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Abstract: 
We investigate the derivation of optimal interest rate rules in a simple stochastic framework. The 
monetary authority chooses to minimise an asymmetric loss function made up of the sum of squared 
components, where the monetary authority places positive weight on squared negative (positive) 
deviations of output (inflation) and zero weight on squared positive (negative) deviations. Recent 
approaches to monetary policy under asymmetric preferences have emphasised the adoption of a 
linear exponential (linex) preference structure. This paper presents a new and different analytic 
methodology that is based on the explicit calculation of semi-variances. This approach can be used to 
derive precise coefficients of the optimal interest rate rules. We derive optimal interest rate rules 
based on two different informational assumptions. In the first case, which we call a fixed interest rate 
rule, the monetary authority knows only the structure of the economy and the variance of sectoral 
shocks so that interest rates must take a constant value. In the second case, which we call a flexible 
interest rate rule, the monetary also has access to additional information in that it can observe the 
contemporaneous inflation rate. In this second case, we restrict our analysis to the class of linear 
interest rate rules. The more standard approach in the literature derives optimal monetary policy rules 
using symmetric loss functions, where monetary policy is designed to minimise the sum of squared 
components. We also compare optimal interest rate rules under both symmetric and asymmetric loss 
functions.  
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1. INTRODUCTION 

 Following from the seminal paper by Poole (1970), an extensive literature has 

developed which examines the properties of optimal money supply rules in economies 

that are faced with stochastic disturbances to different sectors.  Poole considered 

optimal money supply rules in a stochastic IS/LM framework.  Optimal money supply 

rules have also been derived in models with full market clearing when there is an 

asymmetry of information between the public and private sector; and when money 

supply responses are fully anticipated.  Studies for open economies tend to emphasise 

the relationship between monetary policy and exchange rate policy.  More recent 

work has emphasised the distinction between anticipated, unanticipated, permanent 

and temporary shocks and the relationship between wage indexation, lagged feed-

back rules, and monetary policy. 

 While this approach has become standard in the literature, even to the point of 

being adopted as one approach to monetary policy in the standard textbooks on 

monetary policy, standard monetary operating procedures adopted by central banks 

now tend to focus on a short-term interest rate as the primary instrument of monetary 

policy rather than the manipulation of monetary aggregates.  As a consequence, recent 

literature on monetary policy rules has tended to focus on interest rate rules rather 

than money supply rules (see Walsh, 1998, and Woodford, 2003).   

 All these approaches to monetary policy tend to assume that monetary policy 

rules are chosen so as to minimise a quadratic loss function, made up of a weighted 

sum of squared terms, typically including major macroeconomic indicators, such as 

output and inflation.  Such loss functions are characterised by symmetric properties, 

in that they give the same weight to positive and negative deviations about some 

chosen path.   
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 In this paper we will focus on optimal interest rate rules that are chosen so as to 

minimise a loss function with asymmetric properties, that is, a loss function that gives 

different weights to positive a negative deviations from a chosen path.  Intuitively this 

makes sense because, for example, agents in the economy are more concerned about 

negative deviations in output (high unemployment) than they are about positive 

deviations (overfull employment) and they are more concerned about positive 

deviations of inflation from some desired path than they are about negative deviations.  

Recent studies (Nobay and Peel, 2003; Surico, 2007) make a compelling case that, in 

practice, policymakers are likely to adopt a loss function with asymmetric properties.   

 Aizenman and Frenkel (1985, Eq. A8, p. 420) show how the microfoundations 

for a loss function that has asymmetric properties can be developed.  Their results 

demonstrate that by expanding the production function in a Taylor series around the 

general equilibrium up to second-order terms the loss function will be symmetric; but 

by also including third-order terms of the Taylor expansion, an asymmetric loss 

function results. 

 Previous studies have used computer simulation techniques to examine the 

implications of asymmetric loss functions for the properties of optimal rules 

(Friedman, 1975; Kunstman, 1984).  Waud (1976) used analytic techniques to 

examine the properties of optimal responses under asymmetric criteria.  Cukierman 

and Meltzer (1986) considered optimal monetary policy under an asymmetric 

criterion by considering the case when the policymaker's loss function comprised 

both quadratic and linear components.  Stemp (1993) calculated the semi-variance of 

a normally distributed variable and showed how these theoretical results could be 

used to calculate optimal money supply rules when preferences are asymmetric.   

 3



Recent studies have focused on the specification of asymmetric preferences 

using a linear-exponential (linex) specification.  This approach to determining 

optimal monetary rules was first introduced in a theoretical framework by Nobay and 

Peel (2003).  Analysis of asymmetric preferences using the linex specification, or 

some generalisation of the linex specification, has also been employed in recent 

empirical studies of monetary policy (Ruge-Murcia, 2003; Surico, 2007; Boinet and 

Martin, 2008). 

The linex specification has the advantage that its theoretical distribution can be 

determined in a straightforward manner and that the quadratic distribution is nested 

within the linex specification as a special case.  This makes this specification 

particularly useful for the empirical testing for asymmetric preferences versus 

symmetric (quadratic) preferences.  It has the disadvantage that it only provides an 

approximation to any particular form of asymmetric preferences and cannot be used 

to precisely construct a loss structure that gives positive weight to squared positive 

(negative) deviations, but zero weight to squared negative (positive) deviations of a 

particular variable.  

This paper draws on ideas first presented in Stemp (1993) and subsequently 

extended further in Stemp (2009).  It is possible to use this approach to paste together 

different components comprising the semi-variances of particular variables (such as 

output and inflation).  The sum of zero weighted and different, but positive, weighted 

components to form a range of asymmetric loss functions more precisely reflects the 

objectives of a monetary authority that has truly one-sided targets.  As far as this 

author is aware, the approach to the construction of asymmetric preferences adopted 

in this paper has not been employed anywhere else, apart from the Stemp (1993, 

2009) papers. 
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The rest of this paper proceeds as follows:  Section 2 provides a formula for 

calculating the semi-variance components of an asymmetric loss function and shows 

how each of these components can be minimised by appropriate choice of mean and 

variance.  A diagrammatic approach to implement this calculation is introduced in 

Section 3.  A simple monetary model that will be used as the basis for analyses in the 

rest of the paper is introduced in Section 4.  This model is used in Section 5 to 

calculate optimal fixed interest rate rules under asymmetric preferences.  In Section 6, 

these results are compared with results under a symmetric loss function.  The model 

is used again in Sections 7, 8 and 9 to calculate optimal interest rate rules when the 

interest rate rule also depends on contemporaneous shocks. Comparisons are also 

made in these sections with the interest rate rules under the standard symmetric 

(quadratic) preference structure.  Concluding comments are provided in Section 10. 

 

2.  COMPONENTS OF AN ASYMMETRIC LOSS FUNCTION 

 Assume that X is a normally distributed random variable with mean,µ , and 

variance, 2σ .  We will write this as: 2( , )X N µ σ: .  We then define two random 

variables, X +  and X − , as follows: 

        (1a) 
, if 0,

 0,otherwise,
X X

X + >
= 


And 

         (1b) 
, if 0,

 0,otherwise.
X X

X − <
= 


Define ( )F z  as the cumulative distribution function for a variable which is normally 

distributed with mean of zero and variance equal to 1, so that: 
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 ( )
21Pr( ) exp .22

z
yZ z F z dy

π −∞

 −< = =  
 ∫     (2) 

It then follows from Stemp (1993, Appendix), as further developed in Stemp (2009), 

that: 

 ( ) ( ) 22 2 2
2( ) exp 22

E X F σµµ µσ µ σ σπ
+ −= + + 

 

    (3a) 

And  

 ( ) ( ) 22 2 2
2( ) exp 22

E X F σµµσ µ σ
µ

σπ
− − −= + − 

 

   (3b) 

If we define the function, ( )H z , as follows: 

 ( ) ( )22( ) 1 ( ) exp 22
zH z z F z

π
  −= + +  
 

z     (4) 

Then equations (3a, 3b) can be rewritten as:  

 ( ) ( ){ }2 2E X H µ σσ
+ =       (5a) 

 ( ) ( ){ }2 2E X H µ σσ
− −=       (5b) 

Equations (5a, 5b), when written in this form, have the useful property that they are 

separable in the two arguments, µσ   and 2σ .    

( )2
E X + and are both always positive valued or zero and so have a minimum 

value of zero.  We explore below, under what circumstances that this minimum value 

occurs. 

( )2
E X −

Note, from equation (4), that ( ) 0H z →

2 0σ >

, as .  As a consequence, it is 

straightforward to show that, for ,  

z →−∞

 , as ( )2
0E X + → µ

σ → −∞       (6a) 
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 , as ( )2
0E X − → µ

σ → +∞       (6b) 

Essentially, equations (6a, 6b) tell us that, if we wish to minimise the positive part of 

the variable, X, this can be achieved by driving the mean of X as far away from any 

positive value as possible.  Similarly, if we wish to minimise the negative part of the 

variable, X, this can be achieved by driving the mean of X as far away from any 

negative value as possible.   

It also follows that, as , 2 0σ → ( )H µ
σ < ∞ , whenever 0µ ≤ .  As a consequence, it 

is straightforward to show that, as , 2 0σ →

 , whenever ( )2
0E X + → 0µ ≤      (7a) 

 , whenever ( )2
0E X − → 0µ ≥      (7b) 

In particular, whenever 0µ =  and , the expectations terms, and 

, simultaneously approach zero. 

2 0σ → ( )2
E X +

( )2
E X −

As , the whole of the value taken by the variable, X,  is concentrated at its 

mean, 

2 0σ →

µ , so that  

 ( )2

2
2

0

, if >0
lim

0, if 0
E X

σ

µ µ
µ

+

→


= 

≤
      (8a) 

 ( )2

2

20

0, if 0
lim

, if 0
E X

σ

µ
µ µ

−

→

≥
=  <

      (8b) 

Essentially, equations (7a, 7b and 8a, 8b) tell us that, if we wish to minimise the 

positive part of the variable, X, as , this can be achieved by 2 0σ → µ  taking a value 

that is in the non-positive part of X.  Similarly, if we wish to minimise the negative 

part of the variable, X, as , this can be achieved by 2 0σ → µ  taking a value that is in 

the non-negative part of X. 
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3.  USING DIAGRAMS TO MINIMISE COMPONENTS 

In this section, we present a methodology for minimising using a 

diagrammatic approach.  Our approach will then be employed later in the paper.  We 

begin by first establishing properties of the function, 

( )H z

( )H z . 

 ( )
2

1 exp 22

z
yF z dy

π −∞

   −=       ∫        (9a) 

Hence, 

 ( ) ( )21 exp 22z
zF z

π
  −=  
 

     (9b) 

So that  

 ( ) ( ) ( )2
exp 22zz z

z zF z zF z
π

  −= − = − 
 

    (9c) 

Since 

 ( ) ( )22( ) 1 ( ) exp 22
z zH z z F z

π
  −= + +  
 

 

  ( ) ( )21 ( ) zz F z zF z= + +      (10a) 

It follows that 

 ( ) ( ) ( )2(1 ) 2z zH z z F z zF z= + +  

    ( ) ( )2 2 21 exp exp2 22 2
z z z

π π
   − −+ −   
   

 

          (10b) 

  ( )2(1 ) ( ) 2 ( ) ( )z zz F z zF z F z z F z= + + + − 2
z    (10c) 

  ( )2 ( ) 2zF z zF z= + .      (10d) 

Also, 
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 ( ) ( ) ( )2 ( )zz zz zH z F z F z zF z= + +        (10e) 

  ( ) ( ) ( )2 zzF z F z zF z= − + + z       (10f) 

  ( )2F z=        (10g) 

From Equation (10g), since , for all finite values of z, it follows that the 

function  satisfies the second-order conditions for a minimum.  From Equation 

(10d), the first-order conditions for a minimum are satisfied when 

( ) 0F z >

( )H z

 .     (11) ( ) ( )2 ( ) 2 0z zH z F z zF z= + =

 (Figure 1A about here) 

Figure 1 plots ( )zH z .  On the basis of the plot we can determine that the function 

achieves a minimum value when equation (11) is satisfied, that is when 

.  Since

( )H z

z →−∞ ( ) ( ){ }2 2H zE X σ+ = , where z µ
σ=  we can assert that, for fixed 

variance,  takes its minimum value when (E X )2+ µ → −∞ . 

 A similar methodology can be used, for fixed variance, to choose µ  so as to 

minimise .  Note that ( )2
E X − ( ) ( ){ }2 2E X H z σ− = − , where z µ

σ= .  Thus, in order 

to determine the minimum value of ( )2
E X −

)z

, for fixed variance, we need to find the 

value of z that minimises .  For fixed variance, (H − ( )H z−  is minimised when  

         (12a) ( ) 0zH z− − =

Or equivalently, when 

         (12b) ( ) 0zH z− =

 9



Note that the plot of  is the mirror image of   when rotated through the 

" " axis.  Similarly, the plot of 

( )H z− ( )H z

0z = ( )zH z−  is the mirror image of   when 

rotated through the " " axis.   

( )zH z

0z =

(Figure 1B about here) 

Figure 1 plots ( )zH z− .  As above and on the basis of the plot we can determine that 

the function achieves a minimum value when .  As a consequence, 

we can assert that, for fixed variance, 

( )H z− z →+∞

( )2
E X −  takes its minimum value when 

µ → +∞ . 

 

4.  A SIMPLE MONETARY MODEL 

 Our purpose in presenting the results of Sections 2 and 3 was to use those 

results as components of an asymmetric loss functions.  To this end, we consider a 

simple model of the following form: 

 y p uα= +          (13a) 

 y r vβ= − +          (13b) 

 0 1r pγ γ= +           (13c) 

where 

 y = real output (expressed in deviations about some target level); 

 p = inflation (expressed in deviations about some target level); 

 r = nominal interest rate; 

,u v  are independent normally distributed variables, both with mean zero and 
with respective variances given by 2 2,u vσ σ . 

 ,α β  are exogenously fixed constants; 

 0 1,γ γ  are parameters chosen to minimise a suitable loss function. 
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 Equation (13a) defines the supply-side of the economy through a Phillips 

curve relationship.  Equation (13b) defines the demand-side of the economy through a 

simple cut-down specification of an IS curve.  Equation (13c) defines a simple interest 

rate rule. 

 The model can be solved to give solutions for  as follows: ,y p

 1
0

1 1( ) ( ) ( )y uβγαβ αγα βγ α βγ α βγ
    = − + +    + +     1

v+ 
 (14a) 

 

 0
1 1

1 1
( ) ( ) ( )1

p uβ γα βγ α βγ α βγ
    = − − +    + + +    

v


  (14b) 

 

Next, we define: 

        (15a) 
, if y<0

  0, otherwise
y

y− 
= 


And 

        (15b) 
p, if p>0

  0, otherwise
p+ 

= 


We will choose an interest rate rule (given by some variant of Equation 13c) to 

minimise an asymmetric loss function of the following form: 

 ( ) ( )2 2
(1 )AL E y E pδ δ− += + − , where 0 1δ< < .   (16) 

 

 We consider two types of interest rate rules:   

 

• A fixed interest rule of the form: 

 0r γ=          (17a) 

This rule assumes that the setter of interest rates (the central bank) has access to 

the structure of the economy, given by Equations (13a-13c, 15a-15b and 16) 
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and the mean and variance of contemporaneous shocks, but does not have 

access to any additional information.  The optimal rule is derived by 

fixing 1 0γ = , keeping 0γ  as a choice parameter in Equations (13a, 13b), and 

choosing 0γ  so as to minimise Equation (16).  

 

• A flexible interest rate rule of the form: 

 0 1r pγ γ= +          (17b) 

This rule assumes that, in addition to the information available for the fixed 

interest rate rule, the central bank also has access to the contemporaneous 

value of inflation, p.  An interest rate rule that is non-linear would do better 

than the linear rule considered here.  However, as we wish to compare our 

results with those derived under the standard Poole (1970) methodology 

based on symmetric loss functions and also in order to keep the analysis 

tractable, we will restrict our analysis to the linear rule given by Equation 

(17b).  The optimal rule is derived by keeping both 0γ  and 1γ  as choice 

parameters in Equations (14a, 14b), and choosing 0 1,γ γ  so as to minimise 

Equation (16). 

 

 We consider the implications of each of these rule types in turn. 

 

5.  OPTIMAL POLICY UNDER A FIXED INTEREST RATE RULE 

 Under the type of fixed interest rate rule considered here, the monetary 

authority is unable to influence the impact of stochastic shocks in the economy and 

can only influence the means of . ,y p
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Then 2( , )y yy N µ σ:  and 2( ,p pp N )µ σ:  where 

 0yµ βγ= −         (18a) 

 2
y

2
vσ σ=         (18b) 

 ( ) 0p
βµ γα= −        (18c) 

 ( )2
2 21
p u

2
vσ σ σα = +        (18d) 

So that the loss function, given by Equation (16), can be written in the form: 

 2 (1 )y
A y

y p
L H Hµ 2p

p
µδ σ δσ

−   = + −   
   

σσ     (19a) 

Case of positive demand-side shocks (  ≥2 2
u vσ 0,σ >0)

 We first focus on the case when there are positive demand shocks ( ).  

Equation (19a) can be reduced to: 

2 0vσ >

 { } ( )2 2
20 0

22 2
(1 ) u v

A v
v u v

L H H
σ σβγ βγδ σ δσ ασ σ

    + − = + −          +       
 

          (19b)  

Choosing 0γ  to minimise Equation (19b) is equivalent to choosing z to minimise: 

 ( ) ( ) ( )2 2 (1 )J z H z H zα θ δ δ θ= + − − ,    (19c) 

  where ( )0

v

βγz σ=  and 
2 2

0v

u v

σθ
σ σ

= >
+

  

Taking first derivatives of  with respect to z yields the first-order condition: ( )J z

 ( ) ( )2
1 1(1 )H z H zα θδ δ θ= − −      (20) 

This also satisfies appropriate second-order conditions for a minimum. 

We define: 
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       (21a) ( ) (2
1; ,g z H zδ θ α θδ= )

) ( ) (1; , (1 )h z H zδ θ δ= − −θ

)

      (21b) 

Figure 1 shows plots of ( ; ,g z δ θ  and ( ); ,h z δ θ  and illustrate how these curves 

adjust as the parameters, δ  and θ , are allowed to vary.   

(Figure 2 about here) 

It will be observed that ( ; ,g z )δ θ  moves upward as δ  and/or θ  increase.  Similarly, 

( ; ,h z )δ θ  moves downwards as δ  and/or θ  increase.  From Equations (20, 21a, 

21b), observe that the minimum occurs at the intersection of these two curves.  Thus, 

as δ  and/or θ  increase, the value of z (and hence of 0γ ) becomes smaller.  Since the 

two curves can be plotted numerically, the graphical methodology described here can 

be used to derive precise numerical values for 0γ , limited only by the constraints 

imposed by machine precision.  The following special cases arise: 

 0  (z )γ = +∞ = +∞ , when 0δ =      (22a) 

 0 = 0 ( 0)zγ = , when ( )2
1

1
δ

α θ
=

+
     (22b) 

 0  (z )γ = −∞ = −∞ , when 1δ =      (22c) 

 

Intuitive justification of results 

 The polar cases for δ  coincide with the cases where the policy maker is 

focused solely on minimising ( )2
E p+ , when 0δ = ; and focused solely on 

minimising , when ( )2
E y− 1δ = .  Thus, a highly contractionary monetary policy is 

appropriate when 0δ = ; and a highly expansionary monetary policy is appropriate 
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when 1δ = .  This is consistent with the results given from Figure 1 and by Equations 

(22a, 22c). 

0γ

 The polar cases for θ  are demonstrated in Figures 3A and 3B.  Figure 3A 

illustrates the case when there is primarily a supply-side shock, so that 0θ → .  Figure 

2B illustrates the case when there is primarily a demand-side shock, so that 1θ → .  

For simplicity, assume that, in each diagram, ( )2
E p+ , which can be loosely aligned 

with the aggregate shock above , is equal to 1.  Then, from Figures 3A and 3B, 

for any given value of 

'
1 1L L

0γ , it will be observed that ( )2
E y− , which can be loosely 

aligned with the aggregate shock to the left of , is less for the supply shock than 

it is for the demand shock.   

'
2 2L L

(Figures 3A and 3B about here) 

 Thus, for a given value of δ , if we let *
0γ  be the optimal value of 0γ  under a 

supply-side shock, then, under a demand-side shock, *
0γ  will be associated with too 

high a value for .  We can correct this by reducing the value of  and 

increasing the value of ; that is, by increasing the expected value of y.  This 

can be achieved by adopting a more expansionary monetary policy stance, that is by 

reducing 

( )2
E y− (E y )2−

2( )E p+

.  Thus, as θ  increases, the optimal choice of 0γ  will be reduced.  This is 

consistent with the results derived from Figure 1. 

 

Case when there are supply-side shocks, but  no demand-side shocks (  2 2
u vσ >0, σ =0)

 In the case where , so that 2 0vσ = 0θ = , the above analysis needs to be 

modified as follows.   
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Let ( )0

u
z βγ

σ= .  Then, firstly, ( ; , )g z δ θ should be replaced with: 

       (23a) *
2

0,  if 0
( ; )

2 ,  if 
z

g z
z z

δ
α δ

≤
=  > 0

Secondly, ( ; , )h z δ θ  should be replaced with: 

       (23b) (*
1( ; ) (1 )h z H zδ δ= − − )

 (Figure 4 about here) 

The optimal value of 0γ  can then be derived using Figure 4.  Once again, the optimal 

value of z, and hence of 0γ , is determined by the intersection of the two curves.  The 

following special cases arise: 

 0  (z )γ = +∞ = +∞ , when 0δ =      (24a) 

 0 0 ( 0)zγ−∞ < ≤ −∞ < < , when 1δ =     (24b) 

The results when 0θ =  can be interpreted as limiting cases of the results when 0θ >  

and, as such, are consistent with the intuitive justification of results provided above. 

 
6.  COMPARISON WITH OPTIMAL RULE UNDER A 

 SYMMETRIC LOSS FUNCTION 

 It is informative to compare the results derived above under an asymmetric 

function with those derived under the more commonly used symmetric quadratic loss 

function.  In this section we examine optimal interest rules derived under the 

following symmetric loss function: 

       (25a) ( ) ( )2 (1 )SL E y E pδ δ= + − 2

)When 2( ,y yy N µ σ:  and 2( ,p pp N )µ σ: , this loss function can be rewritten as: 

( ) ( )2 2 2 2(1 )S y y pL pδ µ σ δ µ σ= + + − +      (25b) 

This can be rewritten as: 
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2 2 2(1 ) (1 )S y p yL 2
pδµ δ µ δσ δ σ  = + − + + −        (25c) 

 The results derived under the symmetric loss function are standard in the 

literature and, in this case, are given by the following: 

 

Under the fixed interest rule, the optimal interest rate rule under a symmetric loss 

function is given by: 

• , irrespective of the relative magnitude of the shocks  (26) 0r =

The optimal fixed interest rate rule is one where 0γ  is chosen so as to drive yµ  and 

pµ  to zero and 1γ  is not a parameter of choice but rather fixed at zero.   

 

Under the flexible interest rate rule, the optimal interest rate rule under a symmetric 

loss function is given by: 

• 1r pγ=  where 0 0γ =  and 1γ  is a function of 2 2, ,u vσ σ δ  as well as other 
parameters in the economy.      (27) 

 
The optimal flexible interest rate rule is one where 0γ  is chosen so as to drive yµ  and 

pµ  to zero and 1γ  is chosen so as to minimise 2 2)y p(1δσ δ+ − σ . 

 

 It will be observed that, for a symmetric loss function, under both types of 

interest rate rule it is optimal to drive yµ  and pµ  to zero.  For our analyses, this is 

equivalent to requiring that the optimal value of z is zero.  This is not the case for the 

fixed interest rate rule, unless ( )2
1δ

1 α θ
=

+
.  Thus, in general for a fixed interest 

rate rule, the optimal 0γ  will not drive yµ  and pµ  to zero and the optimal interest rate 

rule under an asymmetric loss function is generally different to that under a symmetric 
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loss function.  Comparison of results for the fixed interest rate rule are summarised in 

Table 1. 

(Table 1 about here) 

 Similarly, we will show below that, under a flexible interest rate rule, in 

general, the optimal value of z is non-zero.  But there are significant exceptions. 

 

7.  APPROACH UNDER A FLEXIBLE INTEREST RATE RULE 

 Under the flexible interest rate rule considered here, the monetary authority is 

able to influence the impact of stochastic shocks in the economy and so can influence 

both the means and variances of .  To aid in tractability, we restrict our analysis to 

the class of linear interest rate rules defined by Equation (17b).   

,y p

Then 2( , )y yy N µ σ:  and 2( ,p pp N )µ σ:  where 

 0
1( )y

αβµ γα βγ
= − + 

       (28a) 

 
( )2 2 2 2

12
2

1(
u v

y

βγ σ α σ
σ )α βγ

 + =
+

     (28b) 

 0
1( )p

βµ γα βγ
= − + 

       (28c) 

 
2 2

2
2

1(
u v

p

σ σ
σ )α βγ

 + =
+

      (28d) 

It follows that the asymmetric loss function, given by Equation (16), can be written in 

the form: 

 2 (1 )y
A y

y p
L H Hµ 2p

p
µδ σ δσ

−   = + −   
   

σσ     (29a) 
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Choosing 0γ  and 1γ  to minimise Equation (29a) is equivalent to choosing z (thus 

determining 0γ ) and making consistent choices of θ  and 1γ  (thus determining 1γ ) so 

as to minimise:  

 ( )
( ) ( )

( )

2

21
1

(1 )
, ,

zH H z
J z

αθ δ δθθ γ
α βγ

 + − −=
+

   (29b) 

Where  0
2
u v

2
z βγ

σ σ
=

+
 and 

( )
( )

2 2 2 2
1

2 2
u v

u v

βγ σ α σ
θ

σ σ

 + =
+

  (29c)  

For the flexible interest rate rule, we will first consider the two special cases when the 

shocks come from only one sector at a time. 

 
8.  FLEXIBLE INTEREST RATE RULE: SHOCKS TO ONE SECTOR 

 AT A TIME 
 

Demand-side shock only (  2 2
u vσ =0,σ >0)

 When there are only demand-side shocks, it follows that θ α=  and 

0

v
z βγ

σ= .  Then, Equation (29b) reduces to: 

 ( ) ( ) ( ) ( )
( )

2

21 1
1

(1 )
, , ,

H z H z
J z J z

α δ δ
θ γ γ

α βγ
 + − −= =

+
  (30) 

This can be minimised by choosing 0 0γ =  ( 0)z =  and letting 1γ →∞ .  This is 

equivalent to choosing an interest rate rule to ensure that the aggregate demand curve 

given by Equation (13b) is horizontal in p-y space where p is on the vertical axis and y 

is on the horizontal axis.  Since any demand-side shock will just move the aggregate 

demand curve to the right or left, thus the aggregate demand curve remains unchanged 

by a demand-side shock and so both output and inflation will be unchanged by such a 

shock.   
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Supply-side shock only (  2 2
u vσ >0,σ =0)

In this case, note that 1θ βγ=  and 0

u
z βγ

σ= .  Equation (26b) then reduces to  

  ( ) ( )
( ) ( )

( )

2
1

1
21 1

1

(1 )
, , ,

zH H z
J z J z

αβγ δ δβγ
θ γ γ

α βγ

   + − −    = =
+

 

          (31) 

We next apply the first-order conditions for a minimum.  Firstly, setting 0J
z

∂ =∂  

ensures that: 

 (1 1 1
1

(1 )zH ααβγ δ δβγ
  = − − 
 

)H z      (32) 

Secondly, setting 
1

0J
γ

 ∂ = ∂ 
 ensures that: 

 ( ) ( )
( )

( )
1

1
21

1 1

22 ,
zH

J z
αβ βγ δ βγβ γα βγ α βγ

   −  + + + 
 

 

     
( )

1
1

2
1

0
zz H ααβδ βγ

α βγ

 −  
  =

+
 (33a) 

The first two terms of Equation (50a) can be reduced to: 

 
( )

( )
1

1
3

1

2 (1 )zH H zαβ αβγ δ δβγ
α βγ

   − − −   
+



0

   (33b) 

Note that ( )0H ≠  and ( )1 0H 0≠ .  Hence, using Equations (32, 33b) it is 

straightforward to show by substitution that the first-order necessary conditions are 

satisfied when the following two equations are satisfied simultaneously: 
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          (34a) 0z =

 (1 1 )αβγ δ δ= −        (34b) 

Thus the parameters of the optimal rule are given by: 

 0 0γ =          (35a) 

 ( )
1

1 δγ αβδ
−=        (35b) 

And the optimal flexible interest rate rule when there is only a supply-side shock can 

be written as 

 1r pγ=  where ( )
1

1 δγ αβδ
−=      (36) 

 

Comparison with results under symmetric loss function 

 In the case when there are demand-side shocks only , the 

symmetric loss function reduces to: 

2 2( 0,u vσ σ= > 0)

)
 ( )

(

2 2

2
1

1 v
SL

δα δ σ
α βγ

+ −
=

+
     (37) 

Thus, the optimal rule under a symmetric loss function is given by letting 1γ →∞ , or 

equivalently by allowing the interest rate to vary so as to ensure: 

 0          (38) p =

This is also the optimal rule under the asymmetric loss function. 

 The case when there are supply-side shocks only  shows that 

these are not the only situations when rules are identical under symmetric and 

asymmetric loss functions.  As given by Equations (35a, 35b) the parameters of the 

optimal flexible interest rate rule under an asymmetric loss function are given by: 

2 2( 0,u vσ σ> = 0)

 0 0γ =          (39a) 

 21



 ( )
1

1 δγ αβδ
−=        (39b) 

When 0 0γ = , 0y pµ µ= = .  Also the asymmetric loss function can be reduced to the 

form: 

 ( )2 2(1 )
2

y p
AL

δσ δ σ+ −
=       (40) 

Hence, the optimal rule, given by Equations (39a, 39b), chooses 0γ  so as to drive yµ  

and pµ  to zero and chooses 1γ  so as to minimise 2 (1 )y
2
pδσ δ+ − σ .  Thus, this rule also 

minimises the symmetric loss function given by: 

 ( ) ( )2 2 2 2(1 )S y y pL pδ µ σ δ µ σ= + + − +      (41) 

The optimal flexible interest rate rule, when there are supply-side shocks only, is 

therefore identical under both symmetric and asymmetric loss functions.   

(Table 2 about here) 

 Comparison of results for the flexible interest rate rule when shocks come 

from only one sector are summarised in Table 2. 

 
 
9.  FLEXIBLE INTEREST RATE RULE: SIMULTANEOUS SHOCKS 

 TO BOTH SECTORS 
 

1

Simultaneous output and inflation targeting (0  < δ < 1)

 We will now consider the general case when there are simultaneous demand-

side and supply-side shocks and 0 δ< < .   We now apply the first-order conditions 

to Equations (29b, 29c) to establish necessary conditions for an interior minimum.  

Firstly, setting 0J
z =∂

∂  ensures that: 

 ( ) ( )1 (1 )H z H zαθδ α θ δ= − −1      (42) 

Secondly, noting that θ  is a function of 1γ  and setting: 
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 ( )
1 1

0J J d
d

θ
γ θ γ

   ∂ ∂+   ∂ ∂   
=       (43a) 

ensures that: 

 ( ) ( )
( )

( )
1

21
1 1

2
2 , ,

d zH
dJ z

θ αθδ θγβ θ γα βγ α βγ

 
  −  + + + 

 

  

   
( )

( )
1

1
2

1

0

d zz H
d
θ ααδ θγ

α βγ

 
−  

  =
+

  (43b) 

When z equals zero, the third term of Equation (43b) is eliminated.  Hence, for what 

follows, we can focus on the first two terms of Equation (43b).  The first two terms of 

Equation (42b) reduce to the following: 

 
( )

( )
( ) ( ) ( ) ( )

2 2 2
1

3 2 2
1

2 1u v

u v

zH H
αβγ σ α σβ αδ δθσ σα βγ

    − − − −      ++       
z  

          (43c) 

Equation (43c) equals zero if  

 ( )
( ) ( ) ( ) (

2 2 2
1

2 2 1u v

u v

zH
αβγ σ α σ αδ δθσ σ

 − )H z= − − +  
  (43d) 

Using Equations (42, 43d) it is straightforward to show by substitution that the first-

order necessary conditions are not simultaneously satisfied when 0 0γ =  ( 0  and 

hence that the results under the asymmetric loss function are not the same as the 

results under the symmetric loss function.  We prove this by contradiction.   

)z =

 Once again, note that ( )0H 0≠  and ( )1 0H 0≠ .  Assume that the first-order 

necessary conditions satisfy 0 0γ = z ( 0)= .  Then, from Equations (42, 43c) the 

following two equations are satisfied simultaneously:  
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 (1 )αθδ δ= −         (44a) 

 ( ) ( )( )2 2 2 2 2
1 1u v u vδ αβγ σ α σ δ σ σ− = − +     (44b) 

Combining Equations (44a, 44b) and noting that 0 1δ< <  and 0α >  

 (2 2 2
1 u v u )2

vβγ σ ασ θ σ σ− = +       (45a) 

where 

 
( )

( )
2 2 2 2

1

2 2

u v

u v

βγ σ α σ
θ

σ σ

 + =
 + 

    (45b) 

Hence, squaring both sides of Equation (45a),  

 ( ) ( )22 4 2 4 2 2 2 2 2
1 1( ) 2u v u v u vβγ σ α σ α βγ σ σ θ σ σ+ − = +    (45c) 

    ( ) ( )2 2 2 2 2 2
1 u v u vβγ σ α σ σ σ = + +    (45d) 

Equation (44d) can be reduced to: 

        (45e) ( )2 2 2
1 0u vα βγ σ σ+ =

But then, since  and , it follows that: 2 0uσ > 2 0vσ >

 1 0α βγ+ =         (45f) 

Then, by substitution in Equation (44b),  

 θ α=          (45g) 

And by substitution in Equation (43a) 

 2 (1 )α δ = −δ         (45h) 

Then, given Equation (45h) and assuming 0z = , the asymmetric loss function 

summarised by Equations (29a - 29c) reduces to: 

 
( )

( )

2 2 2

2
1

u v
AL

α δ σ σ
α βγ

 + =
+

     (46) 
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And, using Equation (45f), this diverges to +∞  whenever 0 1δ< < .  Clearly, if 

1γ →∞ ,  will take a finite value, so Equation (45h) is not consistent with a 

minimum.  This is a contradiction.  Hence, our initial assumption that  is not 

valid.  It follows that, when ,  and 

AL

0z =

2 0uσ > 2 0vσ > 0 1δ< < , the optimal interest rate 

rules under the symmetric and asymmetric loss functions cannot be the same.   

 While we are not able to say more about the general case, we can cast further 

light on the two polar cases excluded from the above analysis: inflation targeting 

(when 0δ = ) and output targeting (when 1δ = ).   

 

Inflation targeting  (δ=0)

In this case, Equations (29b, 29c) reduce to: 

 ( ) ( ) ( )
( )21 1

1

, , , H zJ z J zθ γ γ
α βγ

−= =
+

, where 0
2 2
u v

z βγ
σ σ

=
+

 

          (47) 

This can be minimised by choosing 0 0γ =  ( 0)z =  and letting 1γ →∞ .  This is 

equivalent to choosing an interest rate rule to ensure that inflation is constantly 

maintained at 0p = .  Such a rule will ensure that ( )2
0E p+ = .  This is also the 

optimal rule under a symmetric loss function. 

 

Output targeting (  δ=1)

In this case, Equations (29b, 29c) reduces to: 

 ( )
( ) ( )

( )

2

21
1

, ,
zH

J z
αθ θθ γ

α βγ

 
 =

+
    (48a) 
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Where  0
2
u v

2
z βγ

σ σ
=

+
 and 

( )
( )

2 2 2 2
1

2 2

u v

u v

βγ σ α σ
θ

σ σ

 + =
 + 

 (48b) 

It is not possible to choose 1γ  so that 2
yσ  is driven to zero.  The optimal rule requires 

choosing an interest rate rule where 0γ → −∞ (z →−∞)

1

.  This is equivalent to 

choosing an interest rate rule that is highly expansionary.  Such a rule will ensure 

that .  This is not the optimal rule under a symmetric loss function. ( )2
0E y− →

 

Comparison with results under symmetric loss function 

 In general, under a flexible interest rate rule and asymmetric loss function, the 

optimal value of z is non-zero.  Thus the optimal interest rate rule is different under 

symmetric and asymmetric loss functions.  This applies in those cases where 

 and 02 20, 0u vσ σ> > δ< ≤ .  As shown above, exceptions arise in other cases: when 

0δ =  and when shocks emanate in only one sector at a time. 

 As can be demonstrated using Equations (8a, 8b), one exception arises when it 

is possible to choose 1γ  so that 2
yδσ  and (1 2) pδ σ−  are simultaneously driven to zero.  

Thus the optimal flexible interest rate rule under inflation targeting ( 0)δ =  is given 

by  (consistent with 0p = 1γ →∞ ).  This rule drives 2
pσ  to zero, resulting in identical 

rules for this case under both symmetric and asymmetric loss functions.   

  

10.  CONCLUDING COMMENTS 

 This paper has investigated the derivation of optimal interest rate rules in a 

simple stochastic framework where the monetary authority chooses to minimise an 

asymmetric loss function.  We have focused on deriving optimal interest rate rules 

based on two different informational assumptions.  In the first case, which we call a 
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fixed interest rate rule, the monetary authority knows only the structure of the 

economy and the variance of sectoral shocks so that interest rates must take a constant 

value.  In the second case, which we call a flexible interest rate rule, the monetary also 

has access to additional information in that it can observe the contemporaneous 

inflation rate.  In this second case, we restrict our analysis to the class of linear 

interest rate rules.  The paper has presented an analytic methodology that could be 

used, in conjunction with computing techniques, to derive precise coefficients of the 

optimal interest rate rules in each of these cases.   

 While this paper has focused on deriving optimal interest rate rules under an 

asymmetric preference structure, the more standard approach, first developed by 

Poole (1970), derives optimal monetary policy rules using symmetric loss functions.  

Our analysis also compares optimal interest rate rules under both symmetric and 

asymmetric loss functions.   

 We have shown that, in general, the optimal rules derived under asymmetric 

loss functions will be different than the optimal rules derived under symmetric loss 

functions.  Under the fixed interest rate rule, the optimal rules differ.  However, under 

the flexible interest rate rule, it is possible to construct special cases where the optimal 

rules are the same.   

 The results of this paper could easily be extended in a variety of ways along 

the lines of extensions to the Poole (1970) literature.  For example, our simple 

monetary model could be extended to incorporate different informational assumptions 

and different expectations assumptions.  It would also be possible to consider 

asymmetric loss functions in conjunction with a dynamic monetary modelling 

framework. 
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Figure 1A 
Minimising ( )2+E X
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Figure 1B 
Minimising ( )2−E X
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Figure 2 

Minimising AL  under Fixed Interest Rate Rule when 0θ > ; 
Following increase in δ or θ , z  moves from  to . 1z 2z

( ); ,g z δ θ
( ); ,δ θ
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Figure 3A 
Fixed Interest Rate Rule:   

Comparing  and ( )2
E p+ ( )2

E y−  under a Supply-Side Shock. 
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Figure 3B 
Fixed Interest Rate Rule:   

Comparing  and ( )2
E p+ ( )2

E y−  under a Demand-Side Shock. 
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Figure 4 
Minimising AL  under Fixed Interest Rate Rule when 0θ = ; 

Following increase in δ , z  moves from  to . 1z 2z

( )* ;g z δ
( )* ;h z δ
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Table 1 

Comparison of Optimal Fixed Interest Rate Rules under Symmetric and 
Asymmetric Loss Functions 

 
 

Source of  
Shocks 

 
Asymmetric Loss 

Function 
AL  

 
Symmetric Loss 

Function 
SL  

 
 

Demand-Side 
Shock 

( ) 2 20, 0u vσ σ≥ >

 
( )r f δ= , where 

( )fδ δ 0<  
(0)f = +∞  
(1)f = −∞  
  

 
 
 
0r =  

 

 
 
 
 
 
 
 
 
 

Fixed Interest 
Rate Rule 
( 0r γ= ) 

 
Supply-Side 
Shock but no 
Demand-Side 

Shock 
( ) 2 20, 0u vσ σ> =

 
( )r g δ= , where 

( )gδ δ 0<  
(0)g = +∞  

(1) 0g−∞ < ≤  
 

 
 
 
0r =  
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Table 2 

Shocks to One Sector: Comparison of Optimal Flexible Interest Rate Rules 
under Symmetric and Asymmetric Loss Functions 

 
 

Source of  
Shocks 

 
Asymmetric Loss 

Function 
AL  

 
Symmetric Loss 

Function 
SL  

 
 

Demand-Side 
Shock Only 

( ) 2 20, 0u vσ σ= >

 
0p =  

where 
   0 0γ =  
   1γ →∞  

 

 
 

Same as 
Asymmetric Loss 

Function 

 
 
 
 
 
 
 
 
 

Flexible Interest 
Rate Rule 

( 0 1r pγ γ= + )  
 

Supply-Side 
Shock Only 

( ) 2 20, 0u vσ σ> =

 
1r pγ=   

where 
   0 0γ =  

( )
1

1 δγ αβδ
−=  

 

 
 

Same as 
Asymmetric Loss 

Function  
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