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1 Introduction

One of the most interesting forms of nonlinear regression models with wide applications in economics

is the threshold regression model. The attractiveness of this model stems from the fact that it treats

the sample split value (threshold parameter) as unknown. That is, it internally sorts the data,

on the basis of some threshold determinant, into groups of observations each of which obeys the

same model. While threshold regression is parsimonious it also allows for increased �exibility in

functional form and at the same time is not as susceptible to curse of dimensionality problems as

nonparametric methods.

Sample splitting and threshold regression models were studied by Hansen (2000) who proposed

a concentrated least squares approach for estimating the sample split value. Caner and Hansen

(2004) extended the Hansen (2000) framework to the case of endogeneity in the slope variables.

Seo and Linton (2005) allow the threshold variable to be a linear index of observed variables and

propose a smoothed least squares estimation strategy based on smoothing the objective function

in the sense of Horowitz�s smoothed maximum scored estimator.

In all these studies a crucial assumption is that the threshold variable is exogenous. This assumption

severely limits the usefulness of threshold regression models in practice, since in economics many

plausible threshold variables are endogenous. For example, in the empirical growth context, one

could posit that countries are organized into di¤erent growth processes depending on whether their

quality of institutions is above a threshold value. But, as Acemoglu, Johnson, and Robinson (2001)

have argued, quality of institutions is very likely an endogenous variable.

In this paper we introduce the Structural Threshold Regression (STR) model and propose an

estimation strategy that extends Hansen (2000) and Caner and Hansen (2004) to the case where

the threshold variable is endogenous. In particular, we propose a concentrated least squares

estimator of the threshold parameter when the threshold variable is endogenous and based on the

sample split implied by the threshold estimate, we estimate the slope parameters by 2SLS or GMM.

Using a similar set of assumptions as in Hansen (2000) and Caner and Hansen (2004) we show that

our estimators are consistent. To examine the �nite sample properties of our estimators we provide

a Monte Carlo analysis.

The main strategy in this paper is to exploit the intuition obtained from the limited dependent

variable literature (e.g., Heckman (1979)), and to relate the problem of having an endogenous

threshold variable with the analogous problem of having an endogenous dummy variable or sample

selection in the limited dependent variable framework. However, there is one important di¤erence.
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While in sample selection models, we observe the assignment of observations into regimes but the

(threshold) variable that drives this assignment is taken to be latent, here, it is the opposite; we

do not know which observations belong to which regime (we do not know the threshold value), but

we can observe the threshold variable. To put it di¤erently, while endogenous dummy models treat

the threshold variable as unobserved and the sample split as observed (dummy), here we treat the

sample split value as unknown and we estimate it.

Just as in the limited dependent variable framework, we show that consistent estimation of slope

parameters under Normality requires the inclusion of a set of inverse Mills ratio bias correction

terms. It also becomes clear that the slope parameter estimates of the threshold regression by

Hansen (2000) and Caner and Hansen (2004) will be inconsistent in the endogenous threshold

variable case because both strategies omit the inverse Mills ratio bias correction terms. Our Monte

Carlo results con�rm the above insight. While all three approaches perform similarly in terms

of estimating the threshold variable, unlike STR, for both Hansen (2000) and Caner and Hansen

(2004), the distribution of the slope estimate fails to center upon the true slope parameter when

the threshold variable is endogenous.

In terms of inference, Chan (1993) showed that the asymptotic distribution of the threshold estimate

is a functional of a compound Poisson process. This distribution is too complicated for inference as

it depends on nuisance parameters. Hansen (2000) developed a more useful asymptotic distribution

theory for both the threshold parameter estimate and the regression slope coe¢ cients under the

assumption that the threshold e¤ect becomes smaller as the sample increases. Using a similar set of

assumptions, Gonzalo and Wolf (2005) proposed subsampling to conduct inference in the context

of threshold autoregressive models. Seo and Linton (2005) show that their estimator exhibits

asymptotic normality but it depends on the choice of bandwidth. In the STR context, under the

assumption of the diminishing threshold e¤ect and non-regime speci�c heteroskedasticity, we derive

an asymptotic distribution for the threshold estimate, which is similar to Caner and Hansen (2004)

and propose bootstrap con�dence intervals for the threshold estimator.

The paper is organized as follows. Section 2 describes the model and the setup. Section 3 describes

the inference. Section 4 presents our Monte Carlo experiments. Section 5 concludes. In the

appendix we collect the proofs of the main results.

2 The Structural Threshold Regression (STR)

We assume weakly dependent data fyi; xi; qi; zi; uigni=1 where yi is real valued, xi is a p� 1 vector
of covariates, qi is a threshold variable, and zi is a l� 1 vector of instruments with l � p. Consider
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the following structural threshold regression model (STR),

yi = x
0
i�1 + ui; qi �  (2.1)

yi = x
0
i�2 + ui; qi >  (2.2)

where E(uijzi) = 0: Equations (2.1) and (2.2) describe the relationship between the variables of

interest in each of the two regimes and qi is the threshold variable with  being the sample split

(threshold) value. The selection equation that determines which regime applies is given by

qi = z
0
i�q + vq;i (2.3)

where E(vq;ijzi) = 0:

STR is similar in nature to the case of the error interdependence that exists in limited dependent

variable models between the equation of interest and the sample selection equation, see Heckman

(1979). However, in sample selection and endogenous dummy variable models, we observe the

assignment of observations to regimes. However, the variable that is responsible for this assignment

is latent. In the STR case, we have the opposite problem. Here, we do not know which observations

belong to which regime, but we can observe the assignment (threshold) variable. To put it

di¤erently, while limited dependent variable models treat qi as unobserved and the sample split

as observed (e.g., via the known dummy variable), here we treat the sample split value as unknown

and we estimate it.

Let us consider the following partition xi = (x1;i;x2;i) where x1;i are endogenous and x2i are

exogenous and the l� 1 vector of instrumental variables zi = (z1;i; z2;i) where x2;i 2 zi: If both qi
and xi are exogenous then we get the threshold model studied by Hansen (2000). If qi and x2;i are

exogenous and x1i is not a null set, then we get the threshold model studied by Caner and Hansen

(2004). If vq;i = 0 then we get the smoothed exogenous threshold model as in Seo and Linton

(2005), which allows the threshold variable to be a linear index of observed variables. In this paper

we focus on the case where qi is endogenous and the general case where x1;i is not a null set1.

By de�ning the indicator function

I(qi � ) =
(
1 i¤ qi �  , vq;i �  � z0i�q : Regime 1
0 i¤ qi >  , vq;i >  � z0i�q : Regime 2

(2.4)

1Note that we exclude the special case of a continuous threshold model; see Hansen (2000) and Chan and Tsay
(1998)
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and I(qi > ) = 1� I(qi � ), we can rewrite the structural model (1)-(2) as

yi = �
0
1xiI(qi � ) + �02xiI(qi > ) + ui (2.5)

The reduced form model2, gi � g(zi;�) = E(xijzi) = �0zi, is given by

xi = �0zi + vi (2.6)

E(vijzi) = 0 (2.7)

such that 0B@ ui

vq;i

vi

jzi

1CA � N

0B@
0B@ 0

0

0

1CA ;
0B@ �2u �uvq �uv

�uvq 1 �vqv

�0uv �vqv �v

1CA
1CA : (2.8)

Since the reduced form model (2.6) does not depend on the threshold qi; we have the following

conditional expectations

E(yijzi; qi � ) = �01gi + E(uijzi; qi � ) (2.9)

E(yijzi; qi > ) = �02gi + E(uijzi; qi > ) (2.10)

De�ne further � = �uv = ��u3: Then by the properties of the joint normal distribution we obtain

E(uijzi; qi � ) = �E(vq;ijzi; qi � ) = ��1
�
 � z0i�q

�
(2.11)

E(uijzi; qi > ) = �E(vq;ijzi; qi > ) = ��2
�
 � z0i�q

�
(2.12)

where �1( � z0i�q) = �
�(�z0i�q)
�(�z0i�q)

and �2( � z0i�q) =
�(�z0i�q)
1��(�z0i�q)

are the inverse Mills ratio bias

correction terms and �(�) and �(�) are the normal pdf and cdf, respectively4.
2One may easily consider alternative reduced form models, such as a threshold model; see Caner and Hansen

(2004).
3For simplicity we assume that the covariance between the vq;i and ui is the same across both regimes. Our model

can easily be extended to the case of di¤erent degrees of endogeneity across regimes.
4Note that equations (2.9) and (2.10) hold even when one relaxes the assumption of Normality but with the

correction terms being unknown functions (depending on the error distributions). These functions can be estimated
by using a series approximation, or by using Robinson�s two-step partially linear estimator; see Li and Wooldridge
(2002).
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Therefore, using (2.9), (2.10), (2.11), (2.12) we can de�ne the STR model as follows

yi = �
0
1gi + ��1

�
 � z0i�q

�
+ "1;i; qi �  (2.13)

yi = �
0
2gi + ��2

�
 � z0i�q

�
+ "2;i; qi >  (2.14)

where

E("1;ijzi; qi � ) = 0 (2.15)

E("2;ijzi; qi > ) = 0 (2.16)

We can also rewrite (2.13)-(2.14) as a single equation

yi =
�
�01gi + ��1

�
 � z0i�q

��
I(qi � ) +

�
�02gi + ��2

�
 � z0i�q

��
I(qi > ) + "i (2.17)

where the error "i is given by

"i =
�
�01vi � ��1

�
 � z0i�q

��
I(qi � ) +

�
�02vi � ��2

�
 � z0i�q

��
I(qi > ) + ui (2.18)

Notice that when the threshold variable qi is exogenous, i.e. � = 0; (2.17) becomes the threshold

regression model of Caner and Hansen (2004)

yi = �
0
1giI(qi � ) + �02giI(qi > ) + "i (2.19)

Additionally, when xi is also exogenous then we get the threshold regression model of Hansen (2000).

In both cases, the inverse Mills ratio bias correction terms are omitted so that naively estimating

the STR model using Hansen (2000) or Caner and Hansen (2004) would result in inconsistent

estimates of the slope parameters �1 and �2.

In the following section we propose a consistent pro�le estimation procedure for STR that takes

into account the inverse Mills ratio bias correction.

2.1 Estimation

De�ne

�1;i() � �1
�
 � z0i�q

�
(2.20)

�2;i() � �2
�
 � z0i�q

�
(2.21)
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and

�i() = �1;i()I(qi � ) + �2;i()I(qi > ) (2.22)

De�ne gi; = giI(qi � ) and �1 = �n + �2, then we can rewrite equation (2.17) in terms of the
lower regime (Regime 1)

yi = g
0
i� + g

0
i;�n + �n�i() + "i (2.23)

We estimate the parameters of (2.23) in three steps. First, we estimate the reduced form parameter

� in (2.6) by LS: Given a LS estimator b�; let us denote the �tted values for xi as bxi = bgi = b�0zi

and de�ne the �rst stage residuals as bvi = gi � bgi.
Second, we estimate the threshold parameter  by minimizing a Concentrated Least Squares (CLS)

criterion b = argmin


Sn() (2.24)

where

Sn() =

nX
i=1

(yi � bg0i� � bg0i;�n � �nb�i())2 (2.25)

where bgi; = bgiI(qi � ), b�i() = b�1;i() + b�2;i(),with b�1;i() = �1 ( � z0ib�q) and b�2;i() =
�2 ( � z0ib�q) :
Finally, once we obtain the split samples implied by b, we estimate the slope parameters by 2SLS
or GMM. This estimation strategy using concentration is exactly the same as in Hansen (2000) and

Caner and Hansen (2004). Notice that conditional on , the estimation in each regime mirrors the

Heckit estimation.

3 Inference

Let gi() = (gi; �i ())0 and bxi() = (bx0i; b�i ())0: Then de�ne the moment functionals
M() = E

�
gi()gi()

0I(qi � )
�

(3.26)

M?() = E(gi()gi()
0I(qi > )) (3.27)

D1() = E
�
gi()gi()

0jqi = 
�

(3.28)

D2() = E
�
gi()gi()

0"2i jqi = 
�

(3.29)
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Note that fq(q) denotes the density function of q; 0 denotes the true value of ; D1 = D1(0);

D2 = D2(0); fq = fq(0), and M =E (gig
0
i) :

Assumption 1

1.1 fzi;gi; ui;vig is strictly stationary and ergodic with � mixing coe¢ cients
1P
m=1

�
1=2
m <1;

1.2 E(uijFi�1) = 0;

1.3 E(vijFi�1) = 0;

1.4 Ejgij4 <1 and Ejgi"ij4 <1;

1.5 for all  2 �; E(jgij4"4i jqi = ) � C and E(jgij4jqi = ) � C for some C <1;

1.6 for all  2 �; 0 < fq() � f <1

1.7 D1(); D2(); and fq(), is continuous at  = 0

1.8 �n = �1 � �2 = c�n�� and �n = c�n
�� ! 0 with c�; c� 6= 0 and � 2 (0; 1=2)

1.9 fq > 0; c0D1c > 0; c
0D2c > 0; where c = (c�; c�) :

1.10 for all  2 �; M >M() > 0

1.11 Let Hi = fgi; b�i(); "i; bvig and an = n1�2a; sup
2�
j 1p
n

P
i
Hibv0iI(qi � )j = Op(1)

1.12 There exists a 0 < B < 1 such that for all � > 0 and � > 0 there is a " < 1 and n < 1
such that for all n � n

P ( sup
"=an�j�0j�B

j

P
i
HibviIfqi�g � Ifqi�0g
n1��j � 0j

j > �) < � (3.30)

and

sup
j�j�"

n��j
P
i
HibviIfqi�+�=ang � Ifqi�0gj ! 0 (3.31)

This set of assumptions is similar to Hansen (2000) and Caner and Hansen (2004). While

most assumptions are rather standard, Assumption 1.8 is not. Assumption 1.8 assumes a �small

threshold�asymptotic framework in the sense that �n will tend to zero rather slowly as n ! 1:
Under this assumption Hansen (2000) showed that the threshold estimate has an asymptotic

distribution free of nuisance parameters. Assumption 1.7 excludes the case of regime-dependent
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heteroskedasticity and hence E("2i jqi = ) is continuous at 0: 5 As in Caner and Hansen (2004),
Assumption 1.11 is needed to ensure that the reduced form �tted values are consistent for the true

reduced form conditional mean given in (2.6). Assumption 1.12 is necessary for inference.

Theorem 1: Consistency

Under Assumption 1, the estimator for  obtained by minimizing the CLS criterion (2.25), b; is
consistent. That is, b !

p
0

The proof is given in the appendix.

To obtain the asymptotic distribution let us �rst de�ne ! = c0D2c
(c0D1c)

2f
; �2 = c0D2c

(c0D1c)
2�2"
; where

�2" = E("
2
i ); and W (�) denote a two-sided Brownian motion on the real line. Let

T = argmax
�1<v<1

�
�1
2
j�j+W (�)

�
and

� = sup
�1<v<1

(�j�j+ 2W (�)) : (3.32)

Furthermore, we de�ne the likelihood ratio statistic for H0 :  = 0 as follows

LRn () = n
Sn()� Sn(b)

Sn(b) (3.33)

Theorem 2: Asymptotic Distribution of b
5An alternative assumption is to specify regime dependent heteroskedasticity. However, this potentially involves

the argmax probability density with unequal drifts and scalings, which has been investigated by Stryhn (1996). A
route for deriving such a distribution within Hansen�s (2000) framework would be as follows. Under the assumption
of equal scaling in both regimes, where the scale of the lower regime is also assumed to hold true for the upper

regime, one can derive the argmax distribution T1 as T1 = argmax�
h
�1(�

j�j
2
+W (�))

i
: Of course the above

distribution would only be correct for the lower regime I(q � 0): Similarly, reversing the de�nition of regimes

one can obtain the argmax distribution that applies to the upper regime T2 as T2 = argmax�
h
�2(�

j�j
2
+W (�))

i
:

T = argmax�
�
�1(�

j�j
2
+W (�))I(q < 0) + �2(�

j�j
2
+W (�))I(q > 0)

�
;where �1 =

c0D2c
(c0D1c)2f

and �2 =
c0D?

2 c

(c0D?
1 c)

2f
;

and � = sup
v
(�1(� j � j +2W (�))I(q < 0) + �2(� j � j +2W (�))I(q > 0)) : Dj and D?

j ; j = 1; 2; are the moment

functionals corresponding to the upper and lower regimes, respectively. A similar suggestion was made by Seo and
Linton (2007).
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Under Assumption 1, the argmax distribution of b for the STR model would take the form
n1�2�(b � 0) d! T (3.34)

LRn ()
d! �2� (3.35)

We can then employ the test-inversion method of Hansen (2000) to construct an asymptotic

con�dence interval for 0. To do so, �rst, let � be the 95th percentile of the distribution of �:

Then, b� is an asymptotically valid 95% con�dence region for 0, and is given by

b� = � : LRn () � b�2�	 (3.36)

where b�2 is an estimate of �2 based on a second-order polynomial expansion of the threshold variable
qi or a kernel regression; see Hansen (2000). The proof is given in the appendix.

4 The Bootstrap

The bootstrap for the threshold regression model has been studied by Antoch et al (1995) and

Yu (2009). In particular, Antoch et al established the validity of the nonparametric bootstrap

under the assumptions of an asymptotically diminishing threshold i.i.d errors. Note that once

the inverse Mills bias correction terms are included the conditional mean zero assumption of the

error is restored and therefore the STR model can be reduced to the model studied in Antoch et

al (1995). Therefore, appealing to Theorem 3 of Antoch et al (1995) shows that the bootstrap

approximation will converge to the asymptotic distribution given in (3.34).

Given consistent estimates for (b�1; b�2; b�; b�q; b�; b); and �tted values bgi; we de�ne the residuals
b"i = yi � �b�01bgi + b��1 �b � z0ib�q�� I(qi � b) + �b�02bgi + b��2 �b � z0ib�q�� I(qi > b)

bvq;i = qi � z0ib�q (4.37)

bvi = xi � b�0zi (4.38)

for i = 1; 2::; n: These residuals are recentered to get (e"i; evq;i; evi): Then using the EDF of (e"i; evq;i; evi)
and keeping zi is �xed, z�i = zi; we draw the bootstrap sample of (z�j ; "

�
j ; v

�
q;j ;v

�
j ) and obtain
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(y�j ;x
�
j ; q

�
j ) using equations (2.3), (2.6), and (2.5).

To construct bootstrap con�dence intervals for  we follow the test-inversion method of Hansen

(2000) and then obtain the bootstrap distribution of the likelihood ratio statistic using the

bootstrap estimates (b��1; b��2; b��; b��q ; b��; b�)
LR�n () = n

S�n()� S�n(b�)
S�n(b�)

to construct the bootstrap con�dence region for 0 , b� = f : LR�n () � LRn()g.
5 Monte Carlo

We proceed below with an exhaustive simulation study that compares the �nite sample performance

of our estimator with that of Hansen (2000) and Caner and Hansen (2004). We explore two designs.

First, we focus on the endogeneity of the threshold variable and assume that the slope variable is

exogenous. Second, we assume that both the threshold and the slope variables are endogenous.

The Monte Carlo design is based on the following threshold regression

yi =

(
�1;1 + �1;2xi + ui; qi � 2
�2;1 + �2;2xi + ui; qi > 2

(5.39)

where

qi = 2 + z1;i + vq;i (5.40)

with z1;i; vq;i; "i � NIID(0; 1) and ui = (0:1)N(0; 1) + �vq;i The degree of endogeneity of the

threshold variable is controlled by �, where � = 0:01
qe�2=(1� e�2): We �x e� = 0:95 and set

�2;1 = �2;2 = �2 = 1 and �1;1 = �1;2 = �1, and vary �1 by examining various � = �1 � �2: We
report three values of � = f0:5; 1; 2g; that correspond to a small, medium, and large threshold6.
In the case of endogenous threshold and endogenous slope variable we assume that xi = z2;i + vi,

where z2;i � NIID(0; 1) and vi = 0:5ui: Finally we consider sample sizes of 100; 200; and 500 using
1000 Monte Carlo simulations. We also investigated what happened when we varied the degree of

the correlation between the instrumental variables z and the exogenous slope variables x2: As in

6We have conducted a large number of expirements and the results are similar. Speci�cally, our experiments
investigated a broader range of values of �, di¤erent degrees of threshold endogeneity (�uvq ); and di¤erent degrees
of correlation between the instrumental variables z and the included exogenous slope variable x2: We investigated
di¤erent degrees of threshold endogeneity between the threshold and the errors of two regimes. All results are
available from the authors on request.
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the case of Heckman�s estimator, our estimator becomes more e¢ cient as this correlation decreases

and the degree of multicollinearity between �0z and x is small.

First, we consider the estimation of the threshold value . Table 1 presents the 5th, 50th, and 95th

quantiles for the distribution of the threshold estimate ̂ under STR, TR, and IVTR. Speci�cally,

columns (1)-(6) of Table 1 consider the case where the threshold variable is endogenous but the

slope variable is exogenous and compare the distribution of the TR estimates with those of STR.

Columns (7)-(12) of Table 1 consider the case where both the threshold variable and slope variable

are endogenous and compare the distribution of the IVTR estimates with those of STR.

Figures 1 and 2 present the corresponding Gaussian kernel density estimates for ̂ for the case

where the slope variable is exogenous or endogenous, respectively. The kernel density estimates

are obtained using Silverman�s bandwidth parameter for various values of � and sample sizes.

Speci�cally, Figures 1(a)-(c) present the density estimates for various sample sizes for � = 1 while

Figures 1(d)-(f) present the density estimates for various values of � for n = 500: We present the

results for STR in solid line in Figure 1 while the results for TR or IVTR are given by the dotted

line.

We see that the performance of the threshold estimator of STR improves as � and/or n increases.

We also �nd that the threshold estimates of STR vis-a-vis those of Hansen (2000) and Caner

and Hansen (2004) behave similarly. All three estimators appear to be consistent; as � and/or n

increases all three estimators appear to converge upon the true value of  = 2. STR appears to be

relatively more e¢ cient for the case where the threshold variable is endogenous, while the opposite

is true for the case where the threshold variable is exogenous.

Table 2 presents the results for the slope coe¢ cient �2 As in the case of the threshold estimates we

�nd that the performance of the slope coe¢ cient estimate of STR improves as � and/or n increases.

In sharp contrast to the results for the threshold estimate, however, we do not �nd, in this case,

that the results for TR and IVTR are similar to STR. Table 2 suggests that the distribution ofb�2 for STR converges to the true value of �2 = 1. However, this is not the case for either TR or
IVTR. In both cases, the median of the distribution centers away from the true value of �2 = 1;

speci�cally, the median for TR coverges to around 0.918 while that for IVTR converges to around

1.17. More revealingly, for the case of TR, the true value of �2 = 1 is actually getting further away

from the interval covered by the 5th to 95th quantiles as the sample size gets large. These �ndings

suggest that, consistent with the theory, the omission of the inverse Mills ratio bias correction terms

results in the estimators for the slope parameters of TR and IVTR to be inconsistent.
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Finally, Table 3 presents bootstrap coverage probabilities of a nominal 95% interval b� using 300
bootstrap replications. We report results where � varies from 0.5, 1, and 2 for sample sizes 50,

100, 250, and 500. Table 3 shows that the coverage probability increases for all the values of � as n

increases. We �nd that the coverage becomes more conservative for larger sample sizes. Similarly,

for �xed sample size, n, the coverage probability increases as � increases. Our bootstrap results

are consistent with the simulation �ndings of Caner and Hansen (2004), which are based on the

distribution theory.

6 Conclusion

In this paper we propose an extension of Hansen (2000) and Caner and Hansen (2004) that deals

with the endogeneity of the threshold variable. We developed a concentrated least squares estimator

that deals with the problem of endogeneity in the threshold variable by generating a correction term

based on the inverse Mills ratios to produce consistent estimates for the threshold parameter and

the slope coe¢ cients. Our proposed estimator performs well for a variety of sample sizes and

parameter combinations.
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A Preliminaries

De�ne for any  the following (p+1)�1 vectors; bxi() = (bx0i; b�i ())0; where b�i () = b�1;i () I(qi �
) + b�2;i () I(qi > ): Let bX and bX? be the orthogonal stacked vectors of bxi()I(qi � ) andbxi()I(qi > ); respectively.
Consider the following projections spanned by the columns of bX and bX?; respectively.

P = bX(bX0 bX)�1 bX0 (A.1)

P? = bX?(bX0? bX?)�1 bX0? (A.2)

De�ne further bX� = (bX ; bX?) and P� = bX�(bX�0 bX�)�1 bX�0 : Note that by construction bX0 bX? = 0
and hence

P� = P +P? (A.3)

De�ne Y; bG;G; bV; and " by stacking the yi; bgi, gi, bvi, and "i, respectively: Recall thatbxi = bgi = gi � bvi then we can also write bG = bX. Similarly, de�ne b�1; ; b�2; ;G by stackingb�1;i () I(qi � ); b�2;i () I(qi > ); and giI(qi � ): Similarly, we can de�ne �() and b�() by
stacking �i() and b�i(): Let us denote G0; and �(0) the matrices at the true value  = 0:

Lemma 1 Uniformly in  2 � as n �!1

1

n
bX0 bX = 1

n

nP
i=1

bxi()bxi()0I(qi � ) p�!M(; ) =M() (A.4)

1

n
bX0? bX? = 1

n

nP
i=1

bxi()bxi()0I(qi > ) p�!M?(; ) =M?() (A.5)

1p
n
bX0br = 1p

n

nP
i=1

bxi()briI(qi � ) = Op(1) (A.6)

1p
n
bX0?br = 1p

n

nP
i=1

bxi()briI(qi > ) = Op(1) (A.7)

Proof of Lemma 1
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To show (A.4) note that

1

n
bX0 bX =

0B@ 1
n

P
i
(bxibx0iI(qi � )) 1

n

P
i

b�i () bxiI(qi � )
1
n

P
i

b�i () bx0iI(qi � )) 1
n

P
i
(b�i ())2I(qi � )

1CA
and recall that bxi = bgi = gi � bvi: Note that 1

n

P
i
(bxibx0iI(qi � ))

p! E (gig
0
iI(qi � )) follows

from Caner and Hansen (2004) and (Assumption 1.11) and Lemma 1 of Hansen (1996). Based on

(Assumption 1.11) and Lemma 1 of Hansen (1996) we also have

1
n

P
i

b�i () bxiI(qi � ) = 1
n

P
i

b�i ()g0iI(qi � )� 1
n

P
i

bvib�i () I(qi � )
= 1

n

P
i

b�1;i ()g0iI(qi � )� 1
n

P
i

bvib�1;i () I(qi � )
1
n

P
i
(b�i ())2I(qi � ) = 1

n

P
i

�b�1;i ()�2 I(qi � ) + 1
n

P
i

�b�2;i ()�2 I(qi � )I(qi > )
+ 2 1n

P
i

�b�1;i () b�2;i ()� I(qi � )I(qi > ) = 1
n

P
i

�b�1;i ()�2 I(qi � )
Therefore, 1

n
bX0 bX p�! E (xi()xi()

0I(qi � )) =M(); where

M() =

 
E (gig

0
iI(qi � )) E(�1;i ()giI(qi � ))

E(�1;i ()g
0
iI(qi � )) E (�1;i ())

2 I(qi � )

!

We should note that this moment does not depend on �2;i () : Equation (A.5) follows similarly.

In particular,

M?() =

 
E (gig

0
iI(qi > )) E(�2;i ()giI(qi > ))

E(�2;i ()g
0
iI(qi > )) E (�2;i ())

2 I(qi > )

!
Finally, (A.6) and (A.7) follow directly from Assumption (1.11) and Lemma A.4 of Hansen (2000).

Lemma 2 The following sample moment functionals de�ned uniformly in  2 [0; ]

1

n
bX0G0 =

0B@ 1
n

P
i
(bxig0iI(qi � 0))

1
n

P
i

b�i ()g0iI(qi � 0))
1CA p�!MXG(0; )

1

n
bX0�(0) =

0B@ 1
n

P
i

bxi�i (0) I(qi � )
1
n

P
i

b�i ()�i (0) I(qi � )
1CA p�!MX�(0; )
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1

n
bX0?�(0) =

0B@ 1
n

P
i

bxi�i (0) I(qi > )
1
n

P
i

b�i ()�i (0) I(qi > )
1CA p�!M?

X�(0; )

Proof of Lemma 2

Using (Assumption 1.11) and Lemma 1 of Hansen (1996),

1
n

P
i
(bxig0iI(qi � 0)) = 1

n

P
i
gig

0
iI(qi � )� 1

n

P
i

bvigiI(qi � ) p! E (gig
0
iI(qi � ))

1
n

P
i

b�i ()g0iI(qi � 0)) p�! E(g0i�i () I(qi � 0))

1
n

P
i

bxi�i (0) I(qi � ) = 1
n

P
i
gi�i (0) I(qi � )� 1

n

P
i

bvi�i (0) I(qi � )
p�! E(gi�i (0) I(qi � ))

1
n

P
i

b�i ()�i (0) I(qi � ) p�! E(�i ()�i (0) I(qi � ))

1
n

P
i

bxi�i (0) I(qi > ) = 1
n

P
i
gi�i (0) I(qi > )� 1

n

P
i

bvi�i (0) I(qi > )
p�! E(gi�i (0) I(qi > ))

1
n

P
i

b�i ()�i (0) I(qi > ) p�! E(�i ()�i (0) I(qi > ))

Note that I(qi � )I(qi � 0) = I(qi � 0); I(qi < )I(qi > 0) = I(0 � qi < );

I(qi > )I(qi � 0) = 0; I(qi � 0)I(qi > 0) = 0; and I(qi � )I(qi > ) = 0: Then using

(2.22) we can further express these functionals as follows

MXG(0; ) =

 
E (gig

0
iI(qi � ))

E(g0i�1;i () I(qi � 0))

!

MX�(0; ) =

 
E(gi�1;i (0) I(qi � 0)) + E(gi�2;i (0) I(0 � qi < ))

E(�1;i (0)�1;i () I(qi � 0) + E(�2;i (0)�1;i () I(0 < qi � )

!

M?
X�(0; ) =

 
E(gi�2;i (0) I(qi > ))

E(�2;i (0)�2;i () I(qi > 0)

!

Proof of Theorem 1
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We can express (2.23) in matrix notation

Y = G� +G0�n + �n�(0) + " (A.8)

Let �n = c�n�� and �n = c�n��. Given that G = bG + bV and bX = bG is in the span of bX� then
(I�P�)G = (I�P�)bV and

(I�P�)Y = (I�P�)(n��c0�G0
0 + n

��c��(0)
0 + br)

where br = bV� + "
The sum of squared errors is given by

Sn(; 0) = Y0(I�P�)Y (A.9)

= (n��c0�G
0
0 + n

��c��(0)
0 + br0)(I�P�)(G0c�n

�� + �(0)c�n
�� + br)

= (n��c0�G
0
0 + n

��c��(0)
0 + br0) �G0c�n

�� + �(0)c�n
�� + br�

�(n��c0�G0
0 + n

��c��(0)
0 + br0)P� �G0c�n

�� + �(0)c�n
�� + br�

Notice that to minimize Sn() it is su¢ cient to maximize

S�n(; 0) = n2��1(n��c0�G
0
0 + n

��c��(0)
0 + br0)P� �G0c�n

�� + �(0)c�n
�� + br�

= n�1c0�G
0
0P

�
G0c� + n

�1c��(0)
0P��(0)c� + 2n

�1c0�G
0
0P

�
�(0)c�

+2n��1c0�G
0
0P

�
br+ 2n��1c��(0)0P�br+ n2��1br0P�br

Let us �rst consider the problem when  2 [0; ]:

Recall that P� = P +P? so that P?G0 = 0 and so P�G0 = PG0: Let us examine each of the

six terms in S�n(; 0): Using Lemmas 1 and 2 we have

(i)
1
nG

0
0P

�
G0 =

1
nG

0
0PG0

= ( 1nG
0
0
bX)( 1n bX0 bX)�1( 1n bX0G0)

p�!MXG(0; )
0M()�1MXG(0; )
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(ii)
1
n�(0)

0P��(0) = ( 1n�(0)
0 bX)( 1n bX0 bX)�1( 1n bX0�(0))

+( 1n�(0)
0 bX?)( 1n bX0? bX?)�1( 1n bX0?�(0)

p�! MX�(0; )
0M()�1MX�(0; )

+M?
X�(0; )

0M?()�1M?
X�(0; )

(iii)
1
nG

0
0P

�
�(0) = ( 1nG

0
0
bX)( 1n bX0 bX)�1( 1n bX0�(0))

p�! MXG(0; )
0M()�1MXG(0; )

(iv)

n��1G0
0P

�
br = n��1=2( 1nG0

0
bX)( 1

n
bX0 bX)�1( 1pn bX0br) p�! 0

(v) Recall that from Lemma 1, 1p
n
bX0br p�! 0 and 1p

n
bX0?br p�! 0, then

n��1�(0)0P�br = n��1=2�(0)0 (P +P?)br
= ( 1n�(0)

0 bX)( 1n bX0 bX)�1( 1pn bX0br)
+ ( 1n�(0)

bX?)( 1n bX0? bX?)�1( 1pn bX0?br)
p�! 0

(vi)

n2��1br0P�br = n2��1
�
1p
n
br0 bX�� 1n bX0 bX��1 � 1p

n
bX0br�

+ n2��1
�
1p
n
br0 bX?�� 1n bX0? bX?��1 � 1p

n
bX0?br�

p�! 0

Therefore, uniformly on  2 [0; ]

S�n(; 0)
p�! S�(; 0)

where
S�(; 0) = c0�MXG(0; )

0M()�1MXG(0; )c�

+ c�MX�(0; )
0M()�1MX�(0; )c�

+ c�M?
X�(0; )

0M?()�1M?
X�(0; )c�

+ 2c0�MXG(0; )
0M()�1MX�(0; )c�

(A.10)

De�ne c = (c�; ck)
0 and note that M(0; ) =

 
M0
XG(0; )

M0
X�(0; )

!
and fM?(0; ) =
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0

M?
X�(0; )

!
: Then by Lemma 2 we get

S�(; 0) = c
0M(0; )

0M()�1M(0; )c+ c
0fM?(0; )

0M?()�1fM?(0; )c (A.11)

We restrict  2 [0; ] to the region where �2;i () is non-decreasing. Notice that, in this case, both
�1;i () and �2;i () are monotonically increasing in the range  2 [0; ] and �1;i () < �2;i (),

and hence, for any �, �= (M(0)�M(0; ))� > 0 and �=
�
M?(0)�M?(0; )

�
� > 0, so that,

S�(; 0) � S��(; 0) with equality at  = 0, where

S��(; 0) = c0M(0)M()
�1M(0)c+ c

0fM?(0)
0M?()�1fM?(0)c

= c0
�
M(0) +fM?(0)

��
M()�1+M?()�1

��
M(0) +fM?(0)

�
c

Hence, maximizing S��(�) is equivalent to maximizing S�(�); as S��(�) will be shown to be a
decreasing function in :

Given that M() =
R
�1

E(xi(t)xi(t)
0jq = t)fq(t)dt; the derivative of M() is

dM()

d
= E(xi()xi()

0)jq = )fq() = D1()fq() (A.12)

Similarly, since M?() =
+1R

E(xi(t)xi(t)

0jq = t)fq(t)dt,

dM?()

d
= �E((xi()xi()0)jq = )fq() = �D1()fq() (A.13)

Then, using (A.12) and (A.13)

dS��(;0)
d = �c0

�
M(0) +fM?(0)

�
(M()�1D1()fq()M()

�1

�M?()�1D1()fq()M
?()�1)

�
M(0) +fM?(0)

�
c < 0

is continuous and weakly decreasing on  2 [0; ] since c0D1()fq()c > 0 by Assumption (1.7),

and �=
�
M?()�M()

�
� > 0 for any � since �1;i () � �2;i () for all  2 [0; ] ; so that

S��n (; 0) is uniquely maximized at 0: A symmetric argument can be made to show that S
��
n (; 0)

is uniquely maximized at 0 when  2 [; 0]: Since, b maximizes S��n (; 0) for  2 �; thereforeb p! 0:

Lemma 3 an(b � 0) = Op(1):
19



Proof: Lemma 4 of Caner and Hansen (2004) carries over to our framework as follows. Recall

that gi() = (gi; �i ())
0 and let the stacked version of gi() evaluated at 0 be G(0): Let the

constants B, d, k be de�ned as B > 0; 0 < d <1; 0 < k <1:

Then,

inf
"=an�j�0j�B

c0(
G(0)

0(P�0 �P�)G(0)
n( � 0)

)c � 5d=6 (A.14)

sup
"=an�j�0j�B

j
c0G(0)

0(P�0 �P�)br
n1��( � 0)

j � d=12 (A.15)

sup
"=an�j�0j�B

j
br0(P�0 �P�)br
n1�2�( � 0)

j � d=6 (A.16)

where d 2 (0;1).

Hence we can write Sn()� Sn(0) for "=an � j � 0j � B as

Sn()� Sn(0)
n1�2�( � 0)

=
br0(P�0 �P�)br
n1�2�( � 0)

+ 2
br0(P�0 �P�)F0c
n1��( � 0)

+
c0F00(P

�
0 �P�)F0c

n( � 0)
� d=2 (A.17)

Using equations (A.14) to (A.16) above, and similar bounding conditions as in Caner and Hansen

(2004) and since Sn(b) � Sn(0); equation (A.17) implies that jb � 0j � "=an:
Now as all the conditions used to derive (A.17) hold jointly with probability more than 1 � � we
have that P (n1�2�jb � 0j > ") = � for n � n: Hence, an(b � 0) = Op(1):
Lemma 4 On � 2 [�"; "]

n�2ac0G(0)
0(P�0 �P��)G(0)c =) �j�j (A.18)
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n�ac0G(0)
0(P�0 �P��)br =) �1=2W (�) (A.19)

br0(P�0 �P��)br =) 0: (A.20)

Proof:

Let us reparameterize all functions of  as functions of �: For example bX� = bX0+�=an ; P� =
P0+�=an ; and for �i() = I(qi � )� I(qi � 0) we have �i(�) = �i(0 + �=an):

Suppose that � 2 [�"; "], then using equation (A.9) and Lemma 5 of Caner and Hansen we get

Qn(�) = Sn(0)� Sn(0 + �=an)

= (n��c0G(0)
0 + br0)P��(G(0)cn�� + br)� (n��c0G(0)0 + br0)P0(G(0)cn�� + br)

= n�2ac0G(0)
0(P�� �P�0)G(0)c+ 2n�ac0G(0)0(P�� �P�0)br+ br0(P�0�P��)br

=) �j�j+ �1=2W (�); uniformly on � 2 [�"; "]

where � = c0D1cf and � = c0D2cf .

Proof of Theorem 2

Using Assumption 1 and Lemma 4 we establish that

n�2ac0G(0)
0(P�0 � P��)F0c = n�2a

nX
i=1

(c0g�0i)
2�i(�) + op(1) =) �j�j, n�ac0G(0)0(P�0 � P��)br =

n�a
nX
i=1

g�0i"i�i(�) + op(1) =) �1=2W (�); and br0(P�0 �P��)br = op(1):
Therefore, using the results that an(b � 0) = argmax� Qn(�) = Op(1) and that Qn(�) =)
��j�j+2�1=2W (�) where the limit functional is continuous with a unique maximum almost surely.

Then, equations (3.34) and (3.35) are established by following the argument in the proofs Caner

and Hansen (2004).
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