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Abstract

Forecasting volatility has received a great deal of research attention, with
the relative performance of econometric models based on time-series data and
option implied volatility forecasts often being considered. While many stud-
ies find that implied volatility is the preferred approach, a number of issues
remain unresolved. Implied volatilities are risk-neutral forecasts of spot volatil-
ity, whereas time-series models are estimated on risk-adjusted or real world data
of the underlying. Recently, an intuitive method has been proposed to adjust
these risk-neutral forecasts into their risk-adjusted equivalents, possibly improv-
ing on their forecast accuracy. By utilising recent econometric advances, this
paper considers whether these risk-adjusted forecasts are statistically superior
to the unadjusted forecasts, as well as a wide range of model based forecasts. It
is found that an unadjusted risk-neutral implied volatility is an inferior forecast.
However, after adjusting for the risk premia it is of equal predictive accuracy
relative to a number of model based forecasts.
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1 Introduction

Estimates of the future volatility of asset returns are of great interest to many
financial market participants. Generally, there are two approaches which may
be employed to obtain such estimates. First, predictions of future volatility may
be generated from econometric models of volatility given historical information
(model based forecasts, M BF'). For surveys of common modeling techniques
see Campbell, Lo and MacKinlay (1997), Gourieroux and Jasiak (2001), and
Taylor (2005). Second, estimates of future volatility may be derived from option
prices using implied volatility (IV). IV should represent a market’s best risk-
neutral prediction of the future volatility of the underlying (see, amongst others,
Jorion, 1995, Poon and Granger, 2003, 2005).

Given the practical importance of volatility forecasting (i.e. portfolio allo-
cation problems, Value-at-Risk, and option valuation), there exists a wide body
of literature examining the relative forecast performance of various approaches.
While the results of individual studies are mixed, the survey of 93 articles com-
piled by Poon and Granger (2003, 2005) reports that, overall, IV estimates often
provide more accurate volatility forecasts than competing MBF. In the context
of this study, Day and Lewis (1992), Canina and Figlewski (1993), Ederington
and Guan (2002), and Koopman, Jungbacker and Hol (2005) report that MBF
of equity index volatility provide more information relative to IV. On the other
hand, Fleming, Ostdiek and Whaley (1995), Christensen and Prabhala (1998),
Fleming (1998) and Blair, Poon and Taylor (2001) all find that equity index IV
dominate MBF.

While there is a degree of inconsistency in previous results, the general
result that IV estimates often provide more accurate volatility forecasts than
competing MBF is rationalised on the basis that IV should be based on a larger
and timelier information set. That is, as IV is derived from the equilibrium
market expectation of a future-dated payoff, rather than on the purely historical
data MBF are estimated on, it is argued that IV contains all prior information
garnered from historical data and also incorporates the additional information
of the beliefs of market participants regarding future volatility; in an efficient
options market, this additional information should yield superior forecasts.

In a related yet different context, Becker, Clements and White (2006) ex-
amine whether a particular IV index derived from S&P 500 option prices, the
VIX, contains any information relevant to future volatility beyond that re-
flected in MBF. As they conclude that the VIX does not contain any such
information, this result, prima facie, appears to contradict the previous find-
ings summarised in Poon and Granger (2003). However, no forecast comparison
is undertaken and they merely conjecture that the VIX may be viewed as a
combination of MBF. Subsequently, Becker and Clements (2008) show that the
VIX index produces forecasts which are statistically inferior to a number of
competing MBF. Further, a combination of the best MBF is found to be su-
perior to both the individual model based and VIX forecasts. They conclude
that while it is plausible that IV combines information that is used in a range
of different MBF, it is not the best possible combination of such information.
This research provided an important contribution to the literature by allowing



for more robust conclusions to be drawn regarding comparative forecast perfor-
mance, relative to the contradictory results of prior research. This was achieved
by simultaneously examining a wide class of MBF and an IV forecast, rather
than the typical pair-wise comparisons of prior work, using up-to-date forecast
evaluation technology.

However, prior results cannot be viewed as definitive as, aside from the
inconsistency of results, it may be argued that IV forecasts are inherently
disadvantaged in the context of forecast evaluation. The pricing of financial
derivatives is assumed to occur in a risk-neutral environment whereas MBF are
estimated under the physical measure. Hence, prior tests of predictive accuracy
have essentially been comparisons of risk-neutral versus real-world forecasts; as
the target is also real-world, models estimated from like data may have an ad-
vantage. Without adjusting for the volatility risk premium, generally defined as
the difference in expectations of volatility under the risk-neutral and physical
measures, risk-neutral forecasts may be biased.

By matching the moments of model-free RV and IV, Bollerslev, Gibson, and
Zhou (2008), hereafter BGZ, obtain an estimate of the volatility risk premium;
it is then a straight-forward process to convert the risk-neutral I'V into a forecast
under the physical measure. This risk-adjusted IV can then be compared to
MBEF. Following Becker and Clements (2008), we conduct such a comparison us-
ing the model confidence set methodology of Hansen, Lunde and Nason (2003a)
and find that the transformed VIX is statistically superior to the risk-neutral
VIX in the majority of samples considered and is of equal predictive accuracy
to MBF, particularly at the 22-day forecast horizon the VIX is constructed
for.

The paper will proceed as follows. Section 2 will outline the data relevant
to this study. Section 3 discusses the econometric models used to generate the
various forecasts, along with the methods used to discriminate between forecast
performance. Sections 4 and 5 present the empirical results and concluding
remarks respectively.

2 Data

This study is based upon data relating to the S&P 500 Composite Index, from 2
January 1990 to 31 December 2008 (4791 observations) and extends the data set
studied by Becker, Clements and White (2006) for the purposes of comparison
and consistency. To address the research question at hand, estimates of both
IV and future actual volatility are required. The VIX index constructed by the
Chicago Board of Options Exchange from S&P 500 index options constitutes
the estimate of IV utilised in this paper. It is derived from out-of-the-money put
and call options that have maturities close to the target of 22 trading days. For
technical details relating to the construction of the VIX index, see Chicago
Board Options Exchange (CBOE, 2003). While the true process underlying
option pricing is unknown, the VI X is constructed to be a model-free measure
of the market’s estimate of average S&P 500 volatility over the subsequent 22
trading days (BPT, 2001, Christensen and Prabhala, 1998 and CBOE, 2003).



Having a fixed forecast horizon is advantageous and avoids various econometric
issues; hence, the 22-day length of the VIX forecast shall be denoted by A
hereafter. While this index has only been available since September 2003, when
the CBOE replaced a previous IV index based on S&P 100 options, it can be
calculated retrospectively back to January 1990. It’s advantages in comparison
to the previous IV index are that it no longer relies on IV derived from Black-
Scholes option pricing models, it is based on more liquid options written on the
S&P500 and is easier to hedge against (CBOE, 2003).

For the purposes of this study, estimates of actual volatility were obtained

using the RV methodology outlined in ABDL (2001, 2003). RV estimates
volatility by means of aggregating intra-day squared returns; it is important
to note, as shall be discussed in more detail in the next section, that this mea-
sure is a model-free estimate of latent actual volatility. It should also be noted
that the daily trading period of the S&P500 is 6.5 hours and that overnight
returns were used as the first intra-day return in order to capture the variation
over the full calender day. ABDL (1999) suggest how to deal with practical is-
sues relating to intra-day seasonality and sampling frequency when dealing with
intra-day data. Based on the volatility signature plot methodology, daily RV
estimates were constructed using 30 minute S&P500 index returns!. It is widely
acknowledged (see e.g. Poon and Granger, 2003) that RV is a more accurate
and less noisy estimate of the unobservable volatility process than squared daily
returns. Patton (2006) suggests that this property of RV is beneficial when RV
is used a proxy for observed volatility when evaluating forecasts.
___Figure 1 shows the daily VIX and the 22-day mean daily S&P500 RV,
RV = % Zle RVi;, for the sample period considered. While the RV estimates
exhibit a similar overall pattern when compared to the VIX, RV reaches lower
peaks than the VIX. This difference is mainly due to the fact that the VIX
represents a risk-neutral forecast as opposed to RV that is a physical measure
of volatility. In a perfectly efficient options market, the difference between the
VIX and actual volatility should be a function of the volatility risk-premium
alone.

3 Methodology

In this section the econometric models upon which forecasts are based will be
outlined, followed by how the risk-neutral forecast provided by the VIX can be
transformed into a forecast under the physical measure. This section concludes
with a discussion of the technique utilised to discriminate between the volatility
forecasts.

3.1 Model based forecasts

While the true process underlying the evolution of volatility is not known, a
range of candidate models exist and are chosen so that they span the space

ntraday S&P 500 index data were purchased from Tick Data, Inc.
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Figure 1: Daily VIX (top panel) from 2/01/1990 to 1/12/2008 and 22-day
mean daily S&P500 Index RV estimate (bottom panel) from 2/01/1990 to
31/12,/2008.



of available model classes. The set of models chosen are based on the mod-
els considered when the informational content of IV has been considered in
Koopman, Jungbacker and Hol (2005), BPT (2001), and Becker, Clements and
White (2006). The models chosen include those from the GARCH, stochastic
volatility (SV), and RV classes.

GARCH style models employed in this study are similar to those proposed
by BPT (2001). We begin with the original specification of Bollerslev (1986),
where volatility is assumed to possess the following dynamics,

T = W + &¢, Et =/ htZt, Zt N(O, ].) (].)
he = ap+aigr_y + Bhi

This simplest model specification is then extended to accomodate one of
volatility’s stylised facts, the asymmetric relationship between volatility and
returns; this extension is provided by the GJR (see Glosten, Jagannathan and
Runkle, 1993, Engle and Ng, 1991) process,

T = W + Et, Et =\ htZt, Zt N(O, ].) (2)
hy = o+ 0415571 + O[QStflegfl + Bhi_q

with s;_1 at unity when ;1 < 0 and 0 otherwise. This process nests the
standard GARCH model when ag = 0 2.

Parameter estimates for the GARCH and GJR models are similar to those
commonly observed for GARCH models based on various financial time series,
reflecting strong volatility persistence, and are qualitatively similar to those
reported in BPT (2001)3. Furthermore, allowing for asymmetries in conditional
volatility is important, irrespective of the volatility process considered.

This study also proposes that an SV model may be used to generate fore-
casts. SV models differ from GARCH models in that conditional volatility is
treated as an unobserved variable, and not as a deterministic function of lagged
returns. The simplest SV model describes returns as

Ty = [+ O Ug, ug ~ N (0,1) (3)

where oy is the time ¢ conditional standard deviation of r;. SV models treat
o: as an unobserved (latent) variable, following its own stochastic path, the
simplest being an AR(1) process,

log (62) = a+ Blog (02,) +wi,  wy ~ N(0,02). (4)

*The conditional mean of returns is modeled as a constant. As Cochrane (2001, p 388)
points out, returns are predictable over very long horizons but at a daily frequency are virtually
unpredictable.

3 As the models discussed are re-estimated 3770 times in order to generate volatility fore-
casts for the 22 days following the respective estimation period, reporting parameter estimates
is of little value. Here we will merely discuss the estimated model properties qualitatively.
Parameter estimates for the rolling windows and the full sample are available on request.



In addition to GARCH and SV approaches, it is possible to utilise estimates
of RV to generate forecasts of future volatility. These forecasts can be gener-
ated by directly applying time series models to daily measures of RV, RV;. In
following ADBL (2003) and Koopman et al. (2005), an ARMA(2,1) process
is utilised where parameter estimates reflect the common feature of volatility
persistence.

In order to generate MBF which capture the information available at time
t efficiently, the volatility models were re-estimated for time-step t using data
from ¢ — 999 to t. The resulting parameter values were then used to generate
volatility forecasts for the subsequent A business days (t +1 — t + A), corre-
sponding to the period covered by the VIX forecast generated on day t. The
first forecast covers the trading period from 13 December 1993 to 12 January
1994. For subsequent forecasts the model parameters were re-estimated using a
rolling estimation window of 1,000 observations. The last forecast period covers
12 December 2008 to 31 December 2008, leaving 3,770 forecasts. For the shorter
forecast horizons of 5- and 1-day ahead forecasts, the sample is shortened to
also contain 3,770 forecasts.

3.2 A risk-adjusted VIX forecast

As discussed in Section 1, prior tests of the relative predictive accuracy of MBF
and IV forecasts may be inherently biased as the IV forecasts are generated in a
risk-neutral environment even though the target is under the physical measure.
However, the recent work of BGZ has put forth an approach to estimate the
volatility risk premium and then incorporate this risk premium to generate a
risk-adjusted forecast of volatility from IV; the broad details of their approach
are now given. BGZ make use of the fact that there exists a model-free estimate
of volatility, RV, and a model-free forecast from IV, in this case the VIX. We
begin with a brief revision of some of the properties of RV and the VIX, and
then describe how the volatility risk premium is estimated within a Generalised
Method of Moments (GMM) framework.

We let Vi, A be the RV computed by aggregating intra-day returns over
the interval [t,t 4+ Al:

n 2
Viea = Z [pt+%(A) _pt+%(A)] ()
i=1
where p; is the price at time t.

As n increases asymptotically, Vi'i+ A becomes an increasingly accurate mea-
sure of the latent, underlying, volatility by the theory of quadratic variation
(see Barndorff-Nielson and Shephard (2004) for asymptotic distributional re-
sults when allowing for leverage effects). The first conditional moment of
RV under the physical measure is given by (see Bollerslev and Zhou (2002),
Meddahi(2002), and Anderson et al. (2004) )

E(Viyai+2alFt) = aaEVyealFt) + Ba (6)

where F; is the information set up to time ¢t. The co-efficients aa = e 2 and

Ba = (1 — e7*2) are functions of the underlying parameters of the general



continuous-time stochastic volatility model for the logarithm of the stock price
of Heston (1993); specifically, x, is the speed of mean reversion to the long-term
mean of volatility, #. Having described the first moment of RV under the physi-
cal measure, we now detail the calculation of a model-free, risk-neutral, forecast
of volatility derived from the options market and how it may be transformed
into a risk-adjusted forecast.

A model-free estimate of IV equating to an option expiring at time t + A,
1 Vt*t 4> has been described in a continuous framework by Britten-Jones and
Neuberger (2000), and extended to the case of jump-diffusion processes by Jiang
and Tian (2005), as the integral of a basket of options with time-to-maturity
A,

. © O(t+ A K) - C(t. K
IViyon =2 /0 ( K)2 tK) ik (7)

where C(t, K) is the price of a European call option maturing at time ¢ with
an exercise price K. In this study we use the VIX as a proxy for IV, A, the
calculation of the VIX differs from the measure just given, see the CBOE (2003)
for details. This measure is a model-free, risk-neutral forecast of volatility,

E*(Vt,t+A|ft) = I%T?H’A (8)

with E*(-) the expectation under the risk-neutral measure. To transform this
risk-neutral expectation into its equivalent under the physical measure, we in-
voke the result of Bollerslev and Zhou (2002),

EWViivalF) = AalVia +Ba

(1— e’“A)/Fc

Aa (1—e ")k

Ba = 0[A—(1—c")/k] — Apb" [A (L — e A i

where Ax and Ba depend on the underlying parameters, x, €, and A, of the
afore mentioned stochastic volatility model; specifically, k* = k + 6 and 0* =
k0/(k + 6). It is now possible to recover the volatility risk premium, A.

3.3 Estimation of Volatility Risk-Premium

The unconditional volatility risk-premium, A, is estimated in a GMM framework
utilising the moment conditions (6) and (9), as well as a lagged instrument
of IV* to accommodate over-identifying restrictions, leading to the system of
equations:

4While BGZ use lagged RV as their instrument, we find the use of IV dramatically improves
forecast performance, with details available upon request.



Vit i+28 — aaViira + Ba
£(€) = (Vitatr2a — aaViera + Ba) IV o,
BT Vigra — AaIV A — Ba
(Vt,t+A - AAIVtthLA - BA)I‘/;*—AJ

(10)

where £ is the parameter vector (k, 60, \)’. We estimate £ via standard GMM ar-
guments such that & = argmin g,(€)Wg(€), where g;(€) are the sample means
of the moment conditions, and W is the asymptotic co-variance matrix of g;(§).
We follow BGZ and employ an autocorrelation and heteroscedasticity robust
W, as per Newey and West (1987). A Monte Carlo experiment conducted by
BGZ confirms that the above approach leads to an estimate of the volatility risk
premium comparable to using actual (unobserved and infeasible) risk-neutral
implied volatility and continuous-time integrated volatility. The optimisation
process is constrained such that x and 6 are positive, to ensure stationarity, and
positive variance respectively. Once the elements of ét have been determined,
substitution into (9) yields a risk-adjusted forecast of volatility, derived from a
risk-neutral IV.

We recursively estimate é’t with an expanding window beginning with an ini-
tial estimation period of 1000 observations to align with the estimation process
of the MBF}; this recursive estimation is updated daily. However, we cannot use
all data points in the estimation period due to the 22-day window for calculat-
ing Vi 1+a. That is, with 1000 days of data there are 45 periods of 22 days, so
we start at day 10; daily updating results in differing start dates, i.e. with 1001
there are still 45 periods of 22 days, so we begin on day 11.

3.4 Evaluating forecasts

Following Becker and Clements (2008), we employ the model confidence set
(MCS) approach to examine the relative forecast performance of the trans-
formed VIX. At the heart of the methodology (Hansen, Lunde and Nason,
2003a) as it is applied here, is a forecast loss measure. Such measures have fre-
quently been used to rank different forecasts and the two loss functions utilised
here are the MSE and QLIKE,

MSE" = (RViia — f1)?, (11)

RViyn

ft

where f/ are individual forecasts (formed at time t) obtained from the in-
dividual models, 7, and both the risk-neutral and risk-adjusted VIX forecasts.
The total number of candidate forecasts will be denoted as mg; therefore, the
competing individual forecasts are given by f}, i = 1, 2,...,mg. While there
are many alternative loss functions, Patton (2006) shows that MSE and QLIKE
belong to a family of loss functions that are robust to noise in the volatility
proxy, RV in this case, and would give consistent rankings of models irre-
spective of the volatility proxy used. Each loss function has somewhat different

QLIKE' =log(f) + (12)



properties, with MSE weighting errors symmetrically whereas QLIKE penalises
under-prediction more heavily than over-prediction. Regression based tech-
niques proposed by Mincer and Zarnowitz (1969) are not used here as Patton
(2006) shows that they are sensitive to the assumed distribution of the volatility
proxy and can lead to changes in forecast ranking as the proxy changes®.

While these loss functions allow forecasts to be ranked, they give no indica-
tion of whether the top performing model is statistically superior to any of the
lower-ranked models; the MCS approach does allow for such conclusions to be
drawn. The construction of a MCS is an iterative procedure that requires se-
quential testing of equal predictive accuracy (EPA); the set of candidate models
is trimmed by deleting models that are found to be statistically inferior. The
interpretation attached to a MCS is that it contains the best forecast with a
given level of confidence; although the MCS may contain a number of models
which indicates they are of EPA. The final surviving models in the MCS are
optimal with a given level of confidence and are statistically indistinguishable
in terms of their forecast performance.%

The procedure starts with a full set of candidate models Mgy = {1,...,mp}.
The MCS is determined by sequentially trimming models from My, reducing
the number of models to m < myg. Prior to starting the sequential elimination
procedure, all loss differentials between models ¢ and j are computed,

dije = LRV ion, [ = LRV ysn, 1), iyj=1,.omo, i#j, t=1,.,T—A

(13)

where L(-) is one of the loss functions described above. At each step, the
EPA hypothesis

Hy : E(dijj;) =0, Vi>jeM (14)

is tested for a set of models M C Mg, with M = M/ at the initial step. If
Hy is rejected at the significance level «, the worst performing model is removed
and the process continued until non-rejection occurs with the set of surviving
models being the MCS, M\Z If a fixed significance level « is used at each step,
M\Z contains the best model from Mg with (1 — ) confidence .

At the core of the EPA statistic is the t-statistic

var(d;;)

tij =

® Andersen, Bollerslev and Meddahi (2005) have pointed out that, in order to reveal the
full extent of predictability, R? from Mincer-Zarnowitz regressions ought to be pre-multiplied
with a correction factor allowing for the approximation error embodied in RV. As this work
seeks to evaluate relative forecast performance, and all models are compared against the same
volatility proxy, no such correction is sought for the MSE and QLIKE.

5As the MCS methodology involves sequential tests for EPA, Hansen, Lunde and Nason
(2003a, 2003b) utilised the testing principle of Pantula (1989) to avoid size distortions.

"Despite the testing procedure involving multiple hypothesis tests this interpretation is a
statistically correct one. See Hansen et al. (2003b) for a detailed discussion of these aspects.
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where Eij = % Zthl d;j¢. t;; provides scaled information on the average differ-

ence in the forecast quality of models ¢ and j, the scaling parameter, var(d;;),
is an estimate of var(d;;) and is obtained from a bootstrap procedure described
below. In order to decide whether the MCS must at any stage be further re-
duced, the null hypothesis in (14) is to be evaluated. The difficulty being that
for each set M, the information from (m — 1) m/2 unique t-statistics needs to
be distilled into one test statistic. Hansen, et al. (2003a, 2003b) propose a

range statistic,

(15)
and a semi-quadratic statistic,

T2
Tsg= Y thi= > % (16)
i,jeEM i,jEM Ry
1<) 1<)

as test statistics to establish EPA, both of which indicate a rejection of the
EPA hypothesis for large values. The actual distribution of the test statistic
is complicated and depends on the covariance structure between the forecasts
included in M. Therefore, p-values for each of these test statistics have to be
obtained from a bootstrap distribution (see below). When the null hypothesis
of EPA is rejected, the worst performing model is removed from M. The latter
is identified as M; where

d;
i = arg max————— (17)

and d; = ﬁ > jeM Eij. The tests for EPA are then conducted on the reduced
set of models and continues to iterate until the null hypothesis of EPA is not
rejected.

Bootstrap distributions are required for the test statistics T and Tsg.
These distributions will be used to estimate p-values for the Tr and Tsq tests
and, hence, calculate model specific p-values. At the core of the bootstrap
procedure is the generation of bootstrap replications of d;;;. In doing so, the
temporal dependence in d;;; must be accounted for. This is achieved by the
block bootstrap, which is conditioned on the assumption that the {d;;.} se-
quence is stationary and follows a strong geometric mixing assumption®. The
basic steps of the bootstrap procedure are now described.

Let {d;j+} be the sequence of T" — A observed differences in loss func-
tions for models ¢ and j. B block bootstrap counterparts are generated for

8 As discussed by White (2000) in a related context, a number of different block bootstrap-
ping procedures are available. They differ chiefly in whether they use a constant or random
block length. The latter methodology has the advantage of guaranteeing stationarity of the
resulting bootstrap realisations (Politis and Romano, 1994) but will also produce a larger
variance for the bootstrap statistics (Lahiri, 1999). Therefore, we follow the lead of Hansen
et al. (2003, 2005) and use, in the terminology of Lahiri (1999), the circular block bootstrap
with constant block size.

11



} for b = 1,..., B. Values with a bar, e.g.

dij = (T — A)™1>" d;j ¢, represent averages over all T — A observations. First
we will establish how to estimate the variance estimates var(d;;) and var(d;.),
which are required for the calculation of the EPA test statistics in (15), (16)
and (17):

all combinations of 7 and j, {dz(J)t

(dw)_%)?

@ -a)

for all ¢, 7 € M. In order to evaluate the significance of the EPA test, a p-value
is required. That is obtained by comparing either Tr or Tsg with bootstrap

Mm

var(d;;) = B!

b=1

Mm

var(d;) = B!

>
Il

1

realisations 7' g) or ng.

B~ 1ZB:H( >T) for 7 = R, SQ

b=1

where [(+) is the indicator function.
The B bootstrap versions of the test statistics Tr or Tsg are calculated

ij — dij

and

by replacing |d;;|and (Eij)Q in equations (15) and (16) with

=) =5 \? . . . . :
(dgj) — dij> respectively. The denominator in the test statistics remains the

bootstrap estimate discussed above.

This model elimination process can be used to produce model specific p-
values. A model is only accepted into /(/1\2 if its p-value exceeds . Due to the
definition of M\Z, this implies that a model which is not accepted into /(/1\2 is
unlikely to belong to the set of best forecast models. The model specific p-values
are obtained from the p-values for the EPA tests described above. As the kth
model is eliminated from M, save the (bootstrapped) p-value of the EPA test
n (15) or (16) as p (k). For instance, if model M; was eliminated in the third
iteration, i.e. k = 3. The p-value for this ith model is then p; = maxj<sp(k).
This ensures that the model eliminated first is associated with the smallest
p-value indicating that it is the least likely to belong into the MCS?.

4 Empirical results

We break the forecasting results down into two periods: the entire sample
period of 13 December 1993 to 31 December 2008 and a shortened sample of
13 December 1993 to 31 December 2007. The justification for this is simply to
compare the forecasting ability in what one might term to “normal” conditions
to the more extreme period which includes the fluctuations of 2008. Further,
while the VIX is constructed to be a 22-day-ahead forecast, it may still contain

See Hansen et al. (2003b) for a detailed interpretation for the MCS p-values.
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information relevant to shorter forecast horizons. To examine this issue, we also
consider 1- and 5-day ahead forecast performance in addition to the 22-day
horizon.

4.1 22 day-ahead forecasts

Generally, in forecasting the 22-day-mean of daily realised volatility for the
entire sample period, we are left with a large group of models which are sta-
tistically indistinguishable. In fact, as Table 1 shows, only three models of the
11 are not included in the MCS under both loss functions'. Importantly in
the context of this paper, the risk-neutral VX has a p-value of 0.059 of being
included in the MCS under the QLIKE loss function using the range statistic,
and a p-value of 0.179 with the semi-quadratic statistic, while the transformed
VIX is inseparable from the majority of competing MBF with p-values of 0.768
and 0.827 respectively.

When one examines Table 2, which relates to the shortened sample, it is
clear that the transformed VIX outperforms the risk-neutral VX, and there
is a clearer distinction across models generally. In particular, the raw VIX
has p-values of 0.032 and 0.037 under QLIKE for the range and semi-quadratic
statistics respectively, implying rejection of inclusion in the MCS at most confi-
dence levels, while the transformed VIX is included in the MCS almost surely.
Under the MSE loss function, the risk-neutral V' I X is least likely to be included
in the MCS while the risk-adjusted VIX has a p-value of unity for both test
statistics, implying rejecting the null is an error almost surely.

As the IV from an efficient options market should make use of a larger
and timelier information set, such a forecast should be able to perform at least
as well as models based purely on historical data. The results of this study
would suggest, however, that MBF outperform risk-neutral IV based forecasts;
although, adjusting for the risk-premium reverses that result.

4.2 5 day-ahead forecasts

With regard to the shorter forecast horizon over the full sample, as Table 3
shows, the transformed VIX does less well relative to competing MBF but is
still included in the MCS. The p-values for inclusion into the MCS for the full
sample period are less than 0.4 under both loss measures and test statistics and
is also statistically inseparable from the risk-neutral VX under MSE. Under
the QLIKE loss function, the risk-adjusted VI X forecast is statistically superior
to a wide range of models, including the GARCH, EGARCH and SV class of
models, as well as the risk-neutral VIX.

However, over the less volatile shorter sample period, with details provided
in Table 4, the transformed VIX is still included in the MCS under both loss
measures and test statistics, all p-values are above 0.89. The risk-adjusted VIX
offers significant improvement over the raw VIX forecast, which is excluded
from the MCS under both measures and test statistics, it’s highest p-value is

10We generally defer to the results according to QLIKE as Patten and Shephard (2007) has
shown it possesses superior power to MSE.
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MSE QLIKE

Model MCS(Tr) MCS(Tsq) Model MCS(Tr) MCS(Tsq)

Pi Pi Pi pi
GVIX 0.110 0.176 GVIX 0.001 0.003
RVMID 0.110 0.204 ARMA 0.001 0.007
VIX 0.116 0.242 VIX 0.059 0.179
ARMA 0.265 0.303 RVMID 0.768 0.827
G 0.314 0.343 BGZ 0.768 0.827
BGZ 0.377 0.455 GRJRV 0.768 0.827
GJRVIX 0.377 0.455 SV 0.768 0.827
GJR 0.377 0.455 G 0.776 0.827
SV 0.377 0.517 GRV 0.776 0.827
GRV 0.878 0.878 GJR 0.776 0.827
GJRRV 1.000 1.000 GJRVIX 1.000 1.000

Table 1: MCS of 22-day ahead forecasts for whole sample. The first row rep-
resents the first model removed, down to the best performing model in the last
TOw.

MSE QLIKE

Model MCS(Tr) MCS(Tsq) Model MCS(Tr) MCS(Tsq)

Pi Pi Pi pi
VIX 0.084 0.027 GVIX 0.000 0.000
G 0.084 0.027 ARMA 0.000 0.000
GVIX 0.084 0.048 VIX 0.032 0.037
GJR 0.084 0.050 GRJRV 0.307 0.227
GJRVIX 0.084 0.065 GJR 0.394 0.227
ARMA 0.084 0.065 G 0.513 0.290
GRJRV 0.084 0.081 SV 0.513 0.336
RVMID 0.305 0.244 RVMID 0.513 0.451
SV 0.305 0.309 GRV 0.759 0.728
GRV 0.354 0.354 GJRVIX 0.759 0.746
BGZ 1.000 1.000 BGZ 1.000 1.000

Table 2: MCS of 22-day ahead forecasts for shortened sample.
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MSE QLIKE

Model MCS(Tr) MCS(Tsq) Model MCS(Tr) MCS(Tsq)

Pi pi bi pi
GVIX 0.304 0.260 ARMA 0.000 0.000
ARMA 0.304 0.278 VIiX 0.000 0.000
BGZ 0.304 0.339 G 0.006 0.016
VIX 0.304 0.339 GJR 0.014 0.081
G 0.304 0.445 SV 0.092 0.156
RVMID 0.704 0.670 GVIX 0.368 0.316
GRV 0.821 0.805 BGZ 0.368 0.397
SV 0.930 0.898 GRJRV 0.368 0.397
GJRVIX 0.930 0.898 RVMID 0.562 0.519
GRJRV 0.930 0.898 GRV 0.562 0.519
GJR 1.000 1.000 GJRVIX 1.000 1.000

Table 3: MCS of 5-day ahead forecasts for whole sample

0.073 under MSE and the range statistic while has p-values of zero for both test
statistics under QLIKE.

4.3 1 day-ahead forecasts

When examining results for one day-ahead forecasts, as shown in Tables 5 and
6, the transformed VIX is excluded from the MCS under QLIKE and either
of the test statistics for both the shortened and full sample; the risk-adjusted
VIX is, however, included in the MCS under the semi-quadratic statistic and
MSE loss function for both the shortened and full sample. Unexpectedly, the
risk-neutral VIX is included in the MCS for the full sample under MSE and
both test statistics.

For the shortened sample, the raw VIX again drops out of the MCS un-
der both loss functions and test statistics while the transformed VIX is only
included in the MCS under MSE using the semi-quadratic statistic. The de-
cline in relative forecasting ability of the transformed V IX as the time-horizon
shortens is perhaps unsurprising due to the VIX being constructed as a 22-
day-ahead forecast which may incorporate information not relevant to shorter
forecasting periods. Hence, it seems that while the risk-adjusted VIX yields
promising results for the forecast horizon the VIX is constructed for, it is most
likely less useful over shorter horizons.

5 Conclusion

Issues relating to forecasting volatility have attracted a great deal of attention
in recent years, with such interest undoubtedly piquing given the extreme varia-
tions observed in late 2008. As a result, many studies into the relative merits of
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MSE QLIKE

Model MCS(Tr) MCS(Tsq) Model MCS(Tr) MCS(Tsq)

Pi Pi Pi Pi
VIX 0.073 0.067 ARMA 0.000 0.000
G 0.073 0.072 VIX 0.000 0.000
ARMA 0.073 0.171 G 0.002 0.002
GJR 0.324 0.406 GJR 0.006 0.015
GJRVIX 0.699 0.606 SV 0.131 0.154
SV 0.699 0.666 GRJRV 0.232 0.425
GRJRV 0.699 0.803 GRV 0.953 0.938
BGZ 0.892 0.926 BGZ 0.953 0.938
GVIX 0.892 0.926 RVMID 0.953 0.938
RVMID 0.892 0.926 GVIX 0.953 0.938
GRV 1.000 1.000 GJRVIX 1.000 1.000

Table 4: MCS of 5-day ahead forecasts for shortened sample

MSE QLIKE

Model MCS(Tr) MCS(Tsq) Model MCS(Tr) MCS(Tsq)

Pi Pi Pi pi
BGZ 0.121 0.378 ARMA 0.000 0.000
G 0.139 0.428 VIX 0.000 0.000
GVIX 0.415 0.733 G 0.000 0.000
GJRVIX 0.421 0.765 SV 0.000 0.001
GJR 0.421 0.765 GJR 0.000 0.007
SV 0.689 0.871 GRV 0.016 0.049
RVMID 0.689 0.871 BGZ 0.051 0.074
ARMA 0.689 0.871 RVMID 0.051 0.074
GRJRV 0.942 0.934 GRJRV 0.051 0.074
GRV 0.942 0.934 GVIX 0.224 0.224
VIX 1.000 1.000 GJRVIX 1.000 1.000

Table 5: MCS of 1-day ahead forecasts for whole sample
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MSE QLIKE

Model MCS(Tr) MCS(Tsq) Model MCS(Tr) MCS(Tsq)

Pi pi bi pi
G 0.019 0.086 ARMA 0.000 0.000
ARMA 0.086 0.151 VIiX 0.000 0.000
VIX 0.120 0.240 G 0.000 0.000
GJR 0.120 0.372 GJR 0.000 0.001
SV 0.120 0.377 SV 0.001 0.002
GJRVIX 0.120 0.499 GRV 0.010 0.010
RVMID 0.120 0.499 GRJRV 0.012 0.020
BGZ 0.120 0.499 RVMID 0.064 0.038
GRV 0.657 0.643 BGZ 0.192 0.235
GRJRV 0.657 0.643 GJRVIX 0.941 0.941
GVIX 1.000 1.000 GVIX 1.000 1.000

Table 6: MCS of 1-day ahead forecasts for shortened sample

implied and model based volatility forecasts have been conducted, and although
it has often been found that implied volatility offers superior performance, many
studies disagreed. Recently, Becker & Clements (2008) showed that the VIX
was statistically inferior to a combination of model based forecasts, inferring
that the VIX does not represent an optimal combination of volatility fore-
casts. However, it was argued in this paper that these comparisons may not
have been “fair” given that they have involved comparisons of risk-neutral im-
plied volatility forecasts while model based forecasts are generated under the
physical measure. Using the methodology of Bollerslev, Gibson & Zhou (2008),
a transformed V' IX forecast that incorporated the volatility risk-premium was
generated and its forecast performance compared with model based forecasts
of S&P 500 Index volatility via the model confidence set technology of Hansen
et al. (2003a, 2003b)

The transformed V IX offered significant improvement in forecasting ability
over the risk-neutral VIX in four of the six samples considered. When com-
pared under the QLIKE loss function with model based forecasts of 22-day-
ahead volatility, the risk-adjusted VIX was included in the model confidence
set over both the shortened and full-length sample periods, implying it performs
at least as well as model based forecasts. We put forth that this is a significant
addition to the volatility forecasting literature relating to implied volatility.

Overall, this paper shows that if one correctly accounts for the volatility risk-
premium, the market determined forecast of volatility over a 22-day horizon is
in fact of equal predictive accuracy to a small number of model based forecasts.
This result clarifies confusion from many prior studies which have, for the most
part, typically conducted pair-wise comparisons and have neglected adjusting
for the volatility risk-premium.
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