not too convex such that the following inequalities hold: U2+I23 � U3+I13,
U3 � I12.

The inequalities U1 � U2+I23 and U2 � U3+I13 in A1 imply that interconnection does
not alter the ranking of pro�ts among the publishers with respect to the benchmark of
no interconnection. This is a simplifying assumption that allows us to focus on publisher
3�s decision to be active or not when we study how interconnection a¤ects the set of
active publishers. However, when we consider multilateral interconnection we �nd that
the game is simple enough in terms of strategy spaces and of possible outcomes that the
same results obtained under A1 hold even under the weaker assumption A1w where the
superscript w means �weak�. The inequality U2 + I23 � U3 + I13 rules out that only 1
and 3 are active when publishers are fully interconnected, as it guarantees that 2 can
pro�tably become active. Since the analysis under A1 is considerably simpler than under
A1w, all the proofs in this paper rely on A1, while the proofs under A1w can be found in
Jeon and Menicucci (2009).26 In order to check the robustness of our results derived from
asymmetric publishers, we consider symmetric publishers (i.e., U1 = U2 = U3) in section
8.
24In Jeon and Menicucci (2006) we allow the library to use the budget to buy journals and books and

assume that the library obtains utility v(m) from spending m �M to purchase books, with v increasing
and concave. Hence, we can see our current setting as one in which v(m) = m. Since interconnection
complicates the analysis, we make this simpli�cation to obtain closed form formulas for equilibrium prices.
25Two interconnected publishers sell complementary products and this creates multiple equilibrium

prices in III if M > U � I12 holds.
26The inequality U3 � I12 implies that the value from interconnection is not large relative to the value

from the original bundle of journals. This simpli�es the statements of our results but does not a¤ect the
results themselves. For instance, if I12 > 2U2+U3 then U�I12 is smaller than U1�U2 and sometimes this
implies that only 1 is active for anyM that we consider. This case is not interesting since interconnection
plays no role.
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Since we would like to study publishers�incentives to interconnect and how intercon-
nection a¤ects which publishers succeed in selling their bundles and at what prices, we
assume that the �xed cost of having the �rst electronic copy of each journal has already
been incurred. We also assume that the marginal cost of distributing each electronic
journal through Internet to the library is zero. Furthermore, we assume that providing
interconnection is costless and hence an open multilateral platform charges zero intercon-
nection fee. This simplifying assumption implies that the pro�t of an active publisher
i is equal to Pi if the library purchases Bi, while i�s pro�t is 0 otherwise, and thus we
can focus on strategic interconnection incentives related to journal pricing.27 However,
for comparison with an open platform, in section 6 we study a for-pro�t platform for
multilateral interconnection which charges interconnection fees.
In the next sections we use the concept of subgame perfect Nash equilibrium (SPNE

henceforth) to determine the publishers�behavior in �. For this purpose, we apply back-
ward induction and thus we need to �nd Nash equilibrium (NE henceforth) of III under
various possible scenarios regarding the interconnection pro�le and the set of active �rms.
However, when all three publishers are active, in some cases III has in�nitely many NEs
in which the prices of the bundles the library buys depend on the prices of bundles the
library does not buy.28 In order to eliminate this indeterminacy, we adopt the following
tie-breaking rule as in Jeon and Menicucci (2006).

T1: In each game � 2 f�m;�b;�0g, any publisher i prefers being non-active to being
active but unable to make a strictly positive pro�t.

T1 can be justi�ed if a publisher would incur a very small but positive cost for con-
tracting with the library. Therefore, in a SPNE, publisher i is active if and only if in stage
four the library purchases Bi at some price Pi > 0.
In what follows, we let P �i denote the equilibrium price for Bi and, likewise, (x

�
i ; x

�
ij; y

�
ij; A

�)

represents (xi; xij; yij; A) in equilibrium. For each � 2 f�m;�b;�0g, under A1 an intuitive
result holds and can be stated as follows: in any SPNE, publisher 1 is active; if publisher
3 is active, then publisher 2 is active as well. In other words, the following lemma applies.

Lemma 1 For any interconnection pro�le y and any interconnection game � 2 f�m;�b;�0g,
A1 implies that any SPNE of II is such that the set of active publishers A

� is either f1g
or f1; 2g or f1; 2; 3g:
27We remark, however, that our results qualitatively hold if we introduce a small positive interconnec-

tion fee.
28For instance, suppose that interconnection is infeasible and U1 = 10, U2 = 2, U3 = 1 and M = 9.

Then, for any � 2 [0; 23 ], there exists a NE of III in which P1 = 9 � �, P2 = P3 = � and the library
buys B1&B2.
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3 Subgame for given interconnection pro�le

In this section, we �rst describe the unique SPNE of the subgame II that starts in stage
two as a function of the interconnection pro�le and then describe the unique SPNE of the
game without interconnection �0.

3.1 Subgame for given interconnection pro�le

In order to apply backward induction to II , we start by studying the NE of the pricing
game III that starts in stage three. Namely, the next lemma considers the cases of
A = f1; 2; 3g and A = f1; 2g, in view of Lemma 1, and provides the conditions onM under
which all active publishers realize positive pro�ts; it also characterizes the equilibrium
prices.

Lemma 2 (i) Under A1, let the set of active publishers be A = f1; 2; 3g. Then, for any
given interconnection pro�le y, there exists a NE of the pricing game (III) in which the
library buys all three bundles and all publishers realize strictly positive pro�ts if and only
if M > M t(y) � U � 3U3 + 2I12y12 � I13y13 � I23y23. Furthermore, for any M between
M t(y) and U � I12, the NE is unique and prices are given by:

P �1 = P
t
1(y) � U1 +

1

3
(M � U + �I � 3I23y23),

P �2 = P
t
2(y) � U2 +

1

3
(M � U + �I � 3I13y13);

P �3 = P
t
3(y) � U3 +

1

3
(M � U + �I � 3I12y12);

where �I � I12y12 + I13y13 + I23y23: Therefore, P t1(y) + P t2(y) + P t3(y) =M:
(ii) Let the set of active publishers be A = f1; 2g. Then, independently of the intercon-
nection between 1 and 2, there exists a NE of the pricing game (III) in which the library
buys both bundles and both publishers 1 and 2 realize strictly positive pro�ts if and only if
M > U1 � U2. Furthermore, for any M between U1 � U2 and U1 + U2, the NE is unique
and prices are given by

P �1 = P
d
1 �

1

2
(M + U1 � U2); P �2 = P

d
2 �

1

2
(M + U2 � U1)

Therefore, P d1 + P
d
2 =M:

In order to explain Lemma 2(i), we suppose that A = f1; 2; 3g and study a NE in
which the library buys all three bundles. The equilibrium prices (P �1 ; P

�
2 ; P

�
3 ) need to be

such that the library does not purchase Bi anymore if publisher i increases Pi above P �i ,
and in the proof of the lemma we show that this condition is satis�ed for each i if and
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only if the library is indi¤erent between buying Bi&Bj and buying Bi&Bk, for any i; j; k.
This is equivalent to the following equalities

U1 + U2 + I12y12 � P �1 � P �2 = U1 + U3 + I13y13 � P �1 � P �3 ; (1)

U1 + U2 + I12y12 � P �1 � P �2 = U2 + U3 + I23y23 � P �2 � P �3 : (2)

Furthermore, the assumption M < U � I12 implies P �1 + P �2 + P �3 = M , and using this
equality29 jointly with (1)-(2) we �nd (P �1 ; P

�
2 ; P

�
3 ) = (P

t
1(y); P

t
2(y); P

t
3(y))

30 as in Lemma
2(i). It is readily seen that P ti (y) is increasing in yij and yik and decreasing in yjk, so that
publisher i�s pro�t is positively a¤ected by his own interconnection with other publishers,
but is negatively a¤ected if his rivals are interconnected. The reason is that the library�s
payo¤ from buying Bi&Bj (for instance) is higher when yij = 1 than when yij = 0 and
therefore, after interconnection between i and j, Pi needs to be higher in order to make
the library remain indi¤erent between Bi&Bj and Bj&Bk.
Quite importantly, we notice that A1 implies P t1(y) > P

t
2(y) > P

t
3(y) for any intercon-

nection pro�le y, and P t3(y) > 0 if and only if M > M t(y). Therefore, when M �M t(y),
no NE of III exists in which all three publishers make a pro�t. Since P

t
3 is increasing in

y13 and y23 and decreasing in y12, it follows that M t(y) increases (decreases) in y12 (in y13
and y23).
In the case that M � M t(y), either only 1 is active, or only 1 and 2 are active. Let

us consider �rst the case in which 1 and 2 are active. Then their prices are determined
by a principle similar to the one explained above: given (P �1 ; P

�
2 ), publisher i (i = 1; 2)

has no incentive to increase Pi above P �i if and only if the library is indi¤erent between
purchasing only B1 and purchasing only B2:

U1 � P �1 = U2 � P �2 (3)

This condition and P �1 + P
�
2 =M yield (P d1 ; P

d
2 )
31 and we notice that P d2 > 0 if and only

if M > U1�U2. Therefore, when M � U1�U2, no NE of III exists in which both 1 and
2 make a pro�t. Notice that the interconnection pro�le has no impact on the equilibrium
prices when only two publishers are active.
Finally, in the case of M � U1 � U2 (independently of y) there is no NE of III in

which both publishers 1 and 2 (or all the three publishers) make a positive pro�t. This
implies that, when M � U1�U2, only 1 will be active and P �1 =M . The reason is that if
publisher 2 (for instance) is active as well, he cannot make any pro�t in III because the
library�s pro�t from buying only B1 is U1 �M , which is higher than the pro�t U2 � P2
29If P �1 + P

�
2 + P

�
3 < M , then P �i < Ui holds for at least one i. As a consequence, there exists a

pro�table deviation for publisher i: if he slightly increases Pi above P �i , he still succeed in selling Bi.
30The superscript t means triopoly.
31The superscript d means duopoly.
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obtained by purchasing B2, for any P2 > 0. When M > U1 � U2, instead, this argument
does not apply because U2 � P2 > U1 �M for P2 close to 0; thus A� will include at least
f1; 2g. However, whether also 3 will be active or not depends on whether M is larger or
smaller than M t(y). Thus, y does not a¤ect the set of parameter values for which only 1
is active but determines the values of M for which all publishers are active.
The results of Lemma 2 help us to derive the set of active publishers as a function of

y as in the next lemma.

Lemma 3 Under A1, for any given interconnection pro�le y, the unique SPNE of the
game starting with stage two (II) is such that
(i) if M � U1 � U2, only publisher 1 is active and charges P �1 =M ;
(ii) if U1 � U2 < M � M t(y), only publisher 1 and publisher 2 are active and charge P d1
and P d2 ;
(iii) if M t(y) <M , all three publishers are active and charge P t1(y), P

t
2(y) and P

t
3(y).

From now on, we neglect the case ofM � U1�U2 since then only 1 is active regardless
of interconnection pro�le y. In section 4, we use this lemma in order to examine how
stage-one interconnection decisions a¤ect the outcome of the game.

3.2 Benchmark: The game without interconnection

We now consider as a benchmark the game without interconnection �0. In �0 there is no
stage one and the interconnection pro�le is y = (0; 0; 0); this implies that �0 coincides
with the subgame II of �

m following y = (0; 0; 0). The next proposition, which is just
an immediate consequence of Lemma 3, describes the unique SPNE of �0.

Proposition 1 In the game without interconnection, there exists a unique SPNE and the
equilibrium active publishers and prices are given by:
(i) if U1 � U2 < M � M t(0; 0; 0), then only publisher 1 and publisher 2 are active and
charge P �i = P

d
i for i = 1; 2;

(ii) if M t(0; 0; 0) < M � U � I12, then all three publishers are active and charge P �i =
P ti (0; 0; 0) for i = 1; 2; 3.

When there is no interconnection, Proposition 1 establishes that the library buys
B1&B2&B3 if and only if M is larger than M t(0; 0; 0) = U � 3U3; otherwise publisher 3 is
excluded from the market.
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4 The interconnection games

In this section, we study the two interconnection games: open multilateral interconnection
game �m and bilateral interconnection game �b. From Lemma 3, for any interconnection
pro�le y determined in stage one, we can �nd each publisher�s pro�t. Therefore, we can
�nd the equilibrium interconnection pro�le by considering a one-stage game in which
each publisher chooses his interconnection strategy knowing that the resulting intercon-
nection pro�le generates pro�ts as described by Lemma 3. Since this game has multiple
equilibria, we �rst introduce a re�nement concept and then study the open multilateral
interconnection and the bilateral interconnection.

4.1 Coalition-Proof Nash Equilibrium (CPNE)

Before introducing the equilibrium re�nement concept, we de�ne a one-stage game of
interconnection. Let si denote publisher i�s interconnection strategy: in the case of mul-
tilateral interconnection, si = xi 2 f0; 1g and in the case of bilateral interconnection,
si = xi = (xij; xik) 2 f(0; 0); (0; 1); (1; 0); (1; 1)g. As a function of s = (s1; s2; s3), an
interconnection pro�le y(s) is determined and the resulting pro�t of publisher i, denoted
by �i(s); is obtained from Lemma 3 as follows8><>:

�1(s) =M , �2(s) = �3(s) = 0 if M � U1 � U2
�1(s) = P

d
1 , �2(s) = P

d
2 , �3(s) = 0 if U1 � U2 < M �M t(y(s))

�i(s) = P
t
i (y(s)) for i = 1; 2; 3 if M t(y(s)) < M < U � I12

(4)

In this section, we consider the one-stage game in which each publisher i simultaneously
chooses si taking into account that his pro�t is �i(s). Let Gm denote the one-stage
game with open multilateral interconnection and Gb be the one-stage game with bilateral
interconnection.
Both Gm and Gb can be viewed as games of network formation, and indeed a game

which is essentially equivalent to Gb has received a lot of attention in the last few years in
the literature on strategic network formation (for surveys, see Goyal, 2007, and Jackson,
2008), which has been developed independently of the literature on interconnection in
network industries. Precisely, a game with the bilateral linking structure of Gb has been
proposed by Myerson (1991, page 448) under the assumption that the resulting network
determines pro�ts as a function of an underlying cooperative game. As it is apparent,
the notion of NE for this game is not particularly useful: since a link between two players
is formed only when both players agree, a coordination problem arises and multiple NEs
exist. For instance, independently of the parameters, in our setting x1 = x2 = x3 =

(0; 0) is a NE of Gb, even though there could be a pair of publishers which bene�t from
interconnection. As in Gb, a coordination problem arises in Gm as well and multiple NEs
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exist (although the degree of multiplicity is less severe in Gm than in Gb); for instance,
x1 = x2 = x3 = 0 is always a NE of Gm.
An obvious di¤erence between Gm and Gb is that in Gb any interconnection pro�le

y2f0; 1g3 is feasible, unlike in Gm. Precisely, the empty network, one-link networks and
the complete network can be formed both in Gm and in Gb. But a two-link network can
arise only in Gb when publishers play xij = xji = 1, xik = xki = 1 and xjkxjk = 0; in this
case the network is called a star, with publisher i at the center of the star.
In order to address the multiplicity of equilibria, we apply to Gm and Gb the notion of

Coalition-Proof Nash Equilibrium (CPNE), a re�nement introduced by Bernheim, Peleg
and Whinston (1987). The general de�nition of CPNE is recursive and hence is not
straightforward, but it is simple in a three-player game like Gm or Gb. Let Gmi;j(sk) denote
the game of multilateral interconnection played between publishers i and j in which the
interconnection choice of �rm k (the remaining publisher) is kept �xed at a certain sk;
Gbi;j(sk) is de�ned similarly. Then

De�nition 1 A pro�le s� = (s�1; s
�
2; s

�
3) is a CPNE of the open multilateral interconnection

game Gm (respectively, of the bilateral interconnection game Gb) if and only if
(i) s� is a NE of Gm (respectively, of Gb)
(ii) for any pair of publishers i; j, there is no NE of Gmi;j(s

�
k) (respectively, of G

b
i;j(s

�
k)) in

which the pro�ts of i and j are both strictly higher than �i(s�) and �j(s�), respectively.

In fact, in order to apply the de�nition of Bernheim, Peleg and Whinston (1987) we
should also verify that there is no s which satis�es (i)-(ii) and such that �i(s) > �i(s�) for
i = 1; 2; 3. But this condition is certainly satis�ed, since �1(s) + �2(s) + �3(s) =M holds
for any s. In short, CPNE eliminates the NE of Gm (respectively, of Gb) for which there
exists a pro�table joint deviation for publishers i and j, provided that this joint deviation
is a NE in the game between i and j, taking as �xed the strategy of publisher k. By
applying CPNE, we obtain a unique equilibrium outcome both in Gm and Gb, except for
non-generic parameter values.
We mention, however, a well-known re�nement for the Myerson game, which is called

pairwise stable NE. When applied to Gb, this re�nement eliminates a NE s� if i and j are
not linked under s�, and the creation of the link between i and j increases the pro�t of
at least one of these two players without reducing the pro�t of the other. Thus, pairwise
stable NE are NE which are robust to deviations by any pair of players, when deviations
are restricted to generating a link between a pair of deviating players which initially does
not exist.32 In our context, pairwise stability di¤ers from CPNE because of this restriction
on possible joint deviations, and because these are not required to be a NE of Gbi;j(s

�
k). In

32For instance, Bloch and Belle�amme (2004) use pairwise stable NE as a solution concept. �Simple�
Pairwise stability has been introduced by Jackson and Wolinsky (1996) as a robustness criterion for a
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particular, the former feature sometimes makes pairwise stability somewhat weak so that
there exist multiple pairwise stable NE in Gb (see the remark at the end of section 4.3).
The next table summarizes key notation introduced up to now.
Table 1: Notation
Bi bundle of journals of publisher i
Ui (Iij) stand-alone value of Bi (value from interconnection of Bi&Bj)
A set of active publishers
�m

�
�b
�

open multilateral (bilateral) interconnection game
II (III) subgame starting in stage two (stage three)
xi i�s interconnection strategy in multilateral interconnection game
xi = (xij; xik) i�s interconnection strategy in bilateral interconnection game
x (x) interconnection strategy pro�le x = (x1; x2; x3) (x = (x1;x2;x3))
si i�s interconnection strategy: either si = xi or si = xi
y interconnection pro�le y = (y12; y13;y23)

M t(y)
given y, the threshold value of budget that allows 3
to realize a positive pro�t

P ti (y) given y, i�s pro�t under triopoly when M > M t(y)

P di i�s pro�t under the duopoly composed of 1 and 2, for i = 1; 2
Gm

�
Gb
�

one-stage game of open multilateral (bilateral) interconnection
Gmij (sk) Gm played between i and j given that k plays sk
Gbij(sk) Gb played between i and j given that k plays sk

4.2 Open multilateral interconnection

We now examine the one-stage game of open multilateral interconnectionGm. SinceM t(y)

is increasing in y12 and decreasing in (y13; y23), we note that the following inequalities hold;

U1 � U2 < M t(0; 1; 0) < M t(0; 0; 1) < M t(0; 0; 0) < M t(1; 1; 1) < M t(1; 0; 0) < U � I12

ForM between U1�U2 andM t(0; 1; 0), even the interconnection pro�le the most favorable
for 3 under Gm (i.e. y = (0; 1; 0)) does not allow 3 to realize a positive pro�t. Then, there
is duopoly and the interconnection pro�le does not a¤ect the pro�ts of 1 and 2. Hence,
we consider M > M t(0; 1; 0). Let x = (x1; x2; x3) denote a strategy pro�le in Gm. The
next lemma shows how CPNE rules out a particular strategy pro�le:

network, without any reference to the Myerson game or to any other non-cooperative procedure of network
formation. Precisely, a network is said to be pairwise stable if (i) no player can gain from severing an
existing link he has with another player; (ii) for any pair of players i; j which are not linked, if the creation
of the link between i and j increases the pro�t of i, then it reduces the pro�t of j. For instance, Goyal
and Moraga-Gonzales (2001) use pairwise stability.
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Lemma 4 The interconnection strategy pro�le x = (0; 0; 0) is not a CPNE of the open
multilateral interconnection game Gm as long as M > M t(0; 1; 0).

To illustrate how CPNE is applied in the lemma, we consider the case ofM t(0; 0; 0) <

M �M t(1; 0; 0). Then Gm1;2(0), in which x3 is �xed at 0, is de�ned as follows:

Gm1;2(0) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 0); P

t
2(0; 0; 0)

x1 = 1 P t1(0; 0; 0); P
t
2(0; 0; 0) P d1 ; P

d
2

In Gm1;2(0), we have two NEs: (x1; x2) = (0; 0) is a NE and, since P d1 > P t1(0; 0; 0) and
P d2 > P

t
2(0; 0; 0), also (x1; x2) = (1; 1) is a NE. Moreover, (x1; x2) = (1; 1) strictly Pareto

dominates (x1; x2) = (0; 0) for publishers 1 and 2. Therefore, condition (ii) in De�nition
1 is not satis�ed when x = (0; 0; 0), and this pro�le is not a CPNE for M t(0; 0; 0) <

M � M t(1; 0; 0). Intuitively, when one publisher does not interconnect, interconnection
between the remaining publishers improves their competitive positions and hence they
have an incentive to interconnect, which makes x = (0; 0; 0) not a CPNE.
The notion of CPNE does not deliver uniqueness in a strict sense, but it yields

uniqueness in the sense that when multiple CPNE exist, they are all outcome equiva-
lent in terms of active publishers and prices. The next proposition establishes that (i) for
M � M t(1; 1; 1), full interconnection x = (1; 1; 1) is a CPNE and any CPNE generates
the same outcome, in terms of active publishers and prices, as full interconnection; (ii)
for M > M t(1; 1; 1), full interconnection is the unique CPNE.

Proposition 2 Consider the open multilateral interconnection game Gm. Under A1w:
(i) When U1 � U2 < M � M t(1; 1; 1), full interconnection is a CPNE of Gm and any
CPNE is outcome equivalent in terms of active publishers and prices: only publisher 1
and publisher 2 are active and charge P �i = P

d
i for i = 1; 2;

(ii) When M t(1; 1; 1) < M � U � I12, full interconnection is the unique CPNE of Gm and
hence all three publishers are active and charge P �i = P

t
i (1; 1; 1) for i = 1; 2; 3.

A main di¤erence with respect to what happens without interconnection (i.e., in �0)
is that now 3 is active if and only if M > M t(1; 1; 1). Since M t(1; 1; 1) > M t(0; 0; 0), this
implies that an open multilateral platform makes the exclusion of the smallest publisher,
publisher 3, more likely than in the absence of the platform.
In order to provide an intuition for the result in this proposition, it is useful to consider

the case of M > M t(1; 0; 0), which means that the budget is large enough that even the
interconnection pro�le the least favorable for 3 allows him to sell B3 at a strictly positive
price; therefore, all publishers will be active and pro�ts will be P t1(y); P

t
2(y); P

t
3(y). Since

we have ruled out above the case of x = (0; 0; 0), we infer that xi = 1 for at least one
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publisher i, and then we see that publisher j (6= i) prefers to play xj = 1 rather than
xj = 0. Indeed, xj = 1 strictly increases yji and weakly increases yjk, which in turn
increases the price P tj (y) of Bj because the value of Bi&Bj (and perhaps also that of
Bj&Bk) has increased [see (1)-(2) and the related discussion]. In other words, since in our
model each publisher competes for relative standing, as the industry pro�t is equal to M
and is constant, xj = 1 strictly improves the relative standing of Bj compared to xj = 0,
as long as there is an i with xi = 1, and thereby increases j�s pro�t. This implies that
x = (1; 1; 1) is the unique CPNE when M > M t(1; 0; 0).33

Consider now M � M t(1; 0; 0). Then, whether 3 is active or not depends on the
interconnection pro�le and thus publisher 1�s (or 2�s) incentive to interconnect may be
a¤ected by the possibility to exclude 3. Obviously, 3 chooses x3 = 1 since his intercon-
nection increases the chance to be active by lowering the threshold M t. Furthermore, the
possibility to exclude 3 does not a¤ect 1�s or 2�s incentive to interconnect. For instance,
if 2 interconnects, 1 wants to interconnect in order to avoid the interconnection pro�le
y12 = y13 = 0, y23 = 1, which is the least favorable for 1. If 2 does not interconnect, it is
still optimal for 1 to interconnect (so that y13 = 1, y12 = y23 = 0). Therefore, it is easier
for 3 to be active when 2 does not interconnect than when 2 interconnects.
Given that the interconnection technology exhibits economies of scale, full interconnec-

tion of all publishers worsens the relative standing of the small publisher, which explains
why 3 is less often active under the open multilateral interconnection than in the absence
of interconnection.

4.3 Bilateral interconnections

We now consider the one-stage game of bilateral interconnection Gb. We �nd that several
cases may arise depending on the relative values of I12; I13; I23. In particular, publisher 3
can be excluded more often or less often in Gb than in Gm. We notice that when all three
publishers are active in Gb, it is possible that they are not fully interconnected, while we
have seen that in Gm full interconnection is the only CPNE when all publishers are active.
We explain below why these results arise in Gb.
By applying CPNE in Gb we obtain a unique equilibrium outcome for any generic

parameter values, and in particular the next lemma shows that there are three possible
CPNE outcomes: either 3 is excluded, or 3 is active and y = (0; 1; 1), or 3 is active and
y = (1; 1; 1).

Lemma 5 If x� is a CPNE of the bilateral interconnection game Gb such that 3 is active,
then x� generates as interconnection pro�le either y = (0; 1; 1) or y = (1; 1; 1).

33This intuition holds regardless of whether the mode of interconnection is multilateral or bilateral.
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Lemma 5 essentially says that y13 = y23 = 1 in any CPNE in which 3 is active.
Therefore, when we investigate the existence of a CPNE in which 3 is active, the only
indeterminacy is about whether y12 = 0 or y12 = 1. The intuition for this result is that if
a strategy pro�le x is such that 3 is active and y13 = 0, then in Gb1;3(x2) there exists a NE
in which 1 and 3 are interconnected and they are both better o¤ than in x, which implies
that x is not a CPNE; the same argument applies if y23 = 0, with reference to Gb2;3(x1).
Notice that y = (0; 1; 1) is a star network in which the center of the star is the smallest
publisher.
Because of the greater interconnection �exibility in Gb with respect to Gm, the values

of M in the interval [U1 � U2; U � I12] need to be divided more �nely than in Gm, and it
is useful to recall that the following inequalities hold

U1 � U2 < M t(0; 1; 1) < M t(0; 1; 0) < M t(0; 0; 1) < M t(0; 0; 0)

< M t(1; 1; 1) < M t(1; 1; 0) < M t(1; 0; 1) < M t(1; 0; 0) < U � I12

From the arguments in sections 4.1-4.2, the following results are straightforward. For
U1 � U2 < M � M t(0; 1; 1), y does not matter and only 1 and 2 are active since even
the interconnection pro�le the most favorable for 3, y = (0; 1; 1), does not allow him to
make a pro�t. Similarly, for M t(0; 1; 1) < M � M t(0; 1; 0) only 1 and 2 are active: 2
has an incentive to choose x23 = 0 in order to exclude 3 since P d2 > P t2(0; 1; 1). For
M t(1; 0; 0) < M � U � I12, all publishers are active and fully interconnected since even
the interconnection pro�le the least favorable for 3, y = (1; 0; 0), allows him to make a
pro�t. For expositional simplicity, Proposition 3 presents a weak version of our results
restricting attention to the case in which 2I12 > I13 + 3I23 for M between M t(1; 1; 1) and
M t(1; 0; 1), while in the proof in the appendix we present (and prove) a more general
version of Proposition 3 without the parameter restriction. In particular, 2I12 > I13+3I23
implies P d2 � P t2(0; 0; 1) whenM > M t(1; 1; 1) and hence makes 2 strongly prefer exclusion
of 3.34

Proposition 3 Under A1, any CPNE of the bilateral interconnection game Gb is such
that
(i) for M between U1 � U2 and M t(0; 1; 0): A� = f1; 2g.
(ii) for M between M t(0; 1; 0) and M t(1; 1; 1):
(a) if P d1 > P

t
1(0; 1; 1), then A

� = f1; 2g. In this case, x�1 = x�2 = (1; 1); x�3 = (0; 0) is
a CPNE.
(b) if P d1 < P

t
1(0; 1; 1), then A

� = f1; 2; 3g with y = (0; 1; 1). In this case, x�1 = x�2 =
(0; 1); x�3 = (1; 1) is a CPNE.
(iii) for M between M t(1; 1; 1) and M t(1; 1; 0) and under 2I12 > I13 + 3I23:

34In addition, it implies P t1(1; 1; 1) > P
t
1(0; 1; 0):
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(a) if P d1 > P t1(0; 1; 0), then A
� = f1; 2g. In this case, x�1 = (1; 1); x�2 = (1; 0);

x�3 = (0; 0) is a CPNE.
(b) if P d1 < P

t
1(0; 1; 0), then A

� = f1; 2; 3g with y = (0; 1; 1). In this case, x�1 = x�2 =
(0; 1); x�3 = (1; 1) is a CPNE.
(iv) for M between M t(1; 1; 0) and M t(1; 0; 1) and under 2I12 > I13 + 3I23:
(a) if P d1 > P t1(1; 1; 1), then A

� = f1; 2g. In this case, x�1 = (1; 0); x�2 = (1; 1);

x�3 = (0; 0) is a CPNE.
(b) if P d1 < P

t
1(1; 1; 1), then A

� = f1; 2; 3g with y = (1; 1; 1). In this case, full inter-
connection x�1 = x

�
2 = x

�
3 = (1; 1) is the unique CPNE.

(v) for M between M t(1; 0; 1) and U � I12: A� = f1; 2; 3g with y = (1; 1; 1). In this case,
full interconnection x�1 = x

�
2 = x

�
3 = (1; 1) is the unique CPNE.

This proposition reveals that the outcome of Gb is the same as that of Gm if M �
M t(0; 1; 0) or if M > M t(1; 0; 1) but is often quite di¤erent otherwise. For M between
M t(0; 1; 0) and M t(1; 1; 0), we have either duopoly or triopoly (with 3 as the center of a
star) while for M between M t(1; 1; 0) and M t(1; 0; 1), we have either duopoly or triopoly
(with full interconnection). As we explain below, the outcome between duopoly and
triopoly is determined by the existence of a (self-enforcing)35 joint deviation which is
pro�table for 1 and for another publisher (as required by CPNE). Except for the case of
M between M t(1; 1; 1) and M t(1; 1; 0), the existence of such a deviation is determined by
1�s trade-o¤ between the pro�t upon excluding 3 and the pro�t upon inducing 3 to be
active, which takes the form of P d1 ? P t1(y), where the interconnection pro�le y in P t1(y)
varies depending on the level of M .
We consider �rst M between M t(0; 1; 0) and M t(1; 1; 1) and explain why P t1(0; 1; 1) >

P d1 leads to A
� = f1; 2; 3g and y = (0; 1; 1). We start by noticing that there exists a NE x0

of Gb, such as x01 = x
0
2 = (1; 1); x

0
3 = (0; 0), which leads to exclusion of 3. However, when

P t1(0; 1; 1) > P d1 we can �nd a NE in G
b
1;3(x

0
2) which gives both 1 and 3 higher pro�ts

than when 3 is excluded, namely x1 = (0; 1); x3 = (1; 1) (which induces y = (0; 1; 1) and
makes 3 active). Therefore, if P t1(0; 1; 1) > P

d
1 , x

0 is not a CPNE and, for the same reason,
3 must be active in any CPNE. Furthermore, since M < M t(1; 1; 1), if 3 is active then
y = (0; 1; 1) from Lemma 5; actually, we �nd that x� with x�1 = x

�
2 = (0; 1); x

�
3 = (1; 1)

is a CPNE. Notice that 2�s duopoly pro�t P d2 is larger than P
t
2(0; 1; 1), thus 2 always

gains from deviating jointly with 1 (by playing x1 = x2 = (1; 1)) in order to exclude
3. Nevertheless, if P t1(0; 1; 1) > P d1 , such deviation is not pro�table for 1. If instead
P d1 > P

t
1(0; 1; 1), 1 prefers duopoly to y = (0; 1; 1) and 3 becomes excluded.

Since P t1(0; 1; 1) = U1 +
1
3
(M � U + I13 � 2I23) and P d1 does not depend on Iij,

P t1(0; 1; 1) > P
d
1 holds if I13 is large enough with respect to I23, which means that pub-

35Self-enforcing in the sense that the joint deviation is a NE.
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lisher 1 is much larger than 2. Basically, in this case, 1 breaks connectivity with 2 while
maintaining it with 3 for di¤erentiation motive (i.e. to further di¤erentiate himself from
2); since 1�s gain from interconnection with 3 is much larger than 2�s gain from inter-
connection with 3, this improves 1�s relative standing and makes 1�s pro�t larger than
his pro�t from excluding 3. If instead 1 is not much larger than 2, then I13 ' I23 and 1
maintains connectivity with 2 for exclusion motive (i.e. to exclude 3).
Consider nowM betweenM t(1; 1; 1) andM t(1; 1; 0) and 2I12 > I13+3I23. In this case

we �nd that full interconnection is never a NE; since P d2 > P
t
2(1; 1; 1), 2 has an incentive

to exclude 3 by choosing x23 = 0 (this result does not depend on 2I12 > I13+3I23). Hence,
Lemma 5 implies that either 3 is excluded, or he is active with y = (0; 1; 1). The latter is
a CPNE outcome if P t1(0; 1; 0) > P

d
1 . In order to explain the inequality, we note that x

�

such that x�1 = x
�
2 = (0; 1), x

�
3 = (1; 1) is a NE of G

b. But if P d1 > P
t
1(0; 1; 1), there are

Pareto improving joint deviations of 1 and 2 in Gb1;2(x
�
3) which exclude 3. Nevertheless, if

P t1(0; 1; 0) > P
d
1 then none of these deviations is a NE, which makes x

� a CPNE.36

Consider �nally M between M t(1; 1; 0) and M t(1; 0; 1) and 2I12 > I13+3I23. Suppose
P d1 > P t1(1; 1; 1). Then, y = (1; 1; 1) cannot occur in equilibrium because if x2 = x3 =

(1; 1), then 1 prefers to exclude 3 by playing x1 = (1; 0). The pro�le y = (0; 1; 1) cannot
arise either because in Gb1;2(1; 1) there is a NE (such as x1 = (1; 0), x2 = (1; 1)) which
excludes 3 and yields a Pareto improvement to 1 and 2. Therefore, Lemma 5 implies
that 3 is not active. In the opposite case of P d1 < P

t
1(1; 1; 1), publisher 3 is active in any

CPNE because, if he is not active, there exists a pro�table joint deviation for 1 and 3 [here
P d1 < P

t
1(1; 1; 1) matters] which is a NE in G

b
1;3(x2). Furthermore, y = (1; 1; 1) because, if

y = (0; 1; 1), then it is a NE in Gb1;2(x3) to create the link between 1 and 2.
When we compare Gm and Gb, we �nd three interesting di¤erences. First, there is less

interconnection in Gb than in Gm. Recall that in Gm full interconnection is an outcome of
CPNE and is the unique outcome for M > M t(1; 1; 1). Surprisingly, in Gb, the smallest
publisher can emerge as the center of a star network. Second, partial interconnection in
Gb leads to less exclusion than in Gm if it results from 1�s di¤erentiation motive (i.e. when
3 is the center of a star); otherwise, it leads to more exclusion. Last, exclusion of 3 is
less likely in Gm as M increases. However, this monotonicity does not hold in Gb. For
instance, whenM is betweenM t(0; 1; 0) andM t(1; 1; 1), we could have P d1 < P

t
1(0; 1; 1) �

so that 3 is active �for M slightly larger than M t(0; 1; 0), but P d1 > P
t
1(0; 1; 1) �so that

3 is excluded �for M close to M t(1; 1; 1). This is because, as M increases, 1�s duopoly
pro�t increases faster than 1�s triopoly pro�t since the former increases by a factor of 1=2
while the latter by a factor of 1=3.
Remark 1 (pairwise stable NEs): For M between M t(0; 0; 0) and M t(1; 1; 1), if

36When M < M t(1; 1; 1), instead, P d1 > P t1(0; 1; 1) su¢ ces to destroy x
� because x1 = x2 = (1; 1)

induces 3 to be inactive and is a NE of Gb1;2(x
�
3).
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P t1(0; 1; 1) > P
d
1 then there exist two pairwise stable NEs: x

�
1 = x

�
2 = (1; 0), x

�
3 = (0; 0)

and also x�1 = x
�
2 = (0; 1), x

�
3 = (1; 1).

5 Endogenous interconnection regime

In this section, we address the issue of market provision of an open multilateral intercon-
nection platform by endogenizing the creation of the platform. Actually, OpenSocial was
created by Google, and CrossRef was created by the initiative of big commercial pub-
lishers. In the context of our model, we ask when the largest publisher has an incentive
to create CrossRef. Addressing this question requires us to study what we call a hybrid
interconnection game in which publishers can interconnect both bilaterally and through
an open multilateral platform. This is because, even though an open multilateral plat-
form is created, publishers would still have the freedom to sign bilateral agreements to
interconnect.
In the next subsection we study the hybrid interconnection game, in which we assume

that the open multilateral interconnection platform already exists. This analysis allows
to understand publisher 1�s incentive to create such a platform.

5.1 Hybrid interconnection game

In this section, we study a one-stage game of hybrid interconnection, denoted byGh, which
is de�ned as follows. The interconnection strategy space for each publisher is f0; 1g3, and
a strategy for publisher i isXi = (xi; xij; xik), where xi is i�s action to interconnect through
the multilateral platform and xij (xik) represents i�s action to bilaterally interconnect with
j (with k). Publishers i and j are interconnected, that is yij = 1, if xi = xj = 1 and/or
xij = xji = 1, otherwise yij = 0: Thus, Gh is de�ned by taking si = Xi in section 4.1: a
given strategy pro�le s = (s1; s2; s3) determines an interconnection pro�le y(s), which in
turn determines each publisher�s pro�t from Lemma 3 as in (4).
The next proposition describes CPNEs of Gh:

Proposition 4 Consider the hybrid interconnection game Gh and assume A1.
(i) Any CPNE outcome of the bilateral interconnection game is a CPNE outcome of the
hybrid interconnection game in the following sense: if x� = (x�1;x

�
2;x

�
3) is a CPNE of the

bilateral interconnection game, then the pro�le of strategies X�
1 = (0;x�1), X

�
2 = (0;x�2),

X�
3 = (0;x

�
3) is a CPNE of the hybrid interconnection game.

(ii) Assume 2I12 > I13 + 3I23. Then there exists a CPNE outcome of the hybrid inter-
connection game which is di¤erent from a CPNE outcome of the bilateral interconnection
game only if M t(1; 1; 1) < M � M t(1; 1; 0) and P t1(1; 1; 1) > P d1 . In this case, the full
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interconnection outcome (that is, the CPNE outcome of the open multilateral intercon-
nection game) is a CPNE outcome of the hybrid interconnection game, delivered by the
strategy pro�le X̂1 = X̂2 = X̂3 = (1; 0; 0).

This proposition says that for some parameters, in Gh there are multiple CPNE out-
comes. Precisely, any CPNE outcome of the bilateral interconnection game is a CPNE
outcome of the hybrid interconnection game and, in addition, when P t1(1; 1; 1) > P

d
1 and

M is between M t(1; 1; 1) and M t(1; 1; 0), we �nd that the full interconnection outcome
of the open multilateral interconnection game is also a CPNE outcome of the hybrid
interconnection game.

5.2 Market provision of open multilateral platform

Now we suppose that publisher 1 has the possibility to create CrossRef by paying a cer-
tain cost c > 0, and thus we consider a game in which �rst he decides whether to create
or not CrossRef, and then the three publishers play the hybrid interconnection game Gh

(in the �rst case) or the bilateral interconnection game Gb (in the second case). Proposi-
tion 4 reveals that the creation of CrossRef may have an e¤ect only when M is between
M t(1; 1; 1) and M t(1; 1; 0) and P t1(1; 1; 1) > P d1 :

37 in such a case full interconnection is
a CPNE outcome, in addition to the CPNE outcome of Gb (which depends on the para-
meters). Therefore, there is a multiplicity problem if Gh is entered, but it is important
to notice that 1�s pro�t under full interconnection is P t1(1; 1; 1), which is higher than 1�s
pro�t in Gb as P t1(1; 1; 1) > P

t
1(0; 1; 1) and P

t
1(1; 1; 1) > P

d
1 . Then, for c > 0, (essentially)

the same forward induction argument invoked in Cabrales and Calvò-Armengol (2007)
suggests that if 1 decides to create CrossRef, then he will not play in Gh the intercon-
nection action which is consistent with the CPNE of Gb, as that is a weakly dominated
strategy for him. In other words, creating CrossRef can be interpreted as a credible signal
which reveals 1�s intention to play the full interconnection equilibrium in Gh. In the next
corollary, we assume that publisher 1 avoids weakly dominated strategies in the game of
creation of an open multilateral interconnection platform.

Corollary 1 (i) Suppose that M t(1; 1; 1) < M � M t(1; 1; 0) and c < maxfP t1(1; 1; 1) �
P d1 ; P

t
1(1; 1; 1)�P t1(0; 1; 1)g. Then, the largest publisher creates an open multilateral plat-

form and the full interconnection outcome is realized.
(ii) This creation of the open multilateral interconnection platform by the largest publisher
is welfare improving.

37In any other case, Gb and Gh have the same CPNE outcome.
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In particular, we notice that the market provision of the open multilateral intercon-
nection platform is welfare improving because it either induces 3 to be active or improves
interconnection between 1 and 2.

6 For-pro�t platform for multilateral interconnection

In this section we consider a monopoly for-pro�t platform for multilateral interconnec-
tion.38 The platform charges fees on each publisher who wants to interconnect, in order
to maximize her pro�t, that is her revenue. Let fi > 0 denote the fee which publisher i is
required to pay in order to interconnect, for i = 1; 2; 3. Formally, we consider a game in
which �rst the for-pro�t platform chooses f1; f2; f3, and then publishers, after observing
the fees, play the multilateral interconnection game Gm augmented with f1; f2; f3. This
means that given x = (x1; x2; x3), the pro�t of publisher i is �i(x) if xi = 0 and is �i(x)�fi
if xi = 1, with �i(x) de�ned in (4). For simplicity, we continue to use Gm to represent
the multilateral interconnection game with given f1; f2; f3, but we let Gfm represent the
multilateral interconnection game that starts with the for-pro�t platform�s choice of fees.
As before, we apply CPNE to �nd equilibrium outcome(s) of Gm for given f1; f2; f3.

This makes it quite challenging to determine the revenue maximizing fees. We solve this
problem by using a two-step procedure in the spirit of mechanism design. As a �rst step,
for any strategy pro�le x we determine the revenue maximizing fees among the fees which
induce publishers to play x, denoted by f1(x); f2(x); f3(x); this is analogous to �nding the
highest revenue for a principal, given the allocation he wants to implement. As a second
step, given the results from the previous step, we select the x with the highest associated
revenue, that is the x which maximizes x1f1(x) + x2f2(x) + x3f3(x); this is similar to
determining the allocation which maximizes the revenue, given the result of the previous
step.
It is important to notice that the only interesting interconnection strategy pro�les for

the for-pro�t platform are x = (1; 1; 1), x = (1; 1; 0), x = (1; 0; 1), x = (0; 1; 1), since the
platform cannot make any money from inducing the publishers to play x = (0; 0; 0), and it
is impossible to induce the publishers to play x = (0; 1; 0), or x = (0; 0; 1), or x = (1; 0; 0).
Indeed, x = (1; 0; 0), for instance, determines the interconnection pro�le y = (0; 0; 0),
exactly like x = (0; 0; 0), and thus it is not a best reply for 1 to play x1 = 1 as it has no
e¤ect on y but costs f1 > 0 to 1.
As we have noticed above, if M � M t(0; 1; 0) then 3 cannot be active, independently

of the interconnection pro�le. Then necessarily x1 = x2 = 0, and thus the platform cannot

38For bilateral interconnections, it is much less interesting to consider a for-pro�t platform since any
pair of publishers can sign bilateral agreements without going through the platform.
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make money whenM �M t(0; 1; 0). Therefore, we only consider the values ofM between
M t(0; 1; 0) and U � I12.

Proposition 5 Consider a monopoly for-pro�t platform for multilateral interconnection.
Under A1;
(i) When M t(0; 1; 0) < M �M t(0; 0; 0), the revenue maximizing fees are given as follows

f1 = P
t
1(0; 1; 0)� P d1 , f2 large, f3 = P

t
3(0; 1; 0):

Then, only publisher 1 and publisher 3 join the platform and all three publishers are active.
(ii) WhenM t(0; 0; 0) < M �M t(1; 1; 1), the revenue maximizing fees are given as follows.

f1 = P
t
1(0; 1; 0)� P d1 , f2 large, f3 = P

t
3(0; 1; 0) if

2

3
I13 > P

t
3(0; 0; 0)

f1 = f2 = P
d
1 � P t1(0; 0; 0), f3 large if

2

3
I13 < P

t
3(0; 0; 0)

In the �rst case, only publisher 1 and publisher 3 join the platform and all three publishers
are active. In the second case, only publisher 1 and publisher 2 join the platform and
publisher 3 is not active.
(iii) When M t(1; 1; 1) < M � U � I12, the optimal fees are complicated functions of the
parameters,39 but in any case it is optimal for the platform to select fees such that all
publishers join the platform and are active.

The most interesting result in the above proposition is that exclusion of 3 occurs in
Gfm only forM betweenM t(0; 0; 0) andM t(1; 1; 1), and if I13 is not too large. Therefore,
3 is excluded less often when the multilateral interconnection is mediated by a for-pro�t
platform (i.e. in Gfm) than when it is mediated by an open platform (i.e. in Gm), since
in Gm 3 is inactive for any M � M t(1; 1; 1). In order to see what generates this result,
we consider the case of M � M t(0; 0; 0) [part (i) of the Proposition]. In order to make
a pro�t, the for-pro�t platform cannot induce publishers to play x = (1; 1; 1): 3 will
not pay any fee since he is excluded regardless of the value of x3. The platform cannot
induce x = (1; 1; 0) either since publisher 1 realizes the same duopoly pro�t regardless
of whether x1 = 1 or x1 = 0. However, the platform can make money by inducing
x = (1; 0; 1) because this allows 3 to be active, and can extract 1�s and 3�s surplus from
interconnection: P t1(0; 1; 0) � P d1 and f3 = P t3(0; 1; 0) respectively. Given that the total
(gross) pro�t of the publishers is equal to M , this revenue of the for-pro�t platform is
equal to the reduction in 2�s pro�t resulting from the interconnection between 1 and 3.
Now, if f2 were small, then 2 would play x2 = 1, which would induce 3 to be inactive and
in turn would make it impossible to earn interconnection fees from 3; for this reason the

39The optimal fees are reported in the appendix of the working paper version, Jeon-Menicucci (2009).
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fee for 2 must be large enough.40 Intuitively, 3 is more often active in Gfm than in Gm

since for low values of M , inducing an interconnection pro�le which makes 3 active is the
only way for the platform to earn a revenue.
Things are quite di¤erent for M between M t(0; 0; 0) and M t(1; 1; 1). Indeed, in this

case 1 and 2 cannot anymore exclude 3 without being interconnected, and thus they are
willing to pay for interconnection, P d1 �P t1(0; 0; 0) and P d2 �P t2(0; 0; 0) respectively; these
two terms (which turn out to be equal) add up to P t3(0; 0; 0). Therefore, the platform
needs to compare the pro�t it can make by inducing x = (1; 1; 0) (which makes 3 inactive)
with the pro�t it can make with x = (1; 0; 1); this explains the comparison between 2

3
I13

and P t3(0; 0; 0) in Proposition 5(ii).
Finally, for M > M t(1; 1; 1), the platform �nds full interconnection, that is x =

(1; 1; 1), the most pro�table so that all �rms are active and interconnected. To give an
intuition, we note that what the platform charges as an interconnection fee is roughly41

the di¤erence between a publisher�s pro�t with interconnection and his pro�t without
interconnection. As the number of rival publishers who join the platform increases, this
di¤erence increases. This argument suggests that the platform�s pro�t is maximized with
full interconnection as long as full interconnection leads to no exclusion.

7 Multilateral interconnection and heterogenous li-
braries

In this section we perform a robustness exercise by showing that under multilateral in-
terconnection through an open platform, all publishers interconnect for any number of
heterogenous libraries.
Precisely, we suppose that there are n(� 2) number of heterogenous libraries: libraries

di¤er in terms of the budget and the values that they obtain from the bundles o¤ered
by the publishers. We use ih (i = 1; 2; 3) to denote the publisher with the ith bundle in
terms of the stand-alone value that library h obtains, implying Uh

1h
> Uh

2h
> Uh

3h
. This

also implies Ih
1h2h

> Ih
1h3h

> Ih
2h3h

where Ihij represents the value that library h obtains
from interconnection between i and j. Let Uh � Uh

1h
+Uh

2h
+Uh

3h
. Let Mh(> 0) represent

library h�s budget such thatMh � Uh�Ih
1h2h

. We suppose that A1w holds for each library
�we call A1w�the joint assumption for all libraries:

40WhenM is betweenM(0; 0; 1) andM(0; 0; 0), it is also possible for the platform to induce x = (0; 1; 1),
but it turns out that the pro�t it can make in this way is smaller than the pro�t with x = (1; 0; 1): see
step 2 in the proof of Proposition 5 in the appendix of the working paper version, Jeon-Menicucci (2009).
41The quali�cation "roughly" is there since the platform cannot fully extract this di¤erence because

some coalitional deviations are allowed by the notion of CPNE.
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A1w�: For h = 1; :::; n, Uh
3h
� Ih

1h2h
and Uh

2h
+ Ih

2h3h
� Uh

3h
+ Ih

1h3h
.

Under these assumptions, we consider a game with the following structure.

� (interconnection) In stage one, each publisher i (for i = 1; 2; 3) simultaneously
decides whether or not to interconnect through CrossRef; we let xi = 1 if he has
joined CrossRef, xi = 0 otherwise.

� (active/non-active) In stage two, after the moves at stage one have been observed
by all publishers and all libraries, each publisher simultaneously decides in which
markets he wants to be active; we use Ah � f1; 2; 3g to denote the set of active
publishers in the market for library h.

� (pricing) In stage three, after the moves at stage two have been observed by all
publishers and all libraries, publisher i simultaneously chooses a price P hi � 0 for
Bi, for i 2 Ah, for h = 1; :::; n.

� In stage four, each library h chooses bundles to buy from the set fBi : i 2 Ahg.

Note that the publishers�interconnection decisions a¤ect all libraries in the same way.
As before, we adopt the tie-breaking rule that if publisher i expects to make zero pro�t
in the market for library h, then in stage two he chooses to be non-active in that market.
Each publisher wants to maximize the sum of the pro�ts he earns in the di¤erent markets.
We use Ĝm to denote the game of multilateral interconnection with heterogenous

libraries, and in the next corollary we analyze this game. For this purpose we need to
de�ne P d;hi;j =

1
2
(Mh + Uhi � Uhj ) and P

t;h
i (1; 1; 1) = U

h
i +

1
3
(Mh � Uh + Ihij + Ihik � 2Ihjk);

P d;hi;j represents the pro�t of publisher i in market h if Ah = fi; jg, and P t;hi (1; 1; 1) is
the pro�t of publisher i in market h if all publishers are active, fully interconnected and
Mh > M t;h(1; 1; 1) = Uh � 3Uh

3h
+ 2Ih

1h2h
� Ih

1h3h
� Ih

2h3h
.

Corollary 2 Consider the multilateral interconnection though an open platform. Suppose
there are n(� 2) number of libraries which can be heterogenous in terms of budgets and
preferences, but that A1w�holds. Then
(i) if M t;h0(1; 1; 1) <Mh0 for at least one library h0, then the unique CPNE is such that
all publishers are interconnected. As a consequence, in the market for library h (for any
h = 1; :::; n) the active publishers and prices are determined as follows:

if Mh � Uh1h � Uh2h, then A�h = f1hg and P �h1h =Mh (5)

if Uh1h � Uh2h < Mh �M t;h(1; 1; 1), then A�h = f1h; 2hg and P �h1h = P
d;h
1h;2h

, P �h2h = P
d;h
2h;1h

(6)
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if M t;h(1; 1; 1) < Mh, then A�h = f1; 2; 3g and P �hi = P t;hi (1; 1; 1) for i = 1; 2; 3:

(ii) If Mh �M t;h(1; 1; 1) for all libraries h = 1; :::; n, then full interconnection is a CPNE
and all CPNEs yield the same outcome in terms of active publishers and prices in each
market h as in (5) and (6).

This corollary says that in the setting of multilateral interconnection it is not restrictive
to limit the analysis to the case of a single library, as the game with many heterogenous
libraries replicates the outcomes of the various single-library games. The reason for this
result is that in the game with multiple libraries, the markets for di¤erent libraries are
linked one to another only by the publishers�interconnection decisions and we know from
Proposition 2 that all publishers have an incentive to interconnect when they consider
the market for a single library h, an incentive which is strict if Mh > M t;h(1; 1; 1). Since
choosing xi = 1 never hurts publisher i in any market (independently of how the library
values Bi), we obtain that each publisher will interconnect if Mh > M t;h(1; 1; 1) for at
least one library.

8 Symmetric publishers

In the above sections we have often assumed that A1 holds, which means that publishers
are su¢ ciently asymmetric. We now consider the opposite case of symmetric publishers,
which means that U1 = U2 = U3, so that U = 3U3, and I12 = I13 = I23 = I with
I < U3. In this setting we analyze multilateral interconnection through an open platform
and bilateral interconnection.
In the case of open multilateral interconnection, we need to recall that the possible

interconnection pro�les are y = (0; 0; 0), y = (1; 0; 0), y = (0; 1; 0), y = (0; 0; 1), and
y = (1; 1; 1), but it is clear that y = (1; 0; 0), y = (0; 1; 0) and y = (0; 0; 1) are essentially
equivalent when publishers are symmetric. Therefore, without loss of generality, when
only two publishers are connected to the platform, we consider that they are publishers
1 and 2. Likewise, for bilateral interconnection symmetry allows to restrict attention to
the interconnection pro�les y = (0; 0; 0), y = (1; 0; 0) [which is essentially equivalent to
y = (0; 1; 0) and to y = (0; 0; 1)], y = (1; 1; 0) [which is essentially equivalent to y = (1; 0; 1)
and to y = (0; 1; 1)], and y = (1; 1; 1).
In this setting a result analogous to Lemma 2 holds: given any interconnection pro�le

y, there exists a NE of pricing game III in which the library buys B1&B2&B3 and each
publisher realizes a positive pro�t if and only if M > M t(y) = (2y12 � y13 � y23)I. A
consequence of this fact is Lemma 6 below, for which we need to make a remark related
to the subgame II of �

b which follows y = (1; 1; 0) when M � M t(1; 1; 0) = I: in this
subgame, it is impossible that all the three publishers are active, but there is a SPNE of
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II in which A = f1; 2g, and a SPNE of II in which A = f1; 3g. In order to eliminate
this ambiguity, we consider only the SPNE of II such that A = f1; 2g, but (again) this
is only to �x the ideas.

Lemma 6 Suppose that the three publishers are symmetric. Then, for any given inter-
connection pro�le y 2 f(0; 0; 0), (1; 0; 0), (1; 1; 0), (1; 1; 1)g, any SPNE of the subgame II
starting in stage two is such that
(i) if M � M t(y), only two publishers are active (i.e. A� = f1; 2g) and charge P �1 = M

2
,

P �2 =
M
2
;

(ii) ifM t(y) <M < U�I, all publishers are active and charge prices such that P �1 = P t1(y),
P �2 = P

t
2(y), P

�
3 = P

t
3(y).

In particular, if y = (1; 0; 0) then

P �1 =
M

2
, P �2 =

M

2
; when M � 2I;

P �1 =
M + I

3
, P �2 =

M + I

3
, P �3 =

M � 2I
3

when 2I < M < U � I;

if instead y = (1; 1; 0) then

P �1 =
M

2
, P �2 =

M

2
when M � I;

P �1 =
M + 2I

3
, P �2 =

M � I
3

, P �3 =
M � I
3

when I < M < U � I:

We rely on this lemma to obtain the following proposition.42

Proposition 6 Suppose that the three publishers are symmetric. Then
(i) Under the multilateral interconnection through an open platform, for anyM , the unique
CPNE is such that all publishers are active and fully interconnected and charge P �1 = P

�
2 =

P �3 =
M
3
.

(ii) Under bilateral interconnections;
(a) if M � I, any CPNE is such that only two publishers are active (i.e. A� = f1; 2g)

and they charge P �1 = P
�
2 =

M
2
;

(b) if instead I < M < U � I, the unique CPNE is such that all publishers are active
and fully interconnected and charge P �1 = P

�
2 = P

�
3 =

M
3
.

The proposition shows the robustness of the result obtained from asymmetric pub-
lishers that open multilateral interconnection leads to full interconnection while bilateral
interconnection sometimes leads to partial interconnection. Precisely, for M > I, the
two modes of interconnection generate the same full interconnection outcome, but when

42Notice that the result of Proposition 6(i) is a corollary of Proposition 2(ii).
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M � I, open multilateral interconnection still generates the full interconnection outcome
(hence all publishers are active) whereas bilateral interconnection generates partial inter-
connection such that one publisher, publisher 3, is excluded because 1 and 2 gain from
discriminating against him by playing x1 = x2 = (1; 0).43

Goyal andMoraga-Gonzales (2001) obtain a result similar to our proposition 6(ii) when
they study bilateral R&D networks among three symmetric �rms. Their key parameter
is a degree of knowledge spillover and they use pairwise stability. They �nd that the
complete network is stable for all values of the parameter while one-link network is stable
for the values below a threshold. Our result based on CPNE generates sharper prediction
since we have a unique equilibrium outcome.

9 Social welfare

In our setting the sum of the publishers�pro�ts is always equal toM , the library�s outlay.
Hence, social welfare coincides with the library�s gross payo¤. It follows from A1 that
social welfare (as well as the library�s payo¤) increases with the number of bundles the
library buys regardless of y; furthermore, for a given set of subscribed bundles, social
welfare increases as more websites are interconnected. The next proposition compares
di¤erent interconnection regimes in terms of social welfare.

Proposition 7 From the point of view of social welfare:
(i) In case of symmetric publishers, multilateral interconnection through an open platform
(weakly) dominates bilateral interconnection.
(ii) In case of asymmetric publishers,
(a) Multilateral interconnection through an open platform (weakly) dominates bilat-

eral interconnection when M > M t(1; 1; 1); otherwise, bilateral interconnection (weakly)
dominate multilateral interconnection through an open platform.
(b) Multilateral interconnection through a for-pro�t platform (weakly) dominates mul-

tilateral interconnection through an open platform for any M .

This proposition is a straightforward consequence of Propositions 2, 3, and 5. If �rms
are symmetric or if asymmetry among the publishers is not too strong relative to M (as
in the case of M > M t(1; 1; 1)), multilateral interconnection through an open platform
maximizes social welfare. Otherwise an open platform ampli�es the asymmetry, to the
detriment of the small publisher, by providing free access to the interconnection technol-
ogy that exhibits economies of scale. On the contrary, bilateral interconnection can create

43Notice that 1 (for instance), has no strict incentive to jointly deviate with 3 to play x13 = x31 = 1
since anyway 1�s pro�t is M

2 .
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a con�ict between larger publishers such that publisher 1 may want to break connectivity
with 2 while maintaining connectivity with 3. This makes bilateral interconnection dom-
inate multilateral interconnection through an open platform for small M . In a similar
vein, a for-pro�t platform dominates an open platform for small M since the former has
an incentive to exploit such a con�ict by discriminating against 2 and in favor of 3 when
setting interconnection fees. Precisely, proposition 5 shows that inducing only 1 and 3
to interconnect is the best option for the platform when M is between M t(0; 1; 0) and
M t(0; 0; 0).

10 Conclusion

Interconnection (compatibility) among physical or virtual networks is an important issue
that has been studied intensively. We contribute to the literature by studying di¤erent
modes of interconnection (multilateral interconnection through an open (or a for-pro�t)
platform, bilateral interconnection) and comparing them. One general lesson from our
paper is that allowing �rms to have �ner instruments to discriminate interconnection
results in less interconnection than when the discrimination is banned. Actually, our result
that multilateral interconnection provides �rms with stronger incentives to interconnect
is similar to the �nding of Jeon-La¤ont-Tirole (2004), in a di¤erent context, that allowing
telecommunication networks to discriminate between on-net calls and o¤-net calls can
induce networks to break connectivity while without such discrimination, networks remain
interconnected. In addition, both our paper and Jeon-La¤ont-Tirole show that even
symmetric �rms may break connectivity when discrimination is allowed.
Another novel aspect of our paper is that we consider interconnection in a multi-

homing situation: consumers subscribe to multiple networks and seamless navigation
across networks generates an added value. By contrast, the existing literature has fo-
cused on single-homing situations in which each consumer subscribes to only one among
multiple networks. What drives all publishers to be fully interconnected under the open
multilateral interconnection, even when they are asymmetric, is this multihoming nature
combined with the convexity of the interconnection bene�t which makes interconnections
work as �asymmetry-amplifying forces� in our model, whereas they work as �equalizing
forces�in models with single homing.
To be precise, consider three �rms i = 1; 2; 3 and assume that �rm i has a network of

size ni before interconnection. Interconnection between i and j increases their network
size to ni+nj; interconnection among all three makes the network size of each �rm equal to
n1+n2+n3. Let v(n), an increasing function of n, be the function representing the surplus
a consumer obtains from a network of size n. In a single homing situation, if all �rms are
fully interconnected, a consumer obtains v(n1 + n2 + n3) regardless of the �rm to which
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she subscribes. This is why interconnections work as �equalizing forces�. If �rms compete
for relative standing, a dominant �rm (for instance, �rm 1 with v(n1) > v(n2 + n3)) has
no incentive to join an open multilateral platform whereas if v(n2 + n3) > v(n1) � v(ni)
for i = 2; 3, all �rms join the platform.
On the contrary, interconnections work as �asymmetry-amplifying forces�in a multi-

homing situation if v(n) is convex.44 In a multi-homing situation, a consumer cannot
bene�t from interconnection between i and j if she does not subscribe to both of them.
Now consider for instance v(n) = n2. If all three �rms are interconnected, a consumer
obtains (n1 + n2 + n3)

2 by subscribing to all of them and obtains (n2 + n3)
2 by subscribing

to 2 and 3; the di¤erence between the two terms is n21 + 2n1(n2 + n3), which is the
marginal value from subscribing to network 1. In the absence of interconnection, this
value is n21. Therefore, interconnection increases the value from subscribing to network
1 by 2n1(n2 + n3), and if n1 > n2 > n3 then the largest �rm (�rm 1) bene�ts the
most from full interconnection while the smallest (�rm 3) bene�ts the least; this is why
interconnections work as �asymmetry-amplifying forces�. In particular, if �rms compete
for relative standing, full interconnection increases �rm 1�s pro�t and reduces �rm 3�s
pro�t. In this situation it is obvious that the largest �rm wants to join an open multilateral
platform. Furthermore, this induces each �rm j = 2; 3 to join the platform since no
interconnection makes j�s relative standing even worse, which leads to full interconnection.
The above argument explains well both large publishers�support for CrossRef and its

success. It also suggests that CrossRef weakens competitive positions of small publishers
and renders sales of their journals more di¢ cult. In addition, the argument regarding
interconnection in a single-homing situation implies that as long as there is no dominant
�rm, multilateral interconnection through an open platform leads to full interconnection.
For instance, in the case of interconnection among internet backbone companies, the
clause of no discrimination among rivals supplemented with a merger control forbidding
the creation of a dominant �rm would induce full interconnection, which is considered one
of the four components of Internet Neutrality by Weitzer (2006).45
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11 Appendix

Before starting the proofs, it is useful to introduce a new piece of notation. For any
non-empty subset Z of f1; 2; 3g, let u(Z) denote the library�s payo¤ when she buys the
bundles fBi : i 2 Zg. For instance, u(1) = U1�P1 and u(13) = U1+U3+I13y13�P1�P3.
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11.1 Proof of Lemma 1

11.1.1 Step 1: 1 is always active

Proof. Given an arbitrary y, we show that 1 is active in any SPNE of II because he
earns a pro�t in any NE of III if he is active. Precisely, we prove that if A = f1; 2; 3g
then there exists no NE of III in which 1 makes zero pro�t.

46 Let (P �1 ; P
�
2 ; P

�
3 ) represent

the equilibrium of the subgame starting from stage 3 when A = f1; 2; 3g. We below
show that if (P �1 ; P

�
2 ; P

�
3 ) is such that 1 earns zero, then 1 can make a pro�t by playing

P1 > 0 close to zero, given A1 which implies U1 � U2+ I23. We start by observing that if
(P �1 ; P

�
2 ; P

�
3 ) is such that 1 earns no pro�t, then it is necessary that the library is spending

M in aggregate in buying B2 and/or B3, because if the library spends less than M then
it is obvious that 1 would succeed in selling B1 at a small positive price. We need to
distinguish three non-obvious cases.

Both 2 and 3 make a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then P1 > 0 close to zero implies

that u(1) > maxfu(2); u(3)g and u(12) ' U1 + U2 + I12y12 � P �2 > u(23) = U2 + U3 +

I23y23 � P �2 � P �3 since U1 + I12y12 > U3 + I23y23. Therefore the library buys either B1, or
B1&B2, or B1&B3 and 1 earns P1 > 0.

Only 2 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This requires P �2 = M and we consider

�rst the case of P �3 > 0. Then P1 > 0 close to zero implies that B1&B2 and B2&B3 are
una¤ordable for the library and u(1) > maxfu(2); u(3)g; therefore the library buys either
B1 or B1&B3 and 1 earns P1 > 0. If instead P �3 = 0, then P1 > 0 close to zero implies
that B1&B2 is una¤ordable for the library, u(13) > maxfu(1); u(3)g, u(23) > u(2) and
u(13) ' U1 +U3 + I13y13 > u(23) = U2 +U3 + I23y23�M since U1 + I13y13 � U2 + I23y23;
therefore the library buys B1&B3 and 1 earns P1 > 0.

Only 3 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This requires P �3 = M and we consider

�rst the case of P �2 > 0. Then P1 > 0 close to zero implies that B1&B3 and B2&B3 are
una¤ordable and u(1) > maxfu(2); u(3)g; therefore the library buys either B1 or B1&B2.
If instead P �2 = 0, then P1 > 0 close to zero implies that B1&B3 is una¤ordable, u(12) >
maxfu(1); u(2)g, u(23) > u(3) and u(12) ' U1+U2+I12y12 > u(23) = U2+U3+I23y23�M
since U1 + I12y12 > U3 + I23y23.

46In the case of A = f1; 2g or A = f1; 3g the proof is straightforward: it su¢ ces that 1 plays P1 < U1�U2
if A = f1; 2g and P1 < U1 � U3 if A = f1; 3g.
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11.1.2 Step 2: 2 is active if 3 is active

Proof. Given an arbitrary y we prove that there exists no SPNE of II in which A =
f1; 3g. In such a case it is necessary that M > U1 � U3 because if M � U1 � U3, then 3
cannot make any pro�t: the library prefers to buy B1 at P1 = M rather than B3 at any
P3 > 0. Given that M > U1�U3, 2 can pro�tably deviate by becoming active. Precisely,
we prove that if A = f1; 2; 3g and M > U1 � U3 then there exists no NE of III in which
2 makes zero pro�t. This result is obtained by showing that if (P �1 ; P

�
2 ; P

�
3 ) is such that

2 earns zero, then he can make a pro�t by playing P2 > 0 close to zero given A1 which
implies U2 � U3 + I13. We start by observing that if (P �1 ; P

�
2 ; P

�
3 ) is such that 2 earns

no pro�t, then it is necessary that the library is spending M in aggregate in buying B1
and/or B3, otherwise it is obvious that 2 would succeed in selling B2 at a small price.
Since we have shown above that 1 makes a pro�t in any NE of III , we need to consider
only two non-obvious cases.

Both 1 and 3 make a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This implies u(13) � maxfu(1); u(3)g,

and P2 > 0 close to zero implies that u(12) ' U1 +U2 + I12y12 � P �1 > u(13) = U1 +U3 +
I13y13 � P �1 � P �3 since U2 + I12y12 � U3 + I13y13. Therefore the library buys either B2, or
B1&B2, or B2&B3 and 2 earns P2 > 0.

Only 1 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This requires P �1 = M and we consider

�rst the case of P �3 > 0. Then P2 > 0 close to zero implies that B1&B2 and B1&B3 are
una¤ordable for the library and u(2) > maxfu(1); u(3)g since M > U1 � U3 > U1 � U2.
Therefore the library buys either B2 or B2&B3 and 2 earns P2 > 0. If instead P �3 = 0, then
P2 > 0 close to zero implies that B1&B2 is una¤ordable and u(23) > maxfu(2); u(3)g,
u(13) > u(1) and u(23) ' U2 + U3 + I23y23, u(13) = U1 + U3 + I13y13 �M ; the inequality
u(23) > u(13) holds sinceM > U1�U3 and U2+I23y23 � U3+I13y13 and thus we conclude
that the library buys B2&B3.

11.2 Proof of Lemma 2

Let (P �1 ; P
�
2 ; P

�
3 ) be the equilibrium prices. We start by proving that

P �1 + P
�
2 + P

�
3 =M (7)

If P �1 +P
�
2 +P

�
3 < M , thenM < U implies that P �i < Ui for at least one i and then a prof-

itable deviation for i exists. Indeed, the library would still be willing to buy B1&B2&B3
even if Pi were larger than P �i , provided that Pi < Ui and Pi + P

�
j + P

�
j �M .

In order to determine the other conditions which must be satis�ed by (P �1 ; P
�
2 ; P

�
3 ), we no-

tice that if 1 increases P1 above P �1 , the library cannot a¤ord to buy anymore B1&B2&B3.
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Thus, the deviation of 1 is pro�table for 1 if and only if the library buys B1, or B1&B2,
or B1&B3. Therefore, there is no pro�table deviation for 1 if and only if

maxf0; u(2); u(3); u(23)g � maxfu(1); u(12); u(13)g (8)

is satis�ed at prices (P �1 ; P
�
2 ; P

�
3 ). This condition means that if P1 is increased above P

�
1 ,

then the best bundle for the library among B1, B1&B2, B1&B3, is strictly worse than the
best alternative among B2, B3, B2&B3, and no purchase. Conditions (9)-(10), which need
to be satis�ed at prices (P �1 ; P

�
2 ; P

�
3 ), are analogous to (8) in that they guarantee that

there is no pro�table deviation for �rms 2 and 3:

maxf0; u(1); u(3); u(13)g � maxfu(2); u(12); u(23)g (9)

maxf0; u(1); u(2); u(12)g � maxfu(3); u(13); u(23)g (10)

A useful property is that in (8), (9), and (10), the left hand side is strictly positive.
Indeed, if the left hand side in (9) �for instance �is zero, then the right hand side is not
larger than zero. Therefore, we have u(1) � 0, u(2) � 0, and u(3) � 0, that is P �1 � U1,
P �2 � U2, and P �3 � U3. These three inequalities, given (7), imply M � U , which violates
the assumption M < U � I12. Therefore, (8)-(10) can be written as

maxfu(2); u(3); u(23)g � maxfu(1); u(12); u(13)g (11)

maxfu(1); u(3); u(13)g � maxfu(2); u(12); u(23)g (12)

maxfu(1); u(2); u(12)g � maxfu(3); u(13); u(23)g (13)

In the following we distinguish three cases, depending on the value ofmaxfu(2); u(3); u(23)g.

The case in which the left hand side of (11) is u(2) From u(2) � u(23) it follows
that

P3 � U3 + I23y23 (14)

and u(3) � 0. With reference to (12), we need to distinguish the case of u(1) � u(13)

from the case of u(13) > u(1).

If u(1) � u(13), then u(2) � u(1) � u(2) by (11) and (12). Thus u(1) = u(2) > 0 and
u(12) = u(1) + u(2) + I12y12 > u(1) = u(2), which violates (11): contradiction.

If instead u(13) > u(1), we notice that (14) implies y13 = 1 (and P3 < U3 + I13). Then
(11)-(13) boil down to u(2) = u(13) � u(12), which means that equilibrium prices satisfy

U2 � P2 = U1 + U3 + I13 � P1 � P3; P1 + P2 + P3 =M

This yields P2 = U2+ 1
2
(M �U � I13), P1+P3 = 1

2
(M +U + I13)�U2 and u(13) = u(2) =

1
2
(U + I13�M). Furthermore, u(12) = U1+U2+ I12y12� (M �P3) and thus u(2) � u(12)
reduces to

M � U � 2U3 + 2I12y12 � I13 + 2P3 (15)
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Since P3 � U3 by (14), we see that (15) requires M � U � I13 > U � I12, a contradiction.

The case in which the left hand side of (11) is u(3) From u(3) � u(23) it follows
that

P2 � U2 + I23y23 (16)

and u(2) � 0. With reference to (13), we need to distinguish the case of u(1) � u(12)

from the case of u(12) > u(1).

If u(1) � u(12), then u(3) � u(1) � u(3) by (11) and (13). Thus u(1) = u(3) > 0 and
u(13) > u(1) = u(3), which violates (11).

If instead u(12) > u(1), we notice that (16) implies y12 = 1 (and P2 < U2 + I12). Then
(11)-(13) boil down to u(3) = u(12) � u(13), which means that equilibrium prices satisfy

U3 � P3 = U1 + U2 + I12 � P1 � P2; P1 + P2 + P3 =M

This yields P3 = U3 +
1
2
(M � U � I12), P1 + P2 = 1

2
(M + U + I12) � U3 and thus

u(3) = u(12) = 1
2
(U + I12 �M). Furthermore, u(13) = U1 + U3 + I13y13 � (M � P2) and

then u(3) � u(13) reduces to

M � U � 2U2 + 2I13y13 � I12 + 2P2 (17)

Since P2 � U2 + I23y23 by (16), we see that (17) implies M � U � I12, a contradiction.

The case in which the left hand side of (11) is u(23) From u(23) � maxfu(2); u(3)g
it follows that P2 � U2+ I23y23 and P3 � U3+ I23y23, but we can restrict our attention to
the case in which

P2 < U2 + I23y23; P3 < U3 + I23y23 (18)

since otherwise the left hand side of (11) is maxfu(2); u(3)g, and we have already con-
sidered this possibility. Therefore (11)-(13) reduce to [notice that (19) is used to obtain
(20)-(21)]:

u(23) � maxfu(1); u(12); u(13)g (19)

maxfu(1); u(13)g � u(23) (20)

maxfu(1); u(12)g � u(23) (21)

With reference to (20), we need to distinguish the case in which u(1) � u(13) from the
case in which u(13) > u(1). In the �rst case we �nd

P3 � U3 + I13y13 (22)
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and thus y13 = 0; y23 = 1 needs to hold since otherwise (18) is violated. Furthermore,
(19)-(21) reduce to u(23) = u(1) � maxfu(12); u(13)g and prices satisfy

U1 � P1 = U2 + U3 + I23 � P2 � P3; P1 + P2 + P3 =M

The two equalities yield P1 = U1 + 1
2
(M � U � I23), P2 + P3 = 1

2
(M + U + I23)� U1 and

u(1) = u(23) = 1
2
(U + I23 �M). Furthermore, u(12) = U1 + U2 + I12y12 � (M � P3) and

u(1) � u(12) reduces to

M � U � 2U3 + 2I12y12 � I23 + 2P3 (23)

and then (22) and (23) imply M > U � I12, a contradiction.
In the case in which u(13) > u(1) we �nd that u(13) = u(23) = u(12), which reduce to

(1)-(2); using P �1 +P
�
2 +P

�
3 =M we obtain P �1 = P

t
1(y), P

�
2 = P

t
2(y), P

�
3 = P

t
3(y). Notice

that P t1(y) > P
t
2(y) > P

t
3(y) for any y (given A1), and P

t
3(y) > 0 if and only ifM > M t(y).

Furthermore, the conditions u(23) > maxfu(2); u(3)g and u(13) > u(1) are equivalent,
respectively, to U + 2I12y12 � I13y13 + 2I23y23 > M , U � I12y12 + 2I13y13 + 2I23y23 > M
and U + 2I12y12 + 2I13y13 � I23y23 > M , which are satis�ed since M < U � I12.

11.3 Proof of Lemma 3

We know that publisher 1 is active for any M , given Lemma 1.
Consider the case in which M > M t(y). Then publisher 2 is certainly active, as that
yields him either P t2(y) > 0 (if also publisher 3 is active) or P

d
2 > 0 (if publisher 3 is not

active). Furthermore, also publisher 3 is active as that yields him P t3(y) > 0.
Consider the case in which U1 � U2 < M � M t(y). Then A� 6= f1; 2; 3g, as Lemma 2
implies that there exists no NE in III in which all three publishers make a pro�t. Also,
A� 6= f1g as 2 can make a pro�t P d2 > 0 by entering; thus A� = f1; 2g.
Finally, in the case in which M � U1�U2 we obtain A� = f1g, since there is no room for
publisher 2 nor for publisher 3 to make a pro�t.

11.4 Proof of Lemma 4

Consider �rst the case of M between M t(0; 1; 0) and M t(0; 0; 0), and notice that Gm1;3(0)
is de�ned as follows:

Gm1;3(0) :

1n3 x3 = 0 x3 = 1

x1 = 0 P d1 ; 0 P d1 ; 0

x1 = 1 P d1 ; 0 P t1(0; 1; 0); P
t
3(0; 1; 0)

In this game, (x1; x3) = (0; 0) is a NE [otherwise x = (0; 0; 0) would not be a NE in Gm].
But since P t1(0; 1; 0) > P

d
1 and P

t
3(0; 1; 0) > 0 hold for anyM such thatM t(0; 1; 0) <M �
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M t(0; 0; 0), (x1; x3) = (1; 1) is also a NE of Gm1;3(0). Furthermore, (x1; x3) = (1; 1) strictly
Pareto dominates (x1; x3) = (0; 0) for publishers 1 and 3, that is P t1(0; 1; 0) > P d1 and
P t3(1; 0; 1) > 0. This implies that condition (ii) in De�nition 1 is not satis�ed when
x = (0; 0; 0), and therefore this pro�le is not a CPNE for M t(0; 1; 0) <M �M t(0; 0; 0).
The case of M t(0; 0; 0) < M � M t(1; 0; 0) is considered in the main text just after the
statement of the lemma. In the case of M > M t(1; 0; 0), Gm1;2(0) is de�ned as follows:

Gm1;2(0) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 0); P

t
2(0; 0; 0)

x1 = 1 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(1; 0; 0); P

t
2(1; 0; 0)

Here we have P t1(1; 0; 0) > P
t
1(0; 0; 0) and P

t
2(1; 0; 0) > P

t
2(0; 0; 0), and thus we can argue

like above to conclude that x = (0; 0; 0) is not a CPNE.

11.5 Proof of Proposition 2 under A1

We �rst present the proof of proposition 2 under A1 and then give the proof for when A1
does not hold but A1w holds.
It is simple to see that if M �M t(0; 1; 0), then interconnection is irrelevant since, for

any y, either only 1 is active (if M � U1 � U2), or only 1 and 2 are active [if U1 � U2 <
M �M t(0; 1; 0)]. Thus �1; �2; �3 do not depend on x for M �M t(0; 1; 0), x = (1; 1; 1) is
a CPNE of Gm and any x 6= (1; 1; 1) generates the same outcome. The rest of the proof
considers the case in which M > M t(0; 1; 0) and is split in four steps.

11.5.1 Step 1 For each publisher i, playing xi = 1 weakly dominates xi = 0

Proof. Using Lemma 3 we consider the various pro�les (xj; xk) which rival publishers
may play, except (xj; xk) = (0; 0) since then xi has no e¤ect, and examine how xi a¤ects
i�s pro�t.

1 x2 = 1, x3 = 0
x1 = 0 P d1;2 if M

t(0; 1; 0) < M �M t(0; 0; 0), P t1(0; 0; 0) if M > M t(0; 0; 0)

x1 = 1 P d1;2 if M
t(0; 1; 0) < M �M t(1; 0; 0), P t1(1; 0; 0) if M > M t(1; 0; 0)

1 x2 = 0, x3 = 1
x1 = 0 P d1;2 if M

t(0; 1; 0) < M �M t(0; 0; 0), P t1(0; 0; 0) if M > M t(0; 0; 0)

x1 = 1 P t1(0; 1; 0) for any M > M t(0; 1; 0)

1 x2 = 1, x3 = 1
x1 = 0 P d1;2 if M

t(0; 1; 0) < M �M t(0; 0; 1), P t1(0; 0; 1) if M > M t(0; 0; 1)

x1 = 1 P d1;2 if M
t(0; 1; 0) < M �M t(1; 1; 1), P t1(1; 1; 1) if M > M t(1; 1; 1)
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In order to see that x1 = 1 weakly dominates x1 = 0 for 1, notice that M t(0; 0; 0) <

M t(1; 0; 0) and P d1;2 > P
t
1(0; 0; 0) for M between M t(0; 0; 0) and M t(1; 0; 0), P t1(1; 0; 0) >

P t1(0; 0; 0) for M > M t(1; 0; 0); M t(0; 1; 0) < M t(0; 0; 0) and P t1(0; 1; 0) > P
d
1;2 for M be-

tweenM t(0; 1; 0) andM t(0; 0; 0), P t1(0; 1; 0) > P
t
1(0; 0; 0) forM > M t(0; 0; 0);M t(0; 0; 1) <

M t(1; 1; 1) and P d1;2 > P
t
1(0; 0; 1) for M between M t(0; 0; 1) and M t(1; 1; 1), P t1(1; 1; 1) >

P t1(0; 0; 1) for M > M t(1; 1; 1).

2 x1 = 1, x3 = 0
x2 = 0 P d2;1 if M

t(0; 1; 0) < M �M t(0; 0; 0), P t2(0; 0; 0) if M > M t(0; 0; 0)

x2 = 1 P d2;1 if M
t(0; 1; 0) < M �M t(1; 0; 0), P t2(1; 0; 0) if M > M t(1; 0; 0)

2 x1 = 0, x3 = 1
x2 = 0 P d2;1 if M

t(0; 1; 0) < M �M t(0; 0; 0), P t2(0; 0; 0) if M > M t(0; 0; 0)

x2 = 1 P d2;1 if M
t(0; 1; 0) < M �M t(0; 0; 1), P t2(0; 0; 1) if M > M t(0; 0; 1)

2 x1 = 1, x3 = 1
x2 = 0 P t2(0; 1; 0) for any M > M t(0; 1; 0)

x2 = 1 P d2;1 if M
t(0; 1; 0) < M �M t(1; 1; 1), P t2(1; 1; 1) if M > M t(1; 1; 1)

In order to see that x2 = 1 weakly dominates x2 = 0 for 2, notice that M t(0; 0; 0) <

M t(1; 0; 0) and P d2;1 > P t2(0; 0; 0) for M > M t(0; 0; 0), P t2(1; 0; 0) > P t2(0; 0; 0) for M >

M t(1; 0; 0); M t(0; 0; 1) < M t(0; 0; 0) and P t2(0; 0; 1) > P
d
2;1 for M between M t(0; 0; 1) and

M t(0; 0; 0), P t2(0; 0; 1) > P t2(0; 0; 0) for M > M t(0; 0; 0); M t(0; 1; 0) < M t(1; 1; 1) and
P d2;1 > P t2(0; 1; 0) for M between M t(0; 1; 0) and M t(1; 1; 1), P t2(1; 1; 1) > P t2(0; 1; 0) for
M > M t(1; 1; 1).

3 x1 = 1, x2 = 0
x3 = 0 0 if M t(0; 1; 0) < M �M t(0; 0; 0), P t3(0; 0; 0) if M > M t(0; 0; 0)

x3 = 1 P t3(0; 1; 0) for any M > M t(0; 1; 0)

3 x1 = 0, x2 = 1
x3 = 0 0 if M t(0; 1; 0) < M �M t(0; 0; 0), P t3(0; 0; 0) if M > M t(0; 0; 0)

x3 = 1 0 if M t(0; 1; 0) < M �M t(0; 0; 1), P t3(0; 0; 1) if M > M t(0; 0; 1)

3 x1 = 1, x2 = 1
x3 = 0 0 if M t(0; 1; 0) < M �M t(1; 0; 0), P t3(1; 0; 0) if M > M t(1; 0; 0)

x3 = 1 0 if M t(0; 1; 0) < M �M t(1; 1; 1), P t3(1; 1; 1) if M > M t(1; 1; 1)

In order to see that x3 = 1 weakly dominates x3 = 0 for 3, notice that M t(0; 1; 0) <

M t(0; 0; 0) and P t3(0; 1; 0) > 0 for M between M t(0; 1; 0) and M t(0; 0; 0), P t3(0; 1; 0) >
P t3(0; 0; 0) forM > M t(0; 0; 0);M t(0; 0; 1) < M t(0; 0; 0) and P t3(0; 0; 1) > 0 forM between
M t(0; 0; 1) and M t(0; 0; 0), P t3(0; 0; 1) > P t3(0; 0; 0) for M > M t(0; 0; 0); M t(1; 1; 1) <

M t(1; 0; 0) and P t3(1; 1; 1) > 0 for M between M t(1; 1; 1) and M t(1; 0; 0), P t3(1; 1; 1) >
P t1(1; 0; 0) for M > M t(1; 0; 0).
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11.5.2 Step 2 For M between M t(0; 1; 0) and M t(1; 1; 1), x = (1; 1; 1) is a CPNE
and any CPNE generates the same outcome as x = (1; 1; 1)

Proof. Step 1 implies that x = (1; 1; 1) is a NE of Gm. In order to see that it is a
CPNE, notice that (i) in Gm1;2(1), 1 and 2 cannot both increase their pro�t, as they gain
M in aggregate with (x1; x2) = (1; 1); (ii) in Gm1;3(1), in order for 3 to make a pro�t it is
necessary that x1 = 0 and M > M t(0; 0; 1), and then 3�s unique best reply is x3 = 1, so
that 1�s pro�t is P t1(0; 0; 1) which is smaller than P

d
1 ; (iii) a similar argument applies to

Gm2;3(1).
Finally, we prove that any CPNE is such that the active publishers and prices are as
described in the statement of the proposition.
For M �M t(0; 1; 0), see our argument just before step 1.
For M t(0; 1; 0) < M �M t(0; 0; 1), 3 is active only if x = (1; 0; 1). But x = (1; 0; 1) is not
a NE of Gm, as 2 can induce 3 to be inactive by playing x2 = 1, and this is pro�table for
2 as P d2 > P

t
2(0; 1; 0). Hence, 3 is inactive in any NE and so in any CPNE.

For M t(0; 0; 1) < M �M t(0; 0; 0), 3 is active only if x = (1; 0; 1) or x = (0; 1; 1). We can
show as above that x = (1; 0; 1) is not a NE of Gm because 2 prefers to play x2 = 1, in
order to induce 3 to be non-active. Furthermore, P d1 > P

t
1(0; 0; 1) and thus 1 prefers to

play x1 = 1 given x2 = x3 = 1, so that 3 will not be active. Hence, x = (0; 1; 1) is not a
NE and any CPNE is such that 3 will be inactive.
For M t(0; 0; 0) < M � M t(1; 1; 1), there are three pro�les which allow 3 to be active:
x = (1; 0; 1), x = (0; 1; 1), and x = (0; 0; 0), but none of them is a CPNE. The �rst two
can be ruled out as above, while x = (0; 0; 0) has been ruled out in Lemma 4.

11.5.3 Step 3 For M between M t(1; 1; 1) and U � I12, x = (1; 1; 1) is the unique
CPNE

Proof. Step 1 implies that x = (1; 1; 1) is a NE of Gm, and in order to see that it is a
CPNE we notice that when M > M t(1; 1; 1), for each publisher i playing xi = 1 strictly
dominates xi = 0 if at least one of the other publishers interconnects: formally, if xj = 1
and/or xk = 1 then xi = 1 strictly dominates xi = 0 for publisher i. This implies that in
Gmi;j(1), the only NE is (xi; xj) = (1; 1) and thus x = (1; 1; 1) is a CPNE.
In order to prove uniqueness, recall that Lemma 4 shows that x = (0; 0; 0) is not a CPNE.
This implies that xi = 1 for at least one publisher i in any CPNE. But then xj = 1

(xk = 1) strictly dominates xj = 0 (xk = 0) for publisher j (for publisher k) and this rules
out any x 6= (1; 1; 1).
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11.6 Proof of Proposition 2 when A1 does not hold but A1w

holds

By backward induction, we �rst study the game II for a given interconnection pro�le, in
the order of y = (0; 1; 0), y = (0; 0; 1), y = (1; 0; 0), y = (1; 1; 1). And then, we analyze the
stage one interconnection game. A1w is used only when we study the case of y = (1; 1; 1).

11.6.1 The case of y = (0; 1; 0)

Consider y = (0; 1; 0). Then, U1 � U2+ I23 in A1 does not play any role since y23 = 0 and
U1 > U2. Hence, in order to relax A1, we suppose U3 + I13 > U2. Step 1 in the proof of
Lemma 1 implies that 1 is always active, given that y23 = 0. However, Step 2 in the proof
of Lemma 1 does not apply since U3 + I13 > U2 and therefore A = f1g, or A = f1; 2g,
or A = f1; 3g, or A = f1; 2; 3g. In particular, P t2(0; 1; 0) = U2 +

1
3
(M � U � 2I13) <

P t3(0; 1; 0) = U3 +
1
3
(M � U + I13) and P t2(0; 1; 0) > 0 if and only if M > U � 3U2 + 2I13.

Next lemma characterizes the cases in which A = f1; 2g or A = f1; 3g.

Lemma 7 Suppose that y = (0; 1; 0) and U3 + I13 > U2. Then
(i) there exists a SPNE of II in which A = f1; 2g if and only if U1�U2 < M � U1�U3;
(ii) there exists a SPNE of II in which A = f1; 3g if and only if U1 � U3 < M �
U � 3U2 + 2I13.

Proof. (i) It is clear why U1 � U2 < M is needed. About M � U1 � U3, notice that
if 3 deviates by becoming active, then it is necessary that in III a NE (P

�
1 ; P

�
2 ; P

�
3 ) is

played such that 3 makes no pro�t. We show that the existence of such a NE requires
M � U1 � U3.

(a) Both 1 and 2 make a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then u(12) � maxfu(1); u(2)g.

But if 3 plays P3 > 0 close to zero, then u(13) ' U1 + U3 + I13 � P �1 > u(12) =

U1 + U2 � P �1 � P �2 ; therefore the library buys either B1&B3, or B2&B3, or B3 and 3
earns P3 > 0.

(b) Only 1 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then P �1 =M and we need to consider

various cases.
In the case of P �2 = 0 (independently of whether P

�
3 = 0 or P

�
3 > 0), we can show that

if M > U1 � U3, then 3 can earn a pro�t by playing P3 > 0 close to zero. In that
case, B1&B3 is not a¤ordable and we have: u(23) > maxfu(2); u(3)g, u(12) > u(1) and
u(23) ' U2 + U3 is larger than u(12) = U1 + U2 �M .
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In the case of P �2 > 0, P
�
3 > 0, the library buys only B1 but 2 may deviate with P2 > 0

close to zero: then B1&B2 and B1&B3 are una¤ordable and u(2) > maxfu(1); u(3)g given
M > U1 � U3 > U1 � U2: This contradicts that only 1 makes a pro�t.
In the case of P �2 > 0, P

�
3 = 0, the library buys B1&B3 but 3 may deviate with P3 > 0

close to zero. Then we need to distinguish three cases: P �2 < M , P
�
2 = M , P

�
2 > M . In

the �rst case B1&B2 and B1&B3 are una¤ordable, u(23) > u(2) and u(3) ' U3 is larger
than u(1) = U1 �M if M > U1 � U3. In the second case B1&B2, B1&B3, B2&B3 are
una¤ordable and u(3) is larger than u(1) = U1�M > u(2) = U2�M if M > U1�U3. In
the third case B2 and B1&B3 are una¤ordable and u(3) > u(1) if M > U1 � U3.

(c) Only 2 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then P �2 =M and it is easy to rule out

the case (c) since we can show that 1 can �nd a pro�table deviation. We need to consider
two cases.
In the case of P �3 = 0 (independently of whether P

�
1 = 0 or P

�
1 > 0), 1 can make a pro�t by

playing P1 > 0 close to zero since then B1&B2 is una¤ordable and u(13) ' U1+U3+I13 >
maxfu(1); u(2); u(3); u(23)g.
In the case of P �3 > 0 (independently of whether P �1 = 0 or P �1 > 0), 1 can make a
pro�t by playing P1 > 0 close to zero since then B1&B2 and B2&B3 are una¤ordable and
u(1) > maxfu(2); u(3)g.
We conclude from the previous arguments (a)-(c) that if M > U1 � U3, then there

exists no NE of III in which 3 earns zero.
We now show that if instead M � U1 � U3, then

P �1 =M , P �2 = 0, P �3 = 0 (24)

is a NE of III . In order to see this, notice that if 2 deviates with P2 > 0 close to zero,
then B1&B2 is una¤ordable, u(23) > u(2) and u(13) = U1+U3+I13�M , u(23) ' U2+U3.
The inequality u(13) > u(23) holds since M � U1 � U3 and thus the library buys B1&B3
after 2�s deviation. If 3 deviates with P3 > 0 close to zero, then B1&B3 is una¤ordable,
u(23) > u(3) and u(12) = U1 + U2 �M , u(23) ' U2 + U3. The inequality u(12) > u(23)
holds because M � U1 � U3.

(ii) It is clear why U1 � U3 < M is needed. About M � U � 3U2 + 2I13, notice that
if 2 deviates by becoming active, then it is necessary that in III a NE (P

�
1 ; P

�
2 ; P

�
3 ) is

played such that 2 makes no pro�t. Step 2 in the proof of Lemma 1 shows that we need
to consider two cases, given that 1 makes a pro�t in any NE.

(a) Both 1 and 3 make a pro�t with (P �1 ; P
�
2 ; P

�
3 ) No pro�table deviation for 2

should exist, and thus it is necessary that P2 > 0 close to zero does not induce the library
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to buy B1&B2 or B2&B3. Hence, the following conditions need to hold

U1 + U2 � P �1 � U1 + U3 + I13 �M
U2 + U3 � P �3 � U1 + U3 + I13 �M

By adding up these inequalities we �nd M � U � 3U2 + 2I13. For instance

P �1 =
1

2
(U1 +M � U3), P �2 high, P �3 =

1

2
(U3 +M � U1) (25)

is a NE of III for anyM between U1�U3 andM � U�3U2+2I13. Precisely, if 2 deviates
with P2 close to zero then u(13) = U1+U3+ I13�M > u(23) ' U2+U3� 1

2
(U3+M �U1)

and u(13) = U1 + U3 + I13 �M > u(12) = U1 + U2 � 1
2
(U1 +M � U3) are both satis�ed

since M � U � 3U2 + 2I13.

(b) Only 1 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This requires P �1 = M;P �3 = 0. A

deviation of 2 with P2 > 0 close to zero is unpro�table if and only if u(23) ' U2 +

U3 � u(13) = U1 + U3 + I13 � M , which is equivalent to M < U1 + I13 � U2. Since
U1 + I13 � U2 < U � 3U2 + 2I13, we conclude that this case is more restrictive than the
�rst case, and thus we neglect it.

By relying on Lemma 7, we �nd the active publishers and prices as a function of M ,
as described by Lemma 8.

Lemma 8 Suppose that y = (0; 1; 0) and U3 + I13 > U2. Then any SPNE of II is such
that
(i) A� = f1g and P �1 =M if M � U1 � U2;
(ii) A� = f1; 2g and prices are P d1 ; P d2 if U1 � U2 < M � U1 � U3;
(iii) A� = f1; 3g and prices are P d1;3 = 1

2
(U1 + M � U3), P d3;1 = 1

2
(U3 + M � U1) if

U1 � U3 < M � U � 3U2 + 2I13;
(iv) A� = f1; 2; 3g and prices are P t1(0; 1; 0), P t2(0; 1; 0), P t3(0; 1; 0) if U � 3U2 + 2I13 <
M < U � I12.

Proof. (i) It is impossible that A� = f1; 2g since 1 and 2 cannot both make a pro�t if
they are active and M � U1 � U2. The same argument applies to rule out A� = f1; 3g
and A� = f1; 2; 3g.
(ii) It is impossible that A� = f1g because then 2 would deviate by becoming active, and
both A� = f1; 3g and A� = f1; 2; 3g are ruled out sinceM � U1�U3. In particular, given
A� = f1; 2g, if 3 becomes active then the NE described in (24) is played.
(iii) We argue like in part (ii) to rule out A� = f1g. It is impossible that A� = f1; 2g
because then 3 would deviate by becoming active. If 2 becomes active, then the NE
described in (25) is played.
(iv) If A = f1g, or A = f1; 2g, or A = f1; 3g, then at least a publisher who is inactive
deviates by becoming active.
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11.6.2 The case of y = (0; 0; 1)

Consider y = (0; 0; 1). Then, U2 � U3 + I13 in A1 does not play any role since y13 = 0
and U2 > U3. Hence, in order to relax A1, we suppose that U2 + I23 > U1. We need to
distinguish two cases:

U2 + I23 > U1 > U3 + I23 (26)

U3 + I23 > U1 (27)

In the �rst case P t2(0; 0; 1) = U2 +
1
3
(M � U + I23) > P t1(0; 0; 1) = U1 +

1
3
(M � U �

2I23) > P
t
3(0; 0; 1) = U3 +

1
3
(M � U + I23), thus all three publishers can be active only if

M > M t(0; 0; 1). In the second case, instead, P t2(0; 0; 1) > P
t
3(0; 0; 1) > P

t
1(0; 0; 1) holds

and all three publishers can be active only if M > U � 3U1 + 2I23. In the �rst case we
obtain the same results as when A1 holds, as it is intuitive given that P t3(0; 0; 1) is smaller
than P t1(0; 0; 1) and than P

t
2(0; 0; 1).

Lemma 9 Suppose that y = (0; 0; 1) and that (26) holds. Then Lemma 1 applies.

Proof. Using (26) we can rule out the case of A = f2; 3g as follows. Suppose that
A = f2; 3g and 1 deviates by becoming active. From Step 1 in the proof of Lemma 1, we
see that if, in this case, there exists a NE (P �1 ; P

�
2 ; P

�
3 ) of III in which 1 makes no pro�t,

then P �2 =M;P
�
3 = 0. But the existence of such a NE requires that

U1 + U3 � U2 + U3 + I23 �M: (28)

Since A = f2; 3g requires M > U2 � U3, it follows that (28) is violated. Therefore, 1 is
always active when (26) holds.
Furthermore, we can also rule out the case of A = f1; 3g by arguing as in Step 2 of

the proof of Lemma 1, since U2 � U3 + I13y13 holds given that y13 = 0.

Now we consider the case in which (27) is satis�ed.

Lemma 10 Suppose that y = (0; 0; 1) and (27) holds. Then
(i) there exists a SPNE of II in which A = f1; 2g if and only if U1 � U2 < M �
minfU1 � U3; U2 + I23 � U1g;
(ii) there exists a SPNE of II in which A = f2; 3g if and only if U2 � U3 < M �
U � 3U1 + 2I23.

Proof. (i) If is clear why U1�U2 < M is needed. AboutM � minfU1�U3; U2+I23�U1g,
notice that if 3 deviates by becoming active, then it is necessary that in III a NE
(P �1 ; P

�
2 ; P

�
3 ) is played such that 3 makes no pro�t. We show below that the existence of

such a NE requires M � minfU1 � U3; U2 + I23 � U1g. We consider three cases.
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(a) Both 1 and 2 make a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then u(12) � maxfu(1); u(2)g

but 3 can deviate with P3 > 0 close to zero. Then u(23) ' U2 + U3 + I23 � P �2 > u(12) =
U1+U2�P �1 �P �2 ; therefore the library buys either B1&B3, or B2&B3, or B3 and 3 earns
P3 > 0.

(b) Only 1 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then P �1 =M and we need to consider

several cases.
In the case of P �3 = 0 (independently of whether P

�
2 > 0 or P

�
2 = 0), 2 can make a pro�t by

playing P2 > 0 close to zero since then B1&B2 is una¤ordable, u(23) > maxfu(2); u(3)g,
u(13) > u(1) and u(23) ' U2 + U3 + I23 > u(13) = U1 + U3 �M .
In the case of P �2 > 0, P

�
3 > 0, the library buys only B1 but 2 may deviate with P2 > 0

close to zero: then B1&B2 and B1&B3 are una¤ordable and u(2) > maxfu(1); u(3)g since
M > U1 � U2.
In the case of P �2 = 0, P

�
3 > 0, the library buys B1&B2 so that u(12) � maxfu(1); u(2)g

but 3 may deviate with P3 > 0 close to zero and then B1&B3 is una¤ordable, u(23) >
maxfu(2); u(3)g and u(23) ' U2 + U3 + I23 > u(12) = U1 + U2 �M .

(c) Only 2 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) Then P �2 =M and we need to consider

several cases.
In the case of P �1 = 0 (independently of whether P

�
3 > 0 or P

�
3 = 0), consider 3 playing

P3 > 0 close to zero so that B2&B3 is una¤ordable, u(13) > maxfu(1); u(3)g, u(12) > u(2)
and u(13) ' U1 + U3, u(12) = U1 + U2 � M ; the inequality u(13) > u(12) holds if
M > U2�U3. Since U2�U3 < minfU1�U3; U2+I23�U1g, ifM > minfU1�U3; U2+I23�U1g
then 3�s deviation is pro�table.
In the case of P �1 > 0, P

�
3 > 0, the library buys only B2 but 1 may deviate with P1 > 0

close to zero: then B1&B2 and B2&B3 are una¤ordable and u(1) > maxfu(2); u(3)g.
In the case of P �1 > 0, P �3 = 0, we need to distinguish three cases: P �1 < M , P �1 = M ,
P �1 > M . In the third case, if M > U2�U3 then 3 can make a pro�t with P3 > 0 close to
zero, since then B1 and B2&B3 are una¤ordable and u(3) > u(2). In the �rst case, 3 can
make a pro�t with P3 > 0 close to zero because then B1&B2 and B2&B3 are una¤ordable
and u(13) > u(1), u(13) = U1 + U3 � P �1 > u(2) = U2 �M . In the second case, instead,
we �nd that

P �1 =M , P �2 =M , P �3 = 0 (29)

is a NE if M � minfU1�U3; U2+ I23�U1g, in which the library buys B2&B3 as u(23) >
u(13). Precisely, if 1 deviates with P1 > 0 close to zero then B1&B2 is una¤ordable and
u(13) > maxfu(1); u(3)g, u(23) > u(2), and u(13) ' U1+U3, u(23) = U2+U3+ I23�M .
The inequality U1 + U3 � U2 + U3 + I23 �M is equivalent to M � U2 + I23 � U1. If 3
deviates with P3 > 0 close to zero then B1&B2, B1&B3 and B2&B3 are una¤ordable and
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u(1) = U1 �M > u(2), while u(3) ' U3. The inequality U3 � U1 �M is equivalent to
M � U1 � U3.
Therefore, we conclude that there exists a NE of III in which 3 earns zero if and only if
M � minfU1 � U3; U2 + I23 � U1g.

(ii) It is clear why M > U2 � U3 is needed. About M � U � 3U1 + 2I23, notice that
if 1 deviates by becoming active, then it is necessary that in III a NE (P

�
1 ; P

�
2 ; P

�
3 ) is

played such that 1 makes no pro�t. Step 1 in the proof of Lemma 1 shows that we need
to consider three cases.

(a) Both 2 and 3 make a pro�t with (P �1 ; P
�
2 ; P

�
3 ) No pro�table deviation for 1

should exist, and thus it is necessary that P1 > 0 close to zero does not induce the library
to buy B1&B2 or B1&B3. Hence, the following conditions need to hold

U1 + U2 � P �2 � U2 + U3 + I23 �M
U1 + U3 � P �3 � U2 + U3 + I23 �M

By adding up these inequalities we �nd M � U � 3U1 + 2I23 and, for instance

P �1 large; P �2 =
1

2
(U2 +M � U3); P �3 =

1

2
(U3 +M � U2) (30)

is a NE of III for any M such that U2 � U3 < M � U � 3U1 + 2I23.

(b) Only 2 makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This requires P �2 = M;P �3 = 0. A

deviation of 1 with P1 > 0 close to zero is unpro�table if and only if u(13) ' U1 +

U3 � u(23) = U2 + U3 + I23 � M , which is equivalent to M < U2 + I23 � U1. Since
U2 + I23 � U1 < U � 3U1 + 2I23, we conclude that this case is more restrictive than the
�rst case, and thus we neglect it.

(c) Only 3makes a pro�t with (P �1 ; P
�
2 ; P

�
3 ) This requires P �2 = 0; P �3 = M . A

deviation of 1 with P1 > 0 close to zero is unpro�table if and only if u(12) ' U1 +

U2 � u(23) = U2 + U3 + I23 � M , which is equivalent to M < U3 + I23 � U1. Since
U3 + I23 � U1 < U � 3U1 + 2I23, we conclude that this case is more restrictive than the
�rst case, and thus we neglect it.

By relying on Lemma 10 we �nd the active publishers and prices as a function of
M , as described by the following lemma, which is divided in three parts because it is
necessary to distinguish there cases according to the values of U1 � U2, U2 � U3, and
minfU1 � U3; U2 + I23 � U1g. In doing this, we need however to take into account that

U2 � U3 < minfU1 � U3; U2 + I23 � U1g < U � 3U1 + 2I23
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Lemma 11 Suppose that y = (0; 0; 1) and that (27) holds.
(i) When U1�U2 � U2�U3 < minfU1�U3; U2+ I23�U1g, any SPNE of II is such that
(ia) A� = f1g and P �1 =M if M < U1 � U2;
(ib) A� = f1; 2g and P d1;2; P d2;1 if U1 � U2 < M � U2 � U3;
(ic) A� = f1; 2g and P d1;2; P d2;1 or A� = f2; 3g and P d2;3; P d3;2 if U2 � U3 < M �

minfU1 � U3; U2 + I23 � U1g;
(id) A� = f2; 3g and P d2;3; P d3;2 if minfU1 � U3; U2 + I23 � U1g < M � U � 3U1 + 2I23;
(ie) A� = f1; 2; 3g and P t1(0; 0; 1); P t2(0; 0; 1); P t3(0; 0; 1) if U�3U1+2I23 < M < U�I12.

(ii) When U2 � U3 < U1 � U2 � minfU1 � U3; U2 + I23 � U1g, any SPNE of II is such
that
(iia) A� = f1g and P �1 =M if M � U2 � U3;
(iib) A� = f1g and P �1 =M or A� = f2; 3g and P d2;3; P d3;2 if U2 � U3 < M � U1 � U2;
(iic) A� = f1; 2g and P d1;2; P d2;1 or A� = f2; 3g and P d2;3; P d3;2 if U1 � U2 < M �

minfU1 � U3; U2 + I23 � U1g;
(iid) A� = f2; 3g and P d2;3; P d3;2 if minfU1 �U3; U2 + I23 �U1g < M � U � 3U1 + 2I23;
(iie) A� = f1; 2; 3g and P t1(0; 0; 1); P t2(0; 0; 1); P t3(0; 0; 1) if U � 3U1 + 2I23 < M <

U � I12.
(iii) When U2 � U3 < minfU1 � U3; U2 + I23 � U1g < U1 � U2, any SPNE of II is such
that
(iiia) A� = f1g and P �1 =M if M � U2 � U3;
(iiib) A� = f1g and P �1 =M or A� = f2; 3g and P d2;3; P d3;2 if U2 � U3 < M � U1 � U2;
(iiic) A� = f2; 3g and P d2;3; P d3;2 if U1 � U2 < M � U � 3U1 + 2I23;
(iiid) A� = f1; 2; 3g and P t1(0; 0; 1); P t2(0; 0; 1); P t3(0; 0; 1) if U � 3U1 + 2I23 < M �

U � I12.47

Proof. (ia) Given that M < U1 � U2, and moreover M < U2 � U3, M < U � 3U1 + 2I23,
it is impossible that A� = f1; 2g, or A� = f2; 3g, or A� = f1; 2; 3g because there is no NE
of III in which at least two publishers make a pro�t. Hence A

� = f1g.
(ib) For U1 � U2 < M � U2 � U3, A� = f1; 2g; because 2 becomes active if A = f1g. But
there is no NE in III in which both 2 and 3 make a pro�t if A = f2; 3g, and there is no
NE in which 1,2,3 make a pro�t if A = f1; 2; 3g. If 3 becomes active given A� = f1; 2g,
then the NE described in (29) is played.
(ic) For U2 � U3 < M � minfU1 � U3; U2 + I23 � U1g, A� 6= f1g; otherwise 2 becomes
active. There is no NE in III in which 1,2,3 make a pro�t if A = f1; 2; 3g. There is
a SPNE in II with A

� = f1; 2g just like in part (ib). But there is also a SPNE with
A� = f2; 3g and then, if 1 becomes active, the NE described in (30) is played.
47Say that U � 3U1 + 2I23 < U1 � U2. Then U2 � U3 < M � U � 3U1 + 2I23 implies A� = f1g or

A� = f2; 3g; U � 3U1 + 2I23 < M < U1 � U2 implies A� = f1g or A� = f1; 2; 3g; U1 � U2 < M implies
A� = f1; 2; 3g.

51



(id) For minfU1 � U3; U2 + I23 � U1g < M < U � 3U1 + 2I23, we �nd that A� = f2; 3g
because 2 becomes active if A = f1g, 3 becomes active if A = f1; 2g, and there is no NE
of III in which all three publishers make a pro�t if A = f1; 2; 3g. If 1 enters, then the
NE described in (30) is played.
(ie) For U � 3U1 + 2I23 < M < U � I12, if A does not include the three publishers then
some publisher who is inactive has an incentive to deviate by becoming active, given that
he will be able to make a pro�t; thus A� = f1; 2; 3g
In order to prove (iia)-(iie) and (iiia)-(iiid) it su¢ ces to apply suitably the same arguments
given in the proof of (ia)-(ie).

11.6.3 The cases of y = (1; 0; 0) or y = (1; 1; 1)

When y = (1; 0; 0) or y = (1; 1; 1), then the inequalities U1 + I12y12 > U3 + I23y23,
U1 + I13y13 � U2 + I23y23, U1 + I12y12 > U3 + I23y23, U2 + I12y12 � U3 + I13y13 and
U2+ I23y23 � U3+ I13y13 are all satis�ed if A1 fails to hold, provided that A1w is satis�ed.
In this case, therefore, Lemma 3 holds.

11.6.4 The interconnection stage

Since U3+I23 > U1 implies U3+I13 > U2, a necessary condition to obtain results di¤erent
from Lemma 1 is U3 + I13 > U2. Therefore, we need to study the following cases: (i)
U3 + I13 > U2 and U3 + I23 � U1; (ii) U3 + I23 > U1. We consider below only the second
case, as the �rst one is similar to (but simpler than) the second.

Step 1 For each publisher i, playing xi = 1 weakly dominates xi = 0 Proof. In
this case Lemma 1 applies if y = (0; 0; 0), y = (1; 0; 0), y = (1; 1; 1), but Lemma 8 applies
if y = (0; 1; 0) and Lemma 10 applies if y = (0; 0; 1). Nevertheless, we can prove weakly
dominance
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1 x2 = 1, x3 = 0
x1 = 0 M if M � U1 � U2, P d1;2 if U1 � U2 < M �M t(0; 0; 0), P t1(0; 0; 0) if M > M t(0; 0; 0)

x1 = 1
M if M � U1 � U2, P d1;2 if U1 � U2 < M �M t(1; 0; 0)

P t1(1; 0; 0) if M > M t(1; 0; 0)

1 x2 = 0, x3 = 1
x1 = 0 M if M � U1 � U2, P d1;2 if U1 � U2 < M �M t(0; 0; 0), P t1(0; 0; 0) if M > M t(0; 0; 0)

x1 = 1
M if M � U1 � U2, P d1;2 if U1 � U2 < M � U1 � U3,

P d1;3 if U1 � U3 < M � U � 3U2 + 2I13, P t1(0; 1; 0) if M > U � 3U2 + 2I13
1 x2 = 1, x3 = 1

x1 = 0
M (requires M � U1 � U2) or P d1;2 (requires M � minfU1 � U3; U2 + I23 � U1g)

or 0 or P t1(0; 0; 1)
x1 = 1 M if M � U1 � U2, P d1;2 if U1 � U2 < M �M t(1; 1; 1), P t1(1; 1; 1) if M > M t(1; 1; 1)

In order to see that x1 = 1 weakly dominates x1 = 0 for 1, notice that M t(0; 0; 0) <

M t(1; 0; 0) and P d1;2 > P
t
1(0; 0; 0) for M between M t(0; 0; 0) and M t(1; 0; 0), P t1(1; 0; 0) >

P t1(0; 0; 0) for M > M t(1; 0; 0); U1 � U3 < M t(0; 0; 0) and P d1;3 > P
d
1;2, P

d
1;3 > P

t
1(0; 0; 0),

P t1(0; 1; 0) > P d1;2 for M � M t(0; 0; 0), P t1(0; 1; 0) > P t1(0; 0; 0) for M > M t(0; 0; 0);
P d1;2 > P

t
1(0; 0; 1), P

t
1(1; 1; 1) > P

d
1;2 for M � U1 � U3, P t1(1; 1; 1) > P t1(0; 0; 1).

2 x1 = 1, x3 = 0
x2 = 0 0 if M � U1 � U2, P d2;1 if U1 � U2 < M �M t(0; 0; 0), P t2(0; 0; 0) if M > M t(0; 0; 0)

x2 = 1 0 if M � U1 � U2, P d2;1 if U1 � U2 < M �M t(1; 0; 0), P t2(1; 0; 0) if M > M t(1; 0; 0)

2 x1 = 0, x3 = 1
x2 = 0 0 if M � U1 � U2, P d2;1 if U1 � U2 < M �M t(0; 0; 0), P t2(0; 0; 0) if M > M t(0; 0; 0)

x2 = 1
0 (requires M � U1 � U2) or P d2;1 (requires M � minfU1 � U3; U2 + I23 � U1g)

or P d2;3 or P
t
2(0; 0; 1)

2 x1 = 1, x3 = 1

x2 = 0
0 if M � U1 � U2, P d2;1 if U1 � U2 < M � U1 � U3

0 if U1 � U3 < M � U � 3U2 + 2I13, P t2(0; 1; 0) if M > U � 3U2 + 2I13
x2 = 1 0 if M � U1 � U2, P d2;1 if U1 � U2 < M �M t(1; 1; 1), P t2(1; 1; 1) if M > M t(1; 1; 1)

In order to see that x2 = 1 weakly dominates x2 = 0 for 2, notice that M t(0; 0; 0) <

M t(1; 0; 0) and P d2;1 > P
t
2(0; 0; 0) for M between M t(0; 0; 0) and M t(1; 0; 0), P t2(1; 0; 0) >

P t2(0; 0; 0) forM > M t(1; 0; 0); P d2;3 > P
d
2;1, P

d
2;3 > P

t
2(0; 0; 0), P

t
2(0; 0; 1) > P

d
2;1, P

t
2(0; 0; 1) >

P t2(0; 0; 0); U1 � U3 < M t(1; 1; 1) and P d2;1 > 0, P
d
2;1 > P

t
2(0; 1; 0), P

t
2(1; 1; 1) > P

t
2(0; 1; 0).

3 x1 = 1, x2 = 0
x3 = 0 0 if M �M t(0; 0; 0), P t3(0; 0; 0) if M > M t(0; 0; 0)

x3 = 1 0 if M � U1 � U3, P d3;1 if U1 � U3 < M � U � 3U2 + 2I13, P t3(0; 1; 0) if M > U � 3U2 + 2I13
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3 x1 = 0, x2 = 1
x3 = 0 0 if M �M t(0; 0; 0), P t3(0; 0; 0) if M > M t(0; 0; 0)

x3 = 1 0 (requires M � minfU1 � U3; U2 + I23 � U1g) or P d3;2 or P t3(0; 0; 1)

3 x1 = 1, x2 = 1
x3 = 0 0 if M �M t(1; 0; 0), P t3(1; 0; 0) if M > M t(1; 0; 0)

x3 = 1 0 if M �M t(1; 1; 1), P t3(1; 1; 1) if M > M t(1; 1; 1)

In order to see that x3 = 1 weakly dominates x3 = 0 for 3, notice that U1 � U3 <
M t(0; 0; 0) and P d3;1 > P

t
3(0; 0; 0), P

t
3(0; 1; 0) > P

t
3(0; 1; 0); minfU1 � U3; U2 + I23 � U1g <

M t(0; 0; 0) and P d3;2 > P t3(0; 0; 0), P
t
3(0; 0; 1) > P t3(0; 0; 0); M

t(1; 1; 1) < M t(1; 0; 0) and
P t3(1; 1; 1) > 0 for M between M t(1; 1; 1) and M t(1; 0; 0), P t3(1; 1; 1) > P t1(1; 0; 0) for
M > M t(1; 1; 1).

Step 2 For M between U1 � U2 < M � M t(1; 1; 1), x = (1; 1; 1) is a CPNE and
any CPNE generates the same outcome Proof. Step 1 implies that x = (1; 1; 1)
is a NE. In order to verify that x = (1; 1; 1) is a CPNE we notice that in Gm1;2(1) it is
impossible to improve for both 1 and 2. In Gm1;3(1), 3 may gain a positive pro�t only if
x1 = 0, but then 1 earns P d1 , or P

t
1(0; 0; 0), or 0, or P

t
1(0; 0; 1). Since none of them is larger

than P d1 , it is impossible that 1 and 3 both improve in G
m
1;3(1). In G

m
2;3(1), 3 may gain a

positive pro�t only if x2 = 0, but then 2 earns P d2 or P
t
2(0; 0; 0) or 0 or P

t
2(0; 1; 0). Since

none of them is larger than P d2 , it is impossible that 2 and 3 both improve in G
m
2;3(1).

Furthermore, we prove that any CPNE generates the same outcome as x = (1; 1; 1).
A di¤erent outcome requires that 3 is active, and for this to occur it is necessary that
y = (0; 1; 0), or y = (0; 0; 1), or y = (0; 0; 0). We can exclude y = (0; 0; 0) since Lemma 4
applies also when A1 is violated and establishes that x = (0; 0; 0) is not a CPNE. We can
exclude y = (0; 1; 0) since if 3 is active, then 2 earns either 0 or P t2(0; 1; 0), but 2 can earn
P d2 by playing x2 = 1; since P d2 > maxf0; P t2(0; 1; 0)g, there is no NE with y = (0; 1; 0)

in which 3 is active. A very similar argument applies to rule out y = (0; 0; 1): if 3 is
active, then 1 earns either 0 or P t1(0; 0; 1), but he can earn P

d
1 by playing x1 = 1; since

P d1 > maxf0; P t1(0; 0; 1)g, there is no NE with y = (0; 0; 1) in which 3 is active.

Step 3 For M smaller than U1 � U2, x = (1; 1; 1) is a CPNE and any CPNE
generates the same outcome Proof. When M � U1 � U2, we �nd that A� = f1g
for any y except y = (0; 0; 1), in which case A� = f2; 3g and 1 earns zero. But 1 can be
sure to earn M by playing x1 = 1, hence any NE (and CPNE) is such that A� = f1g. It
is routine to verify that x = (1; 1; 1) is a CPNE.

Step 4 For M between M t(1; 1; 1) and U � I12, x = (1; 1; 1) is the unique CPNE
Proof. Step 3 in the proof of Proposition 2 applies since, even though A1 is violated
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(i) it is still true that x = (1; 1; 1) is a NE of Gm (see step 1 in this proof); (ii) given
M > M t(1; 1; 1), for each publisher i playing xi = 1 strictly dominates xi = 0 if at least
one of the other publishers interconnects; (iii) Lemma 4 establishes that x = (0; 0; 0) is
not a CPNE.

11.7 Proof of Lemma 5

We argue by contradiction and suppose that y�13 = 0 (the case of y
�
23 = 0 can be dealt with

almost exactly in the same way, and thus is omitted). This requires that x�13 = 0, since 3
would play x31 = 1 if x�13 were equal to 1 and y13 = 1 would result; for a similar reason,
x�31 = 0. The proof relies on the fact that in G

b
1;3(x

�
2) there exists a NE (x

0
1;x

0
3) such that

x01 = (x
�
12; 1) and x

0
3 = (1; 1). The resulting interconnection pro�le y

0 = (y012; y
0
13; y

0
23) is

such that y012 = y�12 and y
0
13 = 1. About y023, if x

�
23 = 0 then y023 = 0 = y�23; if x

�
23 = 1,

then x�32 = 1 since x
� is a NE and x�3 is a best reply to x

�
1;x

�
2, thus y

�
23 = 1 = y

0
23. Hence,

the only di¤erence between y0 and y� is y013 = 1 6= y�13 = 0, and the pro�t of both 1 and 3
with (x01;x

0
3) is higher by

1
3
I13 than with (x�1;x

�
3). This establishes that x

� is not a CPNE
if we prove that (x01;x

0
3) is a NE of G

b
1;3(x

�
2).

In order to prove that x03 is a best reply to x
0
1, we notice that x3 = (1; 1) is a weakly

dominant strategy for publisher 3 because it weakly reduces M t(y) and weakly increases
3�s pro�t, P t3(y), if 3 is active.
In order to prove that x01 is a best reply to x

0
3, we �rst notice that against x

0
3, x

0
1 is better

than x�1 = (x
�
12; 0) because it yields a pro�t higher by

1
3
I13 (recall that 3 is active if 1 plays

x�1). We now show that x
0
1 is a (weakly) better reply also than (~x

�
12; 0) and (~x

�
12; 1), where

~x�12 is the opposite choice with respect to x
�
12, that is ~x

�
12 = 1� x�12. There are three cases

to consider: (i) if x�21 = 0, then ~x
�
12 has no e¤ect; (ii) if x

�
21 = 1 and x

�
12 = 1, then playing

~x�12 = 0 yields 1 a pro�t which is by
1
3
I12 smaller than his pro�t with x�12 = 1 (recall that

3 is active if 1 plays x�1); (iii) if x
�
21 = 1 and x

�
12 = 0, then we obtain a contradiction as

follows. Since x�12 = 0, we infer that 1 prefers the interconnection pro�le y
� = (0; 0; y�23) to

y = (1; 0; y�23); notice thatM > M t(0; 0; y�23) in order for 3 to be active. With the pro�le y
�,

1 earns P t1(0; 0; y
�
23) and with y = (1; 0; y

�
23) he would earn either P

d
1 if M � M t(1; 0; y�23)

or P t1(1; 0; y
�
23) if M > M t(1; 0; y�23). But P

d
1 > P

t
1(0; 0; y

�
23) for M between M t(0; 0; y�23)

and M t(1; 0; y�23), and P
t
1(1; 0; y

�
23) > P

t
1(0; 0; y

�
23) for M > M t(1; 0; y�23). Hence, x

�
21 = 1

and x�12 = 0 cannot occur in a NE.

11.8 Proof of Proposition 3

In the strong version of proposition 3, (iii) and (iv) are stated as follows
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(iii) for M between M t(1; 1; 1) and M t(1; 1; 0): A� = f1; 2g if

P d1 � P t1(0; 1; 0) or
�
P t1(0; 1; 0) > P

d
1 � P t1(1; 1; 1) and P d2 � P t2(0; 0; 1)

�
(31)

but A� = f1; 2; 3g with y = (0; 1; 1) otherwise;
(iv) for M between M t(1; 1; 0) and M t(1; 0; 1): A� = f1; 2g if

P d1 � P t1(1; 1; 1) and P d2 � P t2(0; 0; 1) (32)

but A� = f1; 2; 3g with y = (0; 1; 1) if P d1 > P t1(1; 1; 1) and P
d
2 < P t2(0; 0; 1), and A

� =

f1; 2; 3g with y = (1; 1; 1) if P t1(1; 1; 1) � P d1 ;
The strong version includes the weak version. In what follows, we prove the strong

version. Note that we do not need to prove the results for U1 � U2 < M � M t(0; 1; 0)

and M t(1; 0; 0) < M � U � I12 since they are explained in the main text just before the
statement of the proposition.

Proof for the case of M t(0; 1; 0) < M �M t(1; 1; 1)

Step 1 If P t1(0; 1; 1) > P
d
1 , then 3 is active and y = (0; 1; 1) in any CPNE.

Proof. Suppose that x� is such that 3 is non-active; then we show that x� is not a CPNE:
then, 3 is active in any CPNE and M �M t(1; 1; 1) and Lemma 5 imply that y = (0; 1; 1)
in any CPNE.
The pro�ts of 1 and 3 with x� are P d1 and zero, respectively, and now we prove that
x01 = (0; 1), x

0
3 = (1; 1) is a NE of G

b
1;3(x

�
2) which both 1 and 3 prefer to (x

�
1;x

�
3). About

x03, we know that it is a best reply to x
0
1. About x

0
1, notice that it generates y = (0; 1; x

�
23)

and then 1�s pro�t is P t1(0; 1; x
�
23), while x1 = (0; 0) generates y = (0; 0; x�23) and then

1�s pro�t is either P d1 or P
t
1(0; 0; x

�
23), depending on whether M � M t(0; 0; x�23) or M >

M t(0; 0; x�23); since P
t
1(0; 1; x

�
23) � P t1(0; 1; 1) > P d1 and P

t
1(0; 1; x

�
23) > P t1(0; 0; x

�
23), in

either case 1 prefers x01 to x1 = (0; 0). Regarding x1 = (1; 1) and x1 = (1; 0), they
generate y = (x�21; 1; x

�
23) and y = (x�21; 0; x

�
23), respectively. If x�21 = 0, there is no

di¤erence with respect to the comparison between x01 and x1 = (0; 0). If x
�
21 = 1; then 3

is excluded and 1 gains P d1 . But since P
t
1(0; 1; x

�
23) � P t1(0; 1; 1) > P d1 holds, we infer that

x01 is 1�s unique best reply against x
0
3. Thus (x

0
1;x

0
3) is a NE of G

b
1;3(x

�
2) which Pareto

dominates (x�1;x
�
3), as the pro�ts of 1 and 3 are P

t
1(0; 1; x

�
23) > P

d
1 and P

t
3(0; 1; x

�
23) > 0

respectively. As a consequence, x� is not a CPNE and 3 is active in any CPNE.
Step 2 If P t1(0; 1; 1) > P

d
1 , then (for instance) x

�
1 = x

�
2 = (0; 1), x

�
3 = (1; 1) is a CPNE.

Proof. In order to verify that x� is a NE, it su¢ ces to notice that (i) 1 could exclude 3
(for some values of M), but P t1(0; 1; 1) > P

d
1 and thus he prefers to play x13 = 1; (ii) 2

cannot exclude 3, given x�1 and x
�
3, and so maximizes the own pro�t by playing x23 = 1;

(iii) 3 is playing the own weakly dominant strategy.
In order to verify that x� is a CPNE, we examine Gb1;2(1; 1), G

b
1;3(0; 1), G

b
2;3(0; 1).
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� In Gb1;2(1; 1), publisher 1 cannot make a pro�t higher than P t1(0; 1; 1) if 3 is non-
active, as P d1 < P

t
1(0; 1; 1). Thus y12 = 0, and the pro�t of 1 may be higher than

P t1(0; 1; 1) only if y23 = 0. But this cannot occur since 2 plays x23 = 1 in any NE,
as x�32 = 1.

� In Gb1;3(0; 1), 3 cannot earn more than P t3(0; 1; 1), as that is his highest feasible
pro�t.48

� In Gb2;3(0; 1), 3 cannot earn more than P t3(0; 1; 1), as that is his highest feasible
pro�t.

Step 3 If P d1 > P
t
1(0; 1; 1), then 3 is non-active in any CPNE.

Proof. Suppose that x� is a CPNE such that 3 is active; then Lemma 5 implies y� =
(0; 1; 1) and hence the pro�ts of 1 and 2 are P t1(0; 1; 1) and P

t
2(0; 1; 1), respectively. We

now prove that x01 = x02 = (1; 1) is a NE in Gb1;2(1; 1) which both 1 and 2 prefer to
(x�1;x

�
2). When 2 plays x

0
2, 1�s pro�t from playing x01 or x1 = (1; 0) is P d1 ; if instead

1 plays x1 = (0; 1) or x1 = (0; 0), then he earns P t1(0; 1; 1), or P
t
1(0; 0; 1), or P

d
1 . The

assumption P d1 > P
t
1(0; 1; 1) guarantees that x

0
1 is a best reply to x

0
2, and a very similar

argument reveals that x02 is a best reply to x
0
1. Thus (x

0
1;x

0
2) is a NE of G

b
1;2(1; 1) which

Pareto dominates (x�1;x
�
2): 3 is non-active in this NE and the pro�ts of 1 and 2 are

P d1 > P
t
1(0; 1; 1) and P

d
2 > P

t
2(0; 1; 1) respectively. As a consequence, x

� is not a CPNE
and there exists no CPNE such that 3 is active.
Step 4 If P d1 > P

t
1(0; 1; 1), then (for instance) x

�
1 = x

�
2 = (1; 1), x

�
3 = (0; 0) is a CPNE.

Proof. When M �M t(0; 0; 0), it is clear that x� is a NE, since no �rm can individually
modify the fact that 3 is not going to be active. For M > M t(0; 0; 0), x� is a NE since
P d1 > P

t
1(0; 0; 0) and P

d
2 > P

t
2(0; 0; 0) hold.

In order to verify that x� is a CPNE, we examine Gb1;2(0; 0), G
b
1;3(1; 1), G

b
2;3(1; 1).

� In Gb1;2(x�3), 1 and 2 cannot both increase their pro�t, as they gain M in aggregate
with (x�1;x

�
2).

49

� In Gb1;3(1; 1), if 3 is active, then x12 = 0 must hold. Furthermore, x32 = 1 in any NE
as x�23 = 1. Thus y23 = 1 and the highest pro�t 1 can make is P

t
1(0; 1; 1), which is

smaller than P d1 by assumption.

� In Gb2;3(1; 1), if 3 is active, then x21 = 0 must hold. Furthermore, x31 = 1 in any NE
as x�13 = 1. Thus y13 = 1 and the highest pro�t 2 can make is P

t
2(0; 1; 1), which is

smaller than P d2 .
48As a general result, if x� is such that y = (0; 1; 1), then in Gb1;3(x

�
2) and G

b
2;3(x

�
1) publisher 3 cannot

earn more than P t3(0; 1; 1), as that is his highest feasible pro�t.
49As a general result, if x� is such that 3 is non-active then 1 and 2 cannot both increase their pro�ts

in Gb1;2(x
�
3), as they gain M in aggregate with (x�1;x

�
2).
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The proof for the case of M t(1; 1; 1) < M �M t(1; 1; 0)

Step 1 There exists a CPNE such that 3 is inactive if and only if

P d1 � P t1(0; 1; 0) or
�
P d1 � P t1(1; 1; 1) and P d2 � P t2(0; 0; 1)

�
(33)

Proof. SinceM t(1; 1; 1) < M �M t(1; 1; 0), if a CPNE x� is such that 3 is inactive, then
y�12 = 1 and x

�
13 = 0 and/or x

�
23 = 0, otherwise M > M t(y) holds if 3 plays x3 = (1; 1). In

terms of (x�1;x
�
2), this is equivalent to (x

�
1 = (1; 1);x

�
2 = (1; 0)), or (x

�
1 = (1; 0);x

�
2 = (1; 1)),

or (x�1 = (1; 0);x
�
2 = (1; 0)).

� Step 1.1 There exists a CPNE such that 3 is inactive and x�1 = (1; 1);x�2 = (1; 0) if
and only if P d1 � P t1(0; 1; 0).

About Gb1;2(x
�
3), see footnote 49.

Proof. In Gb1;3(1; 0), 3 is active if and only if x12 = 0. In the case of P t1(0; 1; 0) > P d1 ,
then x01 = (0; 1), x

0
3 = (1; 0) is a NE which Pareto dominates (x

�
1;x

�
3) and this eliminates

the candidate CPNE. If instead P t1(0; 1; 0) � P d1 , then there exists no NE of Gb1;3(1; 0) in
which 1 earns a pro�t higher than P d1 .
In Gb2;3(1; 1), 3 is active if and only if x2 = x3 = (1; 1) or x21 = 0. In either case the

pro�t of 2 cannot be higher than P d2 . First, P
d
2 > P

t
2(1; 1; 1) holds, which rules out the

�rst case. For the second case, given that x�13 = 1, 3 plays x31 = 1 in any NE and thus
y = (0; 1; 1) or y = (0; 1; 0); but in each case 2 earns less than P d2 .
Therefore, we conclude that there exists no CPNE such that 3 is inactive and x�1 =

(1; 1);x�2 = (1; 0) if P
d
1 < P

t
1(0; 1; 0). If P

d
1 � P t1(0; 1; 0), the pro�le x�1 = (1; 1), x�2 = (1; 0),

x�3 = (0; 0) (for instance) is a NE and a CPNE. �

� Step 1.2 There exists a CPNE such that 3 is inactive and x�1 = (1; 0), x�2 = (1; 1)
if and only if P d1 � P t1(1; 1; 1) and P

d
2 � P t2(0; 0; 1). Then the pro�le x

�
1 = (1; 0),

x�2 = (1; 1), x
�
3 = (0; 0) (for instance) is a CPNE.

Proof. About Gb1;2(x
�
3), see footnote 49.

In Gb1;3(1; 1), 3 is active if and only if x1 = x3 = (1; 1) or x12 = 0. In particular,
x01 = x

0
3 = (1; 1) is a NE which Pareto dominates (x

�
1;x

�
3) if and only if P

t
1(1; 1; 1) > P

d
1 .

If instead P d1 � P t1(1; 1; 1), then there is no NE of Gb1;3(1; 1) in which 1 earns more than
P d1 . If x12 = 0, then P t1(0; 1; 1) is the highest feasible equilibrium pro�t for 1 (since 3
plays x32 = 1 in any NE given that x�23 = 1) but P t1(1; 1; 1) > P t1(0; 1; 1). Therefore, if
P d1 � P t1(1; 1; 1), there exists no NE of Gb1;3(1; 1) in which 1 earns a pro�t higher than P d1 .
In Gb2;3(1; 0), 3 is active if and only if x21 = 0. In the case of P

t
2(0; 0; 1) > P

d
2 , then

x02 = (0; 1), x
0
3 = (0; 1) is a NE which Pareto dominates (x

�
2;x

�
3) and this eliminates the
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candidate CPNE. If instead P d2 � P t2(0; 0; 1), then there exists no NE of G
b
2;3(1; 0) in

which 2 earns a pro�t higher than P d2 .
Therefore, we conclude that there exists no CPNE such that 3 is inactive and x�1 =

(1; 0);x�2 = (1; 1) if P d1 < P t1(1; 1; 1) or P
d
2 < P t2(0; 0; 1). If P

d
1 � P t1(1; 1; 1) and P

d
2 �

P t2(0; 0; 1), then the pro�le x
�
1 = (1; 0), x

�
2 = (1; 1), x

�
3 = (0; 0) (for instance) is a NE and

a CPNE in which 3 is non-active. �

� Step 1.3 If there exists a CPNE such that 3 is inactive and x�1 = x�2 = (1; 0), then
also x�1 = (1; 1), x

�
2 = (1; 0), x

�
3 = (0; 0) is a CPNE with the same outcome.

Proof. Consider the candidate equilibrium in which 3 is inactive and x�1 = x�2 = (1; 0).
In Gb1;3(1; 0), 3 is active if and only if x12 = 0. If P t1(0; 1; 0) > P d1 , then x

0
1 = (0; 1),

x03 = (1; 0) is a NE which Pareto dominates (x�1;x
�
3) and this eliminates the candidate

CPNE. Hence, P d1 � P t1(0; 1; 0) is a necessary condition to have such a CPNE. But, from
step 1.1, this condition is su¢ cient for the existence of a CPNE with the same outcome,
for instance x�1 = (1; 1), x

�
2 = (1; 0), x

�
3 = (0; 0). �

Step 2 There exists a CPNE such that 3 is active if and only if (33) is violated. In
such a case, the unique CPNE is x�1 = x

�
2 = (0; 1), x

�
3 = (1; 1) and thus y

� = (0; 1; 1).
Proof. If 3 is active, then y = (0; 1; 1) or y = (1; 1; 1) in any CPNE. However, it is simple
to see that x1 = x2 = x3 = (1; 1) is not a NE of Gb because 2 can exclude 3 by playing
x2 = (1; 0) and P d2 > P

t
2(1; 1; 1). Thus, x2 = (1; 0) is 2�s best reply given x1 = x3 = (1; 1).

In order to verify that x� is a CPNE if and only if (33) does not hold, we examine
Gb1;2(1; 1), G

b
1;3(0; 1), G

b
2;3(0; 1).

� About Gb1;3(x�2) and Gb2;3(x�1), see footnote 48.

� About Gb1;2(1; 1), it is useful to see the normal form of this game:

x1nx2 x2 = (1; 0) x2 = (0; 1) x2 = (1; 1) x2 = (0; 0)

(1; 0) P d1 ; P
d
2 P t1(0; 0; 1); P

t
2(0; 0; 1) P d1 ; P

d
2 P t1(0; 0; 0); P

t
2(0; 0; 0)

(0; 1) P t1(0; 1; 0); P
t
2(0; 1; 0) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(0; 1; 0); P

t
2(0; 1; 0)

(1; 1) P d1 ; P
d
2 P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(1; 1; 1); P

t
2(1; 1; 1) P t1(0; 1; 0); P

t
2(0; 1; 0)

(0; 0) P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(0; 0; 0); P

t
2(0; 0; 0)

� The only (x1;x2) in which both 1 and 2 earn more than P t1(0; 1; 1); P t2(0; 1; 1) are
x1 = x2 = (1; 1), and the (x1;x2) which lead to the exclusion of 3. However,
x1 = x2 = (1; 1) is not a NE since P d2 > P

t
2(1; 1; 1). On the other hand, x

0
1 = (1; 1),

x02 = (1; 0) is a NE which Pareto dominates x
�
1 = x

�
2 = (0; 1) if P

d
1 � P t1(0; 1; 0), while
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x01 = (1; 0), x
0
2 = (1; 1) is a NE which Pareto dominates (x

�
1;x

�
2) if P

d
1 � P t1(1; 1; 1)

and P d2 � P t2(0; 0; 1).

Therefore, x� is a CPNE if and only if (33) is not satis�ed. In order to see that x�

is the unique CPNE in this case, notice that (i) we have proved that y� = (0; 1; 1),
thus it is necessary that x3 = (1; 1) and x13 = x23 = 1; (ii) if x12 = 1, then 2 has
an incentive to play x2 = (1; 0) (which induces 3�s exclusion), as noted above; (iii)
if x21 = 1, then 1 has an incentive to play x1 = (1; 1) or x1 = (1; 0), which implies
a y di¤erent from (0; 1; 1).

The proof for the case of M t(1; 1; 0) < M �M t(1; 0; 1)

Step 1 A CPNE such that 3 is non-active exists if and only if

P d1 � P t1(1; 1; 1) and P d2 � P t2(0; 0; 1) (34)

Proof. Suppose that a CPNE x� is such that 3 is inactive; then y�12 = 1 and x�13 = 0,
otherwise M > M t(y) holds if 3 plays x3 = (1; 1); thus, either x�1 = x�2 = (1; 0) or
x�1 = (1; 0), x

�
2 = (1; 1).

In the case of x�1 = x
�
2 = (1; 0), we �nd that x

0
1 = x

0
3 = (1; 1) is a NE in G

b
1;3(1; 0) which

both 1 and 3 prefer to (x�1;x
�
3). Indeed, given x

0
3, 1 can earn P

t
1(0; 0; 0), or P

t
1(0; 1; 0),

or P d1 , or P
t
1(1; 1; 0), and P

t
1(1; 1; 0) > P

d
1 holds, which implies that x

0
1 is 1�s unique best

reply to x03. The NE (x
0
1;x

0
3) Pareto dominates (x

�
1;x

�
3), as the pro�ts of 1 and 3 are

P t1(1; 1; 0) > P d1 and P
t
3(1; 1; 0) > 0 respectively. As a consequence, there is no CPNE

x� such that 3 is inactive and x�2 = (1; 0).
In the case of x�1 = (1; 0) and x

�
2 = (1; 1), we examine G

b
1;3(1; 1) and G

b
2;3(1; 0), as footnote

49 applies to Gb1;2(x
�
3).

� In Gb1;3(1; 1), if P t1(1; 1; 1) > P d1 then x
0
1 = x03 = (1; 1) is a NE which 1 and 3

prefer to (x�1;x
�
3). Indeed, given x

0
3, 1 can earn P

t
1(0; 0; 1), or P

t
1(0; 1; 1), or P

d
1 ,

or P t1(1; 1; 1), and if P
t
1(1; 1; 1) > P d1 then x

0
1 is a best reply to x

0
3. Thus (x

0
1;x

0
3)

is a NE of Gb1;3(x
�
2) which Pareto dominates (x

�
1;x

�
3), as the pro�ts of 1 and 3 are

P t1(1; 1; 1) > P d1 and P
t
3(1; 1; 1) > 0 respectively. As a consequence, x� is not a

CPNE. If instead P t1(1; 1; 1) � P d1 , then y23 = 0 is a necessary condition for the
existence of a pro�table deviation for 1. But this cannot occur in a NE since 3 plays
x32 = 1, given x�23 = 1. Therefore, if P t1(1; 1; 1) � P d1 , there is no NE of G

b
1;3(x

�
2)

which Pareto dominates (x�1;x
�
3).

� In Gb2;3(1; 0), we always have y13 = 0. Therefore, y12 = 0 needs to hold for 3 to
be active. In the case of P t2(0; 0; 1) > P

d
2 , then x

0
2 = x

0
3 = (0; 1) a NE in G

b
2;3(1; 0)

which both 2 and 3 prefer to (x�2;x
�
3). Indeed, given x

0
3, 2 can earn P

t
2(0; 0; 0), or
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P t2(0; 0; 1), or P
d
2 , and P

t
2(0; 0; 1) > P d2 implies that x

0
2 is a best reply to x

0
3. The

NE (x02;x
0
3) Pareto dominates (x

�
2;x

�
3), as the pro�ts of 2 and 3 are P

t
2(0; 0; 1) > P

d
2

and P t3(0; 0; 1) > 0 respectively; as a consequence, x� is not a CPNE. If instead
P t2(0; 0; 1) � P d2 , then there is no NE in Gb2;3(1; 0) in which 2 earns more than P d2 .

Therefore, a CPNE such that 3 is non-active exists if and only if P d1 � P t1(1; 1; 1) and
P d2 � P t2(0; 0; 1). For instance, x�1 = (1; 0), x�2 = (1; 1), x�3 = (0; 0) is a CPNE.
Step 2 A CPNE such that 3 is active exists if and only if (34) is violated. Precisely,

the unique CPNE is x1 = x2 = (0; 1), x3 = (1; 1) if P d1 > P
t
1(1; 1; 1) and P

t
2(0; 0; 1) > P

d
2 ;

the unique CPNE is x1 = x2 = x3 = (1; 1) if P t1(1; 1; 1) > P
d
1 .

Proof. If x� is a CPNE such that 3 is active, then y� = (0; 1; 1) or y� = (1; 1; 1).
Consider �rst the case of y� = (0; 1; 1).

� About Gb1;3(x�2) and Gb2;3(x�1), see footnote 48

� About Gb1;2(1; 1), it is useful to see the normal form of this game:

x1nx2 x2 = (1; 0) x2 = (0; 1) x2 = (1; 1) x2 = (0; 0)

(1; 0) P d1 ; P
d
2 P t1(0; 0; 1); P

t
2(0; 0; 1) P d1 ; P

d
2 P t1(0; 0; 0); P

t
2(0; 0; 0)

(0; 1) P t1(0; 1; 0); P
t
2(0; 1; 0) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(0; 1; 0); P

t
2(0; 1; 0)

(1; 1) P t1(1; 1; 0); P
t
2(1; 1; 0) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(1; 1; 1); P

t
2(1; 1; 1) P t1(0; 1; 0); P

t
2(0; 1; 0)

(0; 0) P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(0; 0; 0); P

t
2(0; 0; 0)

There are two kinds of joint deviations in Gb1;2(1; 1) depending on whether or not
a deviation induces exclusion of 3. First, a joint deviation that excludes 3 yields
1 and 2 more than P t1(0; 1; 1) and P

t
2(0; 1; 1) if and only if P

d
1 > P t1(0; 1; 1). But

since P t1(1; 1; 0) > P
d
1 , x1 = x2 = (1; 0) is not a NE, and exclusion of 3 may occur

only with x01 = (1; 0), x
0
2 = (1; 1), which is a NE if and only if P

d
1 � P t1(1; 1; 1) and

P t2(0; 0; 1) � P d2 . Under these inequalities, the pro�ts of 1 and 2 are higher than
P t1(0; 1; 1) and P

t
2(0; 1; 1), respectively, and x

� is not a CPNE. Consider now a joint
deviation that does not exclude 3. Then, x13 = x23 = 1 must hold in any NE of
Gb1;2(1; 1) and therefore it must be the case that x

0
1 = x

0
2 = (1; 1). Although it Pareto

dominates (x�1;x
�
2), (x

0
1;x

0
2) is a NE if and only if P

t
1(1; 1; 1) � P d1 . Summarizing, x�

is a CPNE if and only if P d1 > P
t
1(1; 1; 1) and P

t
2(0; 0; 1) > P

d
2 . In order to see that

x� is the unique CPNE in this case, notice that (i) we have proved that y� = (0; 1; 1),
thus it is necessary that x3 = (1; 1) and x13 = x23 = 1; (ii) if x12 = 1, then 2 has
an incentive to play x2 = (1; 1), since P t2(1; 1; 1) > P

t
2(0; 1; 1); (iii) if x21 = 1, then

1 has an incentive to play x1 = (1; 0), which implies the exclusion of 3.
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Now consider the case of y = (1; 1; 1), which requires x�1 = x�2 = x�3 = (1; 1). From
the normal form of Gb1;2(1; 1), we see that x

�
1 is a best reply given (x

�
2;x

�
3) if and only if

P t1(1; 1; 1) � P d1 .

� In Gb1;2(1; 1), there is no NE in which 3 is inactive, as neither x1 = x2 = (1; 0) nor
x1 = (1; 0), x2 = (1; 1) is a NE. Therefore x13 = x23 = 1, and in no NE the pro�ts
of 1 and 2 are higher than P t1(1; 1; 1).

� In Gb1;3(1; 1), given that publisher 3 is active, a necessary condition for 1 to earn
more than P t1(1; 1; 1) is that y23 = 0. But this cannot occur since in any NE 3 plays
x32 = 1, as x�23 = 1.

� In Gb2;3(1; 1), given that publisher 3 is active, a necessary condition for 2 to earn
more than P t2(1; 1; 1) is that y13 = 0. But this cannot occur since in any NE 3 plays
x31 = 1, as x�13 = 1.

Therefore, x�1 = x
�
2 = x

�
3 = (1; 1) is a CPNE if and only if P

t
1(1; 1; 1) � P d1 .

The proof for the case of M t(1; 0; 1) < M �M t(1; 0; 0)

Step 1 Publisher 3 is active in any CPNE
Proof. Suppose that x� is such that 3 is inactive; then x�1 = x�2 = (1; 0), otherwise
M > M t(y) holds if 3 plays x3 = (1; 1). However, x01 = (1; 1), x03 = (1; 1) is a NE in
Gb1;3(1; 0) which both 1 and 3 prefer to (x

�
1;x

�
3). About x

0
1, notice that given x

0
3, 1 can earn

P t1(0; 0; 0), or P
t
1(0; 1; 0), or P

d
1 , or P

t
1(1; 1; 0); since P

t
1(1; 1; 0) > P d1 , we �nd that x

0
1 is

1�s (unique) best reply to x03. Thus (x
0
1;x

0
3) is a NE of G

b
1;3(1; 0) which Pareto dominates

(x�1;x
�
3) as the pro�ts of 1 and 3 are P

t
1(1; 1; 0) > P

d
1 and P

t
3(1; 1; 0) > 0 respectively. As

a consequence, x� is not a CPNE.
Step 2 The unique CPNE is x1 = x2 = x3 = (1; 1)

Proof. By step 1, publisher 3 is active in any CPNE x� and thus y� = (0; 1; 1) or
y� = (1; 1; 1). Furthermore, y�12 = 1 because x1 = x2 = (1; 1) is a NE in G

b
1;2(1; 1) which

Pareto dominates the NE x1 = x2 = (0; 1) as can be seen from the following normal form
of the game Gb1;2(1; 1):

x1nx2 x2 = (1; 0) x2 = (0; 1) x2 = (1; 1) x2 = (0; 0)

(1; 0) P d1 ; P
d
2 P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(1; 0; 1); P

t
2(1; 0; 1) P t1(0; 0; 0); P

t
2(0; 0; 0)

(0; 1) P t1(0; 1; 0); P
t
2(0; 1; 0) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(0; 1; 0); P

t
2(0; 1; 0)

(1; 1) P t1(1; 1; 0); P
t
2(1; 1; 0) P t1(0; 1; 1); P

t
2(0; 1; 1) P t1(1; 1; 1); P

t
2(1; 1; 1) P t1(0; 1; 0); P

t
2(0; 1; 0)

(0; 0) P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(0; 0; 1); P

t
2(0; 0; 1) P t1(0; 0; 0); P

t
2(0; 0; 0)

Therefore, x�1 = x
�
2 = x

�
3 = (1; 1) is the unique candidate for CPNE, and it is simple to

see that it is a NE. In order to see that x� is a CPNE we examine G1;2(1; 1), G1;3(1; 1),
G2;3(1; 1).
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� In G1;2(1; 1), 1 and 2 can exclude 3 only by playing x1 = x2 = (1; 0), but this is not
a NE of Gb1;2(1; 1) since x1 = (1; 1) is 1�s unique best reply to x2 = (1; 0). If instead
1 and 2 do not play x1 = x2 = (1; 0), 3 is active and in order for the pro�t of 1 to
be higher than P t1(1; 1; 1), y23 = 0 is necessary. But this cannot occur since 2 plays
x23 = 1 in any NE, as x�32 = 1.

� In G1;3(1; 1), 3 is certainly active given that x�2 = (1; 1), and in order for his pro�t
to be higher than P t3(1; 1; 1), y12 = 0 is necessary . But this cannot occur since 1
plays x12 = 1 in any NE, as x�21 = 1.

� In G2;3(1; 1), 3 is certainly active given that x�1 = (1; 1), and in order for his pro�t
to be higher than P t3(1; 1; 1) y12 = 0. is necessary. But this cannot occur since 2
plays x21 = 1 in any NE, as x�12 = 1.

11.9 Proof of Proposition 4

Proof of (i). We start by showing that (X�
1 ; X

�
2 ; X

�
3 ) is a NE of G

h. First notice that
publisher i�s choice of xi has no e¤ect since x�j = x�k = 0. Second, publisher i cannot
increase his pro�t by playing (xij; xik) 6= x�i since x� is a NE of Gb.
In order to show that X� is a CPNE of Gh, consider Ghi;j(X

�
k) and notice that since x

�

is a CPNE in Gb, there exists no NE (Xi; Xj) of Ghi;j(X
�
k) which is Pareto improving for

both i and j if xi = xj = 0. Furthermore, since x�k = 0, the only e¤ect of xi and xj can
be that of inducing yij = 1 (when xi = xj = 1), but i and j can obtain the same e¤ect
also by playing xi = xj = 0 and xi and xj such that xij = xji = 1.
Proof of (ii). This proof is split in �ve steps

Step 1 Suppose that M is between M t(1; 1; 1) and M t(1; 1; 0) and P t1(1; 1; 1) > P
d
1 .

Then X̂ = (X̂1; X̂2; X̂3) is a CPNE of Gh, even when no full interconnection
CPNE exists in Gb Proof. We �rst show that X̂ is a NE ofGh. Since xj = xk = (0; 0),
publisher i�s choice of xi = (xij; xik) has no e¤ect; since (x1; x2; x3) = (1; 1; 1) is the NE
of Gm, publisher i cannot increase his pro�t by playing xi = 0 instead of xi = 1.
Now we show that X̂ is a CPNE of Gh. Regarding Gh1;2(X̂3), 1 and 2 may have the
possibility to exclude 3 but then the pro�t of 1 decreases since P t1(1; 1; 1) > P

d
1 . If instead

3 is not excluded, then y23 = 0 is necessary for 1 to earn more than P t1(1; 1; 1), but y23 = 1
must hold in any NE of Gh1;2(X̂3): given that 3 is active and x̂3 = 1, it is pro�table for
2 to play x2 = 1 to interconnect with 3. Regarding Gh1;3(X̂2), in order for 3 to increase
his pro�t it is necessary that he is active, and in this case 1 may increase his pro�t only
if y23 = 0; but y23 = 1 in any NE given that it is pro�table for 3 to play x3 = 1 and to
interconnect with 2. Regarding Gh2;3(X̂1), y13 = 0 is necessary for 2 to increase his pro�t
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but this cannot occur in a NE, given that it is pro�table for 3 to play x3 = 1 and to
interconnect with 1.50

In steps 2-4 below, we show that for M > M t(1; 1; 1), if P d1 > P t1(1; 1; 1) then the
unique CPNE outcome of Gh is equal to the CPNE outcome of Gb.

Step 2 There exists a CPNE in Gh such that y = (0; 1; 1) if and only if it exists in
Gb Proof. We start by proving that there is no CPNE such that y = (0; 1; 1) and x3 = 1.
Indeed, if x3 = 1 then (independently of x31; x32) a NE of Gh1;2(X3) is X1 = X2 = (1; 0; 0),
and 1 and 2 earn P t1(1; 1; 1); P

t
2(1; 1; 1) which are larger than P

t
1(0; 1; 1); P

t
2(0; 1; 1). In

order to see that X1 = X2 = (1; 0; 0) is a NE of Gh1;2(X3), notice that x3 = 1 and
X2 = (1; 0; 0) implies y23 = 1 and 1 is unable to exclude 3; thus interconnecting with 2
and 3 is the best option for 1. The same argument applies to 2 and therefore if y = (0; 1; 1)
in a CPNE of Gh, then x3 = 0 and x3 = (1; 1), which in turn implies x13 = x23 = 1. In
order to verify whether there exists a CPNE of this sort, it is enough to consider only
Gh1;2(X3); and here x1; x2 have the same e¤ect as x12; x21 (that is, we can think without
loss of generality that x1 = x2 = 0). Hence, the same result as in Gb is obtained.

Step 3 There exists a CPNE in Gh which makes 3 inactive if and only if it
exists in Gb Proof. Consider �rst the case ofM t(1; 1; 1) < M �M t(1; 1; 0). We prove
that there exists a CPNE in Gh in which 3 is inactive if and only if P d1 > P

t
1(0; 1; 0). In

the case of P d1 > P t1(0; 1; 0), the existence of such a CPNE is delivered by Propositions
3(iiia) and 4(i). If instead P t1(0; 1; 0) > P

d
1 , we show that there is no CPNE in which 3 is

excluded. We distinguish three cases, depending on the values of x2; x23.
If X2 is such that x2 = 1 (independently of x23) then X1 = X3 = (1; 0; 0) is a NE of
Gh1;3(X2) and both 1 and 3 improve their pro�ts as P t1(1; 1; 1) > P

t
1(0; 1; 0) > P

d
1 .

If x2 = 0, x23 = 1, then exclusion of 3 requires x12 = x21 = 1 but in Gh1;3(X2), X1 =

(0; 1; 1), X3 = (0; 1; 1) is a NE and both 1 and 3 improve their pro�ts as P t1(1; 1; 1) > P
d
1 .

If x2 = x23 = 0, then X1 = (0; 0; 1), X3 = (0; 1; 0) is a NE in Gh1;3(X2) and both 1 and 3
improve their pro�ts as P t1(0; 1; 0) > P

d
1 .

Now consider the case of M t(1; 1; 0) < M < M t(1; 0; 1). We prove that there exists
a CPNE of Gh in which 3 is inactive if and only if P d1 > P t1(1; 1; 1), as in G

b. If P d1 >
P t1(1; 1; 1), then existence follows from Propositions 3(iva) and 4(i). If instead P

t
1(1; 1; 1) >

P d1 , we show that there exists no CPNE in which 3 is excluded; notice that for 3 to be
inactive it is necessary that y12 = 1 and y13 = 0, which implies x12 = x21 = 1, x1 = 0,
x13 = 0.

50This proof does not require that the inequalityM �M(1; 1; 0) is satis�ed, but ifM > M(1; 1; 0) then
we know from Propositions 3(ivb) and 4(i) that a full interconnection CPNE exists in Gh if P t1(1; 1; 1) >
P d1 .
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If x2 = 1 (independently of x23), a NE in Gh1;3(X2) is X1 = X3 = (1; 0; 0) and both 1 and
3 improve their pro�ts since P t1(1; 1; 1) > P

d
1 .

If x2 = x23 = 0, then X1 = (0; 1; 1), X3 = (0; 1; 0) is a NE of Gh1;3(X2) and both 1 and 3
improve their pro�ts as P t1(1; 1; 0) > P

t
1(1; 1; 1) > P

d
1 .

If x2 = 0, x23 = 1, then X1 = (0; 1; 1), X3 = (0; 1; 1) is a NE in Gh1;3(X2) and both 1 and
3 improve their pro�ts.
Finally, the case of M t(1; 0; 1) < M � M t(1; 0; 0) is straightforward, as the exclusion

of 3 requires X1 = X2 = (0; 1; 0), but X1 = (0; 1; 1), X3 = (0; 1; 0) is a NE of Gh1;3(X2) and
both 1 and 3 improve their pro�ts. Thus, there exists no CPNE in which 3 is inactive.

Step 4 For M between M t(1; 1; 1) and M t(1; 0; 1) there exists no CPNE with full
interconnection in Gh if P d1 > P

t
1(1; 1; 1) Proof. Consider �rst the case ofM between

M t(1; 1; 1) and M t(1; 1; 0). No full interconnection exists since X1 = X2 = (0; 1; 0) a NE
in Gh1;2(X3) and yields P d1 ; P

d
2 , so that both 1 and 2 improve. Precisely, X1 = (0; 1; 0) is

a best reply for 1 because there is no y which makes 3 active and yields 1 more than P d1 ,
given that P d1 > P

t
1(1; 1; 1) > P

t
1(0; 1; 0); X2 is a best reply for 2 since P d2 > P

t
2(0; 0; 1).

In the case of M between M t(1; 1; 0) and M t(1; 0; 1), full interconnection requires
either x3 = 1, or (x3 = 0; x31 = x32 = 1). In the �rst case, in Gh1;2(X3), X1 = (0; 1; 0),
X2 = (1; 1; 0) leads to y = (1; 0; 1) and exclusion of 3. It is a NE since (i) for 1, y23 = 1
and P d1 > P t1(1; 1; 1) � P t1(y12; y13; 1); (ii) for 2, y13 = 0 and P d2 > P t2(0; 0; 1). In the
second case, in Gh1;2(X3), X1 = (0; 1; 0), X2 = (0; 1; 1) leads to y = (1; 0; 1) and exclusion
of 3; it is a NE by the same arguments described above.
Therefore, for M between M t(1; 1; 1) and M t(1; 0; 1), there is no full interconnection

CPNE in Gh if P d1 > P t1(1; 1; 1). In the case of M between M t(1; 0; 1) and U � I12
we already have full interconnection in Gb (and hence in Gh) independently of whether
P d1 > P

t
1(1; 1; 1) holds or not.

Step 5 For M smaller than M t(1; 1; 1), Gh has the same CPNE outcome as Gb

Proof. If M t(0; 1; 0) < M � M t(1; 1; 1) and P t1(0; 1; 1) > P d1 , then we can argue as in
the proof of Proposition 3 to show that 3 is active in any CPNE. Indeed, if (X�

1 ; X
�
2 ; X

�
3 )

is a strategy pro�le such that 3 is inactive, then X 0
1 = (0; 0; 1), X

0
3 = (1; 1; 1) is a NE in

Gh1;3(X
�
2 ) which increases the payo¤ of both 1 and 3. Precisely, X

0
3 = (1; 1; 1) is a weakly

dominant strategy for 3. If 1 plays x1 = 1, then either 3 is excluded (if x�2 = 1) or x1 = 1
is equivalent to x13 = 1; since P t1(0; 1; 1) > P

d
1 , 1 prefers to play X

0
1 = (0; 0; 1) rather than

some X1 such that x1 = 1 (in the same way as we prove that 1 prefers to play x12 = 0
rather than x12 = 1).
If M t(0; 1; 0) < M �M t(1; 1; 1) and P t1(0; 1; 1) < P

d
1 , then 3 is inactive in any CPNE.

If 3 is active, then it is necessary that x1 = 0; otherwise, publisher 2 would play x2 = 1 in
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order to exclude 3. Likewise, it is necessary that x2 = 0; otherwise, 3 would play x3 = 1
in order to interconnect with 2, and then 1 would also play x1 = 1 in order to exclude 3
given that P t1(0; 1; 1) < P

d
1 . It is also necessary that y12 = 0, and by arguing as in Lemma

5 we can prove that y = (0; 1; 1) in any CPNE in which 3 is active. However, in Gh1;2(X3)

there exists a NE X1 = X2 = (0; 1; 1) (we can argue like in the proof of Proposition 3)
which excludes 3 and makes better o¤ both 1 and 2.

11.10 Proof of Proposition 5

In the proof, we consider �ve di¤erent cases depending on the level of M .

11.10.1 When M t(0; 1; 0) < M �M t(0; 0; 1)

Proof. For these values of M , the pro�les x = (1; 1; 1),51 x = (1; 1; 0),52 x = (0; 1; 1) are
not NE. Hence, the platform can make money only by inducing the publishers to play x =
(1; 0; 1). The publishers�pro�ts with x = (1; 0; 1) are P t1(0; 1; 0)�f1; P t2(0; 1; 0); P t3(0; 1; 0)�
f3, and we prove that x = (1; 0; 1) is the unique CPNE if

f1 < P
t
1(0; 1; 0)� P d1 ,53 f2 large, f3 < P

t
3(0; 1; 0) (35)

Indeed, it is readily seen that x = (1; 0; 1) is NE when (35) is satis�ed: (i) by playing
x1 = 0, 1 could exclude 3 and obtain P d1 ; (ii) 2 is not going to interconnect since f2 is
large; (iii) 3 is not active and obtains 0 if he does not interconnect. In order to verify that
x = (1; 0; 1) is also a CPNE, we need to examine Gm1;2(1); G

m
1;3(0); G

m
2;3(1), but notice that

the analysis is simple for Gm1;2(1); G
m
2;3(1), as f2 large implies that 2 plays x2 = 0; thus the

unique NE of Gm1;2(1) is (x1; x2) = (1; 0) and the unique NE of G
m
2;3(1) is (x2; x3) = (0; 1):

Gm1;2(1) :

1n2 x2 = 0 x2 = 1

x1 = 0 P d1 ; P
d
2 P d1 ; P

d
2 � f2

x1 = 1 P t1(0; 1; 0)� f1; P t2(0; 1; 0) P d1 � f1; P d2 � f2

Gm2;3(1) :

2n3 x3 = 0 x3 = 1

x2 = 0 P d2 ; 0 P t2(0; 1; 0); P
t
3(0; 1; 0)� f3

x2 = 1 P d2 � f2; 0 P d2 � f2;�f3

Things are less obvious in Gm1;3(0):

Gm1;3(0) :

1n3 x3 = 0 x3 = 1

x1 = 0 P d1 ; 0 P d1 ;�f3
x1 = 1 P d1 � f1; 0 P t1(0; 1; 0)� f1; P t3(0; 1; 0)� f3

51Publisher 3 will not pay for interconnection, given that later on he will be inactive.
52There is no point in interconnection for publisher 2, given that 3 will be inactive anyway.
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Here both (x1; x3) = (1; 1) and (x1; x3) = (0; 0) are NE, but the former strictly Pareto
dominates the latter since f1 < P (0; 1; 0)�P d1 and f3 < P t3(0; 1; 0). Hence x = (1; 0; 1) is a
CPNE, and is actually the unique CPNE given (35). Indeed, the only possible alternative
is x = (0; 0; 0) [we mentioned above that x = (1; 1; 1), x = (1; 1; 0), x = (0; 1; 1) are not
even NE], but Gm1;3(0) reveals that x = (0; 0; 0) is not a CPNE because (x1; x3) = (1; 1) is
a NE of Gm1;3(0) which strictly Pareto dominates (x1; x3) = (0; 0).
Let R denote the revenue of the platform. When M t(0; 1; 0) < M � M t(0; 0; 1),

R can be made arbitrarily close to P t1(0; 1; 0) + P
t
3(0; 1; 0) � P d1 , and thus for simplicity

we consider R equal to P t1(0; 1; 0) + P
t
3(0; 1; 0) � P d1 .54 The same remark applies in the

following of the analysis.

11.10.2 When M t(0; 0; 1) < M �M t(0; 0; 0)

Proof. For these values of M the pro�les x = (1; 1; 1) and x = (1; 1; 0) are not NE, and
thus the platform can make money only by inducing the publishers to play x = (1; 0; 1)
or x = (0; 1; 1).
First we show that if the fees satisfy (35), then x = (1; 0; 1) is the unique CPNE. If (35)

holds, it is still true (as above) that x = (1; 0; 1) is a CPNE since the only di¤erence in
Gm1;2(1); G

m
1;3(0); G

m
2;3(1) with respect to the above analysis occurs in G

m
1;2(1), when x1 = 0

and x2 = 1, but (x1; x2) = (0; 1) is not a NE of Gm1;2(1) given f2 large. Furthermore,
Gm1;3(0) still reveals that x = (0; 0; 0) is not a CPNE, and x = (0; 1; 1) is not a NE given
that f2 is large. Hence, the revenue the platform can make by inducing x = (1; 0; 1) is
(again) P t1(0; 1; 0) + P

t
3(0; 1; 0)� P d1 .

If
f1 large, f2 < P

t
2(0; 0; 1)� P d2 , f3 < P

t
3(0; 0; 1) (36)

holds, then the pro�le x = (0; 1; 1) is the unique CPNE. The publishers� pro�ts with
x = (0; 1; 1) are P t1(0; 0; 1); P

t
2(0; 0; 1) � f2; P t3(0; 0; 1) � f3 and we can see that it is a

NE if (36) is satis�ed: (i) 1 is not going to interconnect since f1 is large; (ii) by playing
x2 = 0, 2 could exclude 3 and obtain P d2 ; (iii) 3 is not active and obtains 0 if he does not
interconnect. In order to verify that x = (0; 1; 1) is also a CPNE, we need to examine
Gm1;2(1); G

m
1;3(1); G

m
2;3(0), but notice that the analysis is simple for G

m
1;2(1); G

m
1;3(1), as f1

large implies that 1 plays x1 = 0; thus the unique NE of Gm1;2(1) is (x1; x2) = (0; 1) and
the unique NE of Gm1;3(1) is (x1; x3) = (0; 1).

54Notice that R cannot be larger than P1(0; 1; 0) � P̂1 + P3(0; 1; 0), because if f1 > P1(0; 1; 0) � P̂1
and/or f3 > P3(0; 1; 0) then x = (1; 0; 1) is not a NE.
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Things are less obvious in Gm2;3(0):

Gm2;3(0) :

2n3 x3 = 0 x3 = 1

x2 = 0 P d2 ; 0 P d2 ;�f3
x2 = 1 P d2 � f2; 0 P t2(0; 0; 1)� f2; P t3(0; 0; 1)� f3

Here both (x2; x3) = (1; 1) and (x2; x3) = (0; 0) are NE, but the former strictly Pareto
dominates the latter since f2 < P t2(0; 0; 1)�P d2 and f3 < P t3(0; 0; 1). Hence x = (0; 1; 1) is a
CPNE, and is actually the unique CPNE given (36) because the only possible alternatives
are x = (0; 0; 0) and x = (1; 0; 1), but Gm2;3(0) reveals that x = (0; 0; 0) is not a CPNE,
and x = (1; 0; 1) is not a NE given that f1 is large. Therefore, R is (arbitrarily close to)
P t2(0; 0; 1) + P

t
3(0; 0; 1)� P d2 if the platform induces x = (0; 1; 1).

What does the platform prefer between x = (1; 0; 1) and x = (0; 1; 1)? We need to
compare P t1(0; 1; 0)+P

t
3(0; 1; 0)�P d1 = P t1(0; 0; 0)+P t3(0; 0; 0)�P d1 + 2

3
I13 and P t2(0; 0; 1)+

P t3(0; 0; 1)�P d2 = P t2(0; 0; 0)+P t3(0; 0; 0)�P d2 + 2
3
I23. Since P t1(0; 0; 0)+P

t
3(0; 0; 0)�P d1 =

P t2(0; 0; 0) + P
t
3(0; 0; 0) � P d2 , we conclude that the platform prefers x = (1; 0; 1) because

inducing interconnection of 1 and 3 generates more surplus to 1 and 3 (which can be
extracted) than inducing interconnection of 2 and 3 does to 2 and 3.

11.10.3 When M t(0; 0; 0) < M < M t(1; 1; 1)

Proof. For these values of M , the pro�le x = (1; 1; 1) is not a NE, but x = (1; 1; 0),
x = (1; 0; 1), x = (0; 1; 1) are each a CPNE with a suitable pro�le of fees.
In particular, the pro�le x = (1; 0; 1) is the unique CPNE if

f1 <
1

3
I13, f2 large, f3 <

1

3
I13 (37)

This claim is proved by arguing essentially as in the proof of Step 1. We below report
only Gm1;3(0) because f2 large implies that 2 plays x2 = 0, thus (x1; x2) = (1; 0) is the
unique NE of Gm1;2(1) and (x2; x3) = (0; 1) is the unique NE of G

m
2;3(1):

Gm1;3(0) :

1n3 x3 = 0 x3 = 1

x1 = 0 P t1(0; 0; 0); P
t
3(0; 0; 0) P t1(0; 0; 0); P

t
3(0; 0; 0)� f3

x1 = 1 P t1(0; 0; 0)� f1; P t3(0; 0; 0) P t1(0; 1; 0)� f1; P t3(0; 1; 0)� f3

In this case R = 2
3
I13 (actually, arbitrarily close to 2

3
I13).

The pro�le x = (0; 1; 1) is the unique CPNE if

f1 is large, f2 <
1

3
I23, f3 <

1

3
I23 (38)
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This claim is proved by arguing essentially as in the proof of Step 2. We below report
only G(0)2;3 because f1 large implies that 1 plays x1 = 0, thus (x1; x2) = (0; 1) is the unique
NE of Gm1;2(1) and (x1; x3) = (0; 1) is the unique NE of G

m
1;3(1):

Gm2;3(0) :

2n3 x3 = 0 x3 = 1

x2 = 0 P t2(0; 0; 0); P
t
3(0; 0; 0) P t2(0; 0; 0); P

t
3(0; 0; 0)� f3

x2 = 1 P t2(0; 0; 0)� f2; P t3(0; 0; 0) P t2(0; 0; 1)� f2; P t3(0; 0; 1)� f3

In this case R = 2
3
I23.

The pro�le x = (1; 1; 0) is the unique CPNE if

f1 < P
d
1 � P t1(0; 0; 0), f2 < P

d
2 � P t2(0; 0; 0), f3 is large (39)

In order to prove this claim, we study Gm1;2(0); G
m
1;3(1); G

m
2;3(1):

Gm1;2(0) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 0); P

t
2(0; 0; 0)� f2

x1 = 1 P t1(0; 0; 0)� f1; P t2(0; 0; 0) P d1 � f1; P d2 � f2

Here (x1; x2) = (0; 0) and (x1; x2) = (1; 1) are both NE, but the latter NE strictly Pareto
dominates the former [this implies that x = (0; 0; 0) is not a CPNE].

Gm1;3(1) :

1n3 x3 = 0 x3 = 1

x1 = 0 P t1(0; 0; 0); P
t
3(0; 0; 0) P t1(0; 0; 1); P

t
3(0; 0; 1)� f3

x1 = 1 P d1 � f1; 0 P d1 � f1;�f3

Here x1 = 1 is strictly dominant for publisher 1 and x3 = 0 is strictly dominant for
publisher 3; hence (x1; x3) = (1; 0) is the unique NE.

Gm2;3(1) :

2n3 x3 = 0 x3 = 1

x2 = 0 P t2(0; 0; 0); P
t
3(0; 0; 0) P t2(0; 1; 0); P

t
3(0; 1; 0)� f3

x2 = 1 P d2 � f2; 0 P d2 � f2;�f3

Here x2 = 1 is strictly dominant for �rm 2 and x3 = 0 is strictly dominant for �rm 3;
hence (x2; x3) = (1; 0) is the unique NE.
Since f3 is large, it is obvious that x = (0; 1; 1) and x = (1; 0; 1) are not NE with the

fees in (39). Hence R =M � P t1(0; 0; 0)� P t2(0; 0; 0) = P t3(0; 0; 0) = U3 + 1
3
(M � U).

In order to �nd the optimal fees, the platform needs to compare P t3(0; 0; 0) with
2
3
I13

(since 2
3
I13 >

2
3
I23). For M close to M t(0; 0; 0), P t3(0; 0; 0) is close to 0; for M close to

M t(1; 1; 1), instead, P t3(0; 0; 0) is close to
2
3
I12 � 1

3
I13 � 1

3
I23 which is larger than 2

3
I13 for

some parameters.
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11.10.4 When M t(1; 1; 1) < M �M t(1; 0; 0)

For these values of M , we can argue like in step 3 to show that the platform

� can earn 2
3
I13 by inducing x = (1; 0; 1) with the fees in (37);

� can earn 2
3
I23 by inducing x = (0; 1; 1) with the fees in (38);

� can earn P t3(0; 0; 0) by inducing x = (1; 1; 0) with the fees in (39).

Now we study the revenue the platform can make by inducing x = (1; 1; 1). This
pro�le is a NE if and only if

f1 �
1

3
(I12 + I13), f2 �

1

3
(I12 + I23), f3 � P t3(1; 1; 1) (40)

In order to see whether x = (1; 1; 1) is a CPNE, we study Gm1;2(1); G
m
1;3(1); G

m
2;3(1):

Gm1;2(1) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 1); P

t
2(0; 0; 1)� f2

x1 = 1 P t1(0; 1; 0)� f1; P t2(0; 1; 0) P t1(1; 1; 1)� f1; P t2(1; 1; 1)� f2

here (x1; x2) = (1; 1) is a NE, but for some values of f1; f2 consistent with (40) we �nd
that also (x1; x2) = (0; 0) is a NE and strictly Pareto dominates (x1; x2) = (1; 1); in these
cases x = (1; 1; 1) is not a CPNE. Precisely, x = (1; 1; 1) is not a CPNE if and only if
f1 � 1

3
I13, f2 � 1

3
I23 and f1 > 1

3
(I12 + I13 � 2I23), f2 > 1

3
(I12 + I23 � 2I13).

Gm1;3(1) :

1n3 x3 = 0 x3 = 1

x1 = 0 P t1(0; 0; 0); P
t
3(0; 0; 0) P t1(0; 0; 1); P

t
3(0; 0; 1)� f3

x1 = 1 P d1 � f1; 0 P t1(1; 1; 1)� f1; P t3(1; 1; 1)� f3

Here (x1; x3) = (1; 1) is a NE, but for some values of f1; f3 consistent with (40) we �nd
that also (x1; x3) = (0; 0) is a NE and strictly Pareto dominates (x1; x3) = (1; 1); in these
cases x = (1; 1; 1) is not a CPNE. Precisely, x = (1; 1; 1) is not a CPNE if and only if
f1 � P d1 � P t1(0; 0; 0), f3 � 1

3
I23 and f1 > 1

3
(I12 + I13 � 2I23).

Gm2;3(1) :

2n3 x3 = 0 x3 = 1

x2 = 0 P t2(0; 0; 0); P
t
3(0; 0; 0) P t2(0; 1; 0); P

t
3(0; 1; 0)� f3

x2 = 1 P d2 � f2; 0 P t2(1; 1; 1)� f2; P t3(1; 1; 1)� f3

Here (x2; x3) = (1; 1) is a NE, but for some values of f2; f3 consistent with (40) we �nd
that also (x2; x3) = (0; 0) is a NE and strictly Pareto dominates (x2; x3) = (1; 1). Hence,
x = (1; 1; 1) is not a CPNE if f2 � P d2 �P t2(0; 0; 0), f3 � 1

3
I13 and f2 > 1

3
(I12+ I23� 2I13),
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but actually the �rst condition implies the third one for any M between M t(1; 1; 1) and
M t(1; 0; 0).
Therefore, x = (1; 1; 1) is not a CPNE if at least one of the three sets of conditions

(41)-(43) below is satis�ed. Equivalently, x = (1; 1; 1) is a CPNE if and only if the
following three sets of conditions are all violated [and (40) is satis�ed]

f1 � 1

3
I13, f1 >

1

3
(I12 + I13 � 2I23) and f2 �

1

3
I23, f2 >

1

3
(I12 + I23 � 2I13)(41)

f1 � P d1 � P t1(0; 0; 0); f1 >
1

3
(I12 + I13 � 2I23) and f3 �

1

3
I23 (42)

f2 � P d2 � P t2(0; 0; 0) and f3 �
1

3
I13 (43)

Furthermore, for some fees which violate (41)-(43), we have that x = (0; 0; 0) is a
CPNE. Precisely, we know that x = (0; 0; 0) is always a NE and we need to study
Gm1;2(0); G

m
1;3(0); G

m
2;3(0) to establish whether it is also a CPNE

Gm1;2(0) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 0); P

t
2(0; 0; 0)� f2

x1 = 1 P t1(0; 0; 0)� f1; P t2(0; 0; 0) P d1 � f1; P d2 � f2

Gm1;3(0) :

1n3 x3 = 0 x3 = 1

x1 = 0 P t1(0; 0; 0); P
t
3(0; 0; 0) P t1(0; 0; 0); P

t
3(0; 0; 0)� f3

x1 = 1 P t1(0; 0; 0)� f1; P t3(0; 0; 0) P t1(0; 1; 0)� f1; P t3(0; 1; 0)� f3

Gm2;3(0) :

2n3 x3 = 0 x3 = 1

x2 = 0 P t2(0; 0; 0); P
t
3(0; 0; 0) P t2(0; 0; 0); P

t
3(0; 0; 0)� f3

x2 = 1 P t2(0; 0; 0)� f2; P t3(0; 0; 0) P t2(0; 0; 1)� f2; P t3(0; 0; 1)� f3

In Gm1;2(0) there exists a NE which strictly Pareto dominates (x1; x2) = (0; 0) if and only
if f1 < P d1 � P t1(0; 0; 0) and f2 < P d2 � P t2(0; 0; 0). Likewise, in Gm1;3(0) there exists a NE
which strictly Pareto dominates (x1; x3) = (0; 0) if and only if f1 < 1

3
I13 and f3 < 1

3
I13.

Finally, in Gm2;3(0) there exists a NE which strictly Pareto dominates (x2; x3) = (0; 0) if
and only if f2 < 1

3
I23 and f3 < 1

3
I23. Thus, x = (0; 0; 0) is not a CPNE if at least one of

the following sets of conditions is satis�ed:

f1 < P d1 � P t1(0; 0; 0) and f2 < P
d
2 � P t2(0; 0; 0) (44)

f1 <
1

3
I13 and f3 <

1

3
I13 (45)

f2 <
1

3
I23 and f3 <

1

3
I23 (46)

We now maximize f1 + f2 + f3 subject to the constraint (40) and to the constraint that
(41)-(43) are all violated and at least one among (44), (45), (46) holds; these constraints
makes x = (1; 1; 1) the unique CPNE. However, it is useful to notice that
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� if (44) holds, then (42) and (43) are both violated;

� if (45) holds, then (41) and (43) are both violated;

� if (46) holds, then (41)-(43) are all violated.

In order to solve this problem we need to consider various values of M

The case in which M is between M t(1; 1; 1) and M t(1; 1; 0) Let

~f1 � minf
1

2
P t3(0; 0; 0);maxf

1

3
I13;

1

3
(I12 + I13 � 2I23)gg

Then in this case the optimal fees are

f1 =
1

3
(I12 + I13), f2 =

1

3
I23, f3 = P

t
3(1; 1; 1)

if
1

3
(I12 + I13 + I23) + P

t
3(1; 1; 1) > ~f1 +

1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1)

f1 = ~f1, f2 =
1

2
P t3(0; 0; 0), f3 = P

t
3(1; 1; 1)

if ~f1 +
1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1) >

1

3
(I12 + I13 + I23) + P

t
3(1; 1; 1)

WhenM is betweenM t(1; 1; 1) andM t(1; 1; 0) we �nd that P t3(1; 1; 1) � 1
3
I23 and therefore

f3 = P
t
3(1; 1; 1). Now we consider the three ways to satisfy at least one among (44), (45),

(46). If the platform wants to satisfy (44), then [in order to violate (41)] it is optimal to
set55 f1 = ~f1, f2 = 1

2
P t3(0; 0; 0) where P

d
1 � P t1(0; 0; 0) = P d2 � P t2(0; 0; 0) = 1

2
P t3(0; 0; 0);

thus R = ~f1 +
1
2
P t3(0; 0; 0) + P

t
3(1; 1; 1). If the platform wants to satisfy (45), then it

is optimal to set f1 = 1
3
I13; thus f2 = 1

3
(I12 + I23) since (41)-(43) are all violated from

f1 =
1
3
I13 and f3 < 1

3
I23. Hence, R = 1

3
(I12+ I13+ I23)+P

t
3(1; 1; 1). If the platform wants

to satisfy (46), then it is optimal to set f2 = 1
3
I23; thus f1 = 1

3
(I12 + I13) in view of (40)

and R = 1
3
(I12 + I13 + I23) + P

t
3(1; 1; 1).

In this way we see that for M between M t(1; 1; 1) and M t(1; 1; 0), the platform earns
P t3(1; 1; 1) + maxf13(I12 + I13 + I23); ~f1 +

1
2
P t3(0; 0; 0)g by inducing x = (1; 1; 1), which is

higher than the revenue which the platform can make by inducing x 6= (1; 1; 1). The
highest revenue which can be obtained by inducing x = (1; 0; 1), or x = (0; 1; 1), or
x = (1; 1; 0) is maxf2

3
I13; P

t
3(0; 0; 0)g. It is clear that 1

3
(I12 + I13 + I23) >

2
3
I13, while

1
3
(I12 + I13 + I23) may be smaller than P t3(0; 0; 0) only if I12 > 2I13 + I23. But in such a
case maxf1

3
I23;

1
3
(I12 + I13 � 2I23)g = 1

3
(I12 + I13 � 2I23) and ~f1 = 1

3
(I12 + I13 � 2I23) or

~f1 =
1
2
P t3(0; 0; 0). In either case we �nd that P

t
3(1; 1; 1) +

~f1 +
1
2
P t3(0; 0; 0) > P

t
3(0; 0; 0).

55The fees in the solution determine the upper bound of the pro�t the platform can realize. The actual
pro�t can be made arbitrarily close to the bound and this remark applies generally to the optimal fees
we characterize.
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The case in which M is between M t(1; 1; 0) and M t(1; 0; 1) Let

�f1 � minf
1

3
I13;maxf

1

2
P t3(0; 0; 0);

1

3
(I12 + I13 � 2I23)gg

Then in this case the optimal fees are

f1 =
1

3
(I12 + I13), f2 =

1

3
I23, f3 =

1

3
I23

if
1

3
(I12 + I13 + 2I23) > maxf �f1 +

1

3
(I12 + I23) + P

t
3(1; 1; 1);

~f1 +
1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1)g

f1 = �f1, f2 =
1

3
(I12 + I23), f3 = P

t
3(1; 1; 1)

if �f1 +
1

3
(I12 + I23) + P

t
3(1; 1; 1) > maxf1

3
(I12 + I13 + 2I23); ~f1 +

1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1)g

f1 = ~f1, f2 =
1

2
P t3(0; 0; 0), f3 = P

t
3(1; 1; 1)

if ~f1 +
1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1) > maxf1

3
(I12 + I13 + 2I23); �f1 +

1

3
(I12 + I23) + P

t
3(1; 1; 1)g

When M is between M t(1; 1; 0) and M t(1; 0; 1) we �nd that 1
3
I23 < P

t
3(1; 1; 1) � 1

3
I13 and

the platform needs to choose between setting f3 = P t3(1; 1; 1) and f3 =
1
3
I23 (actually,

slightly smaller). In the �rst case (46) is violated, and in order to satisfy (45) [and violate
(42)] it is necessary to set f1 = �f1, then f2 = 1

3
(I12 + I23) and thus R = �f1 +

1
3
(I12 +

I23) + P
t
3(1; 1; 1). In alternative, given f3 = P

t
3(1; 1; 1), the platform can satisfy (44) with

f1 = ~f1, f2 = 1
2
P t3(0; 0; 0), thus R = ~f1 +

1
2
P t3(0; 0; 0) + P

t
3(1; 1; 1).

In the case of f3 = 1
3
I23, the platform can satisfy (46) with f2 = 1

3
I23 and then f1 =

1
3
(I12 + I13); thus R = 1

3
(I12 + I13 + 2I23). In alternative, the platform can satisfy (45)

with f1 = 1
3
I13 and then f2 = 1

3
(I12 + I23); thus R = 1

3
(I12 + I13 + 2I23). Finally, the

platform can choose f1 = ~f1 [in order to violate (41)], f2 = 1
2
P t3(0; 0; 0) to satisfy (44);

then R = ~f1 +
1
2
P t3(0; 0; 0) +

1
3
I23.

The revenue which the platform can make is the highest among �f1+ 1
3
(I12+I23)+P

t
3(1; 1; 1),

~f1+
1
2
P t3(0; 0; 0)+P

t
3(1; 1; 1),

1
3
(I12+ I13+2I23). It is clear that 13(I12+ I13+2I23) >

2
3
I13,

and if 1
3
(I12+I13+2I23) < P

t
3(0; 0; 0) then I12 > I13+3I23, which implies maxf13I23;

1
3
(I12+

I13 � 2I23)g = 1
3
(I12 + I13 � 2I23), so that ~f1 = 1

3
(I12 + I13 � 2I23) or ~f1 = 1

2
P t3(0; 0; 0). In

either case we �nd that P t3(1; 1; 1) + ~f1 +
1
2
P t3(0; 0; 0) > P

t
3(0; 0; 0).

The case in which M is between M t(1; 0; 1) and M t(1; 0; 0) In this case the optimal
fees are

f1 =
1

3
(I12 + I13), f2 =

1

3
I23, f3 =

1

3
I23

if
1

3
(I12 + I13 + 2I23) > maxf �f1 +

1

3
(I12 + I13 + I23); ~f1 +

1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1)g
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f1 = �f1, f2 =
1

3
(I12 + I23), f3 =

1

3
I13

if �f1 +
1

3
(I12 + I13 + I23) > maxf1

3
(I12 + I13 + 2I23); ~f1 +

1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1)g

f1 = ~f1, f2 =
1

2
P t3(0; 0; 0), f3 = P

t
3(1; 1; 1)

if ~f1 +
1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1) > maxf1

3
(I12 + I13 + 2I23); �f1 +

1

3
(I12 + I13 + I23)g

When M is between M t(1; 0; 1) and M t(1; 0; 0) we �nd that 1
3
I13 < P t3(1; 1; 1). The

platform needs to choose among f3 = 1
3
I23, f3 = 1

3
I13, and f3 = P t3(1; 1; 1). In the �rst case

it is possible to satisfy (46) with f2 = 1
3
I23; thus f1 = 1

3
(I12+I13) andR = 1

3
(I12+I13+2I23).

In alternative, the platform can satisfy (45) with f1 = 1
3
I13; then f2 = 1

3
(I12 + I23) and

R = 1
3
(I12+ I13+2I23). Finally, it is possible to satisfy (44) and violate (41) with f1 = ~f1,

f2 =
1
2
P t3(0; 0; 0); thus R =

1
3
I23 + ~f1 +

1
2
P t3(0; 0; 0).

In the case of f3 = 1
3
I13, (46) is violated and the platform can satisfy (45) and violate

(42) with f1 = �f1; then f2 = 1
3
(I12 + I23) and R = �f1 +

1
3
(I12 + I13 + I23). In alternative,

the platform can satisfy (44) and violate (41) with f1 = ~f1, f2 = 1
2
P t3(0; 0; 0); thus

R = ~f1 +
1
2
P t3(0; 0; 0) +

1
3
I13.

In the case of f3 = P t3(1; 1; 1), (45)-(46) are violated and thus it is necessary to choose f1 =
~f1, f2 = 1

2
P t3(0; 0; 0) to satisfy (44) and violate (41); thus R = ~f1+

1
2
P t3(0; 0; 0)+P

t
3(1; 1; 1).

Since P t3(1; 1; 1) >
1
3
I13, the revenue which the platform can make is the highest among

1
3
(I12 + I13 + 2I23), �f1 + 1

3
(I12 + I13 + I23), ~f1 + 1

2
P t3(0; 0; 0) + P

t
3(1; 1; 1). It is clear that

1
3
(I12+I13+2I23) >

2
3
I13, and if 13(I12+I13+2I23) < P

t
3(0; 0; 0) then I12 > I13+2I23, which

implies maxf1
3
I23;

1
3
(I12+ I13�2I23)g = 1

3
(I12+ I13�2I23), so that ~f1 = 1

3
(I12+ I13�2I23)

or ~f1 = 1
2
P t3(0; 0; 0). In either case we �nd that P

t
3(1; 1; 1)+

~f1+
1
2
P t3(0; 0; 0) > P

t
3(0; 0; 0).

11.10.5 When M t(1; 0; 0) < M < U � I12 the optimal fees are f1 = f̂1, f2 = 1
3
I12,

f3 =
1
3
(I13 + I23)

Proof. For these values of M , we can argue like in step 3 to show that the platform

� can earn 2
3
I13 by inducing x = (1; 0; 1) with the fees in (37);

� can earn 2
3
I23 by inducing x = (0; 1; 1) with the fees in (38);

� can earn 2
3
I12 by inducing x = (1; 1; 0) with the following fees (notice that x =

(1; 1; 0) does not induce 3 to stay inactive)

f1 <
1

3
I12, f2 <

1

3
I12, f3 large
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Now we study the revenue the platform can make by inducing x = (1; 1; 1). This
pro�le is a NE if and only if

f1 �
1

3
(I12 + I13), f2 �

1

3
(I12 + I23), f3 �

1

3
(I13 + I23) (47)

In order to see whether x = (1; 1; 1) is a CPNE, we study Gm1;2(1); G
m
1;3(1); G

m
2;3(1):

Gm1;2(1) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 1); P

t
2(0; 0; 1)� f2

x1 = 1 P t1(0; 1; 0)� f1; P t2(0; 1; 0) P t1(1; 1; 1)� f1; P t2(1; 1; 1)� f2

Here (x1; x2) = (1; 1) is a NE, but for some values of f1; f2 consistent with (47) we �nd
that (x1; x2) = (0; 0) is a NE and strictly Pareto dominates (x1; x2) = (1; 1). Hence,
x = (1; 1; 1) is not a CPNE if f1 � 1

3
I13, f2 � 1

3
I23 and f1 > 1

3
(I12 + I13 � 2I23),

f2 >
1
3
(I12 + I23 � 2I13).

Gm1;3(1) :

1n3 x3 = 0 x3 = 1

x1 = 0 P t1(0; 0; 0); P
t
3(0; 0; 0) P t1(0; 0; 1); P

t
3(0; 0; 1)� f3

x1 = 1 P t1(1; 0; 0)� f1; P t3(1; 0; 0) P t1(1; 1; 1)� f1; P t3(1; 1; 1)� f3

here (x1; x3) = (1; 1) is a NE, but for some values of f1; f3 consistent with (47) we �nd
that (x1; x3) = (0; 0) is a NE and strictly Pareto dominates (x1; x3) = (1; 1). Hence,
x = (1; 1; 1) is not a CPNE if f1 � 1

3
I12, f3 � 1

3
I23 and f1 > 1

3
(I12 + I13 � 2I23):

Gm2;3(1) :

2n3 x3 = 0 x3 = 1

x2 = 0 P t2(0; 0; 0); P
t
3(0; 0; 0) P t2(0; 1; 0); P

t
3(0; 1; 0)� f3

x2 = 1 P t2(1; 0; 0)� f2; P t3(1; 0; 0) P t2(1; 1; 1)� f2; P t3(1; 1; 1)� f3

here (x2; x3) = (1; 1) is a NE, but for some values of f2; f3 consistent with (47) we �nd
that (x2; x3) = (0; 0) is a NE, and strictly Pareto dominates (x2; x3) = (1; 1). Hence,
x = (1; 1; 1) is not a CPNE if f2 � 1

3
I12, f3 � 1

3
I13 and f2 > 1

3
(I12 + I23 � 2I13), but the

latter inequality is satis�ed when the �rst inequality holds.
Therefore, x = (1; 1; 1) is not a CPNE if at least one of the three sets of conditions

(48)-(50) below is satis�ed. Equivalently, x = (1; 1; 1) is a CPNE if and only if the
following three sets of conditions are all violated [and (47) is satis�ed]

f1 � 1

3
I13, f1 >

1

3
(I12 + I13 � 2I23) and f2 �

1

3
I23, f2 >

1

3
(I12 + I23 � 2I13)(48)

f1 � 1

3
I12, f1 >

1

3
(I12 + I13 � 2I23) and f3 �

1

3
I23 (49)

f2 � 1

3
I12 and f3 �

1

3
I13 (50)
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Furthermore, for some fees which violate (48)-(50) we have that x = (0; 0; 0) is a CPNE.
Precisely, x = (0; 0; 0) is always a NE and we need to study Gm1;2(0); G

m
1;3(0); G

m
2;3(0) to

establish whether it is also a CPNE

Gm1;2(0) :

1n2 x2 = 0 x2 = 1

x1 = 0 P t1(0; 0; 0); P
t
2(0; 0; 0) P t1(0; 0; 0); P

t
2(0; 0; 0)� f2

x1 = 1 P t1(0; 0; 0)� f1; P t2(0; 0; 0) P t1(1; 0; 0)� f1; P t2(1; 0; 0)� f2

Gm1;3(0) :

1n3 x3 = 0 x3 = 1

x1 = 0 P t1(0; 0; 0); P
t
3(0; 0; 0) P t1(0; 0; 0); P

t
3(0; 0; 0)� f3

x1 = 1 P t1(0; 0; 0)� f1; P t3(0; 0; 0) P t1(0; 1; 0)� f1; P t3(0; 1; 0)� f3

Gm2;3(0) :

2n3 x3 = 0 x3 = 1

x2 = 0 P t2(0; 0; 0); P
t
3(0; 0; 0) P t2(0; 0; 0); P

t
3(0; 0; 0)� f3

x2 = 1 P t2(0; 0; 0)� f2; P t3(0; 0; 0) P t2(0; 0; 1)� f2; P t3(0; 0; 1)� f3

By arguing as in step 4 we see that x = (0; 0; 0) is not a CPNE if and only if at least one
of the following conditions is satis�ed:

f1 <
1

3
I12 and f2 <

1

3
I12 (51)

f1 <
1

3
I13 and f3 <

1

3
I13 (52)

f2 <
1

3
I23 and f3 <

1

3
I23 (53)

Therefore we maximize f1+f2+f3 subject to the constraint (47) and to the constraint that
(48)-(50) are all violated, and at least one among (51), (52), (53) is satis�ed. However, it
is useful to notice that

� if (51) holds, then (49)-(50) are both violated;

� if (52) holds, then (48)-(50) are all violated;

� if (53) holds, then (48)-(50) are all violated.

In order to solve this problem, we consider the three ways to satisfy at least one
condition among (51), (52), (53). If the platform wants to satisfy (51), then it is optimal
to set

f1 = f̂1 � minf
1

3
I12;maxf

1

3
I13;

1

3
(I12 + I13 � 2I23)gg

[in order to violate (48)], f2 = 1
3
I12; thus f3 = 1

3
(I13 + I23) in view of (47). Then, the

revenue is R = f̂1+ 1
3
(I12+I13+I23). If the platform wants to satisfy (52), then it is optimal

to set f1 = 1
3
I13, f3 = 1

3
I13; thus f2 = 1

3
(I12+I23) in view of (47) and R = 1

3
(I12+2I13+I23).

If the platform wants to satisfy (53), then it is optimal to set f2 = 1
3
I23, f3 = 1

3
I23; thus
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f1 =
1
3
(I12+ I13) in view of (47) and R = 1

3
(I12+ I13+2I23). Since f̂1 � 1

3
I13, we conclude

that f̂1 + 1
3
(I12 + I13 + I23) is the highest among the three revenues. Moreover, we can

prove that f̂1 + 1
3
(I12 + I13 + I23) is also higher than 2

3
I12, the highest revenue which can

be obtained by inducing x = (1; 0; 1), or x = (0; 1; 1), or x = (1; 1; 0): (i) if f̂1 = 1
3
I12,

then it is obvious that f̂1 + 1
3
(I12 + I13 + I23) >

2
3
I12; (ii) if f̂1 = 1

3
(I12 + I13 � 2I23), then

f̂1 +
1
3
(I12 + I13 + I23) � 2

3
I12 =

1
3
(2I13 � I23) > 0; (iii) if f̂1 = 1

3
I13, then I12 < 2I23 and

f̂1+
1
3
(I12+ I13+ I23)� 2

3
I12 =

1
3
(2I13+ I23� I12) > 0. Hence, the optimal fees are f1 = f̂1,

f2 =
1
3
I12, f3 = 1

3
(I13 + I23).

11.11 Proof of Corollary 2

We �rst prove a result, called Step 0, and then prove (i) and (ii)

Step 0 For each publisher i, xi = 1 weakly dominates xi = 0 in Ĝm Proof.
Step 1 in the proof of Proposition 2 for the general version establishes that xi = 1 weakly
dominates xi = 0 in the market for library h, that is �hi (xi = 1; xj; xk) � �hi (xi = 0; xj; xk)
for h = 1; :::; n. Since �i(x) = �1i (x) + :::+ �

n
i (x), it follows that xi = 1 weakly dominates

xi = 0 in Ĝm, for each publisher i.
Proof of Corollary 2(i)
This proof is split into two steps

Step 1 x = (0; 0; 0) is not a CPNE of Ĝm Proof. Without loss of generality, suppose
that market n is such that Mn > M t;n(1; 1; 1) and Uni > U

n
j > U

n
k > 0. We prove that

(xi; xj) = (1; 1) is a NE of Ĝmi;j(0) and is a Pareto improvement for i and j. Indeed, step 0
implies that (xi; xj) = (1; 1) is a NE of Ĝmi;j(0) and we need to prove that �i(xi = 1; xj =
1; xk = 0) > �i(0; 0; 0) and �j(xi = 1; xj = 1; xk = 0) > �j(0; 0; 0). We start by proving
that �ni (xi = 1; xj = 1; xk = 0) > �

n
i (0; 0; 0) and �

n
j (xi = 1; xj = 1; xk = 0) > �

n
j (0; 0; 0),

that is both publishers i and j increase their pro�ts in market n by getting interconnected.
Indeed, this makes the pro�t of �rm i in market n equal to either P d;ni;j or P

t;n
i (yij = 1,yik =

yjk = 0), and both these terms are strictly larger than P t;ni (0; 0; 0), the pro�t of i with
y = (0; 0; 0). Furthermore, for any h 6= n, �hi (xi = 1; xj = 1; xk = 0) � �hi (xi = 0; xj =
1; xk = 0) holds by step 0 and �hi (xi = 0; xj = 1; xk = 0) = �hi (0; 0; 0) because the
interconnection of a single publisher has no e¤ect. Since �i(x) = �1i (x) + :::+ �

n
i (x), our

result is obtained.

Step 2 x = (1; 1; 1) is the unique CPNE Proof. Step 0 implies that x = (1; 1; 1) is
a NE in Ĝm. In order to verify that it is also a CPNE, consider Ĝmi;j(1) for arbitrary i; j
and notice that for h such that Mh > M t;h(1; 1; 1), xi = 1 strictly dominates xi = 0 for
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publisher i in market h, given that xk = 1: �hi (xi = 1; xj; xk = 1) > �
h
i (xi = 0; xj; xk = 1).

For h such that Mh � M t;h(1; 1; 1), xi = 1 weakly dominates xi = 0 for publisher i in
market h: �hi (xi = 1; xj; xk = 1) � �hi (xi = 0; xj; xk = 1). Thus, xi = 1 strictly dominates
xi = 0 for publisher i in Ĝm if xj = 1 and/or xk = 1; hence xi = 1 is strictly dominant in
Ĝmi;j(1). It follows that (xi; xj) = (1; 1) is the unique NE of Ĝ

m
i;j(1) and that x = (1; 1; 1)

is a CPNE in Ĝm.
We prove uniqueness as in the proof of Proposition 2: Step 1 rules out that x = (0; 0; 0)
is a CPNE, thus at least one publisher interconnects in any CPNE, and therefore all
interconnect because of strict dominance.
Proof of Corollary 2 (ii)
This proof is split into two steps

Step 1 x = (1; 1; 1) is a CPNE Proof. Step 0 implies that x = (1; 1; 1) is a NE in
Ĝm. In order to prove that it is a CPNE, we consider any two publishers i; j and Ĝmi;j(1).
Clearly, (xi; xj) = (1; 1) is a NE in this game and we prove that there exists no Pareto
improving NE by examining the other pro�les in Ĝmi;j(1): (xi; xj) = (1; 0), (xi; xj) = (0; 0)
and (xi; xj) = (0; 1). Without loss of generality, we suppose Uhi > U

h
j . Then, there are

four possible cases to consider: Uhi > U
h
j > U

h
k , U

h
i > U

h
k > U

h
j and U

h
k > U

h
i > U

h
j .

� (xi; xj) = (1; 0) implies yik = 1, yij = yjk = 0. If a market h is such that Uhi >
Uhj > U

h
k , then yik = 1, yij = yjk = 0 induces the same outcome as y = (1; 1; 1) if

Mh � maxfUhi �Uhk ;M t;h(yik = 1; yij = yjk = 0)g (by Lemmas 3 and 8) and induces
a di¤erent outcome otherwise. However, this di¤erent outcome yields publisher j
pro�t P t;hj (y) or 0, which is smaller than his pro�t P

d;h
j;i when y = (1; 1; 1) [recall

that Mh � M t;h(1; 1; 1) for any h]; hence, j increases his pro�t in market h by
playing xj = 1. Since xj = 1 weakly dominates xj = 0 in every market, we infer that
(xi; xj) = (1; 0) is not a NE in Ĝmi;j(1) if there is a market h such that U

h
i > U

h
j > U

h
k

in which it generates a di¤erent outcome with respect to (xi; xj) = (1; 1).

When we consider a market h such that Uhi > Uhk > Uhj or U
h
k > Uhi > Uhj , we

see that (xi; xj) = (1; 0) always generates the same outcome as (xi; xj) = (1; 1)

[recall that Mh � M t;h(1; 1; 1) for any h], and thus it cannot generate a Pareto
improvement for publishers i and j with respect to (xi; xj) = (1; 1).

� (xi; xj) = (0; 0) implies y = (0; 0; 0). If a market h is such that Uhi > Uhj > Uhk ,
then y = (0; 0; 0) induces the same outcome as y = (1; 1; 1) if Mh � M t;h(0; 0; 0),
and induces a di¤erent outcome otherwise. However, this di¤erent outcome yields
publisher i a pro�t of P t;hi (0; 0; 0), which is smaller than his pro�t P

d;h
i;k or P

t;h
i (yik =

1; yij = yjk = 0) when he plays xi = 1 (see Lemma 8); thus, i increases his pro�t
in market h by playing xi = 1. Since xi = 1 weakly dominates xi = 0 in every
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market, we infer that (xi; xj) = (0; 0) is not a NE in Ĝmi;j(1) if there is a market
h such that Uhi > U

h
j > U

h
k in which it generates a di¤erent outcome with respect

to (xi; xj) = (1; 1). When we consider a market h such that Uhi > Uhk > Uhj or
Uhk > U

h
i > U

h
j , an argument similar to the above one applies, but relies on Lemma

3 and not on Lemma 8.

� (xi; xj) = (0; 1) implies yjk = 1, yij = yik = 0. If a market h is such that Uhi >
Uhj > U

h
k , then yjk = 1, yij = yik = 0 may induce a di¤erent outcome with respect

to y = (1; 1; 1) (see Lemma 11) for Mh � Uhi � Uhj if Ah = fj; kg instead of
Ah = fig, but i can pro�tably deviate with xi = 1 and earn Mh instead of 0;
or for Uhi � Uhj < Mh � M t;h(1; 1; 1) if Ah = fj; kg or Ah = f1; 2; 3g instead of
Ah = fi; jg, but i can pro�tably deviate with xi = 1 and increase his pro�t as
P d;hi;j > 0 and P

d;h
i;j > P

t;h
i (yjk = 1; yij = yik = 0). When we consider a market h such

that Uhi > U
h
k > U

h
j , we can argue like when U

h
i > U

h
j > U

h
k . If a market h is such

that Uhk > U
h
i > U

h
j , we can again prove that in case that (xi; xj) = (0; 1) induces a

di¤erent outcome with respect to (xi; xj) = (1; 1), then i can pro�tably deviate by
playing xi = 1 [the argument relies on Lemmas 3 and 8 like above in the proof of
this step].

Step 2 Any CPNE yields the same outcome as x = (1; 1; 1) Proof. Let us start
by considering x = (0; 0; 0). For any market h such that Mh �M t;h(0; 0; 0), the outcome
in market h is exactly like when x = (1; 1; 1). However, if Mh > M t;h(0; 0; 0) for at least
one h, then all publishers are active in that market when x = (0; 0; 0), while only the two
largest publishers, 1h and 2h are active in that market if x = (1; 1; 1). By arguing like in
step 1 in the proof of part (1) of this corollary we can prove that x = (0; 0; 0) is not a
CPNE.
Now let us consider x = (1; 0; 0). This pro�le of interconnection implies y = (0; 0; 0)

like when x = (0; 0; 0), and indeed we can argue almost exactly like above to show
that x = (1; 0; 0) is not a CPNE if Mh > M t;h(0; 0; 0) for at least one h. If instead
Mh � M t;h(0; 0; 0) for any h, then the outcome in each market is like when x = (1; 1; 1).
In a similar way we deal with x = (0; 1; 0) and x = (0; 0; 1).
About x = (1; 1; 0), x = (1; 0; 1), x = (0; 1; 1), we argue like in step 1 in the proof of
part (ii) of this corollary to show that whenever there is at least one market in which the
outcome is di¤erent with respect to the outcome with x = (1; 1; 1), then the (unique) �rm
which is not interconnected has a strict incentive to deviate by interconnecting.
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11.12 Proof of Proposition 6

(i) This result is a corollary of Proposition 2(ii), given that M t(1; 1; 1) = 0 under symme-
try.
(ii) The proof of this part is organized in four steps.
Step 1 For any M between 0 and U � I, there is no x which is CPNE and such that

y = (0; 0; 0).
Proof. Let x be such that y = (0; 0; 0). First, if xij = 1 for some publishers i; j, then x
is not a NE of Gb. Indeed, it must be the case that xji = 0 in order to obtain yij = 0,
but if j deviates with xji = 1; xjk = 0 then yij = 1, yik = yjk = 0 and then j earns M

2
if

M � 2I (as publisher k is not active) or M+I
3
if M > 2I (as publisher k is active). Since

M
2
and M+I

3
are larger than M

3
, j�s pro�t when y = (0; 0; 0), we infer that j�s deviation is

pro�table. Therefore we need to consider only the case of x1 = x2 = x3 = (0; 0), which is
a NE of Gb. However, x1 = x2 = x3 = (0; 0) is not a CPNE because x1 = x2 = (1; 0) is
NE in Gb1;2(0; 0) and the pro�t of both 1 and 2 is either

M
2
(ifM � 2I) or M+I

3
(ifM > 2I),

which are both higher than M
3
, the pro�t of 1 and 2 with x1 = x2 = x3 = (0; 0).

Step 2 For any M between 0 and I, any CPNE is such that A� = f1; 2g and P1 =
P2 =

M
2
; for instance, x1 = x2 = (1; 0), x3 = (0; 0) is a CPNE.

Proof. First, having excluded y = (0; 0; 0), when M � I the three publishers are all
active if and only if y = (1; 1; 1), which occurs if and only if x1 = x2 = x3 = (1; 1).
However, x1 = x2 = x3 = (1; 1) is not a CPNE because each publisher makes a pro�t
M
3
, but x1 = x2 = (1; 0) is a NE in Gb1;2(1; 1) and in this NE both 1 and 2 make a pro�t

M
2
> M

3
.

Hence, only 1 and 2 are active and x1 = x2 = (1; 0), x3 = (0; 0) is a CPNE which
induces this outcome, through the interconnection pro�le y = (1; 0; 0). Precisely, with
x1 = x2 = (1; 0), x3 = (0; 0) publishers 1 and 2 earn M

2
each, and it is simple to see that

this pro�le is a NE since M
2
> M

3
. This pro�le is also a CPNE because

� In Gb1;2(1; 0) it is infeasible that 1 and 2 both earn more than M
2
, since in aggregate

the pro�ts of the publishers are equal to M .

� In Gb1;3(1; 0) it is infeasible that 1 and 3 both increase their pro�ts above M
2
and

0 respectively. That requires that both 1 and 3 are active, and if A = f1; 3g then
each of them makes a pro�t equal to M

2
, so that the pro�t of 1 is not increased. If

instead all the three publishers are active, since M � I and x23 = 0 imply y23 = 0,
it is necessary that y = (0; 0; 0), and thus 1�s pro�t is M

3
(< M

2
).

� In Gb2;3(1; 0) it is infeasible that 2 and 3 both increase their pro�ts above M
2
and 0

respectively, by the same arguments given for Gb1;3(1; 0).
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There also exists a CPNE which induces the interconnection pro�le y = (1; 1; 0), such
as x1 = (1; 1), x2 = x3 = (1; 0). In this CPNE only 1 and 2 are active, so that each of
them earns M

2
. In order to see that x1 = (1; 1), x2 = x3 = (1; 0) is a CPNE we can argue

exactly like above.

Step 3 For any M > I the pro�le x1 = x2 = x3 = (1; 1) is a CPNE
Proof. When x1 = x2 = x3 = (1; 1), we �nd that y = (1; 1; 1): all publishers are active
and each of them gains M

3
. In order to see that x1 = x2 = x3 = (1; 1) is a NE, notice that

if publisher 1 (i) plays x1 = (0; 0), it gains 0 < M
3
if M � 2I or M�2I

3
if M > 2I; (ii) plays

x1 = (1; 0) or x1 = (0; 1), it gains M�I
3
< M

3
. In order to see that x1 = x2 = x3 = (1; 1)

is a CPNE, we examine Gb1;2(1; 1):

Gb1;2(1; 1)

if M � 2I
:

1n2 x2 = (0; 0) x2 = (0; 1) x2 = (1; 0) x2 = (1; 1)

x1 = (0; 0)
M
3
; M
3

0; M
2

M
3
; M
3

0; M
2

x1 = (0; 1)
M
2
; 0 M�I

3
; M�I

3
M
2
; 0 M�I

3
; M�I

3

x1 = (1; 0)
M
3
; M
3

0; M
2

M
2
; M
2

M�I
3
; M+2I

3

x1 = (1; 1)
M
2
; 0 M�I

3
; M�I

3
M+2I
3
,M�I

3
M
3
; M
3

Gb1;2(1; 1)

if M > 2I
:

1n2 x2 = (0; 0) x2 = (0; 1) x2 = (1; 0) x2 = (1; 1)

x1 = (0; 0)
M
3
; M
3

M�2I
3
; M+I

3
M
3
; M
3

M�2I
3
; M+I

3

x1 = (0; 1)
M+I
3
; M�2I

3
M�I
3
; M�I

3
M+I
3
; M�2I

3
M�I
3
; M�I

3

x1 = (1; 0)
M
3
; M
3

M�2I
3
; M+I

3
M+I
3
; M+I

3
M�I
3
; M+2I

3

x1 = (1; 1)
M+I
3
; M�2I

3
M�I
3
; M�I

3
M+2I
3
,M�I

3
M
3
; M
3

It is simple to see that (in both cases), in Gb1;2(1; 1) the only x
0
1;x

0
2 which 1 and 2 both

prefer to x1 = x2 = (1; 1) is x01 = x02 = (1; 0). But x01 = x02 = (1; 0) is not a NE of
Gb1;2(1; 1) �1 prefers to play (1; 1) if 2 plays x

0
2 �and thus there exists no NE in G

b
1;2(1; 1)

which 1 and 2 both prefer to x1 = x2 = (1; 1). Furthermore, Gb1;3(1; 1) and G
b
2;3(1; 1) are

isomorphic to G(1;1)1;2 , and so we get the same result.

Step 4 For any M > I there is no CPNE such that y = (1; 0; 0) or y = (1; 1; 0)
Proof. If y = (1; 1; 0), then x1 = (1; 1) and in Gb2;3(1; 1) there is a NE such that
x2 = x3 = (1; 1) and 2 and 3 both obtain pro�t M

3
, which is higher than M�I

3
, the pro�t

2 and 3 both make when y = (1; 1; 0).
If y = (1; 0; 0), then it is necessary that x13 = x31 = x23 = x32 = 0 because x31 = 1

(for instance) implies that 1 wants to play x13 = 1 since M+2I
3

> M
2
(for M � 2I) and

M+2I
3

> M+I
3
(for M > 2I); if x23 = 1, then 3 wants to deviate to x32 = 1 since M�I

3
>

maxf0; M�2I
3
g. The only remaining pro�le such that y = (1; 0; 0) is x1 = x2 = (1; 0),

x3 = (0; 0), but we �nd that x1 = (1; 1), x3 = (1; 0) is a NE in Gb1;3(1; 0), and then all
three publishers are active, 1 obtains M+2I

3
and 3 obtains M�I

3
.
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