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Abstract

In this paper we study, as in Jeon-Menicucci (2009), competition between sellers

when each of them sells a portfolio of distinct products to a buyer having limited

slots. This paper considers sequential pricing and complements our main paper (Jeon-

Menicucci, 2009) that considers simultaneous pricing.

First, Jeon-Menicucci (2009) find that under simultaneous individual pricing, equi-

librium often does not exist and hence the outcome is often inefficient. By contrast,

equilibrium always exists under sequential individual pricing and we characterize it in

this paper. We find that each seller faces a trade-off between the number of slots he

occupies and surplus extraction per product, and there is no particular reason that

this leads to an efficient allocation of slots.

Second, Jeon-Menicucci (2009) find that when bundling is allowed, there always

exists an efficient equilibrium but inefficient equilibria can also exist due to pure

bundling (for physical products) or slotting contracts. Under sequential pricing,

we find that all equilibria are efficient regardless of whether firms can use slotting

contracts, and both for digital goods and for physical goods. Therefore, sequential

pricing presents an even stronger case for laissez-faire in the matter of bundling than

simultaneous pricing.
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1 Introduction

There are many situations in which sellers with different portfolios of products compete

for limited slots (or shelf space) of a buyer who wants to build up her own portfolio of

distinct products. In this situation, sellers may employ bundling as a strategy to win the

competition for slots. Even though bundling has been a major antitrust issue and a subject

of intensive research, to the best of our knowledge, the literature seems to have paid little

attention to competition among portfolios of distinct products and, in particular, no paper

seems to have studied how bundling affects portfolios’ competition for slots.

Examples of situations we described above are abundant both among digital products

and among physical products. For instance, in the movie industry, each movie distributor

has a portfolio of distinct movies and buyers (either movie theaters or TV stations) have

limited slots. More precisely, the number of movies that can be projected in a season (or in

a year) by a theater is constrained by time and the number of projection rooms. Likewise,

the number of movies that a TV station can show during prime time of a season (or year)

is limited. Actually, allocation of slots in movie theaters has been one of the main issues

raised in the movie industry during the last presidential election in France1. Furthermore,

bundling in the movie industry (known as block booking2) was declared illegal in two

supreme court decisions in U.S.: Paramount Pictures (1948), where blocks of films were

rented for theatrical exhibition, and Loew’s (1962), where blocks of films were rented for

television exhibition. In addition, recently in MCA Television Ltd. v. Public Interest Corp.

(11th Circuit, April 1999), the court of appeals reaffirmed the per se illegal status of block

booking.

A different situation we have in mind is that of manufacturers’ competition for retailers’

shelf space. Manufacturers having a portfolio of products may practice bundling (often

called full-line forcing) to win competition for slots3 and there have been antitrust cases

related to this practice4. For instance, the French Competition Authority fined Société

1Cahiers du Cinema (April, 2007) proposes to limit the number copies per movie since certain movies

by saturating screens limits other movies’ access to screens and asks each presidential candidate’s opinion

about the policy proposal.
2Block booking refers to ”the practice of licensing, or offering for license, one feature or group of

features on the condition that the exhibitor will also license another feature or group of features released

by distributors during a given period” (Unites States v. Paramount Pictures, Inc., 334 U.S. 131, 156

(1948)).
3For instance, Procter and Gamble uses ’golden-store’ arrangement such that to be considerd a golden

store, a retailer must agree to carry 40 or so P&G items displayed together. See ”P&G has big plans for

the shelves of tiny stores in emgering nations”, Wall Street Journal, July 17, 2007.
4Société des Caves de Roquefort, Conseil de la Concurrence, Decision 04-D-13, 8th April 2004. R.J.
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des Caves de Roquefort for using selectivity or exclusivity contracts with supermarket

chains.5 Furthermore, slotting arrangements, the payment by manufacturers for retail shelf

space, have become increasingly important and have been the subject of recent antitrust

litigations6 and the focus of Federal Trade Commission studies.7

In our main paper (Jeon-Menicucci, 2009), we study a simultaneous pricing game among

n sellers (or firms) who sell their products to a buyer having k(> 0) number of slots. This

paper complements Jeon-Menicucci (2009): we consider a duopoly model of Jeon-Menicucci

(2009) and study sequential pricing instead of simultaneous pricing. In the model, each

seller i (=A, B) has a portfolio of ni distinct products. We assume that the prototype of

each product is already made and call a product a digital good (a physical good) if the

cost of producing a copy is zero (strictly positive). The buyer has a unit demand for each

product. A product needs to occupy a slot to generate a value. Products have heterogenous

values and the values are independent.8 Social efficiency requires the slots to be allocated

to the best k products among all products. In this setup, we study how the outcome of

competition depends on the nature of products (digital goods versus physical goods) and

different bilateral contractual arrangements between each seller and the buyer.

Given a portfolio of products belonging to a firm, we define bundling as a menu contract

that specifies a price for every subset of the portfolio. A particular class of bundling

contracts is what we call ”independent pricing plus a fixed fee”. A strategy in this class

consists of a fixed fee for the right to buy products in the portfolio and one individual price

for each product. There are three interesting special cases of this class. Individual pricing

corresponds to the case with zero fixed fee; pure bundling corresponds to the case with

zero individual prices; a ”technology-renting” strategy is the case in which each individual

price is equal to the cost of production.

Interestingly, the change from independent pricing to bundling opens a new contractual

dimension, i.e. contracting on slots. Note that under independent pricing, the buyer will

Reynolds Tobacco Co. v. Philip Morris, Inc., 199 F. Supp. 2d 363 (M.D.N.C. 2002). In the second case,

Reynolds Tobacco accused Philip Morris for using "Retail Leaders" contract that provides discounts to

retailers on its popular Marlboro brand in exchange for the most advantageous display and signage space

in retail establishments.
5Société des Caves de Roquefort’s market share in the Roquefort cheese market was 70% but, through

the contract, could occupy eight among all nine brands that Carrefour, a supermarket chain, sold.
6See, for instances, American Booksellers Ass’n, Inc. v. Barnes & Noble, Inc., 135 F. Supp. 2d 1031

(N.D. Cal. 2001); Intimate Bookshop, Inc. v. Barnes & Noble, Inc., 88 F. Supp. 2d 133 (S.D.N.Y. 2000);

FTC v. H.J. Heinz Co., 116 F. Supp. 2d 190 (D.C.C. 2000), rev’d, 246 F.3d 708 (D.C. Cir. 2001).
7See FTC Report (2001) and FTC Study (2003).
8In other words, the value that a product generates does not depend on the set of the other products

that occupy the slots.
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purchase only those products that would occupy a slot and therefore slotting contracts

are redundant. In contrast, under bundling, for instance, if all firms offer pure bundles,

the buyer may end up buying more products than the slots and hence we need to distin-

guish bundling with slotting contracts and bundling without slotting contracts. A slotting

contract is defined such that if a bundle is sold with a slotting contract, the buyer must

allocate a slot to each product in the bundle: exclusive dealing corresponds to a special case

in which the number of products in the bundle sold with a slotting contract is equal to k.

Therefore, the contractual space increases as we move from individual pricing to bundling

without slotting contracts and from bundling without slotting contracts to bundling with

the permission of slotting contracts.

The main results from Jeon-Menicucci (2009) are the following. First, under inde-

pendent pricing, equilibrium often does not exist and hence the market outcome is often

inefficient in terms of allocation of slots. Second, when bundling is allowed, there always

exists an efficient equilibrium where each firm uses a technology-renting strategy, regardless

of whether or not firms can use slotting contracts. Furthermore, if slotting contracts are

prohibited and firms sell digital goods, all equilibria are efficient. However, if sellers can use

slotting contracts, inefficient equilibria can arise. Furthermore, even if slotting contracts

are prohibited, pure bundling can generate inefficient equilibria for physical goods.

The results we obtain by studying sequential pricing are complementary to and consis-

tent with the results obtained by Jeon-Menicucci (2009). We first characterize equilibrium

with independent pricing, since such equilibrium always exists under sequential moves. In

the equilibrium, each seller faces a trade-off between number of slots to occupy and extract-

ing surplus per product, as does a monopolist charging a uniform price under a demand

curve with a negative slope. We find that there is no particular reason that this leads to

the efficient allocation of slots. In fact, each seller may end up occupying too many or too

few slots.

Second, when bundling is allowed, the trade-off between number of slots and surplus

extraction disappears since adding another product into a bundle does not reduce the sur-

plus that a seller can extract from the products already included into the bundle. This is

because bundling such as technology renting eliminates internal competition among prod-

ucts belonging to the same seller by making it impossible to purchase a subset of products

without paying the fixed fee. Interestingly, we find that all equilibria are efficient regardless

of whether firms can use slotting contracts and both for digital goods and physical goods.

Sequential pricing eliminates coordination failures between sellers that generate inefficient

equilibria under simultaneous pricing. Under simultaneous pricing, given that a rival seller

offers a pure bundle of all products (respectively, a pure bundle of all products with a
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slotting contract), it is a best response to offer a pure bundle of all products (respectively,

a pure bundle of all products with a slotting contract) and Bertrand competition between

two pure bundles or two slotting contracts leads to an inefficient equilibrium. In contrast,

under sequential pricing, the first mover does not take the offer of the second mover as

given but correctly anticipates how the second mover would react to his own offer, and

inducing the second mover to offer a pure bundle of all products without or with a slotting

contract typically is not optimal for the first mover.

Our paper generates clear-cut policy implications. Under independent pricing, there is

no guarantee that competition leads to efficient allocation of slots. On the contrary, when

bundling is allowed, efficient allocation of slots is achieved in any equilibrium regardless

of whether firms can use slotting contracts and both for physical goods and digital goods.

Therefore, sequential pricing presents an even stronger case for laissez-faire in the matter

of bundling than simultaneous pricing.

According to the leverage theory, on which the Supreme Court’s decisions to prohibit

block booking were based, block booking allows a distributor to extend its monopoly power

in a desirable movie to an undesirable one. This theory was criticized by Chicago School

(see e.g. Bowman 1957, Posner 1976, Bork 1978) since the distributor is better off by selling

only the desirable movie at a higher price. As an alternative, Stigler (1968) proposed a

theory based on price discrimination9, which became a dominant strand (Schmalensee,

1984, McAfee et al. 1989, Shaffer, 1991, Salinger 1995 and Armstrong 1996) at least until

Whinston (1990) resuscitated the leverage theory with its first formal treatment (see, for

the later work in this line, Choi-Stefanadis 2001, Carlton-Waldman 2002, and Nalebuff

2004).10 Basically, in Whinston, tying allows an incumbent to commit to be aggressive,

which discourages entry if there is a fixed cost of entry. On the contrary, in Jeon-Menicucci

(2009), bundling softens competition from rival products and hence it is possible that every

firm realizes a (weakly) higher profit when bundling is allowed than when it is prohibited.

Then, bundling is unlikely to be an instrument of foreclosure.

9However, Kenney and Klein (1983) point out that simple price discrimination explanation is incon-

sistent with the facts of Paramount and Loew’s and argue that block booking mainly prevents exhibitors

from oversearching, (i.e. from rejecting films revealed ex post to be of below-average value). Their hypoth-

esis is empirically tested in a recent paper by Hanssen (2000) but the author finds little support for the

hypothesis. But Kenny and Klein (2000) do not agree with Hanseen’s analysis.
10Armstrong-Vickers (2008) is a bit related to our paper since they consider bundling in a symmetric

situation: they study competition between two symmetric firms producing two horizontally differentiated

products (i.e. consumers are located in a two-dimensional hotelling space). They find that compared to

linear pricing, non-linear pricing has the benefit of efficient variable prices (i.e. marginal cost pricing) but

the cost of excessive brand loyalty.
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Since each firm can bundle any number of products in our paper, we also contribute to

the recent literature on bundling a large number of products. More precisely, in a framework

of second-degree price discrimination, Armstrong (1999) and Bakos and Brynjolfsson (1999)

show that bundling allows a monopolist to extract more surplus since it reduces the variance

of average valuations by the law of large numbers. In our paper, since we assume complete

information, the rent extraction issue does not arise in a monopoly setting and the law of

large number plays no role. In Jeon-Menicucci (2006), we take a framework similar to the

one in Jeon-Menicucci (2009) to study bundling electronic academic journals; publishers

owning portfolios of distinct journals compete to sell them to a library. The key difference

is that competition is generated by the budget constraint of the library instead of the slot

constraint. In both papers, we find that bundling is a profitable strategy in terms of surplus

extraction. However, contrary to Jeon-Menicucci (2009), Jeon-Menicucci (2006) find that

bundling reduces social welfare since if large publishers extract more surplus with bundling,

there is less (even zero) budget left for small publishers.

Our efficiency result of bundling is very closely related to the finding in literature on

common agency (Bernheim and Whinston (1985, 1986, 1998), O’Brien and Shaffer (1997,

2005)) that shows that when multiple principals deal with a common agency, they can

achieve the outcome that maximizes the payoffs of all players. In particular, Bernheim

and Whinston (1998) and O’Brien and Shaffer (1997) study the situation when two single-

product firms simultaneously offer non-linear tariffs together with exclusive dealing contract

to a common retailer and find that the vertically-integrated outcome is obtained.11 How-

ever, the papers also find other inefficient equilibria and use either the coalition-proof Nash

equilibria (Bernheim and Whinston 1986) or Pareto dominance (Bernheim and Whinston

1998 and O’Brien and Shaffer 1997) to select the equilibrium maximizing joint profits. Our

contribution is to show that sequential pricing eliminates the inefficient equilibria. Our pa-

per also differs in its focus on the comparison between independent pricing and bundling

in a novel setting of competition among portfolios in the presence of slot constraint.

In what follows, section 2 presents the model. Section 3 characterizes the equilibrium

under independent pricing. Section 4 analyzes the case in which bundling is allowed by

distinguishing when slotting contracts are prohibited (section 4.1) from when slotting con-

tracts are allowed (section 4.2). Section 5 derives policy implications and concludes the

paper.

11O’Brien-Shaffer (2005) show that this result also holds under simultaneous Nash bargaining for the

case of N single-product firms.
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2 The Model

The model is very similar to the model of Jeon-Menicucci (2009). The main difference lies

in the timing of the moves: in Jeon-Menicucci (2009) we study simultaneous pricing, while

here we analyze sequential moves. Since the game with sequential moves under independent

pricing is a bit complex to characterize, for simplicity we consider two sellers.

2.1 Setting

There are two sellers (firms), denoted by i = A,B, and a customer, denoted by C; we use

”he” for each seller and ”she” for the customer. Seller i has a portfolio of ni(≥ 1) products,

for i = A,B, and all products are distinct. We use ij to denote seller i’s j-th best product

(for instance, A2 represents seller A’s 2nd best product) and Bi = {i1, ..., ini} represents

i’s portfolio of products; let B ≡ BA ∪ BB. C has a unit demand for each product and

has k number of slots. A product needs to occupy a slot to generate a value,12 and thus

the slot constraint generates competition among the products. We use uji to denote the

value that C obtains from allocating a slot to product ij; thus u1i ≥ u
2
i ≥ ... ≥ u

ni
i ≥ 0 for

i = A,B. Without loss of generality, we suppose that ni = k for i = A,B: in the case in

which ni ≥ k, it is straightforward that only the k best products of firm i matter; in the

case of ni < k, we define uni+1i = ... = uki = 0. We assume that C’s payoff is given by the

sum of the values obtained from the purchased products minus her total outlay.13

With respect to production costs, we have in mind a situation in which the prototype

of each product is already produced, and the cost of (re)production is c ≥ 0 for every

product ij ∈ B; no cost is incurred by C. Given that we consider heterogenous values, our

results can be easily extended to the case of heterogenous production costs cji ≥ 0 as in

Jeon-Menicucci (2009).

Let uj denote the value that C obtains from the j-th best product among all products

in B; thus u1 ≥ u2 ≥...; we assume that uk > max{c, uk+1}. Hence, the set of the k

best products, denoted with BFB, is unique and it is socially optimal that all the slots

are occupied by the products in BFB. In what follows, we say that an equilibrium is

(socially) efficient if the slots are allocated to the products in BFB. For any B ⊆ B, let

12By assuming unit demand, we assume for simplicity that a product can occupy at most one slot in

that the value generated from occupying a second slot is zero. This assumption can be relaxed without

changing the main results.
13Even though we consider one customer, our model can be applied in a straightforward way to a

situation with multiple customers as long as each customer operates in a separate market and each seller

can price-discriminate the customers.
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U(B) represent the total value that the buyer obtains from allocating k slots to the best

k products in B; obviously, if B has less than k number of products, the total value is

computed by allocating one slot to each product. In particular, we define

UFB ≡ U(BFB) = u1 + ...+ uk :

and let BFBi ≡ BFB ∩ Bi, with qFBi (≥ 0) to represent the cardinality of BFBi (hence,

qFBA +qFBB = k); furthermore, UFBi ≡ U(BFBi ) = u1i+...+u
qFBi
i . For the analysis of bundling

we also need to define BSBi as the set of products in Bi\BFBi which have value larger than

c, and we use qSBi to represent its cardinality; USBi ≡ U(BSBi ) = u
qFBi +1
i + ...+ u

qFBi +qSBi
i is

the value of the products in BSBi . We let q̄i ≡ qFBi + qSBi denote the number of products in

Bi with value larger than c.

2.2 Contracts and games

In this section, we first describe the bilateral contracts that seller i can propose to C in our

model and then introduce the timing of the games that we study.

2.2.1 Bundling without slotting contracts

• Menu of bundles14

In the absence of slotting contracts (that will be defined later on), the most general

bilateral contract between seller i and C is that seller i offers a menu of bundles with prices

{Pi(Bi)}Bi⊆Bi : seller i chooses Pi(Bi) ≥ 0 for each Bi ⊆ Bi, with Pi(∅) = 0. Then, if C

buys bundle BA from seller A and bundle BB from seller B (some of these sets may be

empty),15 then she pays PA(BA)+PB(BB). Let si = {Pi(Bi)}Bi⊆Bi denote a generic pricing

schedule of firm i and Si be the space of pricing schedules for firm i.

• Independent pricing plus a fixed fee

A particular class of menu of bundles is the strategy which is composed of individual

prices (pi1, ..., pik) and a fixed fee Fi ≥ 0 such that Pi(Bi) = Fi +
∑

ij∈Bi
pij for any (non-

empty) Bi ⊆ Bi. In this case, if C wants to buy at least one product from seller i, she must

first pay Fi for the right to buy, and then she pays the individual prices of the products

14Our definition of menu of bundles generalizes the notion of mixed bundling used in the context of two

goods. In this case, mixed bundling means that the seller charges a price for each good and another price

for the bundle of both goods.
15In what follows, we simply write that C buys BA ∪BB.
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that she selects to buy. Three particular cases of ”independent pricing plus a fixed fee”

strategies are of great interest:

∗ Independent pricing: Independent pricing is an extreme case with Fi = 0, thus

Pi(Bi) =
∑

ij∈Bi
pij for any Bi ⊆ Bi.

∗ Pure bundling: Pure bundling is another extreme case with pij = 0 for each ij ∈ Bi

such that Pi(Bi) = Fi for any Bi ⊆ Bi. In other words, pure bundling is a deal of all-or-

nothing. However, since we assume free disposal, C can decide not to allocate any slot to

any subset of the products in Bi.

∗ Technology-renting: A technology renting strategy consists of two elements: firm i

rents its production technology to C by charging pij = c for each ij ∈ Bi, and then uses a

fixed rental fee Fi to extract (part of) C’s surplus. Let TRi be the set of technology-renting

strategies, and tri ∈ TRi an element of the set.

2.2.2 Bundling with slotting contracts

In what follows, we will distinguish two cases depending on whether slotting contracts are

used or not. If seller i does not use any slotting contract, C has full freedom in allocating

the slots among all products she purchased. In contrast, if C buys from firm i a bundle Bi

with a slotting contract (and qi = #Bi is the number of products in Bi), she must allocate

qi number of slots to the products in Bi.

• Exclusive dealing

Exclusive dealing corresponds to the case in which firm i offers a bundle composed of k

products with a slotting contract.

Note that under individual pricing, slotting contracts are redundant since C will not

buy any product that will not occupy a slot. In section 4.1 we study competition among

bundles without slotting contracts, and in section 4.2 we allow for slotting contracts.

2.2.3 Independent pricing

Under independent pricing, firm i chooses pji for his product with value uji . Without loss of

generality, we assume pji > 0 and define wji ≡ u
j
i − p

j
i as the net value that C obtains from

buying this product. Let pi ≡ (p1i , p
2
i , ..., p

k
i ) and wi ≡ (w

1
i , w

2
i , ..., w

k
i ) denote the vectors

of prices and of net values for the products of firm i, respectively. It is clear that there is

a one-to-one correspondence between pi and wi, and therefore we can equivalently express

firm i’s decision problem in terms of either pi or wi. However, when we use wi we need to
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recall that wji < u
j
i for i = A,B and j = 1, ..., ni. In particular, we will sometimes refer to

the condition

w1A < u
1
A, w2A < u

2
A, ..., wkA < u

k
A (1)

for firm A.

We know that often no equilibrium in pure strategies exists in a simultaneous pricing

game under independent pricing (Jeon-Menicucci, 2009). This motivates us to consider a

sequential pricing game.

2.3 Timing and tie-breaking rules

We consider the following sequential timing.

• When bundling is prohibited (i.e. under independent pricing),

Stage 1. A chooses pA.

Stage 2. After observing pA, B chooses pB.

Stage 3. After observing pA and pB, C makes its purchase decision.

• When bundling is allowed

Stage 1. A offers a menu of bundles.

Stage 2. After observing A’s offer, B offers a menu of bundles.

Stage 3. After observing A’s and B’s offers, C decides the bundles (or products) to buy

and allocates the slots.

In what follows we use the concept of subgame perfect Nash equilibrium (SPNE) to

determine the outcomes of these games. Thus we start with C’s purchases at stage three.

In the game with independent pricing, it is clear that C maximizes her utility by buying

the k products with the highest net values, provided that these values are non-negative.

However, we also need to specify how C deals with products which have the same net value

when the slot constraint is binding. Therefore we introduce the following tie-breaking rules.

T1: If some products have the same net value, C prefers the products offered by firm

B.

T1 is motivated by the fact that in our sequential game, given the prices of A’s prod-

ucts, B, as the follower, can always lower slightly the prices of its products to break C’s

indifference. Formally, in some cases B has no best reply without this assumption.

T2: If some products offered by the same firm have the same net value, C prefers the

products which generate the highest gross values.
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T2 is a standard tie-breaking rule.16

3 Independent pricing

3.1 A preliminary result

Recall that we have set wji = u
j
i − p

j
i for j = 1, ..., k and wi = (w

1
i , w

2
i , ..., w

k
i ), for i = A,B.

In ŵi ≡ (w
(1)
i , w

(2)
i , ..., w

(k)
i ) we order instead the net values in a decreasing way, which

means that w
(1)
i ≥ w(2)i ≥ ... ≥ w(k)i . We now prove a simple and intuitive result: for firm i

(i = A,B) there is no loss of generality in choosing prices such that w
(j)
i = wji for all j.

Lemma 1 Without loss of generality, we can restrict our attention to the case in which

w1i ≥ w
2
i ≥ ... ≥ w

k
i (i.e., wi = ŵi) for i=A,B.

In particular, lemma 1 implies the following monotonicity condition for firm A, which

we will use repeatedly in the remaining of the paper:

w1A ≥ w
2
A ≥ ... ≥ w

k
A (2)

The lemma also implies that when C buys qi number of products from firm i, she is actually

buying i’s products with the highest gross values.

3.2 Stage two

Now we apply backwards induction to firm B, by examining his decision at stage two.

Precisely, we take wA as given and consider the following questions: given q ∈ {1, ..., k}, is

it feasible for B to sell q products? If so, what is the highest profit B can make by selling

q products?

Lemma 2 Given wA and q ∈ {1, ..., k}, it is feasible for B to sell q products if and only if

u
q
B > w

k−q+1
A . In this case, the highest profit B can earn by selling q products is u1B + ...+

u
q
B − qmax{w

k−q+1
A , 0} − cq.

The basic idea of the lemma is that C buys q products from B if and only if these

products are among the k products with the highest net values. For instance, consider the

16This tie-breaking rule is standard in that it is basically equivalent to the following rule applied to two

firms producing a homogenous good with different marginal costs. In Bertrand equilibrium, if the cost

differential is not large, both firms charge the price equal to the highest marginal cost and the tie is broken

by assuming that all consumers buy the good from the firm with the lower marginal cost.
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case of q = 1. If wkA ≥ u
1
B, then B cannot sell any product because the inequality wkA > w

1
B

necessarily holds and therefore C will buy k products from A and none from B. If instead

wkA < u
1
B, B succeeds in selling his best product by charging a sufficiently low price p1B such

that wkA < u1B − p
1
B and pjB large for j ≥ 2. Precisely, from T1, the highest price which

induces C to buy B’s best product is p1B = u1B − max
{
wkA, 0

}
. In words, B can sell his

best product only if the k-th best product of A gives C a net value that is smaller than the

gross value of the best product of B; only in this case it is possible for B to block out the

k-th best product of A by pricing aggressively enough his own best product.

For an arbitrary value of q in {1, ..., k}, the same argument shows that the inequality

w
k−q+1
A < u

q
B is necessary, i.e. it must be possible for B to block out the (k− q+1)-th best

product of A by pricing suitably his own q best products. Otherwise, wk−q+1A > w
q
B holds

and therefore C will buy at least k− q+1 products from A, and at most k− (k− q+1) =

q − 1 from B. When wk−q+1A < u
q
B, B succeeds in selling q products by charging prices

p1B, ..., p
q
B such that w1B = ... = w

q
B = max

{
w
k−q+1
A , 0

}
(again, recall T1), or equivalently

p
j
B = u

j
B −max

{
w
k−q+1
A , 0

}
for j = 1, ..., q and pjB large for j = q + 1, ..., k; the resulting

profit for B is u1B + ...+ u
q
B − qmax{w

k−q+1
A , 0} − cq.

In view of lemma 2 we define as follows the profit B can make by selling q products,

for q ∈ {1, ..., k}:17

πB(q) ≡

{
u1B + ...+ u

q
B − qmax{w

k−q+1
A , 0} − cq if uqB > w

k−q+1
A ;

0, otherwise.

In order to examine how πB depends on q, we begin by noticing that the higher is q,

the more restrictive is the inequality uqB > w
k−q+1
A . Thus, if B is unable to sell q products

because uqB ≤ w
k−q+1
A , he is a fortiori unable to sell q̃ > q products.

Now we consider a case in which uq+1B > w
k−q
A (≥ w

k−q+1
A > 0), so that B is able to

sell q + 1 products (and also fewer than q + 1) and we examine how increasing his sales

from q to q + 1 products affects his profit. When B sells q products, we have seen that

he earns a profit of u1B + ... + u
q
B − qw

k−q+1
A − cq by charging prices pjB = u

j
B − w

k−q+1
A

for j = 1, ..., q; these prices are determined by the fact that B needs to block out the

(k − q + 1)-th best product of A. If instead he sells q + 1 products, B needs to block out

the (k − q)-th best product of A, which is weakly more valuable than the (k − q + 1)-th.

Prices are then p̂jB = u
j
B − w

k−q
A for j = 1, ..., q + 1, and p̂jB ≤ p

j
B for j = 1, ..., q. This

generates a loss for B, on his q best products, equal to q(wk−qA − wk−q+1A ). However, now

B gains p̂q+1B − c = uq+1B − wk−qA − c (actually, this ”gain” is negative if c is large) from the

17This profit depends also on wA, even though we do not emphasize this fact in the notation.
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sale of his (q+ 1)-th best product. Whether B prefers selling q + 1 products rather than q

depends on the comparison between the loss q(wk−qA −wk−q+1A ) and the gain uq+1B −wk−qA −c.

In other words, (2) makes B face a trade-off between quantity (number of slots to occupy)

and extracting surplus (per product): as B increases the number of products he sells, he

must leave more surplus per product to C. This trade-off is similar to the one determining

monopoly pricing when a monopolist faces a decreasing demand and charges a single price.

We conclude this subsection with an obvious remark on the optimal q for B. Since

q̄B = q
FB
B + qSBB is the number of products in BB with value larger than c, it is clear that

B will never choose q > q̄B since uqB < c for any q > q̄B.

3.3 Stage one

We first study the optimal pricing conditional on that A sells k − q products; then we

investigate the value of q that maximizes A’s profit.

3.3.1 A’s profit when he sells k − q products

Now we consider the first stage of the game in order to determine the profit A can make

as a function of the number of products he sells. Hence, suppose that A wants to sell k− q

products for q ∈ {0, 1, ..., k − 1}. Then, we inquire whether (i) there exists wA that, taking

into account the best response by B, induces C to buy k − q products from A; (ii) within

this set of wA we identify the vector that maximizes A’s profit.

The conditions that allow A to sell k− q products can be stated by using the following

incentive constraints for firm B:

(ICq,q′) πB(q) ≥ πB(q
′) for any q′ �= q and q′ ∈ {1, ..., k} (3)

In order for C to buy k− q number of products from A, it is necessary that B is not going

to block out the (k − q)-th best product of A, nor any better product of A; accordingly,

condition (3) says that B weakly prefers to sell q products rather than q′ > q, and we

assume that if B is indifferent between occupying q slots and occupying q′ > q slots, then

B occupies q slots.18 Then A’s profit is given by:

πA(k − q) ≡

k−q∑

j=1

(ujA − w
j
A − c)1[wjA≥0]

18Actually, condition (3) covers also the case of q′ < q, but constraints (ICq,q′) (for q
′ < q) are irrelevant

since A is not harmed if B wants to sell q′ < q products. In any case, in the proof of Proposition 1 we

show that (ICq,q′), for q
′ < q, can be satisfied at no cost.
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which, we note, is not affected by (wk−q+1A , ..., wkA). We investigate below whether there is

a set of wA which satisfy (3) and, if so, we maximize πA(k − q) in this set. Precisely, we

want to maximize
∑k−q

j=1(u
j
A−w

j
A− c)1[wjA≥0]

with respect to q and (w1A, ..., w
k
A) subject to

(1)-(3).

We start by observing that when q̄B < k, it is certainly possible for A to sell k − q̄B

products, and that he can do so without leaving any surplus to C on these products. In

order to show the details, suppose that A chooses pjA = u
j
A for j = 1, ..., k− q̄B and pjA high

enough for j = k− q̄B+1, ..., k. In this way, A’s q̄B worst products are not competing with

B’s products while A’s best k − q̄B products give C zero surplus. Then, B will reply by

charging pjB = u
j
B for j = 1, ..., q̄B, and C will buy k− q̄B products from A and q̄B from B,

earning no profit.

When A’s objective is to induce B to sell only q(< q̄B) products, as it will become clear

later on, B can react in two different ways: accommodation or fighting. Accommodation

means that B contents himself with occupying q or less slots. Fighting means that B tries

to occupy more than q slots. Obviously, to achieve his goal, A must choose prices such that

B prefers accommodation to fighting, which is equivalent to the property that (ICq,q′) is

satisfied for all q′ > q. What makes the case of q = q̄B straightforward is that B can sell

all his best q̄B products by accommodating, and extract the full surplus from them, and

thus he will not fight because there is no other product he can sell profitably.

The next proposition characterizes the condition under which A is able to sell k − q

products and the profit maximizing vector wA (hence, the optimal prices) conditional on

selling k− q products. For expositional facility, we introduce the following notation. Given

q ∈ {0, 1, ..., q̄B − 1}, let

µk+1−q
′′

q ≡
1

q′′
[uq+1B + ...+ uq

′′

B 1[q′′>q+1] − c(q
′′ − q)] for q′′ = q + 1, ..., q̄B (4)

Proposition 1 For a given q ∈ {0, 1, ..., q̄B − 1},

(i) a. There exists wA that induces C to buy k − q products from A if and only if

u
k+1−q′′

A > µk+1−q
′′

q for q′′ = q + 1, ..., q̄B (5)

b. Let q̂ ∈ {0, 1, ..., q̄B − 1} denote the smallest q for which (5) is satisfied [we set q̂ = q̄B if

(5) fails to hold for any q ∈ {0, 1, ..., q̄B−1}]. Then, (5) is satisfied also for q = q̂+1, ..., q̄B.

(ii) For q ≥ q̂, the profit maximizing wA for A is as follows:

a. when q = 0, w1A = ... = w
k
A = u

1
B;
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b. when q ∈ {1, ..., q̄B − 1},

w
k−q+1
A = w

k−q+2
A = ... = wkA = 0 (6)

w
k−q′′+1
A = max{wk−q

′′+2
A , µk−q

′′+1
q } for q′′ = q + 1, ..., q̄B (7)

w1A = w2A = ... = w
k−q̄B
A = wk−q̄B+1A if q̄B < k, (8)

We below give the intuition of the results in Proposition 1; we focus on explaining

the profit maximizing wA conditional on selling k − q products for q ≥ 1, described in

Proposition 1(ii)b.19 Given A’s objective to sell k − q products, he should structure the

prices for his best k− q products (the ones to sell) very differently from the prices for his q

worst products (the ones not to sell). On the one hand, for the latter products it is optimal

to charge high prices (higher than their values) so thatB does not face any competition from

them; precisely, (6) reveals that choosing wk−q+1A = wk−q+2A = ... = wkA = 0 is optimal. The

reason is that this pricing maximizes B’s profit from accommodation and hence reduces B’s

temptation to fight. In fact, the pricing allows B to extract the full surplus u1B + ... + u
q′

B

from C for his best q′ products if he wants to sell only q′ ≤ q products. Then, since

q < q̄B, B prefers selling q products rather than less than q, and hence downward incentive

constraints (i.e. (ICq,q′) for q
′ < q) are trivially satisfied. On the other hand, regarding the

best k−q products to sell, the prices should be competitive enough to make it unprofitable

for B to fight to sell more than q products. In particular, A cannot extract the full surplus

from C on these products since if he attempts to do that, by T1, B can sell all of his best

q̄B products by leaving no surplus per product to C.

To explain the optimal pricing of the best k − q products of A, suppose that B wants

to sell q + 1 products instead of q products. Lemma 2 shows that B can achieve this goal

only if wk−qA < u
q+1
B . In this case, B makes a profit equal to πB(q + 1) = u

1
B + ...+ u

q+1
B −

(q + 1)wk−qA − c(q + 1) and we have

πB(q + 1)− πB(q) = u
q+1
B − (q + 1)wk−qA − c

As we discussed after Lemma 2, uq+1B −(q+1)wk−qA −c is composed of the loss −qwk−qA on B’s

best q products (with respect to selling them at full values) plus the gain uq+1B − wk−qA − c

from selling the (q + 1)-th product. Therefore, wk−qA ≥
u
q+1
B

−c

q+1
= µk−qq is equivalent to

πB(q) ≥ πB(q + 1): note that it is less restrictive than wk−qA ≥ uq+1B . Hence, the smallest

value of wk−qA satisfying (ICq,q+1) is w
k−q
A = µk−qq , as described in (7). In order to deter B

from selling q+2 products, we can argue as before. A sufficient condition is wk−q−1A ≥ uq+2B ,

19Proposition 1(ii)a is straightforward, as the best way for A to sell k products is to set w1A = ... = w
k
A

equal to the value of B’s best product, u1B, which is possible only if ukA > u
1
B.
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but when wk−q−1A < u
q+2
B we must have:

πB(q + 2)− πB(q) = u
q+1
B + uq+2B − (q + 2)wk−q−1A − 2c ≤ 0,

which is equivalent to wk−q−1A ≥ µk−q−1q = 1
q+2
(uq+1B +uq+2B −2c). Therefore, (ICq,q+2) is sat-

isfied if wk−q−1A ≥ min{µk−q−1q , u
q+2
B }. However, wk−q−1A should also satisfy the monotonicity

condition (2): wk−q−1A ≥ wk−qA . From w
k−q−1
A ≥ min{µk−q−1q , u

q+2
B } and wk−q−1A ≥ wk−qA , we

find that the smallest value of wk−q−1A satisfying (ICq,q+2) is w
k−q−1
A = max{wk−qA , µk−q−1q },

as described in (7).20 By iterating the argument we obtain the smallest values of wk−qA ,

w
k−q−1
A , ..., w

k−q̄B+1
A which satisfy (3), as described in (7). This explains the pricing of the

worst q̄B−q products of A among the k− q products to sell. In the case of q̄B = k, we have

found the smallest values of w1A, ..., w
k
A which satisfy (2) and (3). If instead q̄B < k, then

the pricing of the best k − q̄B products of A is determined as follows. Since the variables

in (w1A, ..., w
k−q̄B
A ) do not affect (3), each of them can be set equal to wk−q̄B+1A to satisfy the

monotonicity condition (2), as described in (8).

As we mentioned in section 2, wA needs to satisfy (1) since otherwise there exist no

prices p1A > 0, ..., pkA > 0 such that wjA = u
j
A − p

j
A for j = 1, ..., k. Hence, ujA must be

larger than the profit-maximizing wjA characterized in Proposition 1(ii). This is why (5)

is necessary and sufficient for A to be able to sell k − q products. Notice that Proposition

1(i)b implies that there is a q̂ between 0 and q̄B such that A is able to sell any number of

products between 0 and k − q̂, but our arguments above imply that A will always sell at

least k − q̄B products, if k > q̄B.

3.3.2 Maximizing A’s profit with respect to q

Since Proposition 1 allows to compute πA(k − q) for any q ≥ q̂, the profit-maximizing q

can be found by comparing πA(k− q̄B), πA(k− q̄B + 1), ..., πA(k− q̂). Before seeing a few

examples and a useful property of πA, we can improve our understanding of the problem

of A by comparing πA(k − q) with πA(k − q + 1), in order to examine the incentives of A

to increase the number of products he sells. Let us use here w1A(q), ..., w
k−q
A (q) to denote

C’s net profits from buying A’s products, as determined by (7)-(8), when A sells k − q

products.

20Actually, wk−q−1A must be equal to the highest between wk−qA and min{µk−q−1q , uq+2B }, but (i) when

min{µk−q−1q , u
q+2
B } = µk−q−1q , we can write wk−q−1A = max{wk−qA , µk−q−1q }; (ii) when min{µk−q−1q , u

q+2
B } =

u
q+2
B , wk−q−1A = max{wk−qA , µk−q−1q } still holds because then uq+2B is much smaller than uq+1B and it turns

out that this implies that wk−qA = µk−qq is larger than both uq+2B and µk−q−1q .
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Then we find

w
k−q
A (q) = µk−qq ,

w
k−q−1
A (q) = max{µk−qq , µk−q−1q },

...

w
k−q̄B+1
A (q) = max{µk−qq , µk−q−1q , ..., µk−q̄B+1q } = wk−q̄BA (q) = ... = w1A(q).

When instead A sells k − q + 1 products, we have:

w
k−q+1
A (q − 1) = µ

k−q+1
q−1 ,

w
k−q
A (q − 1) = max{µk−q+1q−1 , µ

k−q
q−1},

...

w
k−q̄B+1
A (q − 1) = max{µk−q+1q−1 , µ

k−q
q−1, ..., µ

k−q̄B+1
q−1 } = wk−q̄BA (q − 1) = ... = w1A(q − 1).

It is straightforward to see from (4) that µk+1−q
′′

q−1 > µk+1−q
′′

q for any q′′ ∈ {q + 1, ..., q̄B},

thus we have wk+1−q
′′

A (q − 1) > wk+1−q
′′

A (q) for any q′′ ∈ {q + 1, ..., k}.

The latter inequality is very intuitive: in order to sell one extra product, (i.e. k− q+1

rather than k− q products), A must increase the surplus it abandons to C for all the k− q

initial products. Thus, when we compare πA(k− q+1) =
∑k−q+1

j=1 [ujA−w
j
A(q− 1)− c] with

πA(k− q) =
∑k−q

j=1 [u
j
A−w

j
A(q)− c], we see that πA(k− q+1) contains the additional term

u
k−q+1
A −wk−q+1A (q − 1)− c, which is A’s profit on the (k− q + 1)-th product sold, but A’s

profit on each of his first k−q products is reduced from u
j
A−w

j
A(q) to u

j
A−w

j
A(q−1), as we

just proved that wjA(q−1) > w
j
A(q) for j ∈ {1, ..., k− q}. In words, as it is the case with B,

A also faces a trade off between quantity and surplus extraction: as A sells more products,

he needs to leave more surplus per product to C. Precisely, as A increases its sales from

k−q to k−q+1, inducing B to accommodate becomes more difficult for two reasons. First,

B’s ability to fight is now stronger since he can use his q-th best product, with value uqB,

which was previously sold. Second, B has now less to lose by fighting. Therefore, when A

wants to sell one extra product, he should make his products more competitive by leaving

C a higher surplus per product in order to induce B not to fight.

We now present a result which simplifies the task of finding the optimal q for A. Pre-

cisely, we prove a concavity-like property of πA which states that the marginal profit for

A from selling one extra product is decreasing: the profit increase from selling k − q + 2

products instead of k − q + 1 is smaller than the profit increase from selling k − q + 1

products instead of k − q.

16



Proposition 2 (i) Suppose that it is feasible for A to sell k−q+2 products (i.e. q−2 ≥ q̂).

Then πA(k − q + 2)− πA(k − q + 1) ≤ πA(k − q + 1)− πA(k − q).

(ii) The optimal number of products sold by A, denoted by q∗A, is characterized as follows:

πA(q
∗
A) ≥ max{πA(q

∗
A − 1), πA(q

∗
A + 1)} if k − q̄B + 1 ≤ q

∗
A ≤ k − q̂ − 1,

πA(q
∗
A) ≥ πA(q

∗
A − 1) if q∗A = k − q̂,

πA(q
∗
A) ≥ πA(q

∗
A + 1) if q∗A = k − q̄B.

Notice that the concavity-like property of πA described in Proposition 2(i) implies im-

mediately Proposition 2(ii): in order to test the optimality of q∗A, it suffices to compare

the profit as the number of products sold by A is decreased or increased by one. In what

follows, to give further insight, we study some specific settings.

3.3.3 When only the local incentive constraint (ICq,q+1) matters

Let us present first the simple case in which only the local incentive constraint (ICq,q+1)

matters. We saw that when A wants to sell k−q products, downward incentive constraints

are trivially satisfied but satisfying upward constraints requires A to abandon some surplus

to C. We below present a special case in which satisfying only (ICq,q+1) is sufficient to

satisfy (3), and this makes it straightforward to derive πA(k − q).

Corollary 1 Suppose that c = 0. Given q such that q̂ ≤ q ≤ q̄B−2, if uq+2B ≤ 1
q+1
u
q+1
B then

(5) is equivalent to uk−qA > 1
q+1
u
q+1
B . When this condition is satisfied, (6)-(8) imply w1A =

... = wk−qA = 1
q+1
u
q+1
B > 0 = wk−q+1A = ... = wkA; thus πA(k− q) = u

1
A+ ...+ u

k−q
A − k−q

q+1
u
q+1
B .

Precisely, if uq+2B is sufficiently smaller than uq+1B , it turns out that µk−qq ≥ µk−q−1q ≥

... ≥ µk−q̄B+1q and then (5) is satisfied if and only if uk+1−q
′′

A > µk+1−q
′′

q holds for q′′ = q+1,

or equivalently uk−qA > 1
q+1
u
q+1
B . If this condition is satisfied, then the optimal prices for A

are such that the products he wants to sell give a constant net value to C equal to 1
q+1
u
q+1
B ,

the value satisfying (ICq,q+1) with equality. If the condition uq+2B ≤ 1
q+1
u
q+1
B holds for every

q ∈ {q̂, ..., q̄B − 2}, then we have

πA(k − q + 1)− πA(k − q) = u
k−q+1
A −

1

q
u
q
B − (k − q)(

1

q
u
q
B −

1

q + 1
u
q+1
B ).

Note however that the conditions 1
q̂+1
u
q̂+1
B ≥ u

q̂+2
B , 1

q̂+2
u
q̂+2
B ≥ u

q̂+3
B , ..., 1

q̄B−1
u
q̄B−1
B ≥ u

q̄B
B

are somewhat restrictive, since they imply that the values of B’s products decrease quite

quickly. This also suggests that in general more than one upward incentive constraints

matter as in the examples in the next subsection and in the appendix.
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3.3.4 When all B’s products have the same value

In this subsection, we characterize the equilibrium when all B’s products have the same

value and c = 0. In appendix, we characterize the equilibrium when B has 3 products

of heterogenous values. Suppose that u1B = u2B = ... = u
q̄B
B ≡ uB > 0. In this case, for

q(= 1, ..., q̄B − 1) and q′′(= q + 1, ..., q̄B), we find that µk+1−q
′′

q = q′′−q

q′′
uB. Thus µk+1−q

′′

q is

increasing in q′′. Given q, the profit-maximizing w1A, ..., w
k−q
A , determined by (7)-(8), are

w
k−q
A =

1

q + 1
uB, w

k−q−1
A =

2

q + 2
uB, ..., w

k−q̄B+2
q =

q̄B − q − 1

q̄B − 1
uB,

wk−q̄B+1q =
q̄B − q

q̄B
uB = w

1
A = ... = w

q̄B
A .

If q ≥ q̂, we have that πA(k−q) = u1A+...+u
k−q
A −[ 1

q+1
+ 2
q+2
+...+ q̄B−q−1

q̄B−1
+ q̄B−q

q̄B
(k−q̄B+1)]uB.

In order to find the optimal q, we exploit lemma 2. Thus, q = q̄B is optimal if πA(k −

q̄B) ≥ πA(k − q̄B + 1), i.e. if
u
k−q̄B+1

A

uB
≤ k−q̄B+1

q̄B
. Finally, for q between 1 and q̄B − 1, q is

optimal if π(k − q)− π(k − q − 1) ≥ 0 and π(k − q + 1) ≤ π(k − q), i.e.

1

q
+

1

q + 1
+ ...+

1

q̄B − 1
+
k − q̄B + 1

q̄B
≥
u
k−q+1
A

uB
and

u
k−q
A

uB
≥

1

q + 1
+

1

q + 2
+ ...+

1

q̄B − 1
+
k − q̄B + 1

q̄B

3.4 Social optimum vs. market outcome

In this subsection we consider the case in which k = 2, c = 0 and u1A ≥ u
2
A > 0, u

1
B ≥ u

2
B >

0. We use this setting to show that the market outcome can be different from the efficient

allocation of the slots.

Let us start by deriving the profit A can make by selling just his best product, that is

q = 1. In view of Proposition 1, this requires u1A >
1
2
u2B since µ11 =

1
2
u2B, and

p1A = u
1
A −

1

2
u2B, p2A ≥ u

2
A.

Therefore πA(1) = u
1
A −

1
2
u2B.

Now consider the case in whichA wants to sell his two products, which requires u2A > u
1
B.

Then A sets w1A = w
2
A = u

1
B, and thus πA(2) = u

1
A + u

2
A − 2u

1
B.

We now compare the social optimum with the market outcome. First, it is easy to

find the situation in which B occupies too many slots compared to the efficient allocation.

Suppose for instance u2A > u
1
B = u

2
B = u. Therefore it is socially optimal for A to occupy
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all the slots. However, if πA(2) < πA(1), which is equivalent to u > 2
3
u2A, then A prefers

selling only one product rather than two products.

Second, the inefficient allocation of slots can take the form in which B occupies too few

slots. Suppose now for instance that u1A < u
1
B = u

2
B = u, so that it is socially optimal for B

to occupy two slots. But if u1A >
1
2
u, then A can sell object A1 by playing p1A = u

1
A −

1
2
u2B,

p2A ≥ u
2
A, and so he makes a positive profit.

This example illustrates well the point that the market allocation of slots is determined

by a double trade-off between quantity and surplus extraction and does not necessarily

coincide with the efficient allocation of slots. Summarizing, we have:

Proposition 3 In the case of independent pricing, the market allocation of slots is deter-

mined by a double trade-off between quantity and surplus extraction, and does not necessarily

coincide with the efficient allocation of slots: A may end up occupying too many slots or

too few slots with respect to the efficient allocation.

4 Competition with bundling

In this section we consider the case in which bundling is allowed. We study this game

using backward induction, starting with stage two. As a tie-breaking rule, here we use a

rule similar to T2: if C is indifferent among several combination of bundles, C chooses the

bundles in a way to maximize the gross value. In section 4.1, we consider the case in which

slotting contracts are prohibited: in section 4.2, we allow firms to use slotting contracts.

4.1 Without slotting contracts

In this subsection, we assume that slotting contracts are prohibited.

4.1.1 Stage two

The first result we present is taken from Jeon-Menicucci (2009), and establishes that firm

B does not need to consider a complicated pricing scheme.

Lemma 3 (Jeon-Menicucci, 2009) For any pair of pricing schemes (sA, sB), let πB ≥ 0

denote the resulting profit of firm B. Then, firm B can make profit πB also by playing a

technology-renting scheme trB ∈ TRB, instead of sB, such that the fixed fee FB associated

with trB is equal to πB.
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Proof. The lemma follows from Lemma 1 in Jeon-Menicucci (2009).

Lemma 3 says that firm B loses nothing by restricting attention to schemes in TRB,

regardless of the strategy used by firm A. In the following example we illustrate a case

in which firm B, without bundling, cannot achieve the profit that he can achieve using

technology renting.

Example 1 Assume k = 2 and c = 0. Firm A has two products with values 3 and 1, and

firm B has two products with values 4 and 4. Suppose that firm A uses independent pricing

with p1A = p
2
A = 1. If firm B also uses independent pricing, the highest profit he can realize

is 4. But he can instead use technology-renting and realize a profit of 6.

The reason why independent pricing gives a smaller profit than a technology-renting

scheme in the above example is the following. Under independent pricing of B, each product

of firm B faces competition from firm A’s best product. This is because, under independent

pricing, C has the option of buying (and paying) only one product from firm B. In contrast,

under bundling (or technology-renting), such an option does not exist: without paying the

fixed fee, no product of firm B is available while after paying the fixed fee, C gets both

products of B at the same time. In particular, this implies that bundling gets rid of the

trade-off between quantity and surplus extraction that B faces under independent pricing.

More precisely, if B wants to sell only one product, he can realize a profit of 4. But if he

wants to sell both products with bundling, only the second product needs to match the

net value of A’s best product and this is why B obtains a profit of 4 + 2 = 6. So, when B

increases the quantity by selling a second product, it does not affect the profit he makes

with the first product.

Lemma 4 Technology-renting gets rid of the trade-off between quantity and surplus extrac-

tion that B faces under independent pricing.

Lemma 3 and Example 1 together imply

Proposition 4 (incentive to bundle) Firm B has at least a weak, and sometimes a strict,

incentive to practice bundling instead of independent pricing.

4.1.2 Stage one

Consider now stage one. The next lemma pins down the profit that A realizes.

Lemma 5 Any SPNE is such that firm A realizes a profit equal to F ∗A ≡ UFBA − cqFBA −

(USBB − cqSBB ).
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Proof. We first show that in any SPNE the profit of firm A is not larger than F ∗A. Then

we prove that in any SPNE the profit of firm A is not smaller than F ∗A.

The proof for the result that the profit of A is not larger than F ∗A is identical to the proof

of Proposition 6(ii) in Jeon-Menicucci (2009), and thus is omitted.

In order to prove that the profit of A is not smaller than F ∗A, suppose that A plays the

technology-renting scheme tr′A ∈ TRA such that FA = F
∗
A − ε, with ε > 0 and small. We

prove that C will buy at least one product from firm A, and this implies that firm A makes

a profit equal to F ∗A − ε. However, since ε can be made as small as wished, we conclude

that in no SPNE the profit of A is smaller than F ∗A.

Given that A plays the technology-renting scheme with FA = F
∗
A − ε, we can argue like in

the proof of Proposition 3 in Jeon-Menicucci (2009) to show that a best reply for B is the

technology-renting scheme tr∗B ∈ TRB such that FB = F
∗
B ≡ U

FB
B − cqFBB − (USBA − cqSBA ).

This technology-renting scheme yields B a profit equal to F ∗B, and thus B cannot make a

profit larger than F ∗B. However, B could conceivably find a scheme which yields him a profit

F ∗B and induce C to buy no product of A; we now rule out this case. Precisely, suppose

that B plays sB such that C buys no product of A, but buys bundle BB from B; then the

profit of C will be U(BB)− cqB−πB, with πB ≥ F ∗B and where qB is the cardinality of BB.

This payoff needs to be larger than the payoff C can make by purchasing (for instance)

only objects offered by A with tr′A, and in such a case C can make profit UFBA + USBA −

c(qFBA + qSBA )−F ∗A+ ε = U
FB
A +USBA − c(qFBA + qSBA )− (UFBA − cqFBA − (USBB − cqSBB ))+ ε =

USBA +USBB − c(qSBA + qSBB ) + ε. If we maximize U(BB)− cqB − πB with respect to BB, we

get BB = B
FB
B ∪BSBB and C’s utility is UFBB +USBB − c(qFBA +qSBA )−πB, which is not larger

than UFBB +USBB −c(qFBB +qSBB )−(UFBB −cqFBB −(USBA −cqSBA )) = USBA +USBB −cqSBA −cqSBB
since πB ≥ F ∗B. Therefore, no pricing scheme which yields B at least F ∗B can induce C to

refuse to buy from A.

The value of F ∗A = U
FB
A − cqFBA − (USBB − cqSBB ) has a simple interpretation. Suppose

that C can buy the products in BB at the unit price c, and that she is considering how

much she is willing to pay for the right to buy the products in BA at the unit price c. The

answer is F ∗A, which is the marginal benefit that C obtains from having access to products

of A at unit cost c taking into account that the products in BB are already available at price

c. The lemma says that in any SPNE, A realizes a profit exactly equal to this marginal

benefit. Before we describe other properties of SPNE, we provide an example to illustrate

a case in which firm A, without bundling, cannot achieve the profit that he can achieve

with a technology renting strategy.

Example 2 Assume k = 2 and c = 0. Firm A has two products with values 4 and 4, and
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firm B has one product with value 3. Then, under individual pricing, it is optimal for A

to sell only one product: then A’s profit is 4. However, under technology-renting, A can

realize a profit of 5.

The example illustrates that technology-renting gets rid of the trade-off between quan-

tity and surplus extraction that A faces. If A sells only one product, he realizes a profit of 4.

If A sells two products, in addition to 4, he can obtain an extra profit that corresponds to

difference between the value of A’s second product and that of B’s product. Hence, selling

an additional product does not affect the surplus that A extracts from the first product.

This argument generally holds as long as A includes any product in BFBA .

The proof of Lemma 5 (that shows that a technology-renting strategy allows A to realize

the upper bound of his profit) and Example 2 together imply

Proposition 5 (incentive to bundle) Firm A has at least a weak, and sometimes a strict,

incentive to practice bundling instead of independent pricing.

The next lemma shows that any SPNE is efficient.

Lemma 6 Any SPNE is efficient, that is in any SPNE C buys all the products in BFB.

Proof. Suppose that, in a certain SPNE, C consumes a bundle of objects B̃A ∪ B̃B

(such that B̃A ⊆ BA and B̃B ⊆ BB) which is different from BFB. Then C’s payoff in

this SPNE is α ≡ ŨA + ŨB − F ∗A − cq̃A − P̃B, in which q̃A is the cardinality of B̃A and

P̃B is the total revenue obtained by firm B; notice that the profit of firm B is equal to

P̃B − cq̃B, where q̃B is the cardinality of ŨB. Now let B deviate by using a technology

renting strategy such that FB = P̃B− cq̃B+ε, in which ε > 0 is a number close to zero. We

prove that C will buy at least one product of firm B, which reveals that B makes profit

P̃B − cq̃B + ε, which is larger than P̃B − cq̃B. Indeed, if C does not buy any product of

firm B, then she buys only bundles offered by A and they cannot yield C a payoff larger

than α, otherwise we obtain a contradiction with the fact that the initial candidate is

a SPNE. However, if C buys BFBB ∪ BSBB from firm B then she obtains a payoff equal to

γ ≡ UFBB +USBB −(P̃B−cq̃B+ε)−c(qFBB +qSBB ). Given that F ∗A = U
FB
A −cqFBA −(USBB −cqSBB ),

we find that α ≡ ŨA+ŨB−(UFBA −cqFBA −(USBB −cqSBB ))−cq̃A−P̃B and γ > α is equivalent

to

UFBA + UFBB − cqFBB − cqFBA − ε > ŨA + ŨB − cq̃A − cq̃B

When ε > 0 is close to zero, this inequality is true by definition of UFBA , UFBB , qFBA , qFBB .

Regarding the profit of firm B, we can only pin down its lower bound and its upper

bound. If firm A uses technology-renting strategy, firm B realizes F ∗B as in the proof of
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lemma 5. However, if firm A offers only BFBA , firm A obtains still F ∗A but firm B realizes

UFBB − cqFBB as in the following example shows.

Example 3 Assume that k = 2 and c = 0. Firm A has two products with values 8 and 3,

and firm B has two products with values 7 and 2. Then F ∗A = 8−2 = 6 and F ∗B = 7−3 = 4,

but in the following SPNE the profit of firm B is 7:

A plays

PA({A1}) = 6 and PA({A1, A2}), PA({A2}) high (9)

in words, A offers only his best product, at price equal to 6;

B plays a technology renting scheme with FB determined as follows:

FB = 7 if A plays (9)

FB = 4 if A does not play (9)

It is simple to verify that, given the above strategies, C chooses to buy products BFB =

{A1, B1}, and that B’s strategy is a best reply to the strategy of firm A. Finally, given the

strategy of firm B, it turns out that A cannot make a profit larger than 6.

Since C is going to buy BFBB , in any SPNE, the profit of firm B is not larger than

UFBB − cqFBB . Summarizing we have

Proposition 6 (i) When bundling is allowed, any SPNE is efficient in terms of allocation

of slots.

(ii) In any SPNE, the profit of firm A is F ∗A; the profit of firm B is at least F ∗B and at most

equal to UFBB − cqFBB .

Proposition 6(i) is especially interesting because in the case of simultaneous moves,

Jeon-Menicucci (2009) find that both efficient equilibria (among them, a technology renting

equilibrium) and inefficient equilibria exist as in the following example, which is reproduced

from example 3 in Jeon-Menicucci (2009):

Example 4 Consider the case in which k = 2, c = 3, and

(u1A, u
2
A) = (12, 8), (u1B, u

2
B) = (10, 5)

With simultaneous moves, the following profile of strategies is a NE:

PA({A1}) = PA({A2}) = PA({A1, A2}) = 11; (10)

PB({B1}) = PB({B2}) = PB({B1, B2}) = 6. (11)
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In the above example, given the strategies described, C buys BA (and gets a payoff of

9). Precisely, C is induced to buy products A1 and A2, even though the latter product

does not belong to BFB, and firm B is unable to sell the superior product B1 for the two

following reasons. First, given that C buys A1, her marginal cost of getting product A2 is

zero. Second, in order not to make a loss, firm B must charge a price for B1 at least equal

to c = 3 while C’s gain from replacing A2 with B1 is 2.

It is important to note that in the inefficient equilibrium described in the above example,

each firm i realizes a profit lower than its profit F ∗i under the efficient technology-renting

equilibrium. Actually, Corollary 2(i) in Jeon-Menicucci (2009) shows that the efficient

technology-renting equilibrium Pareto dominates any other equilibrium in terms of sellers’

profits. The inefficient equilibrium is thus based on a coordination failure between the

two sellers. More precisely, when A takes as given that B plays a pure bundling strategy,

offering a pure bundle of all products becomes for A a best response. The main reason

for which things are different with sequential moves is that A does not take the strategy

of B as given: instead, A knows that B will maximize his profit given A’s offer. Then,

A has no reason to play (10), which yields a payoff of 5, strictly lower than the profit

F ∗A− ε = 7− ε that he can achieve with a technology-renting strategy (see proof of Lemma

5). Obviously, (11) is not a best reply for firm B against the technology renting strategy

of A with FA = 7− ε.

4.2 Slotting contracts

In all previous sections, after buying a number of products, C has the freedom to choose the

products to occupy the slots. In this subsection, we allow firms to sign slotting contracts

such that if C buys qi number of products from firm i, i =A, B, C should allocate exclusively

qi number of slots on i’s products. Introducing slotting contracts does not affect the analysis

of independent pricing since under independent pricing, C buys only the products that will

occupy slots. However, introducing slotting contracts might affect the analysis of bundling.

For instance, we have shown in the proof of Lemma 5 that without slotting contracts, firm

A can always occupy qFBA number of slots with his products in BFBA . However, if B induces

C to sign a slotting contract to occupy more than k − qFBA slots with B’s products, then

A cannot occupy qFBA number of slots. Similarly, firm A may try to occupy more than

qFBA number of slots with a slotting contract. Then, the question is to know whether it

is profitable for i to occupy more than qFBi number of slots. In what follows, we consider

two cases: the case in which each firm is allowed to use slotting contracts in addition to

menu of bundles and the case in which each firm is restricted to use a single bundle with
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a slotting contract.

4.2.1 General contracts

Consider first the general case in which each firm is allowed to use slotting contracts in

addition to menu of bundles. In Jeon-Menicucci (2009), we have considered this case with

simultaneous moves, and we have found that some inefficient equilibria exist even for digital

goods, due to slotting contracts.21

Example 5 (slotting contracts and inefficiency) Suppose that k = 3, c = 0, and

(u1A, u
2
A, u

3
A) = (10, 7, 6); (u1B, u

2
B, u

3
B) = (9, 8, 1)

Here BFB = {A1, B1, B2}, so that qFB1 = 1 and qFB2 = 2. However, there exists an

inefficient NE in which Pi(Bi) is high enough for each Bi �= Bi, for i = A,B, and PA(BA) =

5, PB(BB) = 0 (this is an example of exclusive dealing described in Section 2). In words,

each firm i offers only Bi through a slotting contract, and Bertrand competition between

BA and BB determines the above prices. In this NE, firm A occupies the three slots even

though products B1 and B2 are both better than A2 and A3.

With sequential moves, we find that slotting contracts simply do not matter as the

following corollary states.

Corollary 2 Lemma 5 and Proposition 6 hold regardless of whether or not each firm can

use slotting contracts.

Proof. The proofs of Lemma 5 and of Proposition 6 go through even though each firm

can use slotting contracts.

Therefore, no inefficient outcome like the one in example 5 may occur even if firms can

use slotting contracts. The reason, once again, is that firm A can get as close as he wishes

to the upper bound of its profit F ∗A by using a suitable technology renting strategy while

B cannot gain by using slotting contracts neither in terms of accommodation nor in terms

of fighting. To provide further intuition, in the next subsection, we consider the case in

which each firm is restricted to offer a single bundle with a slotting contract.

21Notice that the inefficiency found in example 5 has a different nature with respect to the inefficiency

described in example 4. Indeed, with simultaneous moves and c = 0, Jeon-Menicucci (2009) have shown

that all NE are efficient, and thus slotting contracts are necessary for the result of example 5.
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4.2.2 Single bundle with a slotting contract

Suppose now that each firm i (=A, B) offers a single bundle Bi, with a slotting contract,

at price Pi. With qi we denote the number of products in Bi, and it is clear that, given qi,

firm i will include the own qi best products into the bundle. We use Ui(qi) to denote the

value of the bundle of firm i which includes i’s qi best products.

We analyze stage two. Then, given qA and PA, B has basically two strategies, as we

have seen under the independent pricing: B can accommodate or fight. Accommodation

means that B is content with k − qA slots. Fighting means that B tries to occupy more

than k − qA slots. However, if C allocates less than qA slots to A’s products, this violates

the slotting contract. Hence, fighting implies that B induces C to purchase only BB.

Conditional on accommodation, the maximal number of slots that B can occupy is

given by

q̂B(qA) = min{q̄B, k − qA}

Then, B can use a slotting contract to occupy q̂B(qA) number of slots and can charge

PB = UB(q̂B(qA)) and earns a profit UB(q̂B(qA))− cq̂B(qA).

If B wants to fight, he can sell BFBB ∪ BSBB (a bundle with q̄B objects) with a slotting

contract. Then, PB is determined by the condition that makes C indifferent between

buying A’s bundle and buying B’s bundle.

UB(q̄B)− PB = UA(qA)− PA.

From this, we obtain the next lemma characterizing B’s optimal strategy at stage 2.

Lemma 7 Suppose that each firm is restricted to offer a single bundle with a slotting

contract and that A offers a bundle BA of his qA best products at price PA. At stage two,

(i) B fights by offering BFBB ∪BSBB at price PB = UB(q̄B)−(UA(qA)− PA) if PA > UA(qA)+

UB(q̂B(qA))− cq̂B(qA)− [UB(q̄B)− cq̄B];

(ii) Otherwise, B accommodates by selling the bundle with his q̂B(qA) best products at price

PB = UB(q̂B(qA)).

Not surprisingly, B prefers fighting (accommodating) when PA is large (small).

Consider now stage one. As long as PA satisfies PA ≤ UA(qA)+UB(q̂B(qA))− cq̂B(qA)−

[UB(q̄B)−cq̄B], B will accommodate and hence A realizes the profit of PA−cqA. Therefore,

A chooses qA to maximize UA(qA) + UB(q̂B(qA)) − cqA − cq̂B(qA). This means that A

maximizes the total surplus from k slots and by definition it is optimal to choose qA = q
FB
A ,

which leads to q̂B(q
FB
A ) = qFBB . Furthermore, A charges PA = U

FB
A − (USBB − cqSBB ) and B

charges PB = U
FB
B .

The next proposition describes the equilibrium.
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Proposition 7 Suppose that each firm is restricted to offer a single bundle with a slotting

contract. Then a unique SPNE exists; this SPNE is efficient and the equilibrium strategies

are as follows:

(i) A offers BFBA and charges PA = U
FB
A − (USBB − cqSBB ) = F ∗A + cq

FB
A ;

(ii) B plays as described by Lemma 7 and, along the equilibrium path, B offers BFBB and

charges PB = U
FB
B .

(iii) C buys both bundles and uses all products in BFB. C’s payoff is USBB − cqSBB .

It is interesting to note that when each of A and B is constrained to offer a single

bundle with a slotting contract, there is a unique SPNE and it is efficient. This inefficient

equilibrium that exists under simultaneous pricing as in the example 5 does not arise

under sequential pricing since sequential pricing eliminates such an equilibrium based on

coordination failure. The equilibrium arises since A expects B to offer the bundle of all

products with a slotting contract. Under sequential pricing, such an expectation makes

sense only when A induces B to fight, but inducing B to fight is never optimal for A.

5 Concluding remarks: policy implications

Our results have clear-cut implications for laissez-faire in the matter of bundling. Under

independent pricing, each firm faces both internal competition among his own products and

external competition from the products of the rival firm, which creates a trade-off between

number of slots to occupy and extracting surplus per product. Since each of the two firms

faces such a trade-off, the market allocation of slots is determined by this double trade-off

between quantity and surplus extraction. There is no particular reason for this to result in

an efficient allocation of slots.

In contrast, bundling gets rid the internal competition and thereby eliminates the trade-

off between quantity and surplus extraction: as long as a firm increases the size of his bundle

by including his first-best products (the products that should occupy the slots in the first-

best outcome), he can strictly increase his profit. Therefore, when bundling is allowed,

allocation of slots is efficient in any equilibrium regardless of whether firms can use slotting

contracts. In particular, when firms can use slotting contracts, firms have no interest to

force the customer to buy more than the number of his first-best products since this strictly

decreases his profit. The sequential pricing presents a stronger case for laissez-faire than the

simultaneous pricing analyzed in Jeon-Menicucci (2009), since under simultaneous pricing

some inefficient equilibria can arise due to pure bundling or slotting contracts.
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6 Appendix

Proof of Lemma 1

What matters for C’s purchases (hence for A’s and B’s profits) are the vectors ŵA and

ŵB. Given (ŵA, ŵB), suppose that wB �= ŵB and let qB denote the number of products

which C purchases from B; this means that C buys from B the products with net profits

w
(1)
B , w

(2)
B , ..., w

(qB)
B . Let u

(j)
B represent C’s gross profit of the product with the net profit

w
(j)
B . Then, B’s profit is given by

πB =

qB∑

j=1

[u
(j)
B − w(j)B ]− cqB.

Now suppose that B chooses prices p̃jB = u
j
B − w

(j)
B for j = 1, ..., q̄B, and denote by

w̃
j
B the resulting net profits for C. Then the same vector ŵB as before is obtained and

w̃1B = w
(1)
B ≥ w̃2B = w

(2)
B ≥ ... ≥ w̃

q̄B
B = w

(q̄B)
B . Thus, T1 and T2 imply that C will still

purchase qB number of products from B, and now B’s profit is

π̃B =

qB∑

j=1

(ujB − w̃
j
B)− cqB

By definition of ujB, π̃B is at least as large as πB and, in particular, π̃B > πB if
∑qB

j=1 u
j
B >∑qB

j=1 u
(j)
B , that is if the products sold initially by B are different from B’s qB products with

the highest net profits.

The above argument applies to firm B since it chooses pB after observing pA, and thus

can take wA as given. Conversely, firm A cannot take wB as given and the argument must

be slightly augmented as follows. If, given wA, it is optimal for B to choose prices such

that a certain wB is obtained, any pA which leaves unaltered wA leaves unaffected the

incentives for firm B, and also his best reply prices. This allows to argue as above for B:

in case that wA �= ŵA, let A choose p̃jA = u
j
A − w

(j)
A for j = 1, ..., k so that w̃jB = w

(j)
B for

j = 1, ..., k and the same vector ŵA as before is obtained. Then, with respect to the initial

situation, (i) B will not change his reply; (ii) C will still buy qA products of A; (iii) A’s

profit will not decrease.

Proof of Proposition 1

Proof of (i)a There exists wA such that C will buy k− q products from A if and only

if there exists wA which satisfies (1), (2) and (??). Thus, since it is more likely that (1) is

satisfied the smaller are w1A, ..., w
k
A, in order to prove (i)a we first find the smallest values

28



of w1A, ..., w
k
A which satisfy (2) and (??), and then we show that these values satisfy (1) if

and only if (5) holds.

By Lemma 2, there exists pB such that C buys q′ products from B if and only if

u
q′

B > w
k−q′+1
A . In particular, it is feasible for B to sell q ∈ {1, ..., q̄B − 1} products if and

only if uqB > w
k−q+1
A . If firm A chooses wk−q+1A such that wk−q+1A ≥ u

q
B, then it would

actually sell at least k − q + 1 products; thus it must be the case that uqB > w
k−q+1
A . This

inequality implies uq
′

B > w
k−q′+1
A for q′ = 1, ..., q − 1. Therefore, for q′ < q, (ICq,q′) is

equivalent to

πB(q)−πB(q
′) = uq

′+1
B + ...+uqB− c(q− q

′)− qmax
{
w
k−q+1
A , 0

}
+ q′max

{
w
k−q′+1
A , 0

}
≥ 0.

(12)

For q′′ > q, instead, uqB > w
k−q+1
A does not imply uq

′′

B > w
k−q′′+1
A . In case that uq

′′

B ≤ w
k−q′′+1
A ,

we have πB(q
′′) = 0 and then (ICq,q′′) is trivially satisfied. In case that uq

′′

B > w
k−q′′+1
A , then

(ICq,q′′) is equivalent to

πB(q
′′)−πB(q) = u

q+1
B + ...+uq

′′

B −c(q
′′−q)−q′′max

{
w
k−q′′+1
A , 0

}
+qmax

{
w
k−q+1
A , 0

}
≤ 0.

(13)

Therefore, (??) reduces to (12) for q′ = 1, ..., q − 1, and to uq
′′

B ≤ wk−q
′′+1

A and/or (13) for

q′′ = q + 1, ..., q̄B.

We first prove that it is convenient to choose wk−q+1A = w
k−q+2
A = ... = wkA = 0. For

q′′ = q + 1, ..., q̄B, the value of wk−q+1A which most relaxes (13) is wk−q+1A = 0, and this

[together with (2)], implies wk−q+2A = ... = wkA = 0. These values of (wk−q+2A , ..., wkA) satisfy

(12) for any q′ ∈ {1, ..., q − 1} (because q < q̄B) and do not affect (ICq,q′′) for q′′ > q.

Thus, with wk−q+1A = wk−q+2A = ... = wkA = 0 we have taken care of (12). We now turn our

attention to (13).

Given wk−q+1A = 0, (13) is equivalent to wk−q
′′+1

A ≥ 1
q′′
[uq+1B + ... + uq

′′

B − c(q
′′ − q)]. In

particular, for q′′ = q + 1 we find

w
k−q
A ≥

1

q + 1
(uq+1B − c) (14)

This condition is less restrictive than wk−qA ≥ uq+1B , the other way to satisfy (ICq,q+1), and

therefore (ICq,q+1) is satisfied if and only if (14) holds — notice that the right hand side of

(14) is µk−qq . For q′′ = q + 2, (ICq,q+2) is satisfied if and only if

w
k−q−1
A ≥ min

{
1

q + 2
(uq+1B + uq+2B − 2c), uq+2B

}
(15)

and since uq+1B ≥ u
q+2
B , either one can be the minimum in the right hand side of (15).
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Likewise, for q′′ = q + 3, ..., q̄B, (ICq,q′′) is satisfied if and only if

w
k−q′′+1
A ≥ min

{
1

q′′
(uq+1B + ...+ uq

′′

B ), u
q′′

B

}
= min{µk−q

′′+1
q , u

q′′

B }

In general, however, we cannot set wk−q
′′+1

A = min{µk−q
′′+1

q , u
q′′

B } for q′′ = q + 1, ..., q̄B

because (2) may be violated. The lowest values for wk−qA , w
k−q−1
A , ..., w

k−q̄B+1
A which satisfy

(ICq,q′′) and (2) are given by

w
k−q′′+1
A = max

{
w
k−q′′+2
A ,min{µk−q

′′+1
q , u

q′′

B }
}

for q′′ = q + 1, ..., q̄B

but we can actually simplify things a bit by proving that this is equivalent to setting

w
k−q′′+1
A = max{wk−q

′′+2
A , µk−q

′′+1
q } for q′′ = q + 1, ..., q̄B

or equivalently wk−q
′′+1

A = max{µk−qq , ..., µk−q
′′+1

q } for q′′ = q + 1, ..., q̄B.

Precisely, we can prove that ifmin{µk−q
′′+1

q , u
q′′

B } = u
q′′

B , thenmax
{
w
k−q′′+2
A ,min{µk−q

′′+1
q , u

q′′

B }
}
=

w
k−q′′+2
A = max{wk−q

′′+2
A , µk−q

′′+1
q }. In order to see this fact, suppose thatmin{µk−q

′′+1
q , u

q′′

B } =

u
q′′

B for some q′′ ∈ {q + 2, q + 3, ..., q̄B}, and that this is the smallest q′′ with this property.

Then uq
′′

B ≤
1
q′′
[uq+1B +...+uq

′′

B −c(q
′′−q)], or equivalently uq

′′

B ≤
1

q′′−1
[uq+1B +...+uq

′′−1
B −c(q′′−

1− q)]− c
q′′−1

≤ µk−q
′′+2

q . On the other hand, min{µk−q
′′+2

q , u
q′′−1
B } = µk−q

′′+2
q by definition

of q′′, thus wk−q
′′+2

A ≥ µk−q
′′+2

q and wk−q
′′+1

A = max{wk−q
′′+2

A , u
q′′

B } = w
k−q′′+2
A . Furthermore

µk−q
′′+2

q ≥ µk−q
′′+1

q is true because it is equivalent to uq
′′

B ≤ 1
q′′−1

(uq+1B + ... + uq
′′−1
B + cq),

which follows from u
q′′

B ≤ 1
q′′−1

[uq+1B + ...+ uq
′′−1
B − c(q′′− 1− q)]− c

q′′−1
. Thus, wk−q

′′+1
A can

be written as max{wk−q
′′+2

A , µk−q
′′+1

q }, both when µk+1−q
′′

q < u
q′′

B (this is obvious) and when

µk+1−q
′′

q ≥ uq
′′

B (as we just proved).

Finally, we observe that no incentive constraint imposes any restriction onw1A, w
2
A, ..., w

k−q̄B
A ;

thus we can pick w1A = w
2
A = ... = w

k−q̄B
A = wk−q̄B+1A to satisfy (2).

In this way we have identified the lowest values of w1A, ..., w
k
A which satisfy (2) and

(??), and they are described by (6)-(8). However, these values are feasible if and only if

they satisfy (1). Clearly, the conditions wjA < u
j
A for j ∈ {q + 1, ..., k} are satisfied given

(6). For j ∈ {k − q̄B + 1, ..., k − q} we have wjA = max{w
j+1
A , µjq}, and thus wjA < u

j
A for

j ∈ {k − q̄B + 1, ..., k − q} if and only if (5) is satisfied. Finally, from u
k−q̄B+1
A > w

k−q̄B+1
A

it follows that ujA > w
j
A = w

k−q̄B+1
A for j = 1, ..., k − q̄B. This establishes that A is able to

sell k − q products if and only if (5) is satisfied.

Proof of (i)b Now we suppose that (5) is satisfied for a certain q∗ ∈ {0, 1, ..., q̄B − 2},

and show that (5) is satisfied also for q = q∗ + 1. If A wants to sell k − q∗ − 1 products,

(5) reduces to uk+1−q
′′

A > µ
k+1−q′′

q+1 for q′′ = q∗ + 2, ..., q̄B. This condition holds, as long as
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(5) is satisfied, because it involves a subset of the inequalities which appear in (5) and

µ
k+1−q′′

q+1 < µk+1−q
′′

q for q′′ = q∗ + 2, ..., q̄B.

Proof of (ii) If we assume that (5) is satisfied for a certain q, then it is straightforward

to see that the values of w1A, ..., w
k
A determined by (6)-(8) maximize the profit of A. Indeed,

(6)-(8) identify the smallest values of w1A, ..., w
k
A which satisfy (2) and (??), and πA(k − q)

is decreasing in w1A, ..., w
k
A.

Proof of Proposition 2

Since πA(k − q) =
∑k−q

j=1 [u
j
A − w

j
A(q)− c], we find

πA(k − q + 1)− πA(k − q) =

= u
k−q+1
A − wk−q+1A (q − 1)−

k−q∑

j=1

[wj
A(q−1) − w

j
A(q)]− c

= u
k−q+1
A − wk−q+1A (q − 1)− [wk−qA (q − 1)− wk−qA (q)]− c

−[wk−q−1A (q − 1)− wk−q−1A (q)]− ...− [w1A(q − 1)− w
1
A(q)]

and

πA(k − q + 2)− πA(k − q + 1) =

= u
k−q+2
A − wk−q+2A (q − 2)−

k−q+1∑

j=1

[wjA(q − 2)− w
j
A(q − 1)]− c

= u
k−q+2
A − wk−q+2A (q − 2)− [wk−q+1A (q − 2)− wk−q+1A (q − 1)]

−[wk−qA (q − 2)− wk−qA (q − 1)]− [wk−q−1A (q − 2)− wk−q−1A (q − 1)]−

...− [w1A(q − 2)− w
1
A(q − 1)]− c

In order to prove that πA(k− q+2)− πA(k− q+1) ≤ πA(k− q+1)− πA(k− q) it suffices

to show that

w
k−q+1
A (q−1)+[wk−qA (q−1)−wk−qA (q)]+[wk−q−1A (q−1)−wk−q−1A (q)]+...+[w1A(q−1)−w

1
A(q)]

is smaller (or equal) than

w
k−q+2
A (q − 2) + [wk−q+1A (q − 2)− wk−q+1A (q − 1)] + [wk−qA (q − 2)− wk−qA (q − 1)]

+[wk−q−1A (q − 2)− wk−q−1A (q − 1)] + ...+ [w1A(q − 2)− w
1
A(q − 1)]
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since uk−q+2A ≤ uk−q+1A . In order to accomplish this task, we first prove that

w
k−q+1
A (q − 1) ≤ wk−q+2A (q − 2) + wk−q+1A (q − 2)− wk−q+1A (q − 1) (16)

and then we show that

w
k+1−q′′

A (q − 1)− wk+1−q
′′

A (q) ≤ wk+1−q
′′

A (q − 2)− wk+1−q
′′

A (q − 1) (17)

for q′′ = q + 1, ..., k.

We find from (4) and (7) that wk+1−qA (q − 1) = 1
q
u
q
B, w

k+2−q
A (q − 2) = 1

q−1
u
q−1
B and

w
k+1−q
A (q − 2) = max{ 1

q−1
u
q−1
B , 1

q
(uq−1B + uqB)}. Thus (16) is equivalent to

2
q
u
q
B ≤

1
q−1
u
q−1
B +

max{ 1
q−1
u
q−1
B , 1

q
(uq−1B +uqB)}, and it is easy to see that this inequality holds for either value

of max{ 1
q−1
u
q−1
B , 1

q
(uq−1B + uqB)}.

About (17), we start by observing that if the inequalities µk−qq ≤ µk−q−1q ≤ ... ≤

µk−q̄B+1q hold, then wk+1−q
′′

A (q) = µk+1−q
′′

q for q′′ = q + 1, ..., q̄B. In the opposite case,

µk+1−q
′′

q > µ
k+1−(q′′+1)
q for some q′′ between q+1 and q̄B − 1 and we use q′′(q) to denote the

smallest q′′ for which this inequality holds;22 notice that by using (4) we find that µk+1−q
′′

q >

µ
k+1−(q′′+1)
q is equivalent to µk+1−q

′′

q = 1
q′′
(uq+1B + ...+ uq

′′

B ) > u
q′′+1
B . Then it turns out that

µk+1−q
′′

q > µ
k+1−(q′′+1)
q for q′′ = q′′(q) + 1, ..., q̄B − 1,23 and thus wk+1−q

′′

A (q) = µk+1−q
′′

q for

q′′ = q+1, ..., q′′(q), and wk+1−q
′′

A (q) is constantly equal to µ
k+1−q′′(q)
q for q′′ = q′′(q)+1, ..., q̄B.

Likewise, µk+1−q
′′

q−1 > µ
k+1−q′′−1
q−1 if and only if µk+1−q

′′

q−1 = 1
q′′
(uqB + u

q+1
B + ... + uq

′′

B ) > u
q′′+1
B ,

and we let q′′(q − 1) denote the smallest q′′ between q and q̄B − 1 for which this inequality

holds. Notice that q′′(q − 1) ≤ q′′(q) because µk+1−q
′′

q−1 − µk+1−q
′′

q = 1
q′′
u
q
B > 0. Finally,

µ
k+1−q′′

q−2 > µ
k+1−q′′−1
q−2 if and only if µk+1−q

′′

q−2 = 1
q′′
(uq−1B + uqB + u

q+1
B + ...+ uq

′′

B ) > u
q′′+1
B , and

we let q′′(q − 2) denote the smallest q′′ between q − 1 and q̄B for which this inequality is

satisfied; we have q′′(q − 2) ≤ q′′(q − 1) because µk+1−q
′′

q−2 − µk+1−q
′′

q−1 = 1
q′′
u
q−1
B > 0. Thus,

as q′′ goes from q + 1 to q̄B, w
k+1−q′′

A (q − 2) may become constant at some point, but not

later than wk+1−q
′′

A (q − 1), which in turn will not become constant (if it will) later than

w
k+1−q′′

A (q).

Now we prove that (17), or equivalently

2wk+1−q
′′

A (q − 1) ≤ wk+1−q
′′

A (q − 2) + wk+1−q
′′

A (q), (18)

is satisfied for q′′ = q + 1, ..., k.

22If µk−mm ≤ µk−m−1m ≤ ... ≤ µk−nB+1m , then we set m′′(m) = nB. A similar remark applies to m′′(m−1)

and m′′(m− 2) defined below.
23We know that µk+1−m

′′

m > µ
k+1−(m′′+1)
m is equivalent to um+1B + ... + um

′′

B > m′′um
′′+1

B , and when

this inequality is satisfied at m′′ = m′′(m) we find that it is satisfied also at m′′ = m′′(m) + 1 since

um
′′+1

B ≥ um
′′+2

B .
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Step 1 The case of q + 1 ≤ q′′ < q′′(q − 2). Then wk+1−q
′′

A (q − 2) = 1
q′′
(uq−1B + uqB + u

q+1
B +

...+ uq
′′

B ), w
k+1−q′′

A (q− 1) = 1
q′′
(uqB + u

q+1
B + ...+ uq

′′

B ) and w
k+1−q′′

A (q) = 1
q′′
(uq+1B + ...+ uq

′′

B ).

As a consequence, (18) reduces to 2uqB ≤ u
q−1
B + uqB, which is satisfied.

Step 2 The case of q′′(q− 2) ≤ q′′ < q′′(q− 1). Then wk+1−q
′′

A (q− 2) = 1
q′′(q−2)

(uq−1B + uqB +

u
q+1
B +...+u

q′′(q−2)
B ) > 1

q′′
(uq−1B +uqB+u

q+1
B +...+uq

′′

B ), w
k+1−q′′

A (q−1) = 1
q′′
(uqB+u

q+1
B +...+uq

′′

B )

and wk+1−q
′′

A (q) = 1
q′′
(uq+1B + ...+uq

′′

B ). We know that (18) would hold if wk+1−q
′′

A (q−2) were

equal to 1
q′′
(uq−1B + uqB + u

q+1
B + ...+ uq

′′

B ), thus (18) a fortiori holds since wk+1−q
′′

A (q − 2) >
1
q′′
(uq−1B + uqB + u

q+1
B + ...+ uq

′′

B ).

Step 3 The case of q′′(q−1) ≤ q′′ < q′′(q). Then wk+1−q
′′

A (q−2) = 1
q′′(q−2)

(uq−1B +uqB+u
q+1
B +

...+u
q′′(q−2)
B ), wk+1−q

′′

A (q−1) = 1
q′′(q−1)

(uqB+u
q+1
B +...+u

q′′(q−1)
B ) > 1

q′′
(uqB+u

q+1
B +...+uq

′′

B ) and

w
k+1−q′′

A (q) = 1
q′′
(uq+1B + ...+uq

′′

B ). We know from step 2 that (18) holds at q′′ = q′′(q−1)−1.

As q′′ increases to q′′(q−1), and beyond, wk+1−q
′′

A (q−1) and wk+1−q
′′

A (q−2) remain constant

while wk+1−q
′′

A (q) increases. Thus (18) is still satisfied.

Step 4 The case of q′′(q) ≤ q′′ ≤ q̄B. Then w
k+1−q′′

A (q−2) = 1
q′′(q−2)

(uq−1B +uqB+u
q+1
B + ...+

u
q′′(q−2)
B ), wk+1−q

′′

A (q− 1) = 1
q′′(q−1)

(uqB + u
q+1
B + ...+ u

q′′(q−1)
B ) and wk+1−q

′′

A (q) = 1
q′′(q)

(uq+1B +

... + u
q′′(q)
B ). We know from step 3 that (18) holds at q′′ = q′′(q) − 1. As q′′ increases to

q′′(q), and beyond, we have that wk+1−q
′′

A (q− 1), wk+1−q
′′

A (q − 2) and wk+1−q
′′

A (q) all remain

constant; thus (18) still holds.24

Step 5 The case of q′′ = q̄B + 1, ..., k. From (8) we see that in this case (18) is reduced

to 2wk+1−q̄BA (q− 1) ≤ wk+1−q̄BA (q− 2) +wk+1−q̄BA (q), and we have proved in step 4 that this

inequality is satisfied.

Proof of Corollary 1

We know fromProposition 1 thatwk−qA = 1
q+1
u
q+1
B and thatwk+1−q

′′

A = max{ 1
q+1
u
q+1
B , 1

q+2
(uq+1B +

u
q+2
B ), ..., 1

q′′
(uq+1B + ... + uq

′′

B )} (recall that µk+1−q
′′

q = 1
q′′
(uq+1B + ... + uq

′′

B )) for q′′ = q +

2, ..., q̄B. Given that 1
q+1
u
q+1
B ≥ u

q+2
B , we infer that 1

q+1
u
q+1
B ≥ u

q+3
B ≥ ... ≥ u

q′′

B . This

implies that 1
q′′
(uq+1B + ... + uq

′′

B ) ≤
1
q′′
[uq+1B + 1

q+1
u
q+1
B (q′′ − q − 1)] = 1

q+1
u
q+1
B . Thus,

max{ 1
q+1
u
q+1
B , 1

q+2
(uq+1B + uq+2B ), ..., 1

q′′
(uq+1B + ... + uq

′′

B )} =
1
q+1
u
q+1
B and wk+1−q

′′

A = 1
q+1
u
q+1
B

for q′′ = q + 2, ..., q̄B.

Characterization of independent pricing game when q̄B = 3

24By invoking very similar argument to the ones used in steps 1-4 we can deal with the case in which

m′′(m − 2) = m′′(m− 1), or m′′(m − 1) = m′′(m), or m′′(m − 2) = m′′(m − 1) = m′′(m). We skip the

details for the sake of brevity.
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Suppose that q̄B = 3. In order to sell k − 3 products, A sets

p1A = u
1
A, p2A = u

2
A, ..., pk−3A = uk−3A , pk−2A ≥ uk−2A , pk−1A ≥ uk−1A , pkA ≥ u

k
A.

and then B chooses p1B = u
1
B, p

2
B = u

2
B, p

3
B = u

3
B. Hence, πA(k− 3) = u

1
A + u

2
A + ...+ u

k−3
A .

In order to find πA(k − 2) we have to consider (IC2,3), which is given by

(IC2,3) wk−2A ≥
1

3
u3B.

Therefore, A chooses

p1A = u
1
A −

1

3
u3B, p2A = u

2
A −

1

3
u3B, ... , pk−2A = uk−2A −

1

3
u3B, pk−1A ≥ uk−1A , pkA ≥ u

k
A.

which is feasible only if uk−2A > 1
3
u3B. Then, B plays p1B = u

1
B, p

2
B = u

2
B. Hence, πA(k−2) =

u1A + u
2
A + ...+ u

k−2
A − k−2

3
u3B.

In order to find πA(k− 1) we need to consider both (IC1,2) and (IC1,3), which are given by:

(IC1,2) wk−1A ≥
1

2
u2B.

(IC1,3) wk−2A ≥ max{
1

2
u2B,

1

3
(u2B + u

3
B)}.

Hence, satisfying the incentive constraints is feasible if uk−1A > 1
2
u2B and uk−2A > max{1

2
u2B,

1
3
(u2B+

u3B)}. Then, A chooses

p
j
A = u

j
A −max{

1

2
u2B,

1

3
(u2B + u

3
B)} for j = 1, ..., k − 2;

pk−1A = uk−1A −
1

2
u2B, pkA ≥ u

k
A.

Then πA(k − 1) = u
1
A + u

2
A + ...+ u

k−2
A + uk−1A − (k − 2)max{1

2
u2B,

1
3
(u2B + u

3
B)} −

1
2
u2B.

Finally, A is able to sell k products if and only if ukA > u
1
B, and then πA(k) = u

1
A+u

2
A+

...+ uk−2A + uk−1A + ukA − ku
1
B.

In order to fix the ideas, suppose that u2B > 2u
3
B, so that max{1

2
u2B,

1
3
(u2B+u

3
B)} =

1
2
u2B.

Then, from Proposition 2(ii), we see for instance that it is optimal for A to sell k − 2

products if πA(k − 2) ≥ max{πA(k − 1), πA(k − 3)}, which is equivalent to uk−2A ≥ k−2
3
u3B

and uk−1A ≤ k−2
2
(u2B−u

3
B)+

1
2
u2B. The first inequality implies that the gain on the (k−2)-th

sold by A, uk−2A − 1
3
u3B, is larger than his loss on the k− 3 products, k−3

3
u3B, with respect to

selling them at full prices. The second inequality means that selling the (k− 1)-th product

yields a profit of uk−1A − 1
2
u2B but results in a loss of k−2

2
(u2B − u

3
B), which is larger than

uk−1A − 1
2
u2B.
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