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Challenges in Macro-Finance Modeling

Don H. Kim

This article discusses various challenges in the specification and implementation of “macro-
finance” models in which macroeconomic variables and term structure variables are modeled
together in a no-arbitrage framework. The author classifies macro-finance models into pure latent-
factor models (“internal basis models”) and models that have observed macroeconomic variables
as state variables (“external basis models”) and examines the underlying assumptions behind these
models. Particular attention is paid to the issue of unspanned short-run fluctuations in macro-
economic variables and their potentially adverse effect on the specification of external basis models.
The author also discusses the challenge of addressing features such as structural breaks and time-
varying inflation uncertainty. Empirical difficulties in the estimation and evaluation of macro-
finance models are also discussed in detail. (JEL E43, E44, G12) 
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cate the interpretation of the information in the
yield curve; policymakers therefore would wel-
come any progress in term structure modeling
that would facilitate greater understanding of
the messages in the yield curve.1

Despite much exciting work in macro-finance
modeling of late,2 as a central bank economist
who monitors markets regularly, I have found it
difficult to bring the current generation of models
to bear on the practical analysis of bond market
developments or to implement the models in real
time to obtain a reliable measure of the market’s
expectation of key variables such as inflation.3

In recent years there has been much interest
in developing “macro-finance models,” in
which yields on nominal bonds are jointly
modeled with one or more macroeconomic

variables within a no-arbitrage framework.
Academic researchers and policymakers alike
have long recognized the need to go beyond
“nominal yields only” no-arbitrage models (i.e.,
to include a description of the macroeconomy or
other asset prices). Campbell, Lo, and MacKinlay
(1996), for example, have emphasized that “as
the term structure literature moves forward, it
will be important to integrate it with the rest of
the asset pricing literature.” Policymakers have
often used traditional theories such as the expec-
tations hypothesis and the Fisher hypothesis to
extract an approximate measure of market expec-
tations of interest rates and macroeconomic vari-
ables such as inflation, but they are also aware
that risk premia and other factors might compli-

II

1 See, for example, Bernanke (2004a).

2 Examples include Ang and Piazzesi (2003), Hördahl, Tristani, and
Vestin (2006), Rudebusch and Wu (2003), and Ang, Bekaert, and
Wei (2007 and 2008).

3 I emphasize that I speak as one of many central bank economists
and that my views as stated in this paper do not necessarily repre-
sent the general consensus among economists at central banks.
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The academic literature provides little evidence
in this regard (either for or against macro-finance
models). One exception is the recent paper of
Ang, Bekaert, and Wei (2007, ABW), who per-
formed an extensive investigation of the out-of-
sample inflation forecasting performance of
various models and survey forecasts. The authors
found that the no-arbitrage models they used
perform worse than not only survey forecasts but
also other types of models.4

It thus seems useful to review and discuss
various challenges in the specification and imple-
mentation of macro-finance models that might
help shed light on the lack of documented prac-
ticality of macro-finance models in general and
on the findings of ABW in particular. To this end,
I take a closer look at the role of the no-arbitrage
principle in macro-finance models and reconsider
the assumptions often made in this literature. The
no-arbitrage principle itself is clearly a reasonable
assumption, but the models also make additional
assumptions whose validity may not have been
discussed thoroughly in the existing literature. I
also discuss “more advanced” issues (such as
structural breaks and time-varying volatility) that
require going beyond the standard affine-Gaussian
framework of most macro-finance models and
the challenges encountered in this regard. Much
of the challenge in macro-finance modeling is
empirical; hence, I also discuss at length the dif-
ficulties in the implementation stage (estimation
and evaluation of models). Although the main
focus of this article is the extraction of informa-
tion from the yield curve (particularly inflation
expectations), much of the discussion may be
relevant for macro-finance models developed to
address other issues, as they share some of the
key assumptions discussed in this article.

The state variables in the reduced-form no-
arbitrage model framework (on which most macro-

finance models are based) can be heuristically
viewed as forming a basis onto which to project
information in yields and other data. Herein I
make a distinction between models that use (what
I shall call) an “internal basis” versus those that
use an “external basis.” By an internal basis, I refer
to a basis that is determined inside the estimation;
hence, it is unknown before the estimation. Latent-
factor models that describe inflation expectations
and term structure jointly (e.g., Sangvinatsos and
Wachter, 2005, and D’Amico, Kim, and Wei, 2008)
are examples of internal basis models. By an
external basis, I mean a basis that is a priori fixed
completely or partially, as when a specific macro -
economic variable (such as inflation) is taken as
a state variable. Note that no-arbitrage guarantees
the existence of some pricing kernel, but it does
not mean that the pricing kernel can be repre-
sented well by a priori selected variables. I shall
argue that external basis models involve strong
assumptions, and I discuss potential problems
that may occur with their use. All is not well with
internal basis models either: The weaker assump-
tions of these models may come at the cost of the
ability to give specific, intuitive interpretation of
the yield curve movements. Most important, inter-
nal basis models face many empirical difficulties
similar to those in the estimation of external basis
models, in particular, overfitting and small-sample
problems.

The remainder of this article is organized as
follows. The next section reviews the standard
affine-Gaussian setup of macro-finance models,
derives the affine bond pricing formula in a way
that emphasizes the replicating portfolio intuition,
and introduces a distinction between internal
basis models and external basis models. A critical
examination of the assumptions in both “low-
dimensional” and “high-dimensional” external
basis models follows this review. Next, I then
discuss the challenge of accommodating non-
linear/non-Gaussian effects, such as structural
breaks and time-varying uncertainties, and poten-
tial problems with empirical techniques com-
monly used in the estimation and evaluation of
macro-finance models. I then return to why sur-
veys perform better than models in inflation fore-
casting (as documented by ABW).
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4 For example, the root mean square errors (RMSEs) for 1-year con-
sumer price index (CPI) inflation forecasts based on the two no-
arbitrage models in ABW (what they refer to as MDL1 and MDL2)
are larger than those of autoregressive (AR)(1) and autoregressive
moving average (ARMA)(1,1) models by more than 30 percent for
the post-1995 window. Furthermore, all but 1 of ABW’s 11 regres-
sion models that involve term structure variables (what they refer
to as TS1-TS11) produce smaller RMSEs in forecasting 1-year CPI
(PUNEW) inflation than the no-arbitrage models in the post-1995
sample.



THE BASIC MODEL
Affine-Gaussian Framework

Most macro-finance models in the literature
are based on the “affine-Gaussian” model,
denoted as

(1)

where Mt is the pricing kernel, xt is an n-dimen-
sional vector of state variables, rt is the nominal
short rate (i.e., one-period yield), and λt is the
market price of risk of the n-dimensional shocks
ε t+1 (Φ, Σ, and Λb are n × n constant matrices, ρ
and λa are constant n-dimensional vectors, and
ρo is a constant). A well-known result in finance
theory states that no-arbitrage implies the existence
of a pricing kernel (stochastic discount factor) of
the form (1).5

There is freedom in choosing the specific func-
tional form of rt and λt and the dynamics of xt.
Use of the affine forms for rt and λt and the
Gaussian specification (VAR�1� specification) of
xt constitutes the affine-Gaussian model. This
form has certain limitations (discussed later), but
it is still quite general and capable of encompass-
ing many of the known models in finance and
macroeconomics.

Using the recursion relation for the price of a
τ-period zero-coupon bond at time t,

(2)                   

it is straightforward to show that bond prices in
this model are given by

(3)                    

where Aτ and Bτ are the solution of the difference
equations,
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with boundary condition Aτ = 0 = 0, Bτ = 0 = 0n × 1
(see, for example, Ang and Piazzesi, 2003 [AP]).
The bond yield yτ,t�=–log�Pτ,t�/τ � is given by

(5)                     

that is, it takes an affine form.
The original “finance term structure models”

such as those by Dai and Singleton (2000) and
Duffee (2002) were written for nominal bond
yields only. For example, the model defined by
equation (1) could be estimated with just nominal
yields data, with suitable (normalization) restric-
tions on the parameters Φ, µ, ρ,... to ensure that
the model be econometrically identified. The state
variables in this case are “latent factors” without
an explicit economic meaning.

In a seminal paper, AP proposed combining
this setup with a description of the macroecon-
omy. Their basic insight is that the well-known
Taylor-rule specification of the short rate also
has an affine form:

(6)               

where πtY is the annual inflation and gapt is the
gross domestic product (GDP) gap (log GDP minus
log potential GDP).6 Therefore, using variables
such as inflation and the GDP gap as part of the
state vector in equation (1), that is,

(7)                     

provides a system in which bond yields are linked
to key macroeconomic variables. Some macro-
economic variables might not be well described by
simple VAR�1� dynamics, but this is, in principle,
not a problem, as a higher-order VAR process
(VAR�q�model) can be written as a VAR�1� process
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5 Duffie (2001) discusses this in the continuous-time formalism;
see also Cochrane (2001).

6 To be precise, AP use GDP growth, instead of the GDP gap, in
their formulation.



with an expanded state vector that includes
lags of these variables (e.g., [πtY, πtY–1,…, gapt,
gapt–1,…]′).

Various macro-finance models differ by the
choice of the restrictions imposed on the matrices
(like Φ, ρ,..., etc.). For example, AP adopt an
atheoretical (statistical) approach, reminiscent
of Sims’s (1980) original VAR proposal; Hördahl,
Tristani, and Vestin (2006; HTV) impose more
structure, based on a New Keynesian model as
in Clarida, Galí, and Gertler (2000), though still
remain in the reduced-form framework.

These models are an innovation from the ear-
lier approach of handling long-term bond yields
in macroeconomic models. In fact, most macro-
economic models have not dealt with long-term
bond yields at all, despite their importance for
savings and investment decisions in the economy.
Precursors to the macro-finance models, such as
the Federal Reserve’s FRB/US model, do contain
the 5-year and 10-year nominal yields, which are
specified as the expectations hypothesis–implied
yield plus a term premium (the 5-year term pre-
mium and the 10-year term premium are modeled
separately),7 but the framework (equation (1))
allows not just a few selected long-term yields but
information from the entire yield curve to be inte-
grated with a description of the macroeconomy.

No-Arbitrage and Replicating Portfolios

Although the derivation of the affine bond
pricing equation (3) using the recursion relation
involving the pricing kernel is simple and elegant,
it is useful to re-derive it using the hedging (span-
ning) argument8 to get a better sense of the role
that the no-arbitrage principle plays in macro-
finance models. Suppose there are n-dimensional
shocks underlying the term structure movements,
denoted by a standard normal random vector εt.
The change in the value of a bond with maturity
τ can be expressed generally as

(8)                   

where I have used the notation δPτ,t+1 for Pτ –1,t+1
– Pτ,t (the change in the value of a bond which
was of time-to-maturity τ at time t) to avoid con-
fusion with simple time-differencing; ∆Pτ,t+1 =
Pτ,t+1 – Pτ,t; µτ,t is the one-period expected return
on a bond that has time-to-maturity τ at time t
(i.e., µτ,t = Et�δPτ,t+1/Pτ,t�); and the n-dimensional
vector γτ,t is the loading on the shocks that deter-
mine the unexpected return.

Consider a portfolio formed by taking posi-
tions in n + 1 bonds with maturities τ1, τ2,…,τn+1,
with portfolio weights w1t,…,wn+1,t. Denoting the
value of this portfolio, the return on the portfolio
V is given by

(9)            

where the time index t has been suppressed for
notational simplicity. If the portfolio is locally
risk-free

then by no-arbitrage it should yield a risk-free
rate (one-period yield); that is, 

which is equivalent to

since

Summarizing, we have
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7 See, for example, Brayton et al. (1997).

8 The derivation here can be viewed as a discrete-time analogue of
Cox, Ingersoll, and Ross’s (1981) continuous-time derivation.

Kim

522 SEPTEMBER/OCTOBER, PART 2 2009 FEDERAL RESERVE BANK OF ST. LOUIS REVIEW



Recall that the latter of these equations is 
n-dimensional, since γτi,t’s are n-dimensional.
Equation (10) can be put in the matrix form,

(11)  

where wt = [w1t,…,wn+1,t]′. In order for this matrix
equation to have a nontrivial (i.e., nonzero) solu-
tion wt for an arbitrary choice of τi’s, the expected
excess return µτ,t – rt has to be a linear combina-
tion of γτ,t; that is,

(12)                       

where the n-dimensional vector λt (“market price
of risk”) expresses the linear dependence between
µτ,t – rt and γτ,t.

It is often more convenient to deal with log
prices and log returns on bonds, δ logPτ,t+1
�=logPτ–1,t+1 – logPτ,t�. From the discrete-time
version of Ito’s lemma,9 one has

(13)               

where

(14) 

Thus, equation (12) can be also written

(15)              

Note that the derivation thus far has been
quite general. If the short rate and market price
of risk are affine in the state variables and if the
state variables follow a VAR(1) process (i.e., equa-
tion (1)), one obtains a particularly simple result.
Positing that the bond prices take the form logPτ,t
= Aτ + B′τxt, one has (from equation (13))
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Substituting these (and the expressions for rt and
λt) into equation (15) gives the same difference
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equation for bond prices as in equation (4)—hence,
the same bond prices, as promised earlier.

Internal Basis Models versus External
Basis Models

The key formula in the above derivation of
the bond pricing equation is equation (12), or
equivalently, equation (15). It states that the
expected return on a bond of arbitrary maturity
in excess of the short rate depends on the product
of the bond-independent market price of risk, λt,
and the bond’s sensitivity to risk, γτ,t. The basic
intuition underlying equation (12) is that the yield
curve is “smooth,” so the risks to a bond can be
hedged well by a portfolio of (a relatively small
number of) other bonds. This is well known from
the factor analysis of Litterman and Scheinkman
(1991) and other studies. One can also see this
from the regression of the quarterly change in the
5-year yield on the changes in 6-month, 2-year, and
10-year yields, which gives very high R-squareds
(e.g., 99 percent).

Note that equation (12) itself is silent about
the structure of the λt vector, except for the con-
dition that it does not depend on bond-specific
information (like maturity). In fact, the early gen-
eration of affine-Gaussian models assumed a con-
stant market price of risk vector λ, which in effect
implied a version of the expectations hypothesis.
Later studies recognized that λt can depend on
the state of economy; thus, a variable influencing
the market price of risk would also influence bond
prices.10 However, this creates, in a sense, too
large a set of possibilities: Any variable could, in
principle, enter the expression for the market price
of risk and, in turn, the expression for bond yields.

Latent-factor models of the term structure,
such as the affine-Gaussian model of Duffee (2002)
(the EA0�n�model in Duffee’s terminology), partly
get around this problem by implicitly defining
the model in statistical terms. A “maximally
flexible” n-dimensional affine-Gaussian model
(1) can be viewed as an answer to the question,
“what is the most general n-dimensional repre-
sentation of the yield dynamics in which yields
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9 See, for example, Campbell, Chan, and Viceira (2003).

10 Thus, a shock that changes λt, say ξt, should also be included in
the vector of shocks εt that moves bond prices.



are Gaussian, linear in some basis, and consistent
with no arbitrage?” As the yield curve seems to be
well described by a small number of risk sources,
it stands to reason that there exists a suitable
representation for a relatively small n. Thus, the
no-arbitrage principle in this setting can help
describe the rich variation of the yield curve in a
tractable and relatively parsimonious way, while
allowing for a general pricing of risk (as opposed
to the expectations hypothesis).

Duffee’s (2002) affine-Gaussian model
describes only the nominal yield curve, but it is
straightforward to write down a “joint model” of
nominal yields and inflation in the same spirit
by combining equation (1) with the following
specification of the inflation process:

(18)                 

where the one-period inflation πt+1�=log�Qt+1/Qt�,
Qt being the price level) consists of the one-period
expected inflation χ�xt� and unforecastable infla-
tion σ̃ ′ε̃t+1. As in the case of the nominal short rate
rt, the one-period inflation expectation is specified
as an affine function of the state vector xt. The
disturbance vector ε̃t includes the vector of shocks
that move interest rates (εt in equation (1)) and a
shock (say ε t�) that is orthogonal to the interest
rate shocks.11 As in the nominal-yields-only
model, the state vector xt is a vector of statistical
variables (latent variables), which is determined
only up to normalization restrictions (on param-
eter matrices Φ, ρo, ρ, ψo, ψ,...) that ensure the
(maximal) identification of the model. I shall refer
to such a model as an “internal basis model,” as
the state vector  is unknown before the estimation
and is determined inside the estimation with
yields, inflation, and possibly other data.12

Such a joint model makes only fairly weak
assumptions: Writing the one-period inflation as
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the sum of expected inflation and unexpected
inflation in equation (18) is quite general, and it
makes intuitive sense to have the state vector xt
describe inflation expectations and bond yields
together, as a variable that moves inflation expec-
tation would also be expected to move nominal
interest rates. At the same time, this formulation
relaxes the assumptions implicit in the two tra-
ditional theories of nominal yields: It goes beyond
the expectations hypothesis—as it now allows
for time-varying term premia—and the Fisher
hypothesis—as it now implicitly allows for a
general correlation between real rates and infla-
tion. Note that the state vector xt in the joint model
has more economic meaning than the nominal-
yields-only model in the sense that it is now
(implicitly) related to objects such as inflation
expectations and inflation risk premia. However,
the fact that the xit’s are still latent factors is poten-
tially an unattractive feature and makes it diffi-
cult to discuss bond market developments in a
simple manner.

Thus, many papers in the macro-finance liter-
ature take all or part of the state vector to be spe-
cific macroeconomic variables (or variables with
clear macroeconomic interpretation) so as to make
the connection between the yield curve and
macroeconomy more explicit. These variables
form an external basis, in the sense that they are
a priori fixed, partially (“mixed” models) or com-
pletely (observables-only models). Simply speak-
ing, internal basis models try to project information
in yields yτ,t and “observable” macroeconomic
variables f oit onto the state vector xt consisting of
unobservable variables f uit, while external basis
models try to project information in yields onto
“observable” macroeconomic variables f oit and
latent variables (if there are any). Schematically,

As one moves on to external basis models, one
might be also moving away from the relative com-
fort of the original intuition behind no-arbitrage
(the smoothness of the yield curve); hence, close
scrutiny of the additional assumptions they
involve is warranted.
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11 This shock (εt

�) is introduced to allow for shocks to inflation that
are not spanned by interest rate shocks. (One can also define the
εt vector in equation (1) to include this shock.)

12 Perhaps the best-known example of internal basis models is factor
analysis (e.g., Litterman and Scheinkman, 1991). As in the no-
arbitrage internal basis models, the factors in factor analysis are
determined only up to an invariant transformation; thus, normaliza-
tion restrictions are needed to define them.
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EXAMINING THE ASSUMPTIONS
IN EXTERNAL BASIS MODELS
Unspanned Short-Run Inflation

One implication of having a macroeconomic
variable like inflation as a state variable in the set -
up of equation (1) is that short-run inflation risk
can be hedged by taking positions in nominal
bonds.13 Many practitioners, however, would be
skeptical about this claim. Policymakers are well
aware of large short-run variations in price indices
such as the producer price index (PPI) and con-
sumer price index (CPI) that do not require a policy
response, and they are careful to “smooth through
the noise” in interpreting data on inflation. Blinder
(1997) puts this clearly and strongly: “[The noise
issue] was my principal concern as Vice-Chairman
of the Federal Reserve. I think it is a principal
concern of central bankers everywhere.”

Market participants are also (implicitly) cog-
nizant of these issues. One evidence is the bond
market’s reaction to the announcement of total
CPI (also called “headline CPI” or simply “CPI”)
and core CPI (which is an inflation measure
obtained by stripping out the volatile food and
energy prices from total CPI): Bond yields are
known to react mainly to the surprise component
of core CPI, not total CPI.14 This raises the question
whether it is reasonable to treat the fluctuation
in total CPI as risks that are spanned by the yield
curve factors (an implicit assumption in most
external basis macro-finance models).

One can also consider the regression of the
change in quarterly inflation onto the changes
in 6-month, 2-year, and 10-year yields,15 which

gives an R2 of at most 10 percent in the 1965-2006
period, in stark contrast to the aforementioned
regression of the change in the 5-year yield (R2 of
99 percent). Even when the lagged inflation terms
are included, as in

(19)     

the R2’s do not exceed 40 percent16; the use of
more than three yields does not make much dif-
ference. This exercise is similar in spirit to Collin-
Dufresne and Goldstein (2002), who argue that
the relatively low R2’s in the regressions of the
changes in interest rate derivative prices on the
changes in interest rates indicate the presence of
“unspanned stochastic volatility” in interest rates.

Note lastly that, although we have focused on
inflation (CPI) here, the concern about unspanned
shocks in macroeconomic variables is more gen-
eral; for example, variables such as quarterly GDP
growth face similar problems.

Do Macro Variables Form a Suitable
Basis for Representing Expectations?

Let us now address a related question: whether
external basis models can properly describe infla-
tion expectations, which, according to the Fisher
hypothesis intuition, is an important determinant
of the nominal term structure.

To those who engage in inflation forecasting
extensively, the poor inflation forecast perform-
ance of macro-finance models like those of ABW
might not be a surprise: A long line of research
has explored the inflation forecasting performance
of the yield curve information and generally
obtained disappointing results. Stock and Watson
(2003) summarize the situation thus: “With some
notable exceptions, the papers in this literature
generally find that there is little or no marginal
information content in the nominal interest rate
term structure for future inflation.”

Most of the regression-based inflation forecast-
ing models in the literature include current and

∆ = + ∆ + ∆ + ∆
+ ∆ + ∆

− − −

, ,

π π π πt t t t

M t Y t

a b b b

b y b y
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13 Let the first element of the state vector xt in equation (1) be inflation.
The formalism (1) then implies that one can in general form a
portfolio of bonds that replicates the inflation shock ε1t.

14 One can regress the change in bond yield (around the announce-
ment) on the surprise components in total CPI and core CPI (com-
puted as the announced number minus the Bloomberg consensus
prediction). The coefficient on the total CPI surprise is found to
be insignificant.

15 Let yt denote a vector of n yields. In the affine model, one has 
yt = a + Bxt, where xt is the n-dimensional vector of state variables,
a is an n-dimensional constant vector, and B is an n × n constant
matrix. Inverting it gives xt = B

–1a + B–1yt. Thus, if πt is an element
of xt, this implies ∆πt = c ′∆yt, where c is a constant vector. This is
in the linear regression form without the residual error term (and
the intercept term).

16 In the regression (19), I have tried quarterly inflation based on
both the quarter-averaged CPI and the end-of-quarter (last month
of the quarter) CPI. In these cases, the quarter-averaged yields and
end-of-quarter yields were used, respectively.



lagged inflation as regressors to take into account
the persistence of inflation. The expected inflation
over the next year in these models takes the form 

(20)    

where π t
* is either the one-period inflation or

annual inflation and the vector zt denotes other
regressors, which could include term structure
variables.

Consider a macro-finance model (1) that has
quarterly (one-period) inflation πt as a state vari-
able. In other words, xt = [πt, z̃t]′, where z̃t�=[z̃1t,
z̃2t,…]′� denotes other state variables. The expected
inflation over the next year is

(21)  

which is in the same form as equation (20).17

(The case is similar with models that use annual
inflation as a state variable.) As such, the differ-
ence between the macro-finance models formu-
lated this way and the regression models is simply
in the coefficients, not in the basis. There is a pos-
sibility of an “efficiency gain” with no-arbitrage
models (through the imposition of useful con-
straints on the coefficients), but even this is not
ensured if the results in ABW are any indication.
More fundamentally, though, the frequently poor
inflation forecast performance of regression models
and macro-finance models like ABW raises ques-
tions about the efficacy of the basis itself.

Lessons from Simple Models

Some of the key conceptual issues in the rep-
resentation of the yield curve and inflation expec-
tations may be explained through a comparison
of two simple models of inflation—namely, AR�1�
and ARMA�1,1�models:

E a b b c zt t Y t t t tπ π π+ ,
∗

−
∗( ) = + + + + ′1 0 1 1  ,

E

x
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t t Y t

t

π
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= …[ ] + + +( ) −( ) +( )
= +

1

2 3 41 0 0, , , Φ Φ Φ Φ

      b b z b zt t t0 1 1 2 2π + + + ,

(22)

(23)  

The τ-period-ahead inflation expectations in
both models take the form

(24)             

where the expected one-period inflation χt �
Et�πt+1� for the AR�1�model is given by 

(25)                    

and χt for the ARMA�1,1�model is given by 

(26)                

The estimate of φ in the AR�1�model, based on
U.S. quarterly CPI inflation data from 1960:Q1 to
2005:Q4, is 0.785(0.045), while the estimates of φ
and α in the ARMA�1,1�model are 0.935(0.031) and
0.341(0.081), respectively, with standard errors listed
in parentheses. These numbers imply fairly simi-
lar 1-quarter-ahead inflation expectations, as can
be seen in Figure 1A. (There is somewhat more
jaggedness in the AR�1� forecast.) The same param-
eter estimates, however, imply very different
longer-horizon inflation expectations (Figure 1B):
The 5-year-ahead (20-quarter-ahead) inflation
expectation from the AR�1�model is almost con-
stant, while the 5-year-ahead inflation expectation
from the ARMA�1,1�model is more variable. (This
reflects the difference between 0.78520–1 = 0.01
versus 0.93520–1 = 0.28 in equation (24).)

An almost constant 5-year-ahead inflation
expectation from the AR�1�model in the past 40
years is implausible. The main reason for the
qualitative difference between the AR and ARMA
models is that the ARMA�1,1� model tries to
separate the “unforecastable inflation” from the
expected inflation, while the AR�1�model does
not. This can be seen from the fact that the
ARMA�1,1�model is a univariate representation
of the following “two-component model”: 

(27) 
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17 If the z̃t vector includes latent factors, they can be “inverted” and
expressed in terms of yields (because of the linear relationship
between the yield and the factors), which again leads to the form
of equation (20). However, latent factors in these “mixed” models
are partly defined by their relation to the macro factors, and this
may entail complications, as discussed later in the “Low-
Dimensional External Basis Models” subsection.
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in which χt is an expected inflation process and
ηt is an unforecastable inflation.18 Though simple,
this two-component model (of which the internal
basis model [equation (18)], previously discussed
in the “Internal Versus External Basis Models”
subsection, can be viewed as an extension) is quite
useful for illustrating some of the key points in
this paper.19

The unforecastable inflation component ηt in
equation (27) can help explain several puzzling
empirical results in the literature. Among them
is the negative one-lag autocorrelation of the
changes in quarterly inflation ∆πt�= πt – πt–1�,
which, according to Rudd and Whelan (2006,
Sec III.C), is evidence against the New Keynesian
Phillips curve models (which generate positive
one-lag autocorrelation). In the case of the two-
component model (27), one has
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18 The MA�1� coefficient in the ARMA�1,1�model is related to the
two-component model parameters as

See, for a derivation, Cochrane (2001, pp. 418-20).
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Figure 1

U.S. Inflation Expectations Based on AR(1) and ARMA(1,1) Models

19 This model of inflation has an interesting parallel with the 
consumption-based asset pricing model of Bansal and Yaron (2004),
who argue that writing the consumption growth ∆ct as the sum of
expected component and unexpected component (∆ct = χt + ηt+1)
can help resolve the equity premium puzzle.



(28)

The obviously negative first term dominates the
second and third terms at appropriate parameter
values, resulting in a negative cov�∆πt,∆πt–1�. The
unforecastable component ηt also plays the role
of putting an upper bound on the predictability
of inflation.

Economically, the ηt term represents very-
short-run effects in total CPI inflation, including
part of the food and energy prices that create the
wedge between total CPI and core CPI, as well as
the unforecastable components of the core CPI
inflation and potential errors in the measurement
of CPI.

The importance of the ηt term in the two-
component model (27) has a parallel implication
for no-arbitrage macro-finance models: The failure
to separate out the “unspanned macro shocks”
in macro-finance models may produce problems
that mirror those of the AR�1� inflation model. It
is worth mentioning here that Stock and Watson
(2007) have also recently emphasized that separat-
ing inflation into a trend component and a seri-
ally uncorrelated shock (like ηt in equation (27))
is useful for explaining key features of U.S. infla-
tion dynamics,20 though they do not discuss the
ramifications for macro-finance (no-arbitrage)
models.

It is instructive to ask about the basic variable
underlying the term structure of inflation expec-
tations in the ARMA�1,1�model. As is clear from
equation (24), the basic variable is χt, not realized
inflation, πt. Note that in the case of the AR�1�
model, χt is πt (up to a prefactor and an intercept),
as can be seen from equation (25). This is not the
case for the ARMA�1,1�model: It is straightfor-
ward to show (by solving for εt in equation (23)
and recursively substituting into equation (26))

cov

cov cov
t t

t t t t

∆ ,∆( )
= ∆ ,∆( ) + ∆ ,∆

−

− − −

π π

η η χ χ
1

1 1 22

1 1

( )
+ ∆ ,∆( )− −cov t tχ η .

that χt in the ARMA�1,1�model depends on an
infinite number of lags of πt: 

(29)          

This is in the exponential smoothing form,
which has been familiar at least since the work
of Muth (1960).

The expression (29) suggests that (i) the con-
nection between realized macroeconomic vari-
ables and state variables in no-arbitrage term
structure models could be complicated and (ii)
the poor inflation forecasting performance of
regression models and no-arbitrage models with
macroeconomic variables may be a more complex
issue than just a matter of having “efficient” coef-
ficients (with conventional basis). To be sure, the
state variables in nominal term structure models
are not simply those that underlie the variation of
inflation expectations. Factors that affect the real
term structure and inflation risk premia should
also be included in the nominal term structure
model. However, it is not clear that these addi-
tional aspects would be any better described by
macroeconomic variables. 

Low-Dimensional External Basis Models

Let us now consider some specific issues
that arise in external basis models with a “low-
dimensional” state vector. Suppose that one has
a three-factor macro-finance model in the setup
of equation (1), with the state vector xt consisting
of all “observable” macroeconomic variables, say,
quarterly inflation, πt, quarterly GDP growth, gt,
and the effective federal funds rate, fft. The infla-
tion expectations in this model are then linear
functions of contemporaneous variables πt, gt, and
fft. (To see this, simply substitute z̃1t = gt, z̃2t = fft
in equation (21).) This type of forecast (VAR�1�)
has more qualitative similarity to the AR�1�model
than the ARMA�1,1�model; in particular, despite
its multifactor nature, it still mixes “signal” with
“noise” and can therefore be expected to inherit
many of the problems with the AR�1�model.

Some of the macro-finance models in the liter-
ature, including Ang, Dong, and Piazzesi (2005;
ADP) and ABW, remain in a relatively low-

χ φ α α π µ µt
j

j
t j= −( ) −( ) +

=

∞

−∑
0

.

20 Stock and Watson (2007) write the U.S. inflation process for the
past half century as πt = τt + ηt, where ηt is a serially uncorrelated
disturbance term. The τt term (what they refer to as the trend com-
ponent) can be identified as χt–1 in equation (27). Stock and Watson’s
(2007) τt and ηt have time-varying volatilities, a feature which they
argue is important in the inflation persistence debate.
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dimensional framework but use a mix of latent
factors and macroeconomic variables, but these
“mixed models” may still have difficulties. Con -
sider, for example, the ABW affine model (their
MDL1 model) with quarterly inflation and two
latent factors, that is, xt = [π t, f1t, f2t]′. If the latent
factors f1t, f2t are interpreted as πt–1, πt–2, equation
(21) takes a form similar to the smoothing form
(29). However, besides the issue that two lags
might not be enough, one may not have the free-
dom to interpret ft’s this way, as that would deprive
the ability to describe other aspects of the nominal
term structure (e.g., real interest rates, the time-
varying risk premium, or time-varying perceived
inflation target).

In the mixed models, having a macroeconomic
variable like πt as a part of the state vector may
cause a distortion in the inference, as the latent
factors can end up absorbing the “unspanned”
variation in πt. To illustrate this schematically,
suppose that the true model of the short rate is

(30)                          

where π̃t is the “spanned” part of the one-period
inflation πt; that is,

(31)                           

with et denoting the unspanned component. If
one uses realized inflation πt in place of π̃t, then

(32)      

Thus, the latent factor ftwould be distorted by
an amount ρet. Though one might be tempted to
regard this simply as a redefinition of the latent
factor, it would imply practical differences, such
as the reduced persistence of the factor dynamics.

High-Dimensional External Basis Models

Some of the external basis macro-finance
models in the literature use a fairly large number
of state variables that include lagged macroeco-
nomic variables. Many such models (including
those of AP and HTV) use annual inflation 
πtY �= π t ,t–1Y� as a state variable instead of one-
period inflation. This may help alleviate concerns
about the problem with the use of one-period

r ft t t= + ,ρπ

π πt t te= + ,

r e f f et t t t t t t= −( ) + = + −( )ρ π ρπ ρ .

inflation, since the year-on-year inflation partly
“smooths out” the noise in quarterly inflation:
πtY can be written

(33)                       

where the weights wi are 1/4 for i = 0,1,2,3, and 0
for i > 3.

Note, however, that the construction (33)
automatically implies a moving average structure
in πt

Y, which suggests that the simple VAR�1�
description would not be a good description of
its dynamics. Thus, macro-finance models that
use annual inflation as a state variable typically
include additional lags, for example, AP use 12
monthly lags, in effect having a VAR�12�model.
Bond yields in this case depend on a “large” set
of state variables that include lagged macroeco-
nomic variables.21

A problem with this type of “high-dimensional”
specification is that it inherits the well-known
problems of the unrestricted VAR models. In fact,
AP’s inflation dynamics is a conventional VAR.
They separate the vector of relevant variables into
an “observable” macro vector ft

o and an unobserv-
able (latent) vector ft

u, that is, x̃t = [ft
o ′, ft

u ′]′,22 and
impose the restriction that the latent factors do
not affect the expectation of macroeconomic vari-
ables. Their macro vector dynamics are given by
the VAR�q�:

(34) 

where q = 12. Although the parameters in the
matrices Φ1

o,…,Φq
o are, in principle, identified and

can be estimated by ordinary least squares (OLS),
this kind of unrestricted VAR is well known to
suffer from overparameterization problems (which
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21 Since an invertible ARMA(1,1) model can be written as an AR model
with infinite lags, the use of lagged macroeconomic variables in
an external basis model may partly address the deficiency of the
AR(1) model (relative to the ARMA(1,1) model) discussed in the
“Low-Dimensional External Basis Models” subsection. However,
identifying inflation as a state variable may still be problematic con-
ceptually (especially in the case of one-period inflation, πt), in
view of our earlier discussion regarding the difference between χt
and πt.

22 Here I have attached a tilde to xt to clarify that this is not the full
state vector. The full state vector (on which bond yields depend)
in AP is larger: xt = [ft

o′,f o′
t–1,…,ft

u′]′.



will be discussed further in the “Empirical Issues”
subsection).23

By having only the macroeconomic variables
describe inflation dynamics, AP suppressed the
possibility of the yield curve saying something
about future inflation. Unfortunately, it is difficult
to lift that restriction. The overparameterization
problem would worsen, as the full (maximally
identified) model would have an even larger num-
ber of parameters: In the specification of the state
vector dynamics

(35)     

the matrices Φ1
ou,Φ2

ou,... are now nonzero and have
to be estimated. Furthermore, the two-step esti-
mation procedure that AP used is no longer
applicable; hence, the estimation now involves a
“one-step” optimization of a very-high-dimensional
likelihood function. 

For specifying external basis models that
contain lags of macroeconomic variables in the
state vector, it is common practice to set the
coefficients of the market price of risk (Λbmatrix
in equation (1)) that load on lagged macroeco-
nomic variables to zero (e.g., AP and HTV). Even
with this restriction, the number of remaining
market price risk parameters is large, and modelers
often make additional ad hoc restrictions on the
Λbmatrices to reduce the number of parameters
further.24 Unfortunately, setting the Λb coefficients
on lagged macroeconomic variables to zero may
be a problematic practice. It implies that the
expected excess return on a bond, µτ,t – rt, is com-
pletely spanned by contemporaneousmacroeco-
nomic variables (and latent factors, if there are
any). Recall, from equations (12) and (17), that
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(36)

Therefore, if λt does not depend on lagged macro-
economic variables, neither does the bond return
premium. This means that while one has

(37)    

one cannot have

(38) 

that is, there is an asymmetry (in the way yields
and bond risk premia depend on lagged macro-
economic variables) that was not motivated by
theory. Thus, in order to cast the model in a “no-
arbitrage” framework, many external basis macro-
finance models may be introducing arbitrary and
nontrivial assumptions about the market price of
risk.25

AFFINE-GAUSSIAN MODELS
VERSUS NON-AFFINE/
NON-GAUSSIAN MODELS
Structural Stability

One potential limitation of the general frame-
work (1) is structural stability. To be sure, the
debate about the structural stability of macro-
economic relationships is not new (see, e.g.,
Rudebusch, 1998, and Sims, 1998). However, it
may have different ramifications for internal basis
models and external basis models, and hence
merits a discussion here.

Note that external basis macro-finance models
have often used a framework based on the Taylor
rule and VARs, but many have raised questions
about the instability of these specifications.26

One may hope that concerns about structural

y a b b bt t t tτ τ τ τ τπ π π, , , − , −= + + + ,1 2 1 3 2

µ α β π β π β πτ τ τ τ τ, , , − , −− = + + + + ,t t t t tr 1 2 1 3 2 

µ λτ τ, − = ′ .t t tr B Σ

23 Models like HTV have more structure (in the form of the New
Keynesian Phillips curve and IS equations), which may help alle-
viate overparameterization concerns, but at a possibly greater
misspecification risk.

24 For example, AP and HTV assume that Λb is a block-diagonal
matrix (a block matrix for macro factors and a block matrix for
latent factors).
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25 Duffee (2006) has also recently questioned the modeling of the
term premium in the macro-finance literature, more specifically,
the finding in some macro-finance papers of a strong relationship
between the term premium and the macroeconomy. His point is
that these studies often do not provide alternatives other than the
“expectations hypothesis” (zero or constant return premium) and
a term premium that depends on macro variables, leading to an
exaggerated role of macro variables in term premium variation.

26 See, for example, Clarida, Galí, and Gertler (2000) about the insta-
bility of Taylor-rule coefficients and Stock and Watson (1996) about
the instability of VAR coefficients.



instability would be alleviated if latent factors
are also included in external basis models. For
example, a macro-finance model with a Taylor-
rule–like mixed specification of the short rate
(similar to ADP, 2005)

(39)          

where ft is a latent factor, can be written as

(40) 

where πt* (=–ft/�1 – ρπ�� is the time-varying infla-
tion target. However, the factor ftmay have to play
a number of other roles in the model, for instance,
the interest rate smoothing term, time-varying risk
premium, and so on (analogously to an earlier
discussion in the “Low-Dimensional External
Basis Models” subsection regarding ABW’s affine
model). Thus, a model written with ft as a time-
varying inflation target in mind might have some
difficulty capturing the intended effect.

Furthermore, there may be instabilities other
than the time-varying intercept: for instance,
changes in the conditional correlation of various
macroeconomic variables, changes in the persis -
tence of the macroeconomic variables, and so
on. Imagine, heuristically, a situation in which
the “true” model is

(41)              

that is, a Taylor-rule–like short rate with time-
varying loadings on the macroeconomic variables.
In this case, the two-factor affine model in which
the state variables are [πtY, gapt]′ is obviously
misspecified. For another example, consider a
“time-varying inflation-persistence model”:

(42)                   

Again, identifying πtY as a state variable in an
affine setting would be a misspecification.

One way to address this problem is to model
these effects explicitly in non-affine/non-Gaussian
models.27 However, these models, being richer
than affine-Gaussian models, may be even more
susceptible to overfitting concerns and may incur
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a greater risk of misspecification. Alternatively,
the use of an internal basis (while still remaining
in the affine-Gaussian setup) may allay structural
instability concerns to some extent: Internal basis
models are agnostic as regards the definition of the
factors; thus, a model that is obviously unstable
from the point of view of an external basis may
not necessarily be so from the point of view of
an internal basis. For example, going back to
equation (41), choosing the state variable as 
xt = [ρπ,tπtY,ρg,tgapt]′may be more effective than
having xt = [πtY,gapt]′, although there may be an
even better internal basis for the problem (depend-
ing on how the rest of the model is defined).28

Of course, no-arbitrage models with an inter-
nal basis should not be expected to answer all
structural stability concerns. A strong structural
instability may be difficult to capture even with
an internal basis model, in which case it might be
better to use a shorter, structurally more homo-
geneous sample.

Time-Varying Uncertainty

Another limitation of the affine-Gaussian
models (both internal and external basis models)
is that they imply homoskedastic yields, while
there is copious evidence for time-varying volatil-
ity of yields.

Theoretically and intuitively, one should
expect a relation between term structure variables
and time-varying uncertainty about interest rates:
To the extent that bond market term premia arise
from risk, the changing amount of interest rate
risk should translate to a changing term premium.
It also stands to reason that at least a part of the
variation in interest rate volatility is linked to the
variation in the uncertainties about key macro-
economic variables. Various studies have noted
that macroeconomic uncertainties (inflation, GDP,
monetary policy) have declined since the Volcker
disinflation, a phenomenon often dubbed the
“Great Moderation.”29 One can expect this effect
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27 For a work in this direction, see Ang, Boivin, and Dong (2007).

28 If π t
Y and ρπ,t are Gaussian processes, the process ρπ,tπ t

Ywould be
non-Gaussian (with time-varying volatility). However, one can
still think of the affine version as an approximation of the non-
Gaussian process.

29 Bernanke (2004b) discusses this phenomenon from a policy-
maker’s perspective.



to be accompanied by a corresponding reduction
in term premia in the bond market. Kim and
Orphanides (2007) indeed report positive relation-
ships between the term premium in the 10-year-
forward rate and proxies for uncertainties about
monetary policy and inflation based on the dis-
persion of long-horizon survey forecasts.30

However, much work remains to be done to
properly address the relationship between term
premia and macroeconomic uncertainties—in
particular, inflation uncertainty. The key difficulty
is measuring the relevant inflation uncertainty.
For instance, one can debate whether the survey
dispersion measure used in Kim and Orphanides
(2007) is a reliable proxy for uncertainty. Inflation
uncertainty measures based on a GARCH-type
model also would be problematic, as they posit
too tight a relationship between long-term and
near-term uncertainty.31 As can be seen in Figure 2,
1-year rolling standard deviation of monthly
(total) CPI inflation (a proxy for near-term infla-
tion uncertainty) has been elevated from around

1999 on, but this does not seem to have translated
to an increase in the perception of longer-term
uncertainty, proxied by the dispersion of surveyed
forecasts of long-horizon inflation. Even granting
the imperfection of the long-horizon inflation
uncertainty measure, this contrast is noteworthy.32

The complexity of inflation dynamics can
thus create considerable challenge for attempts
to go beyond homoskedastic models: It may be
that a nonlinear model with time-varying infla-
tion uncertainty can lead to poorer results if the
model’s inflation uncertainty is misspecified, as
when a model that does not make a qualitative
distinction between short- and long-run inflation
uncertainties tries to link the rise in the volatility
of short-run inflation of the recent several years

30 See also Backus and Wright (2007).
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Figure 2

The Dispersion of Long-Horizon U.S. Inflation Forecasts in the BCFF and the 1-Year Rolling
Standard Deviation of Monthly CPI Inflation

31 Consider a GARCH specification of one-period inflation, 
πt+1 = f �πt,πt–1,…� + εt+1, εt+1 ~ N�0,σt

2�, σt
2 = α + βσ 2

t–1 + γε t
2. It is

straightforward to show that the uncertainty about multiperiod
inflation πt+τ,t = �πt+1 + πt+2 + … πt+τ�/τ, has similar qualitative time
variation as σt (short-run inflation uncertainty).

32 Interestingly, earlier literature including Ball and Cecchetti
(1990) and Evans (1991) has also emphasized in another context
the need to distinguish between the short-run and long-run infla-
tion uncertainties.



(as seen in Figure 2) to bond market term 
premia.33

EMPIRICAL ISSUES
Overfitting Problems

Flexibly specified no-arbitrage models tend
to entail much estimation difficulty. Part of the
problem is one that is familiar from unrestricted
VAR models explored in the 1980s macroeco-
nomics literature. It is well known that unrestricted
VARs often lead to poor results,34 as these models
get easily overparameterized, and as the “atheo-
retical” (statistical) nature of these models means
that there is little structure in the model to pre-
vent estimations from generating unreasonable
outcomes. 

The no-arbitrage macro-finance models have
two features that exacerbate the difficulty. First,
unlike the unrestricted VARs, the estimation of
macro-finance models typically requires nonlin-
ear optimization (instead of OLS), because of the
nonlinear relationship between bond yields and
parameters such as the market price of risk and
because of the latent factors (recall the discussion
regarding equation (35)).

Second, the overparameterization problem
can be exacerbated by a large number of additional
parameters unique to macro-finance models,
including those describing the dynamics of latent
factors and their interaction with observable fac-
tors (e.g., Φj

ou, Φj
u, Φj

uo in equation (35)) and those
describing the market price of risk (λa and Λb in
equation (1)). Note that the no-arbitrage principle
guarantees the existence of a pricing kernel, such
as equation (1), but the principle by itself does not
constrain the parameters of the market price of
risk (Λbmatrix). Suppose, as in AP, that one has
in the state vector p observable variables, its q – 1
lags, and m unobservable (latent) variables, in
other words,

(43)         

In that case, the Λbmatrix in equation (1) can have
as many as �p + m� . �p . q + m� parameters.35 For
p = 2, q = 12, m = 3 (as in AP), there are 135 param-
eters for Λb to be determined; even if one chooses
a smaller q, the number of parameters is still quite
large. 

Recall that the key innovation of the macro-
finance models like AP, as compared to the tradi-
tional macro models, is that they link not only
the short rate rt�=y1,t� but also the rest of the term
structure ({yτ,t}τ >1) to the macroeconomy by casting
the problem in the no-arbitrage framework (1).
However, the fact that yields of various maturities
tend to be highly correlated (giving rise to the find-
ing in factor analysis and principal components
analysis that there is a single dominant factor)
means that the pure additional information in
longer-term yields (beyond what is in the short
rate) may be modest in amount and perhaps too
delicate to capture with a specification of the
market price of risk that is liable to be overfitted;
the relation that one might see between yields
and macroeconomic variables in macro-finance
models may be more of a statement of the Taylor
rule (macro description of the short rate) than
no-arbitrage models.

The overparameterization problem may be
particularly severe with external basis models
that contain lags of macroeconomic variables.
However, internal basis models (which tend to
be implemented with a comparatively smaller
number of factors, e.g., three factors) may also
face serious overfitting concerns, because of the
especially flexible nature (the definitional free-
dom) of the latent-factor models. In particular,
latent factor models can do a good job of fitting
the data that they are asked to fit, even if the
model or the data are poor. For example, because
yield-fitting errors are minimized as a part of the
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33 There has been much discussion about the low level of term pre-
mia in recent years (see, e.g., Backus and Wright, 2007). Trying to
explain the low term premium and high uncertainty would be a
daunting prospect.

34 See, e.g., Todd (1984) and Stock and Watson (2001).

35 The lagged macro variables do not have market price of risk, but
the market price of risk of contemporaneous variables and latent
variables can still depend on them, as discussed in the “High-
Dimensional External Basis Models” subsection.



estimation process, internal basis models with
three or four factors can fit the cross section of
the yield curve quite well (with much smaller
fitting errors than external basis models), but that
by itself might not be a sufficient reason to rec-
ommend internal basis models.

Small-Sample Problems

The implementation of macro-finance models
is also complicated by small-sample problems
that arise from the highly persistent nature of the
data. Both interest rates and inflation are known
to be persistent; unit root tests often fail to reject
a nonstationarity (unit root) null for them.

In light of this, many practitioners often use
nonstationary models to forecast inflation. For
example, many of the inflation forecasting models
used by the Federal Reserve staff impose the unit
root condition.36 By the Fisher-hypothesis intu-
ition, unit root inflation dynamics implies unit
root interest rate dynamics. 

By contrast, most of the estimated macro-
finance models (or nominal term structure models)
in the literature assume stationarity. Stationarity
has an intuitive appeal: We do not expect inter-
est rates and inflation to have infinite uncondi-
tional moments. Thus, we may posit that the “true
model” of yields is a stationary one, perhaps with
many factors to describe the complex dynamics
of yields and expectations; schematically,

(44)            

In practice, however, one is forced to deal with
relatively low-dimensional models, because
either the limited amount of data makes it impos-
sible to pin down the parameters of such a model
or one does not have enough knowledge to con-
struct a very detailed model. In this case, it is
not clear whether the “best” low-dimensional
approximation

(45)           

of the model (44) should be a stationary or non-
stationary (unit root) model.

y f x x x xt t t t Ntτ τ, = , , ,....,( ).1 2 3

y f x x n Nt t ntτ τ, ≈ ,...,( ), <<( )  1

The distinction between stationary and non-
stationary models could be semantic in the sense
that a stationary model that is close to the unit
root boundary is almost indistinguishable from
unit root models, but whether to assume stationar-
ity or not can make a big difference operationally,
as conventional estimations have the tendency
to bias down the persistence of stationary time
series, the bias becoming stronger as the sample
gets smaller. This makes the expectations appear
to converge to a long-run level faster than they
actually do; thus, longer-horizon expectations of
inflation and interest rates in (estimated) station-
ary models are often artificially stable, varying
little from the sample mean of these variables.

Another manifestation of the small-sample
problem (besides bias) is imprecision: Highly per-
sistent interest rates effectively make the size of
the sample “small”; no matter how frequently the
data are sampled, some of the key aspects of the
term structure model (those pertaining to expecta-
tions in the physical measure, as opposed to the
risk-neutral measure) are difficult to estimate.37

Problems with the Classical Approach

Most implementations of macro-finance
models have relied on classical methods such as
the maximum likelihood estimation (MLE) and
generalized method of moments (GMM), but these
methods may be less effective in this context than
is often presumed. At the heart of the matter is the
fact that reduced-form macro-finance models are
obviously an approximate representation of data,
and hence not very compatible with the classical
premise of having the “true model.” Though it
goes without saying that all models in finance are
approximate, this point is particularly relevant
here in view of the atheoretical (statistical) nature
of the model and the large number of parameters;
the MLE or GMM criterion function of these
models might thus contain multiple maxima,
which capture different aspects of data with dif-
fering degree of emphasis. The small-sample
problems discussed above add to the difficulty,
as they make asymptotic statistics a poor guide
to finite sample properties.

36 Federal Reserve staff make inflation forecast judgmentally, but they
do look at a variety of models to inform their judgments. The staff’s
forecasting procedure is discussed, for example, in Kohn (2005).
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mations are discussed in detail in Kim and Orphanides (2005).



Note also that many of the classical estimation
approaches implicitly minimize fitting errors for
the one-period-ahead conditional moments. For
example, the MLE estimation can be viewed as
minimizing the one-period prediction errors or
the errors in the fit of the “likelihood score
moments,” 

in a GMM framework. While in theory this could
yield an asymptotically correct estimate of the true
model (if the true model exists), the inherently
approximate nature of the model means that fitting
the one-period moments as closely as possible
might come at the expense of other aspects of the
model. Cochrane and Piazzesi (2006) in effect
make this point when they note that convention-
ally estimated affine models may have difficulty
producing the kind of term premia that they find
based on regressing multiperiod (1-year) excess
returns on a set of forward rates. Note also that a
GMM approach that matches unconditional
moments, such as 

might not be effective, due to the closeness of
the interest rate process (and inflation process)
to the unit root behavior.

How Can We Evaluate Models?

The above discussion suggests that looking
at the fit of the moments that are often used in
the classical estimation might not necessarily be
a good criterion for model evaluation. Some
papers do look directly at practical implications
of the model, such as the multiperiod forecasts
of inflation and interest rates. Indeed, in view of
the fact that the second-moment aspects of affine-
Gaussian models are trivial, much attention has
focused on these conditional first moments (the
forecasting performance) as a part of diagnostic
criteria, as in Ang and Piazzesi (2003), HTV, and
Moench (2008).

However, it is unclear to what extent summary
measures of forecasting performance examined
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in these papers can help with model evaluation/
selection. To be sure, looking at the forecasting
performance can be useful for detecting problem-
atic models. In Duffee (2002), for example, interest
rate forecast RMSEs that are substantially larger
than the random-walk benchmark were used to
highlight problems with certain stochastic-
volatility no-arbitrage models (e.g., the EA2�3�
specification). Similarly, the inflation forecast
RMSEs based on ABW’s no-arbitrage models that
are substantially larger than the univariate infla-
tion model benchmark may signal problems with
the no-arbitrage models that they have used.

Nonetheless, the RMSE measures for in-sample
or out-of-sample forecasts are often ineffective in
discriminating between models. For instance,
ABW obtain very similar RMSEs for the 1-year
out-of-sample inflation forecasts from the AR�1�
and the ARMA�1,1�models, although the AR�1�
model implies qualitatively quite different infla-
tion expectations than the ARMA�1,1�model, as
discussed in the “Lessons from Simple Models”
subsection.

Furthermore, because a large part of the infla-
tion and interest rate variations are unforecastable,
the RMSEs themselves may have substantial
uncertainty (sampling variability).38 Thus, it may
happen that the “true model” generates an RMSE
that is no smaller than some other models. In this
sense, it may be actually misleading to focus on
the RMSE as a criterion for selecting the model
that best describes reality. With in-sample fore-
casts, this problem is exacerbated by the possi-
bility that RMSEs are artificially pushed down
because of the use of “future information” in
generating the forecast, thus making interest rates
and inflation look more forecastable than they
actually are.

Often there are cases in which classical criteria
cannot easily tell if a model’s output is unreason-
able, while practitioners can do so using “judg-
mental information.” For instance, many macro-
finance models estimated with data going back to
1970s generate current (circa 2006) long-horizon
inflation expectations that exceed 4 percent.
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(Recall also the AR and ARMA model outputs in
Figure 1B.) Though long-horizon expectations
are difficult to evaluate on purely econometric
grounds, as there are not many nonoverlapping
observations, most policymakers and market
participants would immediately say that a 4 per-
cent long-horizon CPI inflation expectation is too
high; hence, models with such an output may fail
the test of relevance before any statistical tests.
Note also that even if two models generated sim-
ilar forecast RMSEs, practitioners could have a
very different assessment of them, depending on
the details of the forecast errors from the models
(such as the direction of the errors).39

These discussions highlight the role of the
larger information set of practitioners (as com-
pared with academic researchers). Unfortunately,
much of this extra information is difficult to cast
in the formal language of statistical tests, and the
proper evaluation of models remains a challenge
for macro-finance modeling.

Would a Bayesian Approach Help?

The use of Bayesian techniques to address
problems with conventional (classical) estimation
has a long history, but a particularly relevant early
example is the Bayesian approach to VAR fore-
casting. As discussed in the “High-Dimensional
External Basis Models” and “Over fitting Problems”
subsections, unrestricted VARs share some of the
key problems encountered in flexibly specified
macro-finance models, in particular, the statistical
(atheoretical) nature of the specification and the
tendency for overparameterization. Litterman
(1986) and others have documented that a
Bayesian implementation with an informative

prior (“random-walk prior”) can generate better
results than the classical implementation. This
encourages us to take up a Bayesian strategy to
address the empirical difficulties with macro-
finance models.

In the macro-finance context, ADP have in
fact already proposed a Bayesian approach, but
it is not clear that the particular priors that they
have used would help overcome the problems
with classical estimation discussed above. ADP
state that, except for the condition that the model
be stationary, their priors are uninformative. How -
ever, to the extent that the main problem with
the classical estimation of macro-finance models
is that the data by themselves are not fully inform-
ative about the model (especially as regards the
overfitting and small-sample problems), it is dif-
ficult to see how uninformative priors would solve
the problem. Recall that the superior performance
of Bayesian VARs (over conventionally estimated
unrestricted VARs) came from having an inform-
ative prior.

When ADP (2005) tried to estimate their
model using a classical method (maximum likeli-
hood estimation), they found that the estimated
model explained most of the term structure move-
ments in terms of the latent factor, and left little
role for macroeconomic variables to explain yield
curve movements,40 an outcome that is unappeal-
ing from the viewpoint of making a connection
between the macroeconomy and the yield curve.
However, even granting the problems with clas-
sical methods, there may be a reason for this—
namely, that the estimation marginalizes the
macroeconomic variables to avoid the counter-
factual implication that shocks to inflation (and
other macroeconomic variables) have a tight rela-
tion to yield curve movements. This is a specifi-
cation issue (i.e., one has to deal with “unspanned”
variation in macroeconomic variables in the
model.) Addressing the problem purely as an
estimation issue may lead to problems elsewhere
in the model.

In my view, the main challenge for a Bayesian
implementation is in coming up with suitable

39 For example, in the 1990s, inflation data often came in on the
“low” side, and it is widely believed that not all of this had been
predicted by market participants, that is, the “true” market forecast
of inflation in this period likely contained a mild upward bias.
(See Kohn, 1999, and Croushore, 1990, for Fed staff and private
sector forecasts in the 1990s, respectively.) Though an “unbiased”
multiperiod forecast is often viewed as a consequence of rational
expectations, to obtain it one needs tight assumptions that are dif-
ficult to justify in reality—in particular, the assumptions that there
is a relatively simple, structurally stable model of the economy and
that the agents fully know this structure. More realistic rational
expectations hypotheses that relax these restrictions, for example,
models that allow for learning and time-varying structure, are
consistent with biased expectations in “small” samples.
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does not describe the specifics of the outcome from the classical
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informative priors. This is particularly the case
when there are latent factors in the model (external
basis models with latent factors or internal basis
models): Because the economic meaning of many
of the individual parameters related to the latent
factors is unclear, it is difficult to provide sensible
priors for them. Recall that a flexibly specified
latent factor model can be normalized in many
different (but equivalent) ways. It would be prob-
lematic if a Bayesian prior that was stated for one
normalization of the model did not hold in another
normalization of the model.41

By stating priors about the variables that have
direct economic meaning, such as inflation expec-
tations, interest rate expectations, and expected
bond returns, one can get around the problem of
normalization dependence: Surely these variables
must be normalization independent. Recall also
that the source of the small-sample problem is the
difficulty of estimating the parameters related to
expectations (in the physical measure); thus,
imposing priors on these variables would help
alleviate the problem. A prior about the 10-year
inflation expectation, for example, can be
expressed as

(46)  

with θ denoting the model parameters collectively.
For µt, one can use a survey median forecast.
Setting σt = � corresponds to having no priors on
i e10Y. Setting σt at a large value, but not large
enough to be irrelevant, can be viewed as a quasi-
informative prior. Other Bayesian priors that are
based on economic concepts and mechanisms
may be also useable.42

A statement like equation (46) can be conve-
niently incorporated within a Kalman-filter set-
ting. Running a Kalman-filter–based MLE with a
survey median (or mean) forecast (of interest rates
and/or inflation) as a noisy proxy, as in D’Amico
et al. (2008), can be viewed as a “poor man’s
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Bayesian” implementation, with the point esti-
mate serving as the mode of the Bayesian posterior.

UNDERSTANDING THE SUPERIOR
PERFORMANCE OF SURVEY
FORECASTS

The specification and implementation prob-
lems discussed so far may help explain why macro-
finance models, which use more information than
past inflation data, could generate poorer results
than simple univariate inflation models. But is
the yield curve information useful at all for infla-
tion forecasting? Why do survey forecasts perform
better than univariate models (and other models)?

One reason ABW offer for the superior per-
formance of survey forecasts is that survey partici-
pants have more information about the economy
than econometricians. This is in line with the
point made in the “How Can We Evaluate Models?”
subsection that informational differences may
create a wedge between a practitioner’s and an
academic researcher’s evaluation of a model. But
it is worth exploring this issue further.

One could plausibly expect that survey
forecasts may have advantages at least at short
horizons, in that a potentially vast amount of
information that is relevant for forecasting near-
term inflation may not be easily summarized into
a small number of variables. Thus, it may be
instructive to examine the near-term expectations
in surveys and how they are linked to longer-term
expectations (i.e., the term structure of survey
inflation forecasts).

Fortunately, fairly detailed information about
the near-term term structure of survey inflation
expectations can be obtained, as survey forecasts
such as the Survey of Professional Forecasters
(SPF) and the Blue Chip Financial Forecasts
(BCFF) provide CPI inflation forecasts up to the
next four or more quarters. Figure 3 shows the
1-, 2-, and 4-quarter-ahead CPI inflation forecasts
from the BCFF survey, based on the surveys
published in January, April, July, and October
(taken at the end of December, March, June, and
September), from 1988 to 2006. The figure also
shows the BCFF long-horizon forecast (inflation
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42 “Structural” priors can be also imposed in a Bayesian setting, as
in the dynamic stochastic general equilibrium (DSGE) modeling
literature.



expected between the next 5 and 10 years), which
is available twice per year, is also shown. It is
notable that this long-horizon forecast, which can
be viewed as a “quasi–long-run” mean of inflation,
has moved about (shifted down) significantly. It
is also notable how quickly the multiperiod fore-
casts approach the quasi–long-run value. The 4-
quarter-ahead forecast and the 2-quarter-ahead
forecast are already quite similar to the long-
horizon forecast. Note that even in 1990:Q3, when
the 1-quarter-ahead inflation expectation peaked,
the expectations for longer horizons show that the
survey participants expected inflation to come
down quickly to the quasi–long-run level. Thus,
one comes to a conclusion that “the long term is
quite near.”

To get further insights into the survey fore-
casts, it is useful to compare them with ex post
realized inflation and the real-time forecasts from
the ARMA�1,1�model. Figure 4A shows the 1-
quarter-ahead inflation forecasts based on the
BCFF survey and the ARMA�1,1�model (20-year
rolling sample forecast), as well as the realized
quarterly inflation (πt plotted at t–1). The vertical
difference between realized inflation and the
survey forecast or the ARMA forecast is the fore-
cast error. This error is indeed smaller for the
survey forecast. (The RMSEs of the 1-quarter-ahead
forecast are 1.19 percent and 1.40 percent in annual
percentage units for the survey forecast and the
ARMA�1,1�model, respectively.) Note that the 

1-quarter-ahead survey forecast is much less jagged
than realized inflation or the ARMA�1,1� forecast.
Granting the caveat that surveys might not nec-
essarily be the best possible means of forecasting,
this suggests that a substantial part of short-run
inflation is unforecastable ex ante, lending sup-
port to a formulation like the two-component
model in equation (27) in which the inflation
process is separated into a trend inflation com-
ponent and an unforecastable component.

Let us now examine the 1-year inflation fore-
cast, shown in Figure 4B. The ARMA forecasts
(both the rolling and the expanding samples) per-
formed worse than the survey forecast with RMSEs
of 1.04 percent for the 20-year rolling sample
ARMA, 1.15 percent for the expanding sample
ARMA, and 0.76 percent for the survey. The basic
reason for the superior forecast of the survey is
that the ARMA model–based forecasts substan-
tially overpredicted inflation in the 1990s. It can
be seen that the ARMA forecasts lie notably above
the realized inflation (and survey forecast). This
overprediction is due in large measure to the fact
that the ARMA model in real time tended to gen-
erate “too high” values of the long-run mean level
(µ in equation (23)) to which the forecasts are con-
verging. This is illustrated in Figure 5, where the
long-run mean parameter µ from the expanding
sample estimation lies significantly above the
long-horizon survey forecast. Because the expand-
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Forecasts of U.S. Quarterly CPI Inflation from the BCFF



ing sample includes periods of high inflation
(1970s and early 1980s), the estimated mean does
not fall quickly with declining inflation in the ’80s
and ’90s. The use of the 20-year rolling sample
produces lower µ (than the expanding sample)
as the estimation sample moves away from those
periods, but still the adjustment in the long-run
mean is not as fast as in the survey forecast.43
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Comparison of Realized CPI Inflation, the BCFF Survey Forecasts, and the
ARMA(1,1) Model Forecasts

43 ABW also note that the ability of survey forecasts to quickly adapt
to major changes in the economic environment contributes to the
superior performance of the surveys. While the majority of ABW’s
estimations were done with expanding samples, they also examine
the forecast RMSEs based on rolling-sample estimation for a subset
of their models. Because their rolling sample (10 years) is shorter
than the 20-year rolling sample used here, ABW’s rolling-sample
results are even closer to those of the surveys. For example, the
ratio of the AR model RMSE and the survey RMSE in the post-1995
window is 0.879/0.861, very close to 1.



The key point that emerges from this discus-
sion is that surveys produce a more successful
forecast of inflation in large part because they cap-
ture the trend component of inflation better than
time-series models such as the ARMA�1,1�model.
In stationary time-series models (for example, the
models in Figure 4), forecasts tend to converge to
a value close to the sample mean, while nonstation-
ary models put too much weight on the recent
past; thus, there is scope for judgmental informa-
tion to play a role, especially if trend inflation
varies significantly over time. These considera-
tions shed light on the attention that policymakers
pay to long-term inflation expectations (a better
indicator of the trend inflation than realized infla-
tion) and on the use of judgmental forecasts at
central banks such as the Federal Reserve.

The importance of modeling the variation of
long-term expectations deepens the challenge
for macro-finance models: Besides the specifica-
tion challenge, the nearly nonstationary nature of
the inflation process indicated by the substantial
variability of long-term survey forecasts poses

considerable empirical difficulties (discussed in
the previous section). These challenges notwith-
standing, the discussions in this paper can be
viewed as encouraging for attempts to use term
structure models to extract inflation expectations:
It makes intuitive sense that the yield curve con-
tains, at least, information about trend inflation,
and the indication that the near-term informational
advantage of surveys seems to wear out quickly
(beyond a few quarters) gives some hope that
models could capture much of the variation in
inflation expectations and compete with surveys.44

44 Although ABW find that survey forecasts cannot be improved by
combination with models that they consider, few policymakers
would regard survey forecasts as the ultimate measure of inflation
expectations. Consider, for example, the fact that between 1999 and
2006 the 10-year CPI inflation expectation from the SPF survey has
been almost stuck at 2.5 percent. While there is a broad consensus
that long-term inflation expectations were “better anchored” in
the 2000s than in the earlier decades, it may be a stretch to regard
that long-term inflation expectation has become so well anchored
as to be practically immovable. This may be one example in which
the yield curve contains useful information that is unavailable in
the SPF survey.
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CONCLUSION
These are some of my key points made in this

paper: (i) Not all of the variation in key macro-
economic variables is related to yield curve move-
ments. (ii) The yield curve contains useful
information about the trend component of infla-
tion. (iii) The no-arbitrage principle might not be
sufficient to guarantee sensible outputs from
macro-finance models in practice.

As I have stressed in the second section of
the paper (“The Basic Model”), the spanning
argument is the basis of the no-arbitrage frame-
work; hence the presence of a short-run inflation
component that is not related to yield curve move-
ments may undermine the validity of the models
that use inflation as a state variable. Such a com-
ponent may also cause special difficulties when
one tries to go beyond the affine-Gaussian setup
to model time-varying uncertainties about macro-
economic variables explicitly. For example, as
discussed in the “Time-Varying Uncertainty” sub-
section, monthly CPI inflation in recent years has
been more volatile than in the 1990s, but there is
no strong evidence that this is reflected in the
yield curve (e.g., as an increased term premium);
an attempt to link them may thus lead to more
serious specification errors.

I have also argued in this paper that much of
the “spanned” component of inflation (the part
of inflation that is related to the yield curve) is
about the trend component (whose importance
was stressed in the discussion in the previous
section of why surveys perform better). This can
help resolve the puzzle that the “conventional
wisdom” that the change in nominal yields often
reflects changes in inflation expectations dies
hard, despite the poor performance of inflation
forecasting models involving term structure vari-
ables. In some sense, the latent factor models can
be viewed as a way to represent markets’ implicit
processing (filtering) of information.

No-arbitrage models of the term structure have
been viewed as a promising way to go beyond
the restrictive assumptions implicit in the expec-
tations hypothesis (about how risk is incorporated
in the yield curve). However, reduced-form affine-
Gaussian no-arbitrage models with flexible speci-

fication of the market price of risk can quickly
become “too unrestrictive,” with a profusion in
the number of parameters. In other words, the
no-arbitrage principle by itself may be too weak
to provide enough discipline in the model. Note
also that the two technical problems with estima-
tion discussed in the “Empirical Issues” subsec-
tion (overfitting and small-sample problems) can
be viewed as an extension of the specification
discussion, as the main source of the problems
can be viewed as insufficient information in the
data or an incomplete structure in the model. For
further progress, it would be desirable to come
up with an effective and non-ad hoc structure on
the market price of risk and other parameters of
macro-finance models—or to come up with a
new, intuitively appealing way to represent the
term structure. 
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