CORE

Analysis of Demersal Assemblages off the North Coast of Central Java, Indonesia

Subhat Nurhakim
Research Center for Capture Fisheries, Agency for Marine and Fisheries Research
J. Pasir Putih I, Ancol Timur Jakarta
14430 Jakarta, Indonesia

Abstract

Nurhakim S. 2003. Analysis of demersal assemblages off the north coast of Central Java, Indonesia, p. 187-206. In G. Silvestre, L. Garces, I. Stobutzki, M. Ahmed, R.A. Valmonte-Santos, C. Luna, L. Lachica-Aliño, P. Munro, V. Christensen and D. Pauly (eds.) Assessment, Management and Future Directions for Coastal Fisheries in Asian Countries. WorldFish Center Conference Proceedings 67, 1120 p .

Abstract

Trawl survey data collected by the RV Mutiara 4 in 1979 off the north coast of Central Java (Indonesia) were used to examine the composition and distribution of species assemblages in the area. Classification (TWINSPAN) and ordination (DCA) techniques commonly used in community structure analysis were utilized during the study. The results indicate the existence of "shallow" and "deep" assemblages with a boundary at around $20-30 \mathrm{~m}$ depth (varying with the monsoon season). There is some consistency in the assemblages between the seasons.

Introduction

The waters off the north coast of Central Java (Fig. 1) are exploited not only by traditional fishers but also by commercial shrimp trawlers. Trawling started to increase in 1970 when shrimp trawlers expanded their fishing grounds from the Malacca Straits and Southern Java. In 1980, a Presidential Decree banned the operation of trawlers. Most of the trawlers converted to purse seining which developed rapidly in the Java Sea. Traditional fishers, with operations limited to near the coast ($<80 \mathrm{~km}$), continued to exploit the demersal and shrimp species using traditional fishing gear. The presence of a fishing port and other facilities along the north coast of central Java are conducive to the concentration of traditional fishers in this area.

Intensive trawl surveys were conducted from 1974 to 1979 by the Indonesian-German Demersal Fisheries Project. After the ban on trawl operations in 1980, irregular surveys were done by the Research Institute for Marine Fisheries. (Bianchi et al. 1996) examined the demersal fish assemblages of the Java Sea using the 1974-76 survey data. Their
results show that the Java Sea has at least three demersal assemblages: one assemblage in the central and one in the deep part of the basin ($>30 \mathrm{~m}$), and the shallow coastal assemblage.

This paper analyzes data from trawl surveys conducted off the north coast of central Java Sea in 1979 using methods commonly used in community structure analysis. It aims to investigate the distribution of demersal assemblages and their species composition.

Materials and Methods

This study focused on waters off the north coast of central Java Sea (Fig. 1). Data were collected using the wooden stern trawler RV Mutiara 4 (24.52 m LOA, 100 GT, 286 HP). The trawl used was the "Thailand trawl" with headline and footrope length of 35 m and 42.2 m respectively. The cod-end mesh size was 40 mm with a 22 mm cod-end insert net. Average trawling speed was $5.4 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ and the vertical net opening was estimated at 2 m . Most
of the hauls lasted one hour and were made during daylight hours (from 0500 H to 1800 H).

A total of 144 hauls were made during the 6 cruises conducted in the area in 1979 (Table 1). Catches were sorted up to species level for "food" fish (economically important) species and to families for "trash" fish. Environmental data (i.e. sea temperature, turbidity, depth) were collected for each haul.

The data from the 144 stations were grouped into seasons based on current understanding of monsoon seasonality in the study area. This process resulted in 3 temporal station groupings, namely: (1) West Monsoon (18 stations sampled in January and February); (2) Intermonsoon I (71 stations in April and May); and (3) Intermonsoon II (55 stations in September and October). No data are available for the East Monsoon season given the absence of cruises during June to August 1979. Each monsoon season is characterized by different environmental conditions, thus analysis was done separately by season.

The station-species/group matrices for each of the
three temporal groups were analyzed using TwoWay Indicators Species Analysis, or TWINSPAN (Hill 1979), and Detrended Correspondence Analysis (DCA) using the CANOCO software (Ter Braak 1988). There was no data transformation done prior to analysis using TWINSPAN and CANOCO.

Table 1. RV Mutiara 4 cruises in waters off the north coast of Central Java in 1979.

Cruise No.	Date	No. of Stations
$01 / 79$	$12-13$ January	7
$03 / 79$	$19-20$ February	11
$04 / 79$	$26-30$ April	27
$05 / 79$	$10-24$ May	44
$09 / 79$	$9-10$ September	11
$11 / 79$	$12-18$ October	44
TOTAL	12 Jan -18 Oct	144

Fig. 1. Map of waters off the north coast of Central Java.

Results and Discussion

The two-way table generated from TWINSPAN and the ordination plot from DCA for the January and February (west monsoon period) trawl stations is given in Table 2 and Fig. 2 respectively. Two groups of stations were evident, each with a characteristic species composition. The first group (Table 2, Group A) consists of eleven stations, characterized by areas with depths of more than 20 m while the second group (Table 2, Group B) consists of seven stations associated with the shallow/coastal waters ($<20 \mathrm{~m}$) (Fig. 3).

There are notable differences in species composition between the shallow and deep-water stations (Table 2). The taxa in species cluster la include, among others, of Lutjanus sanguineus, Pomadasys argyreus, Pomadasys hasta, Scolopsis spp. and Abalistes stelaris. These were observed to be absent in shallow water stations. Taxa in species cluster 2d consisting of Sciaenidae, Muraenidae and Anodontostoma spp. which were absent in deep water stations. Some taxa (e.g. species cluster ld) species cluster such as Priacanthus spp., Pentaprion longimanus, Sphyraenidae, Arius thalassinus and Nemipterus japonicus were relatively more abundant in deep compared to shallow water stations.

Fig. 2. Ordination plot from DCA of the stations fished during the west monsoon period (January - February 1979).

Table 2. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the west monsoon period (January - February 1979).

	Group A (20-30m)											Group B (<20m)								
	767	77	84	85		4	5	6	78	82	83		87	7980	18	81	2	3		
34 Other Lutjanidae	-	1	-	-	-	-	-	-	3	2	2		-	- -	-	-	-	-	00000	
36 Pomadasys hasta	-	-	1	-	-	-	1	-	-	2	2			- -	-	-	-	-	00000	
49 Drepaneidae	-	-	-	-	-	2	-	-	-	-	-		-	- -	-	-	-	-	00000	
41 Snakes	2	-	1	-	-	2	-	-	-	1	1		-	- -	-	-	-	-	00001	Spp cluster 1a
44 Abalistes stellaris		-	-	-	1	-	-	2	2	-	-			- -	-	-	-	-	00001	
60 Serranidae		-	-	1	1	-	-	-	-	-	-		-	- -	-	-	-	-	000100	
48 Other sharks	2	-	1	-	-	-	-	-	-	-	-			- -	-	-	-	-	000101	
58 Pentaponidae	1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	000101	
59 Nemipterus marginatus	1	1	-	-	-	-	-	-	-	-	-		-	- -	-	-	-	-	000101	
64 Upeneus bensasi*	-	1	-	-	-	-	-	-	-	-	-		-	- -	-	-	-	-	000101	
20 Lutjanus sanguineus		4	1	1	-	2	-	-	2	1	2			- -	-	-	-	-	000110	
42 Pomadasys argyreus	1	2	1	-	-	-	1	2	1	-	-		-	- -	-	-	-	-	000110	
53 Other Pomadasyidae			-	-	-	-	-	-	1	-	1		-	- -	-	-	-	-	000110	
54 Carcharhinus sealei		-	-	1	-	-	1	-	-	-	-		-	-	-	-	-	-	000111	
57 Scolopsis spp.	1	-	1	1	-	-	-	-	1	-	1		-	- -	-	-	-	-	000111	
4 Priacanthus spp.	5	5	5	5	4	1	1	3	3	2	4		2	1 -	-	-	-	1	0010	
26 Other Nemipteridae		3			1	1					2			- -	-	1	-	1	0010	
29 Atule spp.	1	-	3	1	2	-	1	-	-	1	1			- -	-	1	-	-	0010	
37 Other invertebrates		1	1	1	1	1		-	-	-	1		-	- -	-	-	-	1	0010	
14 Pentaprion longimanus		3	1	1	1	1	3	3	4	1	-		1	1 -	-	-	-	-	00110	Spp cluster 1b
45 Heterosomata		1	1	1	1	1		1	1	1	-			- 1	-	-	-	-	00110	
11 Sphyraenidae		2	3	2	2	2	1	4	4	4	4		1	- -	-	2	-	-	00111	
25 Arius thalassinus		1	1	1	-		2	1	1	2	2			- -	-	-	-	-	00111	
33 Nemipterus japonicus	1	1	1	1	1	1	1	2	2	1	2		1	1 -	-	-	-	1	00111	
7 Upeneus sulphareus		5	5	3	4		3	3	4	-	1			13	-	2	1	1	0100	
16 Selar spp.		3	3	2			1	-	4	-	1			- -	-		-	1	0100	
22 Synodontidae		3	1	1	2		1	1	2	-	1			- 1	-	2	-	1	0100	
43 Rachycentridae canadus		-	2	-		-	1	-	-	-	1			- -	-	1	-	-	01010	
47 Lobster		-	-	2	-		-	-	-	-	1			- 1	-	1	-	-	01011	Spp cluster 1c
50 Other rays		-	2	-	-		-	-	-	1	-			- 1	-	-	-	-	01011	
55 Leiognathus equulus		1	-	1			-	-	-	-	-			- -	-	1	-	-	01011	
56 Polynemidae		1		1			-				-	-		- -	1	-	-	-	01011	

Table 2. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the west monsoon period (JanuaryFebruary 1979). (continued)

[^0]

Fig. 3. Trawl stations off the north coast of Central Java in January and February 1979 showing station clusters derived using TWINSPAN and DCA.

In contrast, taxa belonging to species cluster 2c were more abundant in the shallower stations than the deeper ones. Its appears that taxa in species cluster $1 \mathrm{c}, 1 \mathrm{~d}, 2 \mathrm{a}$ and 2 b have almost the same abundance in both shallow and deep water stations. However, abundance of taxa in species cluster 1 d and 2 b was higher than those in species cluster 1 lc and 2 a (e.g. Leiognathus splendens and squid) (Table 2).

During the intermonsoon I period (April and May 1979), 65 stations were included in the analysis. Two main station clusters were formed. The first cluster included stations with depth of less than 25 m , and the second cluster included stations in depths of 25 to 45 m (see Table 3, Figs. 4 and 5).

The species/groups in species cluster la, 1 b and lc preferred shallow waters below 25 m . Species/ groups in species cluster la were abundant at depths $<20 \mathrm{~m}$, but rare at stations with depths greater than 20 m . Species/groups in species cluster 2 preferred the deep stations (Table 3). Lactaridae, Scomberomorus spp., Rastrelliger spp., squid and Leiognathus splendens which belong to species cluster 1d were abundant both in shallow and deep stations; they are ubiquitous species/groups.

In species cluster 2, Upeneus sulphureus, Stolephorus spp. and Pentaprion longimanus were more abundant at 35 to 45 m deep stations. Serranidae, Charcharinus sealea, Pentapodidae, Abalistes stelaris and Nemipterus margiatus were observed to be absent at shallow water stations ($<25 \mathrm{~m}$ depth).

Fig. 4. Ordination plot from DCA of the stations fished during the intermonsoon I period (April - May 1979).

Fig. 5. Location of the trawl stations off the north coast of Central Java in April and May 1979 showing station derived using TWINSPAN and DCA.
Table 3. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the intermonsoon I period (April-May 1979).

Table 3. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the intermonsoon I period (April-May 1979). (continued)

Group A			Group B		
	20<25m	<20m	25<35m	35-45m	
		읔ボNัTo			
3 Other Ariidae 27 Sphyraenidae 30 Theraponidae 5 Megalaspis cordyla 24 Sciaenidae 14 Leioguathus splendens 31 Trichiuridae 7 Dusssumieria acuta 14 Leiognathus bindus 6 Chirocentridae	$\begin{array}{cccccccc} 3 & 3 & 1 & 2 & 1 & 1 & 1 & 2 \\ 1 & - & 1 & - & - & - & - & - \\ - & - & - & - & 1 & - & - & 1 \\ - & - & - & - & \cdots & - & - & - \\ - & - & - & - & - & 1 & - & - \\ - & - & 2 & - & \cdots & - & - & - \\ 3 & 2 & - & 1 & 1 & 1 & - & - \\ 1 & 1 & 1 & 1 & 1 & 1 & - & 1 \\ - & - & 1 & - & - & - & - & - \end{array}$		$\begin{gathered} 1 \\ 1 \end{gathered} 1$		
9 Stolephorus spp. 23 Rachvcentridae canadus		- 11111111111123		34444212111112	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \quad \text { Spp cluster } 2 a$
16 Upeneus sulphureus 11 Pentaprion longimauus 3 Arius thalassinus 29 Synodontidae					$\begin{array}{llll} 1 & 0 & 1 \\ 1 & 0 & 1 & \text { Spp cluster } 2 b \\ 1 & 0 & 1 & \\ 1 & 0 & 1 & \\ \hline \end{array}$
37 Crabs 1 Other sharks 5 Atule spp.	$\begin{gathered} 11--1-1- \\ -1-\ldots- \\ ---1-1-- \end{gathered}$	$-1--1-1-1-111----1--$		$\begin{gathered} -1--1-\cdots--1 \\ ------------1 \end{gathered}$	$\begin{array}{lll} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{array} \quad \text { Spp cluster } 2 c$
10 Formionidae 35 Cuttles 18 Nemipterus japonicus 38 Lobster 15 Lutianus sanguineus					$\begin{array}{lll} 1 & 1100 & \\ 111100 & \\ 111100 & \text { Spp cluster 2d } \\ 111100 & \\ 111 & \end{array}$

Table 3. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the intermonsoon I period (April-May 1979). (continued)

A total of 49 stations were finally included in the analysis for the intermonsoon II period (September and October 1979). Two major groups of stations were observed (Table 4, Figs. 6 and 7). One group was associated with shallow water stations (0-30 m) and the other group was associated with stations of more than 30 m depth. Some species in species cluster la, such as Gazza minuta, Arius maculatus, Leiognathus equulus, Ilisha spp., Arius caelatus, Pomadasys hasta, Drepanidae, and Polynemidae were abundant in shallow stations. Some species in species cluster 2d such as Abalistes stelaris, Atule spp. Lutjanus sanguineus, Scolopsis spp. and Nemipterus nemurus were found mainly in deep stations.

Taxa which belong to species cluster 1d, 2a and 2 b were found to have the same abundance in shallow and deep water stations (e.g., Leiognathus splendens, Priacantus spp., Sphyraena spp.). These ubiquitous species/groups dominate catches in the study area. Species/groups that were abundant in shallow water stations (and rare in deep waters) include Dasyatidae, Alectis indicus, Sciaenidae, Sardinella spp., Anadontostoma spp. Stolephorus spp. Lactaridae, Stromatidae, Thryssa spp. and Leiogna-
thus brevirostris (species cluster lb). Species/groups which belong to species cluster 2c, such as Priacanthus tayenus, Nemipterus mesoprion, Atropus atropus, Upeneus sulphureus, Pentaprion longimanus, Selaroides leptolepis, Selar spp. and Leiognathus bindus were more abundant in deep than in shallow stations. A summary of the most important species/groups comprising the shallow and deep assemblages during the three time periods considered here is given in Table 5 and 6. The species clusters were observed to be similar across seasons (i.e. there is consistency in taxa associated with the shallow versus deep stations).

The scope of the present study was limited by data constraints. These include the design of the trawl survey in 1979, the sorting and identification of catches, and availability of relevant environmental data. Best use of the data was attempted despite these constraints and has produced some insight into the species assemblages in the region. The results indicate the existence of shallow and deep and shallow assemblages with a boundary at around 20-30 m depth. This is consistent with the findings of (Bianchi et al. 1996).

Fig. 6. Ordination plot from DCA of the stations fished during the intermonsoon II period (September - October 1979).

Table 4. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the intermonsoon II period (September-October 1979).

Group A (<30m)		Group B (> 30m)	
14 Cazza minuta		------ - - - - - - -	0000
3 Arius maculatus		------------------	0000
3 Other Ariidae		-----------------	0000
7 Other Clupidae		--- -- -- - - - - - - -	$0000 \quad$ Spp cluster 1a
8 Drepanidae	1---2-2--1---11-5211-1---	------------	00010
14 Leiognathus equulus	1-2-222344-1---111111--2----	-- - - - . - . - - 1 - - -	000110
20 Polynemidae	---1--1-142-1---1-1-- ${ }^{-1-}$	------------- - - -	000110
7 Illisha spp.		---------------	000110
3 Arius caelatus	1121-422-54-1---1--1-5211--41-	---------------	000111
21 Pomadasys hasta	$244342133331111-14121-523-2-3$	-	000111
2 Other Rays		-----.-.-.-.-. - - -	000111
2 Dasyatidae	$4144241141-221-2555-24442452-$	----1112---2211-5-4	0010
5 Alectis indicus	---1113-11----1-1-143243	--1--1-------21-1	0010
23 Rachycentridae canadus		$\cdots-\cdots-1-\cdots$	0010
6 Chirocentridae		1-.................. -	0010
14 Other Leiognathidae	542421322451221331111224241223	- $11111111112-11211$	00110
24 Sciaenidae	$323123423131-1161111133111212$	- 311-1--1---1113---	$00110 \quad$ Spp cluster 1b
7 Sardinella spp.	2-222211332111421112111-111131	11111-1111---11-1	00110
11 Other Gerreidae	1-2222-111----21---11111---	--1-..-.-. - - $1-\cdots$	00110
7 Anadonstoma spp.	1-121112332224341--12312-11-	11111-131--.....	001110
9 Stolephorus spp.	-2151111124221132---11-1-1-13	1-----11111-1-11--	001110
13 Lactaridae	-1121121122111121-111-1--11-11	1---1---11---11--	001110
28 Stromateidae	21223312452341-31-111-231-112-	- 2 ----12--21--111--	001111
9 Thryssa spp.	- $212-13-322-111-41-1-111--1-$	--- $1-1-\ldots-1-\ldots$	001111
4 Leiognathus bevirostris	- $433122211-1111111111-311-\ldots$	--1111-...........	001111
21 Nemipterus spp.		----- - 1 ----- - $1-$	001111
5 Alepes spp.	$322222214121355552123-111 \ldots$	211111-123221-....	010
3 Osteogeneosis milit	1---312-241231--2-1---1-1-1-1-	33-1-...- - - - - -	$010 \quad$ Spp cluster 1c
14 Secutor insidiator	132-1111-12--113-1--1-1-----		010
5 Carangoides spp.		2-................. -	010
14 Leiognathus splendens	$5555-5545555541541511-1521$-11-	$121211254545-1-11$ -	0110

Table 4. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the intermonsoon II period (September - October 1979). (continued)

	Group A (<30m)	Group B (> 30m)	
7 Dussumieria acuta	$43212332323322431111-1111-1134$	21---124151---2--	0110
5 Megalaspis cordyla	121--2411---22223-11111-111113	111----11--11-5---	0110
30 Theraponidae	221-1222211112311121111-1-1311	1111111111-1112-2--	0110
33 Trash fish	$453343343-1233224233234-234333$	2222222122133153353	011100 Spp cluster 1d
22 Priacanthus spp.	355533324131355553233121211113	2121111334232121234	011100
27 Sphyraenidae	1-11141141-2-22-3121111-122111	1211112231-21-2113-	011100
32 Other food fish	$1555222111211-1-221112-11111$ -	--1-111323-32111111	011101
25 Scoberomorus spp.	221-22211--2122131211121---22	$121111221132-11$-2--	011101
16 Nemipterus olu		------ 1 ----	011111
5 Other Carangidae	-----11-1-31111-1211-1---33232	2--111-------53213	1000
37 Crabs		-11-1-----1-11-111	1000
25 Rastrelliger spp.	---1-21--54--2434--22113152132	123-1111333221531--	$1001 \quad$ Spp cluster 2a
34 Squids	2-1-2111-121211-11111112111124	11111121111-11-2-13	1001
5 Caranx spp.	----11122--33121-121---21-----	-11113122112-1----	1001
39 Other invertebrates		111111111-1-1-111-1	1010
10 Formionidae	-23--1----11-1--11----1-11	11---11-1211-211--	101100
3 Arius thalassinus	--2-1-21243113---1-2--12132	221--1121--41-41112	101101
35 Cuttles	----11--1-121211111111-122111	1-111-111-111121112	101101
12 Heterosomata	11---1-1--111113--11-11121111	1-1111111-111111121	101101 Spp cluster 2 b
31 Trichiuridae	---1--1-1111111--1-11----1113	11---11--111111121-	101101
36 Shrimps	-----------11-1-111---1-111	111-1----111--211-	101101
18 Nemiterus japonicus	----111211311111-1111---111-1-	$111111111112211134-$	10111
29 Synodontidae	1---111121111111-111--11131122	11-1111111111-22222	10111
3 Arius spp.		-------------- 2	10111
3 Arius venosus		-1-131-21-2-2----	11000
5 Seriolina nigrofasciata		-1111--1----1----	11000
18 Nemipterus hexodon	-----11-11--11-1--11----1---	$1111111-1-111-\cdots$	11000
1 Carcharhinus scalei		3---.- - - - - - 2	110010
22 Other Pomadasyidae		$22111533345452 \cdots$	110011
22 Priacanthus layenus	------------ $22111-1-\cdots$	$211121222-331-\cdots$	110011
18 Nemipterus mesoprion		11111111111211 - - -	110011
14 Leiognathus elongatus			110011 Spp cluster 2 c
40 Snakes		122--2-1---22---2-	110100
5 Atropus atropus	----------11-1-1111-1-1--..-	11-11211311-11----	110100

Table 4. Two-way table of stations versus species/groups generated from TWINSPAN for data collected during the intermonsoon II period (September-October 1979). (continued)

	Group A (< 30 m)	Group B (> 30m)	
16 Other Mullidae		--1--1-11--11-1--1-	110100
16 Upeneus sulphureus	$111-\ldots-11-13124-11-\ldots-1-114$	121-444442254-1152-	110101
11 Pentaprion longimanus	-1---111---13-14--11----1-11	1111143442254211333	110101
5 Decapterus spp.		------- $1-1-\cdots$	110101
5 Selaroides leptolepis	1--------1211-1111---1-21--2	- $1111-1111231241314$	11011
5 Selar spp.		2--1--3212111122411	11011
14 Leiognathus bindus		211-21-111121-1-41-	11011
21 Pomadasys argyreus	1----11--1-111---11----1-11-	---1-1-111122--112-	11011
4 Abalistes stellaris		----11111-----1-111	11100
5 Atule spp.		---1-11-1----2---	11100
17 Muraenesocidae	-- -	-- - 1 -- - - - - - - - - -	11100
16 Upeneus bensasi		--. - - - - - - - - - - 3	111010
16 Nemipterus marginatus	-- -- -- -- -- -- - - - - - - - - - - - -	---- 1----11--1-2	111010
42 Sponges	--------------------------------	-----1----12----	111010
18 Nemipterus peronii	-------------------------------	-------------- 1	111010 Spp cluster 2d
15 Lutianus sanguineus		----1153332-2--44-	111011
18 Scolopsis spp.		--1--1-11-11111-111	111011
15 Other Lutianidae		------1-1---11-1111	11110
38 Lobster		-----11------111111	11110
18 Other Nemipteridae	--.-.-.-.-.-.-.-.-.-.-. - - 1 -- 1 -	-------------1111-334	11111
18 Nemipterus nemurus		----------------11111111	11111
19 Pentapodidac		----------11--1-1	11111
	000000000000000000000000000000	1111111111111111111	
	000000000000000001111111111111	0000000000000011111	
	000000000001111110000000011111	0000000111111100111	
	000011111110000010000111100001	00111110000111	
	000001100001	00011	
	00001		

Fig. 7. Trawl stations off the north coast of Central Java in September and November 1979 showing station clusters derived using TWINSPAN and DCA.

Table 5. Catch rate and relative abundance of the 30 most important taxa comprising the shallow and deep assemblages during the west monsoon and intermonsoon I period.

West Monsoon					
Shallow			Deep		
Taxa	$\mathbf{k g} \cdot \mathbf{h}^{\mathbf{1}}$	\%	Taxa	$\mathbf{k g} \cdot \mathbf{h}^{-1}$	\%
Leiognathus splendens	29.8	20.2	Leiognathus splendens	80.0	39.0
Rastrelliger spp.	25.1	17.1	Priacanthus spp.	15.2	7.4
Alectis indicus	11.0	7.5	Other Leiognathidae	10.7	5.2
Sardinella spp.	10.0	6.8	Upeneus sulphureus	10.3	5.0
Anadontostoma spp.	9.2	6.2	Other carangidae	9.7	4.7
Other Leiognathidae	8.9	6.1	Trash Fish	9.1	4.4
Squids	7.8	533	Sphyraenidae	7.4	3.6
Trash Fish	7.5	5.1	Pentrapion longimanus	6.2	3.0
Other Ariidae	6.2	4.2	Trichiuridae	4.7	2.3
Trichiuridae	5.0	3.4	Alectis indicus	4.1	2.0
Other Carangidae	4.0	2.7	Squids	3.7	1.8
Scianidae	2.5	1.7	Selar spp.	3.0	1.4
Stolephorus spp.	2.3	1.6	Lutjanus sanguineus	2.6	1.3
Upeneus sulphureus	1.6	1.1	Dussumieria acuta	2.6	1.3
Scomberomorus spp.	1.6	1.1	Scomberomorus spp.	2.5	1.2
Dasyatidae	1.4	1.0	Other Ariidae	2.4	1.2
Selaroides leptolepsis	1.2	0.8	Selaroides leptolepsis	2.4	1.2
Selar spp.	1.1	0.8	Synodontidae	1.9	0.9
Dussumieria acuta	1.1	0.7	Rastrelliger spp.	1.8	0.9
Other Engraulidae	1.0	0.7	Other Nemipteridae	1.5	0.7
Ilisha spp.	1.0	0.7	Atule spp.	1.4	0.7
Theraponidae	0.9	0.6	Arius thalassinus	1.3	0.6
Stromateidae	0.8	0.5	Dasyatidae	1.3	0.6
Lactaridae	0.6	0.4	Other Food Fish	1.2	0.6
Priacanthus spp.	0.6	0.4	Stolephorus spp.	1.1	0.6
Formionidae	0.5	0.4	Other Lutjanidae	1.1	0.5
Arius thalassinus	0.5	0.3	Nemipterus japonicus	1.1	0.5
Muraenesocidae	0.5	0.3	Chirocentridae	1.0	0.5
Sphyraenidae	0.5	0.3	Pomadasys hasta	1.0	0.5
Others	2.3	1.6	Sardinella spp.	1.0	0.5
			Others	11.3	6.1

Table 5. Catch rate and relative abundance of the 30 most important taxa comprising the shallow and deep assemblages during the west monsoon and intermonsoon I period. (continued)

Intermonsoon II					
Shallow			Deep		
Taxa	$\mathbf{k g} \cdot \mathbf{h}^{-1}$	\%	Taxa	$\mathbf{k g} \cdot \mathbf{h}^{-1}$	\%
Leiognathus splendens	59.8	21.7	Rastrelliger spp.	15.7	15.9
Trichiuridae	27.3	9.9	Leiognathus splendens	10.3	10.4
Anadontostoma spp.	26.2	9.5	Alectis indicus	8.5	8.6
Rastrelliger spp.	21.9	7.9	Trichiuridae	6.8	6.8
Stromateidae	16.5	6.0	Other Lutjanidae	4.7	4.7
Alectis indicus	15.4	5.6	Other Carangidae	4.6	4.7
Leiognathus equulus	11.2	4.0	Squids	4.4	4.4
Other Carangidae	10.1	3.7	Lutjanus sanguineus	4.3	4.4
Other Leiognathidae	8.7	3.1	Stromateidae	3.4	3.4
Other Ariidae	6.8	2.5	Other Ariidae	3.4	3.4
Trash Fish	6.2	2.3	Scomberomorus spp.	3.2	3.3
Squids	5.8	2.1	Selar spp.	3.1	3.2
Dasyatidae	5.8	2.1	Anadontostoma spp.	2.4	2.4
Sphyraenidae	5.3	1.9	Sardinella spp.	1.9	2.0
Sardinella spp.	5.2	1.9	Other Rays	1.9	1.9
Scomberomorus spp.	4.0	1.5	Pentrapion longimanus	1.8	1.8
Lactaridae	3.9	1.4	Stolephorus spp.	1.5	1.5
Theraponidae	3.6	1.3	Upeneus sulphureus	1.5	1.5
Polynemidae	3.2	1.1	Formionidae	1.4	1.5
Dussumieria acuta	3.1	1.1	Trash Fish	1.3	1.3
Upeneus sulphureus	2.9	1.1	Dasyatidae	1.2	1.2
Pomadasys hasta	2.8	1.0	Sphyraenidae	1.1	1.1
Other Food Fish	2.5	0.9	Priacanthus spp.	1.0	1.0
Other Engraulidae	2.4	0.9	Dussumieria acuta	0.9	0.9
Pentrapion longimanus	1.8	0.7	Lactaridae	0.8	0.8
Other Rays	1.8	0.6	Cuttles	0.7	0.7
Stolephorus spp.	1.4	0.5	other Leiognathidae	0.6	0.6
Selar spp.	1.3	0.5	Arius thalassinus	0.5	0.5
Snakes	1.0	0.4	Theraponidae	0.5	0.5
Arius thalassinus	1.0	0.4	Selaroides leptolepsis	0.4	0.4
Others	6.5	2.3	Others	5.1	5.1

Table 6. Catch rate and relative abundance of the 30 most important species/groups comprising the shallow and deep assemblages during the intermonsoon II period.

Deep			Shallow		
Species/Group	$\mathbf{k g} \cdot \mathbf{h}^{-1}$	\%	Species/Group	$\mathbf{k g} \cdot \mathbf{h}^{\mathbf{1}}$	\%
Leiognathus splendens	12.88	10.53	Leiognathus splendens	55.84	30.98
Priacanthus spp.	11.47	9.38	Dasyatidae	9.67	5.36
Priacanthus macracanthus	8.45	6.91	Alepes spp.	9.36	5.19
Upeneus sulphureus	8.26	6.75	Arius caelatus	8.30	4.60
Pentrapion longimanus	7.11	5.81	Other Food Fish	8.07	4.48
Trash Fish	6.52	5.33	Trash Fish	7.86	4.36
Rastrelliger spp.	4.30	3.51	Sciaenidae	7.39	4.10
Lutjanus sanguineus	4.23	3.46	Other Leiognathidae	6.04	3.35
Dasyatidae	3.91	3.19	Pomadasys hasta	4.91	2.72
Other Leiognathidae	3.42	2.80	Rastrelliger spp.	4.82	2.68
Arius thalassinus	3.38	2.76	Stromateidae	3.94	2.19
Dussumieria acuta	3.30	2.69	Dussumieria acuta	3.61	2.00
Other Carangidae	2.54	2.07	Anadontostoma spp.	3.14	1.74
Selaroides leptolepis	2.32	1.90	Sardinella spp.	2.58	1.43
Nemipterus japonicus	2.32	1.90	Sphyraenidae	2.19	1.22
Megalaspis cordyla	1.95	1.59	Scomberomorus spp.	1.96	1.09
Selar spp.	1.94	1.58	Megalaspis cordyla	1.94	1.08
Other Food Fish	1.84	1.50	Stolephorus spp.	1.89	1.05
Sphyraenidae	1.79	1.46	Leiognathus equulus	1.80	1.00
Priacanthus tayenus	1.41	1.15	Alectis indicus	1.75	0.97
Squids	1.39	1.13	Leiognathus brevirostris	1.72	0.95
Other Nemipteridae	1.36	1.11	Thryssa spp.	1.66	0.92
Leiognathus bindus	1.27	1.04	Theraponidae	1.61	0.89
Scomberomorus spp.	1.27	1.04	Upeneus sulphureus	1.58	0.87
Alepes spp.	1.26	1.03	Drepanidae	1.46	0.81
Synodontidae	1.19	0.97	Arius thalassinus	1.45	0.80
Scianidae	1.17	0.96	Osteogeneosis milit	1.42	0.79
Other Rays	1.10	0.90	Squids	1.42	0.79
Arius venosus	1.06	0.87	Other Carangidae	1.27	0.70
Snakes	0.90	0.74	Priacanthus spp.	1.19	0.66
Others	16.72	13.60	Others	18.07	10.03

References

Bianchi, G., M. Badrudin and S. Budiharjo. 1996. Demersal assemblages of the Java Sea: a study based on the trawl survey of the R/V Mutiara 4, p. 55-61. In D. Pauly and P. Martosubroto (eds.) Baseline studies of biodiversity: the fish resources of Western Indonesia. ICLARM Studies and Reviews 23, 7312 p.

Hill, M.O. 1979. TWINSPAN-a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca, New York.

Ter Braak, C.J.F. 1988. CANOCO-A FORTRAN program for canonical community ordination by partial detrended canonical correspondence analysis, principal components analysis and redundancy analysis (Version 2.1). Agricultural Mathematics Group, Wageningen, The Netherlands.

[^0]: (U. japonicus*)
 *valid name in FishBase 2000

