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Yale University, University of Auckland,

University of Southampton & Singapore Management University

August 22, 2010

�A statistician is a fellow that draws a line through a set of points
based on unwarranted assumptions with a foregone conclusion�

�No one understands trends. Everyone sees them in data.�

The Hamlet of Econometrics

Trends are ubiquitous in economic discourse, they �gure prominently in media com-
mentary, they play a role in much economic theory, and they have been intensively
studied in econometrics for three decades. Yet the empirical economist, forecaster,
and policy maker have little guidance from theory about the source and nature of
trend behavior. They have even less guidance about practical formulations, and they
are heavily reliant on a limited class of stochastic trend, deterministic drift, and struc-
tural break models to use in applications. A vast econometric literature has emerged
but the nature of trend remains elusive.

In spite of being the dominant characteristic in much economic data, having a
role in policy assessment that is often vital, and attracting intense academic and
popular interest that extends well beyond the subject of economics, trends are little
understood. Like the protagonist in Shakespeare�s most famous play, trend remains
unfathomable and inscrutable, the Hamlet of econometrics. No one knows what it
will do next.

This essay discusses some implications of these limitations, mentions some re-
search opportunities, and brie�y illustrates the extent of the di¢ culties in learning
about trend phenomena even when the time series are far longer than those that are
available in economics.

�My thanks to Chirok Han and Zhentao Shi for assistance with the graphics. Fig. 1 uses data
from the World Data Center for Paleoclimatology based on the study by Petit et al (1999). Partial
research support is acknowledged from the NSF under Grant No. SES 09-56687.
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What is Trend?

Trend is a simple �ve letter word. Its use is ubiquitous in economics, dominating
macroeconomic discourse on growth and productivity which, as Paul Krugman1 once
said, in the long run a¤ect almost everything in economics. The concept is equally
pervasive in modern microeconomics and all the applied sub�elds of economics, where
intertemporal comparisons play a major role in economic theories of behavior and in
subsequent assessments of policy e¤ectiveness, covering issues as sociologically diverse
as the impact of abortion rights legislation on crime, schooling on earnings, and no
fault legislation on divorce statistics. In the world of �nance, trend is just as vital
and important because it is the drift in asset prices that provides the allure of long
term capital appreciation and rewards risky investment.

The dictionary de�nition of the word trend originates from a nineteenth century
usage2 as �the general course of events or prevailing tendency�- a seemingly simple
concept that is readily apprehended by all. Or is it? Is our apprehension of the
concept so unambiguous that it needs no explicit de�nition beyond that of our general
understanding derived from its dictionary meaning? Media commentaries as well as
professional economic discussion frequently take the meaning of the term for granted
and proceed to lever policy argument on the basis of this presumption. How often,
for instance, do we hear senior public economists like the Chairman of the Federal
Reserve, Governors of central banks and Treasury Secretaries describing the context
for economic policy decisions by speaking of the data in expressions such as �if current
trends continue ...�or �a newly emergent trend is ...�or �long term trends indicate
...�.

It is one of the ironies of economics that while these commonly used phrases
appear to carry a measure of technical precision that lends professional import to
discussion, that precision (and presumably some of the credibility that comes with
it) is illusory. Leaving aside the issue of what is really meant or intended by the
word �trend� (whose popular meaning has changed signi�cantly over the last few
centuries and whose scienti�c meaning is seldom given), the attendant epithets (such
as current, emergent, or long term in the usages cited) seem to lend precision to
the concept - thereby creating a misleading impression of scienti�c import in their
usage. Misleading, because is impossible to have clarity in these expressions without
making the component terms themselves unambiguous: what is a trend, and how
are the terms current, newly emergent, and long term to be interpreted? In short,
is it possible to measure and discuss with clarity any quantity that is unde�ned?
Econometricians have been battling with these ideas over the last 30 years and know

1�Productivity isn�t everything, but in the long run it is almost everything� is the opening line
in Krugman (1995).

2According to the Online Etymology Dictionary (http://www.etymonline.com/) this usage in
the sense of �general tendency� is recent and dates from 1884. The older meaning of the word (a
verb) dates from 1598 ��to run or bend in a certain direction, as of a river or coastline��and is
based on the Middle English �trenden�which meant �to roll about, turn, or revolve��certainly a
di¤erent meaning from �the general course of events� as we presently understand the term. Given
this etymology, the modern notion of a stochastic trend seems to possess an atavistic link with the
earlier usage.
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how imprecise the terms are. How is it then that such a fundamental concept as trend,
whose use is so widespread in the profession from the elite quantitative journals to
public economic forums, can be so imprecise in discourse, so little understood and so
often misleading in practice?

The ubiquity of the word trend and its imprecision are by no means con�ned to
economic discourse. Imprecisions in usage arise everywhere across the social, behav-
ioral and business sciences to the natural sciences and from popular discussion in the
media to scienti�c work. In some cases, as in the assessment of climate change (to
which we turn below), trend measurement has major societal and planetary conse-
quences, as well as economic and policy implications.

One explanation for the ubiquitous usage lies in a natural human desire to bring
order to disorder when seeking to understand (or model) the world around us. When
we see a cloud of data points plotted against time, our minds bring order to that
disorder by drawing a line through the points - representing the data in a way that
seeks to satisfy an innate need to understand its primary features. We want to know
what has been, where we are now, and most of all where we are going. A trend
line satis�es these primitive requirements. It summarizes where we have been, shows
where we are now in relation to the past, and, most of all, reveals a hint of where
we are going. The lines we draw in our minds like those we draw on paper or �t by
econometric methods are typically smooth and the derivative is a direction vector for
the future. Lines through the data reveal features like a long run tendency to increase
over time, a cyclical pattern, or turning points that can be associated with known
events, thereby helping to reinforce their value to us. Parametric and nonparametric
trend regression and smoothing techniques like Whittaker (1923) graduation (known
in macroeconomics as Hodrick Prescott �ltering) are simply technical mechanisms
that formalize this mental process of representation and ex post discovery.

Whether the device is the eye, the hand, or the technical apparatus of economet-
rics, trend �tting leads to a curve through a set of points that is typically continuous
and smooth, or at least piecewise so. These properties facilitate the exercise and they
o¤er advantages in potential interpretation, suggesting the existence of a generating
mechanism for which continuous di¤erentiability is a basic feature, subject perhaps
to an occasional structural shift. Such a �trend�is manufactured from the data and
easily apprehended. But how realistic is such a heroically simpli�ed representation of
a mechanism that by its very nature resists understanding, when even the vocabulary
of description de�es scienti�c clarity? For when we speak of current trends contin-
uing, do we simpy assert that a line drawn through a given set of points continues
into the future? If so, which line or curve and which set of current points? Do we
mean the last three data points, the last �ve or the last ten? And how well does the
proposition that emerges withstand these changes in formulation?

Technical market analysis, which is so common in the popular �nancial press,
abounds with such lines, giving readers a visual directory of upper and lower trend
support lines, long term containment triangles, resistance levels, and many other
data-manufactured lines, all purporting to represent some fundamental feature of
a series and its evolution. As the de�nition of a statistician that heads this essay
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implies, much data analysis of trending time series is of this kind, often resting on
unstated and unwarrated assumptions that are not tested. How then are we to value
and interpret such analysis? And what better alternatives do formal econometric
methods o¤er the empirical researcher and policy maker whose decisions often rely
on trend evaluation in relation to alternate policies?

A partial answer to these questions has been provided by the econometrics of
stochastic trends, structural breaks, and nonstationary time series which has pro-
duced toolrooms of new methodology for analyzing trends. This machinery allows
practitioners to cope with trend processes that are inherently random or subject to
random shifts, as well as many practical trend models that are misspeci�ed.

Stochastic Trend

To the wide professional community of applied economists working in macroeconomics
and international �nance, the most in�uential and practically useful transformation
in the last three decades in econometrics has been the unit root and cointegration
revolution. This revolution changed the way the profession thought about trend
by emphasizing the role of stochastic elements in the trend mechanism and by for-
mulating a technically well-de�ned concept of long run behavior that did not re-
move randomness. In the mid 1980s, functional limit laws and integral functionals of
Brownian motion took time series econometrics in a �restorm that swept through all
the mainline economics journals. The new thinking swiftly penetrated econometric
teaching and empirical practice, creating a vast new literature of applied economics
sophisticated in its use of modern econometric technology and nonstandard limit
theory. Beyond economics, the methods became a major export of econometrics to
other social and business sciences. Their rapid acceptance and widespread use across
many disciplines a¢ rmed the importance of an idea whose time had come �a random
trending mechanism that could be used to study commonality in movement over time
among many series and deliver estimates of long run linkages and adjustments, as
well as transient dynamics.

In their limiting forms - Brownian motion, fractional motions, di¤usions, and
semimartingales - these trends form continuous stochastic processes but they are not
smooth and they have inherently unpredictable elements. Change and randomness
form a critical element in their composition. In this respect they di¤er from the
trend lines that our minds draw when we are confronted with a cloud of points.
Correspondingly, when econometric time trend regressions or smoothing algorithms
draw lines through data manifesting stochastic trends, we obtain spurious regressions
which give a misleading view of the nature of the trend and its direction. The
econometric methods developed in studying these phenomena enabled us to explain
precisely what conventional trend line regressions do deliver in the context of such
misspeci�cation (Phillips, 1986; Durlauf and Phillips, 1988) and how comovement
may be e¢ ciently estimated (Johansen, 1988; Phillips and Hansen, 1990; Phillips,
1991). These methods opened the door to a new arena of empirical research and policy
discussion that has been enormously productive and has created a new standard of
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professional econometric practice and empirical policy analysis.
In this new standard, spurious regressions have a well de�ned pejorative meaning,

usually taken in contrast to cointegrating regression. But cointegrating regressions
do not model or explain trends, they simply co-relate trending time series under
given assumptions about the form of the trending mechanism. These assumptions
are necessary for many econometric methods but they are inevitably approximations
in view of the complex and poorly understood nature of the forces that determine
trends in the data. The result is inescapable �trend misspeci�cation and some degree
of spurious regression.

Spurious modeling of trends may be inevitable but it is far from useless. If it
were, then there would be little value in much applied macroeconomic work, where
trend misspeci�cation must be taken as universal. Here (and elsewhere in applied
work) convenience is frequently a decisive factor heightening the appeal of devices
like polynomial time trend regression and simple smoothing operations such as the
Whittaker-Hodrick-Prescott �lter. Like least squares regression, these methods still
form the backbone of much empirical work and they do not yield their ground easily
to more sophisticated alternatives such as various forms of nonparametric �tting
using both time and frequency approaches (e.g., Corbae, Ouliaris and Phillips, 2003;
Shimotsu and Phillips, 2005).

Nor do more sophisticated methods necessarily address the root issue of misspec-
i�cation. But nonparametric approaches in the frequency domain can be helpful in
that they distinguish the memory component in the data as an important individual
feature and they permit general formulations of trending processes in terms of the
asymptote of the spectral density in the immediate locality of the zero frequency.
These asymptotic forms hold for many di¤erent classes of trend, both deterministic
and random. So they appeal in terms of their generality. Correspondingly general
representations hold for the discrete Fourier transform of the time series in the region
of the zero frequency and therefore furnish sample information about the nature and
strength of the trend.3

Recent research (Phillips, 1998; 2005) I have been pursuing has shown that trend
misspeci�cation need not be fatal, even when using smooth polynomials to model
stochastic trends. In such cases, the regression coe¢ cients remain random even in
in�nite samples and may be interpreted as the random coe¢ cients that arise in pro-
jecting the limiting stochastic trend process on subspaces furnished by basis functions,
such as the time polynomials used in regression. Similar properties hold in the case
of breaking trend basis functions. We can, in fact, think of these models as coor-
dinate approximations to an always more complex (and random) underlying trend

3The discrete Fourier transform of a trending time series Xt may be written in the following
general form local to the origin

wx (�s) =
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2�n
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t=1
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whose values depend on the form of the trend and its various deterministic and random components
�see Phillips and Shimotsu (2004) and Phillips (2005) for further details and applications.
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function. In e¤ect, the time polynomials or other regressors act as basis functions
forming a sieve space (an approximating space using an in�nite family of functions)
for a stochastic process. The random coe¢ cients then re�ect the randomness in the
trend process itself. It is also possible to use these coordinate regression functions in
a meaningful way for prediction - in the limit, these predictors can even reproduce
martingale like forms, as shown in Phillips (2005). In e¤ect, smooth determinis-
tic functions can represent nondi¤erentiable (unpredictable) martingales in the limit
when we allow for random coe¢ cients. The coordinate basis approach may also be
used to model and capture co-movement among such time series in a very general
way, extending the notion of reduced rank regression that is now commonly used in
applied econometric modeling to a stochastic process context.

In practice, therefore, while economists and �nancial analysts frequently see
trends in the data and wish to use estimates of these trends in policy projections, the
econometric modeling of such trends is demanding and failure can have major impli-
cations for policy. When the trend generating mechanism is poorly captured in an
empirical model, forecasts carry forward the poor approximation. The phenomenon
is familiar to empirical researchers and forecasters who see the incoming data drift
away from their model projections as the horizon increases. Quick model adaptation
to the random wandering, unpredictable element of trend (witness the original me-
dieval meaning of the word) then becomes a critical feature in good applied modeling
and needs to be accounted for in forecasting and policy analysis, as many experienced
practitioners acknowledge.

Econometric analysis of model adaptation mechanisms to capture changes and
account for shifts in location and trend soon after they occur are becoming part
of a new armoury for forecasters (Castle et al, 2010; Clements and Hendry, 2006;
Andrews, 2003; Phillips and Ploberger, 1994). Recent analysis by Ploberger and
Phillips (2003) provides a limit theory which explains how much harder it is to get
closer to a true generating mechanism with nonstationary components than it is one
with only stationary covariates. A corollary of this theory is that forecasting is an
order of magnitude harder for trending data because the optimal forecast is harder
to estimate even when the form of true trend model is known.4

The moral is that if trend terms are present in our models we need to be sure that
they are relevant, well estimated, and quickly adapted to change. Otherwise, they can
be powerfully wrong in forecasting and mislead policy. As the second header to this
essay intimates, trends have an elusive quality: no one understands the mechanism,
but everyone sees evidence of it in the data.

Economic Policy and Climate Trend

National economic policies are commonly motivated by long term goals and corre-
spondingly re�ect perceived trends in various indicators of societal needs. Similar

4This corollary applies even though trend coe¢ cients are estimated at accelerated rates (that is
at a faster rate than

p
n for a sample of size n) because the optimal forecast involves the coe¢ cient

and the trend function - see Ploberger and Phillips (2003) for details.
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considerations drive global policy agreements on �nancial stability, trade, and eco-
nomic cooperation. Trend assessment is inevitably part of all such policy decisions.
Nowhere is this more evident at present than in the ongoing global discussion of
policy on climate change.

Underlying all discussion and policy enactment is the science of climate change
�understanding the natural processes, external forces and human activity that may
a¤ect long term climate. There is broad scienti�c agreement about human impact on
the level of greenhouse gases (GHG) in the atmosphere, manifested in the popular
�hockey stick� graphic that shows the trend in greenhouse gases over the last two
centuries as a sharp spike against the blade of little change over the previous two
millennia. There is also agreement, but less unanimity, about the quantitative impact
of GHG emissions on climate. Evidence available from ice core data5 (see Fig. 1)
over the past half million years con�rms a strong and persistent association but the
causal mechanism and time lags involved are complex and little understood.

Economic policy analysis has to assess the cost of doing nothing or too little
about climate change against the cost and potential gains of implementing GHG
abatement strategies like emissions trading and carbon taxation. Caught up in this
policy debate are major questions of trend determination: how GHG emissions will
a¤ect climate over the next century and what impact on the trend the di¤erent
abatement measures may have. Economic analysis, national economic policy and
successful global cooperation all rely on estimates of climate trend. The horizons
cover everything from a few years to generations in the future6. The di¢ culties and
uncertainties involved in these trend projections are simply enormous.

For comparison, we look brie�y at some climatological data which extend over
geologic time frames and are measured in thousand year (kyr) or million year (myr)
units. Against this time frame, economic time series seems woefully short, especially
when it comes to studying trend behavior. Yet many of the same problems (such as
the inherent random elements in trend, shortfalls in theory guidance, and ambiguities
between trend and cycle) continue to manifest themselves. Having more data, in
e¤ect, does not always lead to improvement in analysis or understanding. Sometimes,
especially with trending time series, the advent of more data simply means more to
explain. As in economics, it is the synergy of good theory, data, and statistical
methodological that is most likely to enhance understanding.

The graphs shown in Fig. 1 are based on (linearly interpolated) data constructed
from ice core samples at the Vostok station in Antartica (Petit et al, 1999). These data
cover the past 420kyr with time measured from right (past) to left (present) on the
horizontal axis7. The �gure contains four (slightly overlapping) panels that show the
time paths of di¤erent variables over this historical period, each series having its own

5Petit et al (1999) provide a record and statistical analysis of various GHG levels as well as
temperature and dust particles obtained from ice core samples covering the past 420,000 years from
the Vostok station in Antarctica.

6Over such time frames even the choice of the discount factor can have major implications (Nord-
haus, 2007).

7The ice core data were obtained from the World Data Center for Paleoclimatology - see Petit et
al (1999).
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axis: (i) temperature measured in oC deviations from mid-twentieth century levels;
(ii) methane gas (CH4) levels in parts per billion volume (ppbv); (iii) CO2 levels in
parts per million volume (ppmv); and (iv) dust levels in ppm. The temperature graph
reveals many well known features: (i) the (relative) stability of temperatures over the
holocene (the last 12kyr), considered to be decisive in the neolithic revolution and
the emergence of human civilization; (ii) the long but variable cycle (with periods
between 80-120kyr) between major glacial epochs; (iii) the relatively short inter-
glacial periods; (iv) some less dominant subcycles, also of variable period; and (v)
evidence of random wandering behavior between episodes of deglaciation. Spectral
analysis of these series reported in Petit et al (1999) shows spectral peaks around
100kyr, 41kyr, and 19-23kyr periods. These peaks are thought to be partly associated
with orbital forcing eccentricities, obliquities and precession, although the links are
by no means unequivocal and there is considerable variation in the empirical periods.
An alternative astronomonical theory involving three dimensional orbital inclination
to the invariable plane (the plane of the solar system) leading to 100kyr cycles arising
from dust accretion within that plane has been advanced by Muller and MacDonald
(1997). Unit root tests con�rm evidence of random wandering behavior in the series
between these various glacial epochs.

Fig. 1: Vostok ice core data over 420kyr for temperature (deviations from mid
twentieth century levels), CO2; CH4 and dust.

No present climatological (or planetary) simulation models are capable of gener-
ating time paths of this type over long geologic periods. Frequency domain methods,
while informative about dominant periodicities, struggle to deal with the many sepa-
rate components in these trajectories, particularly the unit root nonstationarity, the
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irregularity in cyclical behavior, the abrupt terminations, and the prolonged holocene
period which is a singular event in the record. Causal analysis among the series is
complicated by the intermittent, irregular and non-concurrent sampling of the di¤er-
ent series. Co-movement analysis does not �t within the usual cointegrating model
framework of econometrics, yet co-movement is clearly apparent and of great impor-
tance, not only in terms of ongoing discussions on anthropogenic driving forces of
climate change �measured by recent increases in greenhouse gas emissions (carbon
dioxide, methane, and nitrous oxide)8 �but also in terms of the possibly causative
relationship between atmospheric dust particulates and temperature9.

Another option for modeling these series might be the use of breaking trend func-
tions, such as those that have been popular in econometrics recently. Structural break
models o¤er �exibility to capture di¤erences as well as commonalities across epochs
and could be used to �t trigger point thresholds for the initiation and termination of
glacial periods. However, these models have typically been developed in a univariate
context and would need to be extended to multiple, sequenced, alternating breaks
with common thresholds and feedbacks among the series and to allow for random
wandering behavior and cyclical features associated with orbital forcing in order to
achieve congruence with these data. All of these requirements, combined with break
point and threshold determination and the singularity of the holocene era, push the
envelope of present capability and reveal the arbitrariness in this type of structural
break modeling when it is carried to excess.

Finally, one might consider direct nonparametric �tting or data smoothing. Nei-
ther approach deals well with abrupt terminations, threshold triggering or random
wandering behavior within epochs. Neither do these methods allow for the use of
astronomical forcing variables or other causal e¤ects known to be important from
climate theory, such as greenhouse gas ampli�cation or ocean current in�uences. Nor
do they allow easily for multivariate treatment that permits interaction between the
series.

In short, none of the models or methods currently in use in studying trends in
econometrics seem to measure up to the task of modeling these series. To take the
problem to the next level, these series can be viewed in the context of even longer
climate trajectories. Paleoclimate records from various sources are now available over
long time frames extending to hundreds of millions of years. The data are partially
based on deep sea sediment cores extracted at a large number of oceanic sites, as
described in Muller and MacDonald (1997) and Lisieki and Raymo (2005a &b).

These extremely long series raise the di¢ culties of trend modeling to an entirely

8The Intergovernmental Panel on Climate Change (IPCC) Fourth Report released in 2007 con-
�rmed that atmospheric CO2 concentrations rose from 280ppm in 1750 to 379 ppm in 2005 - see
http://www.ipcc.ch/. As is apparent from Fig. 1, the level 379 ppm exceeds by around 100 ppm
all previously recorded levels of atmospheric CO2 over the last 400,000 years.

9Some alternate planetary evidence of climatic causative forces arising from dust storms is avail-
able from astronomical observation.Ten planetary dust storms have been observed on the planet
Mars since 1877. Over the last decade two major planetary dust storms (2001 and 2007) have been
closely monitored by the Hubble telescope and Mars rovers. It was observed that the 2001 dust
storm led to a temperature rise of some 30oC, a¢ rming a strong planetary link between dust and
temperature.
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di¤erent level. Sediment core data reveal a steady downward drift in temperature
over the last 5myr period, leading to a growing incidence of glaciation accompanied
by an increase in the amplitude of the glacial/deglacial �uctuations (appearing like
nonstationary volatility on this time scale). The 41 kyr cycle is a dominant charac-
teristic 3 to 1 million years ago, whereas the � 100kyr cycle appears dominant over
the last million years10. The picture is further complicated over the last 65myr period
following the Cretaceous-Tertiary (or so-called KT) boundary event. While the drift
in temperature over this period has generally been in a downward direction, it is by
no means linear or monotonic and there have been substantial periods of warming,
associated with an Antarctic thawing 25myr ago, prior to reglaciation some 12myr
ago. Finally, the estimated climate record over the last half billion years has a cycli-
cal pattern embodying much of the variation that over shorter geologic periods is
reasonably perceived as upward or downward trend.

These long span paleoclimate data highlight that trend is a complex phenomenon
with features that are random and endogenous to the sample size. As we lengthen
the time span of observation, what �rst appears as a pattern of drift later becomes
absorbed into a cycle with a longer period or even manifests as volatility. The pattern
continues to repeat itself over di¤erent time scales.

Is trend itself then a phenomenon that is relative to time scale? If so, when we
model trend how do we take account of the wider picture presented by a longer time
frame when that data is not available to us? And what form of asymptotic theory is
appropriate in a �nite sample where the trend form is random and endogenous to the
sample size? These are hard questions that push the limits of present understanding.
In the absence of data, the answers must lie in good theory, better econometrics and
fast algorithms for adapting models that are inevitably misspeci�ed.

To capture the random forces of change that drive a trending process, we need
sound theory, appropriate methods, and relevant data. In practice, we have to manage
under shortcomings in all of them. It is at least some comfort for the econometri-
cian to know that these manifold di¢ culties of modeling trend are not con�ned to
economics.

Trends and Truth

Picasso once said that art is a lie that tells the truth. Even the most ardent proponent
of the merits of economic theory could hardly claim the same of economic models.
Good economic models are lies that may reveal a kernel of insight about reality.
Recognition of this shortcoming is as important as apprehending the truth that no
one understands trends. The role of econometrics is to �nd that kernel of insight in
the data and put it to work to aid forecasting and policy. If we are fortunate, some

10The orbital inclination theory of Muller and MacDonald (1997) o¤ers an explanation of this
major change in climate trend. Changes in orbital inclination take the Earth periodically (around
100kyr) into a dust belt. Dust accretion is a¤ected by random astronomical events such as asteroid
collisions which periodically replenish dust in this belt around the sun, thereby disturbing the glacial
cycle.
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of the mysteries of trend, including its inherent random nature, may be revealed in
the process.
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