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Abstract:  
When working with large-scale models or numerous small models, there can be a 
temptation to rely on default settings in proprietary software to derive solutions to the 
model.  In this paper we show that, for the solution of non-linear dynamic models, this 
approach can be inappropriate. Alternative linear and non-linear specifications of a 
particular model are examined.  One version of the model, expressed in levels, is highly 
non-linear. A second version of the model, expressed in logarithms, is linear. The dynamic 
solution of each model version has a combination of stable and unstable eigenvalues so 
that any dynamic solution requires the calculation of appropriate “jumps” in endogenous 
variables.  We can derive a closed-form solution of the model, which we use as our "true" 
benchmark, for comparison with computational solutions of both linear and non-linear 
models.  Our approach is to compare the "goodness of fit" of reverse-shooting solutions for 
both the linear and non-linear model, by comparing the computational solutions with the 
benchmark solution.  Under the basic solution method with default settings, we show that 
there is significant difference between the computational solution for the non-linear model 
and the benchmark closed-form solution.  We show that this result can be substantially 
improved using modifications to the solver and to parameter settings.   
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1.  Introduction 

When working with large-scale models or numerous small models, there can be a 
temptation to rely on default settings in proprietary software to derive solutions to the 
model.  In this paper we show that, for the solution of non-linear dynamic models, this 
approach can be inappropriate.   

We consider a simple linear model with two stable eigenvalues (real-valued or complex-
valued) and one unstable eigenvalue (real-valued).  Alternative linear and non-linear 
specifications of the model are examined.  One version of the model, expressed in levels, is 
highly non-linear. A second version of the model, expressed in logarithms, is linear. The 
dynamic solution of each model version has a combination of stable and unstable 
eigenvalues so that any dynamic solution requires the calculation of appropriate “jumps” in 
endogenous variables.   

We start by showing the results that can be derived using the default settings of a typical 
solver.  We show that this gives unsatisfactory results for the non-linear model; and then, 
show how the default settings and choice of solver can be adjusted to give acceptable 
results.  This paper builds on previous work by Stemp and Herbert [9] and Herbert and 
Stemp [3]. 

 

2.  The model 

The linear model (expressed in logarithms) 
The following model is an extended version of a model previously described by Turnovsky 
[10]. It can be derived from the Sargent and Wallace [7] extension of the Cagan [2] model 
by adding a labour market defined by both employment and wages and by introducing 
sluggish adjustment for both these variables.  The model is given by the following set of 
equations: 

 
 1 2m p y pα α− = − &       (1) 
 
 (1 ) ,0 1y nβ γ γ= + − < <       (2) 

 
 ( )n n w pθ δ γ= − − +&        (3) 

 
 (w n n)η= −&         (4) 
 
where Greek symbols denote parameters with a positive value, all variables are functions 
of time and lower-case letters denote logarithms: 
y = output (expressed in logarithms); 
n = employment (expressed in logarithms); 
n = full employment (expressed in logarithms); 
p = price level (expressed in logarithms); 
m = nominal money stock (expressed in logarithms), assumed to be constant; and 
w = wage rate (expressed in logarithms). 
 



 

Since this model is linear, it has a unique equilibrium which satisfies the following 
equations: 
 
 1m p yα− =         (5) 
 
 (1 )y nβ γ= + −        (6) 

 
 n w pδ γ− = −        (7) 

 
 n n=          (8) 
 
We will refer to this specification of the model as "the linear model". 
 
Closed-form solution of the linear model 
We choose parameters for the model as follows: 1 1α = , 2 0.5α = , 0β = , 0.5γ = , 

log(0.5)δ = and 1θ = .  The exogenous variables are 1n = , 0.1m = and 0 0=m . 

As we have shown previously (see Stemp and Herbert [9]) the configuration of eigenvalues 
can be changed by choosing alternative values for the parameter η , with η  chosen from 
the values: 0.2, 0.5, 10.0 and 100.0; the associated eigenvalues are given by 1 2 3, ,λ λ λ  in 
Table 1. 

 

(Table 1 about here) 

 
It will be observed that as η  grows increasingly positive, two of the eigenvalues first 
become complex-valued and then as η  increases further the imaginary part of the 
complex-valued eigenvalues become increasingly large.  Eigenvalues with large imaginary 
parts are associated with increasingly oscillating dynamics. 
 
The dynamic solutions assume that initially the model is in a steady-state associated with 

0m m= .  Following a monetary shock to m m= , the price level "jumps" so that the 
economy moves onto the stable trajectory and evolves to a new post-shock steady-state 
(see Blanchard and Kahn [1]). 
 

(Figure 1 about here) 
 

A closed-form solution for the linear model can be derived using standard matrix 
techniques.  Figure 1 shows dynamic paths for each of the endogenous variables: p, n and 
w, as the parameter η  is allowed to vary across the four values given in Table 1.  The 
dynamic solution path becomes increasingly oscillatory as η  is allowed to increase. 
 
The non-linear model (expressed in levels) 
An equivalent model specification can be rewritten in levels as follows: 
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The variables are as for the model above except that upper case letters denote levels, so 
that: 
Y = output; 
 N = employment; 
N = full employment; 
P = price level; 
M = nominal money stock, assumed to be constant; and 
W = wage rate. 
 
In particular, some (but not all) solutions to the non-linear model can be derived from 
solutions to the linear model using the following transformation: 

         (12) exp( )P = p

n

w

         (13) exp( )N =

         (14) exp( )W =

This non-linear specification of the model has multiple equilibria.  There is an equilibrium 
that corresponds to the equilibrium for the linear specification of the model, but there is 
another equilibrium as well.  For example, there is an additional equilibrium given by: 

 
          (15) 0P =
 
 N N=         (16) 
 
          (17) 
 

0W =

We will focus on the dynamic solution that converges to the same equilibrium as the linear 
model and will refer to this specification of the model as "the non-linear model".   
 

3. Solving the model 

Previous work 

Whilst it is possible to provide solutions to the linear model in closed-form, the non-linear 
model can only be solved using computational techniques.  Two standard computational 
approaches to dynamic models with "jump" variables, like that considered in this paper, are 
the forward-shooting and reverse-shooting algorithms.  We have previously considered 
these approaches in conjunction with the model considered in this paper (see Herbert and 
Stemp [3] and Stemp and Herbert [9]). 



 

In Stemp and Herbert [9], we focused on the case of the linear model with two stable 
complex-valued eigenvalues and one unstable real-valued eigenvalue.  We employed the 
closed-form solution of the linear model as a benchmark to compare the properties of 
model solutions derived using reverse-shooting and forward-shooting.  Because the model 
has complex-valued eigenvalues, it will have cyclic dynamics and we argued that problems 
encountered in solving these dynamics would likely coincide with some of the problems 
that the solution algorithms would have in solving non-linear models.  Focussing on the 
case when 100η = , we showed that the choice of ODE solver has a significant impact on 
the likely success of the shooting algorithms. 

In Herbert and Stemp [3], we considered both the linear model and the non-linear model.  
By attempting to solve these models using forward-shooting and reverse-shooting 
algorithms, we showed that the forward-shooting algorithm is likely to choose a "wrong" 
solution (defined as a solution that converges to a steady-state equilibrium that is not 
economically meaningful), but the "right" solution for the linear model.  The reverse-
shooting algorithm chooses the "right" solution in both cases.  Since for this paper we 
intend to compare computational solutions of both the linear and non-linear models, we 
will employ the reverse-shooting algorithm in this paper as our preferred computational 
algorithm for solving both models.   

In the case of the standard two-dimensional model, reverse-shooting involves just one 
search in time starting from the neighbourhood of the steady-state, with the model 
dynamics throwing the dynamic solution onto the stable arm of the saddle-path.  Reverse-
shooting for higher dimensional models with more than two stable eigenvalues requires 
search over a grid (the stable manifold) with the dimension of the grid equal to the number 
of stable eigenvalues. 

Our approach is to compare the "goodness of fit" of reverse-shooting solutions for both the 
linear and non-linear model, by comparing the computational solutions with the benchmark 
solution, given by the closed-form solution of the linear model.  To make all three 
solutions comparable, each solution is expressed in levels, with the closed-form and 
computational solutions of the linear model being converted to levels by taking exp of 
endogenous variables as in equations (12-14).   

The reverse-shooting algorithm has two essential components: a differential equation 
solver to solve for each candidate path and a search routine that chooses among possible 
candidate paths and determines when an acceptable candidate path has been found.   Our 
choice of routines is based, as well as on computational efficiency, on our aim that the 
chosen software can solve a wide variety of models with limited knowledge of the model.  
For the search method we use a Nelder-Mead direct simplex search (see Lagarias, Reeds 
Wright and Wright [5]).  We implement this search by the MATLAB function fminsearch.  
There is a range of differential equation solvers available in MATLAB (see Shampine and 
Reichelt [8]).   We consider three candidate solvers:  The Runge-Kutta solver, the Adams-
Bashforth-Moulton predictor-corrector algorithm, and a Stiff solver.  Each of these 
candidate solvers is described below in turn. 

 

Runge-Kutta (RK) solver 
We use the variable step-size Runge-Kutta algorithm as implemented as a solver by the 
MATLAB function ode45 (see Mathworks [4]).  The algorithm uses a 5th-order Runge-
Kutta formula to estimate the local truncation error for the 4th order Runge-Kutta formula.  



 

We use the step-size that gives an absolute tolerance in the local truncation error of at least 
 and a default relative tolerance of the truncation error relative to the size of the 

solution of at least 10 .  The Runge Kutta algorithm is a single-step solver so that only the 
solution at the previous time-step is used in determining the current solution. 
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Adams-Bashforth-Moulton (ABM) solver 
This is a multi-step, variable step-size, algorithm, which usually needs several preceding 
time-point solutions to compute the current time point solution.  The ABM solver is 
regarded as better than the Runge-Kutta solver when the ODE function is expensive to 
calculate and has been implemented using the MATLAB function ode113.  We first 
implement the ABM solver using the default maximum step-size parameter.  Again we use 
the default absolute tolerance in the local truncation error of at least 10  and the default 
relative tolerance of at least 10 . 
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Stiff solver 
With a model such as the one in this paper where there are multiple differential equations 
the issue of stiffness can arise. If stiffness is an issue then the usual solution methods often 
become unstable. Stiffness is not precisely defined but "... typically occurs in a problem 
where there are two or more very different time scales of the independent variable on 
which the dependent variables are changing" (see Press, Teukolsky, Vetterling and 
Flannery [6], p. 931]. This could be indicated by a large relative variation in the 
eigenvalues.  The Stiff solver has been implemented using the MATLAB function 
ode115s. 

 
4. Results 

Current approach 

In Stemp and Herbert [9] we focused on the computational solution of the linear model in 
the most oscillatory case, which is the outcome for wages when 100η = .  Using the RK 
solver, the reverse-shooting algorithm had difficulty reproducing the correct solution.  The 
ABM solver was able to do much better.  It turns out that the considerable improvement in 
"goodness of fit" was driven by the smaller step-size rather than the choice of solver.  In 
this paper we have a truly non-linear version of the model, rather than just a linear version 
that we use to simulate some of the likely properties of a non-linear model through 
oscillatory behaviour.  Accordingly, here we focus on the case when eigenvalues are real-
valued.  In particular, we consider the case when 0.2η = .   

 

The case when 0.2η =  

Figure 2 shows the dynamic comparison of the solution to the linear model for 0.2η = , 
using the most basic solver: the RK solver with default settings.  Using the "eyeball" 
metric, there is virtually no difference between the computational solution and the 
benchmark closed-form solution.  This can be contrasted with Figure 3 which shows a 
similar solution for the non-linear model.  There, the "eyeball" metric shows significant 



 

difference between the computational solution for the non-linear model and the benchmark 
closed-form solution.   

(Figure 2 about here) 

 

(Figure 3 about here) 

In Stemp and Herbert [9], we focused on the case when 100η = .  Our preferred solver in 
this case was an ABM solver with small step-size.  Figures 4 and 5 show dynamic 
comparisons for the case when 0.2η =  with the same solver, an ABM solver with 
maximum step-size of 0.01;  for these figures, our "eyeball" metric shows that the linear 
model remains a good fit using this solver and the non-linear model is now also a good fit 
using the ABM solver with small step-size. 

 

(Figure 4 about here) 

 

(Figure 5 about here) 

 

Since major improvement for the different solvers has come about for the non-linear 
model, we will discuss our approach to improving the solution to this model in greater 
detail. 

 

The non-linear model 

Table 2 documents the different approaches considered in determining the best method for 
solving the non-linear model.  In all cases we report the RMSE (root mean square error) 
norm which is an  norm adjusted for the number of sample points.  The norm is reported 
for the aggregate model as well as for the three endogenous variables separately.  It can be 
observed that the outcome under the preferred solver, ABM solver with maximum step size 
of 0.01, is by far the best outcome.   

2L

 

(Table 2 about here) 

 

As can be seen from the table, different methods have been used to augment basic defaults.  
The computational effort for the solver is directly related to the step size and so the solvers 
used here choose a step size based on the error tolerances. When more accuracy is needed 
reducing the step size (through specifying a smaller maximum step size) is usually 
considered the approach of last resort. The recommended approach is to reduce the error 
tolerances. In the approach we used here we have halved the default error tolerances (to 

) and the solvers still fail to produce accurate solutions. Another approach is to 
produce more output points by using equations that are part of the solver to generate 
solutions between the steps. These require low computational cost. The Matlab ode solvers 
have an additional 'refine' factor to obtain more solutions between the step points (see 
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Mathworks [4]). We have used these approaches but the solvers still fail.  The Stiff solver 
has also not been especially successful for this problem. 

 

5.  Conclusion 

In this paper, we have considered linear and non-linear versions of a dynamic 
macroeconomic model.  We have shown that standard default settings in proprietary 
software give unsatisfactory results for solving the dynamic path of the non-linear model.  
Our results demonstrate how the solution of the model can be substantially improved by 
changes to parameter settings. 
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Table 1.  Values of η  and resulting eigenvalues 

η  1λ  2λ , 3λ  

0.2 2.3 -0.50, -0.34 
0.5 2.3 -0.41 ± 0.51i 
10.0 2.1 -0.32 ± 3.0i 
100.0 2.0 -0.26 ± 9.9i 

 

 

 

Table 2.  Norm results for all methods: non-linear model when 0.2η =  

Method RMSE 
All RMSE P RMSE N RMSE W 

RK Solver with defaults 0.007744 0.001996 0.021559 0.000506 
RK Solver with tolerances half the 
defaults 0.000478 0.000936 0.001303 8.60E-06 
ABM Solver with defaults 0.000267 0.000521 0.000743 5.58E-06 
ABM Solver with half tolerances 0.000826 0.001622 0.002254 1.45E-05 
ABM Solver with half tolerances on ode 
and refine 0.000811 0.001591 0.002212 1.42E-05 
ABM Solver with max step-size 0.01 0.000133 0.000248 0.000364 5.03E-06 
Stiff Solver with defaults 0.125903 0.034000 0.305671 0.007573 
Stiff Solver with half tolerances and 
refine 0.000762 0.001470 0.002083 1.61E-05 
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Figure 1.  Plots of p, n and w with varying values of η  derived  
from analytic solution of linear model. 
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Figure 2.  Solution to linear model using Runge-Kutta solver  
with default settings: 0.2η =  
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Figure 3.  Solution to non-linear model using Runge-Kutta solver  
with default settings: 0.2η =  
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Figure 4.  Solution to linear model using ABM solver  
with maximum step-size 0.01: 0.2η =  
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Figure 5.  Solution to non-linear model using ABM solver 
 with maximum step-size 0.01: 0.2η =  

 


