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ABSTRACT 

 

We consider a model of production with a continuum of linear techniques and examine the related 

choice of technique and shape of the demand for capital schedule. The primary conclusion regards 

the possibility of a decreasing demand for capital schedule combined with reswitching and reverse 

capital deepening. 

 

JEL: D24, D33, D46. 

 

 

                                                
* Address for correspondence: 
 
Saverio M. Fratini 
Università degli Studi Roma Tre 
Department of Economics 
via S. D’Amico, 77 
00145 Rome – Italy 
e-mail: fratini@uniroma3.it 
 



 2 

1. INTRODUCTION 

 

The phenomenon of reswitching – i.e. the case in which a technique is in use for interest 

rates r
�

 and r
�

, but not for some r between the two – is generally associated with an increasing 

demand for capital schedule (at least over a certain stretch). This is in fact always the case when it is 

assumed that the number of alternative production techniques is finite (cf. Pasinetti 1969, p. 527). 

We shall instead consider a case with a continuum of linear production techniques and 

present a simple model to show the possibility of a monotonically decreasing demand for capital 

schedule despite the presence of reswitching and reverse capital deepening. 

We start by describing the model (sec. 2) and examining the general rules for the choice of 

technique (sec. 3). Section 4 then introduces a sufficient condition for reswitching and reverse 

capital deepening. 

The characteristics of the demand for capital schedule are discussed in section 5, where the 

possibility of its decreasing shape associated with a direct relationship between rate of interest and 

net product per worker is also shown. Finally, section 6 presents an example with a monotonically 

decreasing demand for capital schedule even though the sufficient condition for reswitching is 

satisfied and the behaviour of the net product per worker schedule is therefore non-monotonic. 

 

2. ASSUMPTIONS ON TECHNIQUES 

 

We consider an economy with n products: a pure consumption good, labelled commodity 

[1], and n – 1 pure capital goods, labelled commodities [2], [3], ..., [n]. 

A continuum of possible techniques of production is available. Each technique is 

characterized by a n×n matrix A(θ) and a n-vector �(θ), for every θ ∈ Θ, with 

}10:R{ ≤θ≤∈θ=Θ , such that aij(θ) ≥ 0 and �i(θ) > 0 are, respectively, the quantity of the j-th 
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commodity and the amount of labour employed in the production of one unit of the i-th 

commodity.1 

 

Assumption 1. The functions )(a ij θ  and )(i θ�  are continuous and at least twice differentiable on 

the open set S, with S ⊃ Θ. 

 

Given a (row) vector of activity levels (gross products) b � 0, )(Ab θ⋅  is the corresponding 

vector of demand for capital with technique θ, )](AI[b θ−⋅  is the vector of net products and 

)(b θ⋅ �  is the demand for labour. 

For each technique θ, there exist a scalar y(θ) and a vector q(θ) that are respectively the net 

product of commodity [1] per worker and the vector of activity levels generating it. These can be 

obtained by solving the following equations2: 

 

)](AI[)(qe)(y 1 θ−⋅θ=⋅θ         (1) 

)()(q1 θ⋅θ= � .          (2) 

 

From equation (1) it is easy to obtain: 

 

)(q)](AI[e)(y 1
1 θ=θ−⋅⋅θ −         (3) 

 

and the substitution of equation (3) in equation (2) gives: 

 

)()](AI[e)(y1 1
1 θ⋅θ−⋅⋅θ= − �        (4) 

 

which implies: 
                                                
1 It is worth pointing out that our way of representing a continuum of possible production 
techniques, though not very familiar to economists, is general in character whereas the more 
common C.E.S. of Cobb-Douglas production functions are not. See Schefold (2008). 
2 The (row) vector e1 is [1, 0, ..., 0]. 
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)()](AI[e

1
)(y

1
1 θ⋅θ−⋅

=θ − �
        (5) 

 

Since A(θ) is a matrix with non-negative entries only, because of a well-known linear 

algebra theorem3 we have: 

 

�
∞

=

− θ+=θ−
1i

i1 )](A[I)](AI[         (6) 

 

Assumption 2. Production is not circular, which means that no capital good enters directly or 

indirectly into its own production. 

 

The assumption of non-circularity means that i)](A[ θ  is the n×n null matrix4 for every i 

greater than a certain integer number η � n. In particular, for the sake of simplicity, we shall adopt 

the following assumption: 

 

Assumption 3. i)](A[ θ  is the n×n null matrix for every i > 2. In other terms, we assume: 

21 )](A[)(AI)](AI[ θ+θ+=θ− − . 

 

Because of the above assumption, equation (5) becomes: 

 

                                                
3 Cf. Dorfman, Samuelson and Solow (1958) pp. 500, 501; Pasinetti (1977) pp. 265, 266; Kurz and 
Salvadori (1995), theorem A.3.3 p. 513. Note that it is taken for granted here that A(θ) is 
“productive” – i.e. the technology is such that activity levels exist making it possible to obtain a 
strictly positive net output of each product – or equivalently that matrix A(θ) has no eigenvalue λ 
such that 1≥λ . 
4 Since no capital good can enter directly or indirectly into its own production, the commodities can 
be labelled in such a way that A(θ) is a n×n triangular matrix with all zero entries on the main 

diagonal, which implies that n)](A[ θ  is necessarily the n×n null matrix. It is, however, clear that 
i)](A[ θ  might become a null matrix even for i smaller than n. 
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)(u)(u)(u

1
)(y

210 θ+θ+θ
=θ        (7) 

 

where )(e)(u 10 θ⋅=θ � , )()(Ae)(u 11 θ⋅θ⋅=θ �  and )()](A[e)(u 2
12 θ⋅θ⋅=θ � . 

The sum )(u)(u)(u 210 θ+θ+θ  represents the labour that is embodied in one unit of 

commodity [1] obtained as a net product by technique θ. )(e)(u 10 θ⋅=θ �  is the amount of labour 

directly employed in the production of one unit of commodity [1], )()(Ae)(u 11 θ⋅θ⋅=θ �  the labour 

employed in the production of capital goods directly employed in the production of one unit of 

commodity [1], and )()](A[e)(u 2
12 θ⋅θ⋅=θ �  the labour employed in the production of capital 

goods indirectly employed in the production of one unit of commodity [1].5 

 

Assumption 4. No technique in Θ is dominated. In other words, for every technique θ ∈ Θ, there 

exists no other technique θ
�

 such that )(u)(u 00 θ≥θ
�

, )(u)(u 11 θ≥θ
�

 and )(u)(u 22 θ≥θ
�

. 

 

Assumption 5. The techniques in Θ are labelled in such a way that )(y)(y θ>θ
��

 whenever θ>θ
��

. 

That is, )(u)(u)(u)(u)(u)(u 210210 θ+θ+θ<θ+θ+θ
������

 whenever θ>θ
��

. 

 

It should be noted that assumption 5 implies 0ddy >θ , and so, because of equation (7), we 

have: 0)(u)(u)(u 210 <θ′+θ′+θ′ , )1,0(∈θ∀ . 

 

3. THE CHOICE OF TECHNIQUES 

 

For an interest rate r, a wage rate w and a price vector nRp +∈ , the unit full cost nRc +∈  of 

the n products with technique θ is defined by the following equation: 

 

                                                
5 Cf. Burmeister (1980) pp. 135, 136; Pasinetti (1981) p. 113; Kurz and Salvadori (1995) pp. 111, 
112. 
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w)(p)(A)r1(c ⋅θ+⋅θ⋅+= �         (8) 

 

Under the hypothesis of free competition, we can focus the attention on price vectors that 

leave no extra profit above the unit full cost of production. In so doing, we have6: 

 

w)()](A)r1(I[pc 1 ⋅θ⋅θ⋅+−== − �        (9) 

 

The full cost of production of one unit of commodity [1] obtained as a net product from 

technique θ is therefore: 

 

w)](u)r1()(u)r1()(u[w)()](A)r1(I[ece 2
2

10
1

11 ⋅θ⋅++θ⋅++θ=⋅θ⋅θ⋅+−⋅=⋅ − �  (10) 

 

According to customary procedure, for every given interest rate and wage rate, the optimal 

technique is the one that minimises the unit production cost of net output.7 The techniques in use 

will in fact constitute the solution to the following minimisation problem: 

 

��

�
�
�

Θ∈θ

θ⋅++θ⋅++θ
θ

 :.t.s

)(u)r1()(u)r1()(u min 2
2

10
      (11) 

 

It can be assumed for our purposes that the function to be minimised is convex on S 

(concave from above), so that the following FOC is necessary for internal minima: 

 

0)(u)r1()(u)r1()(u 2
2

10 =θ′⋅++θ′⋅++θ′       (12) 

 

                                                
6 Cf. also Burmeister (1980) p. 152. 
7 As is known, under constant returns to scale, which is the case considered here, the typical 
problem of minimising the cost of production for a given level of net output can be solved by 
minimising the unit production cost of net output. 
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We have corner solutions when the FOC determines a θ outside the set Θ, i.e. greater than 1 or 

smaller than 0. In any case, from the solution of the minimum problem (11) we obtain the function 

)r(θ , which gives us the technique in use at the interest rate r. 

 

Proposition 1. 1)0( =θ . 

Proof: when r = 0, the function to minimise is )(u)(u)(u 210 θ+θ+θ  and, because of assumption 5, 

we have )(u)(u)(u)1(u)1(u)1(u 210210 θ+θ+θ<++  ∀ θ ∈ Θ ��{1}. � 

 

Proposition 2. If commodity [1] is the numeraire, )r(θ  is the technique making it possible to pay 

the highest wage rate when the interest rate is r.8 

Proof: if we posit 1p1 = , then clearly 1pe1 =⋅ . Equation (10) therefore implies: 

 

)(u)r1()(u)r1()(u

1
)r,(w

2
2

10 θ⋅++θ⋅++θ
=θ      (13) 

 

where w(θ, r) is the wage rate that can be paid using technique θ at the interest rate r. 

For this interest rate level, )r(θ  is by definition the technique that minimises 

)(u)r1()(u)r1()(u 2
2

10 θ⋅++θ⋅++θ  and therefore the technique with the highest w(θ, r). � 

 

Because of equation (13), negative interest rates imply wage rates greater than the net 

product per worker and can therefore be regarded as economically inadmissible. 

For a zero interest rate, proposition 1 – the “golden rule” – tells us that θ = 1 is the technique 

in use. If we exclude the trivial case in which 1)r( =θ  ∀r, there are interest rate levels r > 0 such 

                                                
8 A similar result, for a model with a finite number of linear techniques, is proved in Garegnani 
(1970) p. 411, footnote 1. 
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that 1)r( <θ . As a result, for interest rates sufficiently close to zero, the function )r(θ , which is 

continuous under our assumption, must be non-increasing (cf. also Mas-Colell 1989). 

The function may remain non-increasing for every non-negative interest rate, which means 

that if )r()r(
�� θ≠θ  with rr

�� < , then )r()r(
�� θ>θ . This is in fact the typical neoclassical case where a 

rise in the rate of interest entails the use of a technique with a lower net product per worker and thus 

a less capital-intensive technique. 

The function )r(θ  may also be non-monotonic, however, and therefore become increasing 

after an initial decreasing stretch. This case will be considered in the following section. 

 

4. RESWITCHING 

 

If the function )r(θ  is non-monotonic, reverse capital deepening occurs. In other words, a 

rise in the rate of interest entails the use of a technique with a higher net product per worker. 

Non-restrictive sufficient9 conditions for this phenomenon can easily be found. 

 

Proposition 3. In the economy we are considering, if 0)1(u)1(u 20 <′<′ , 0)1(u1 >′  and 

)1(u)1(u2)1(u 201 ′⋅′>′ , then )r(θ  is non-monotonic. 

Proof: for every given θ, we can use the FOC in order to determine the interest rates at which that 

technique is in use. Since the FOC is second-degree with respect to (1 + r), every given θ might be 

in use at two different interest rate levels: 

 

1
)(u2

)(u)(u4)](u[)(u
)(r

2

20
2

11
2,1 −

θ′
θ′⋅θ′−θ′±θ′−

=θ .     (14) 

 

Solutions of (14) are considered economically admissible if they are non-negative real 

numbers. 

                                                
9 A necessary condition is given in Hatta (1976) pp. 130, 131. 
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Let us now focus attention on the case with θ = 1. Since )1(u)1(u2)1(u 201 ′⋅′>′ , it is certain 

that for θ = 1 the solutions of equation (14) are real numbers. Moreover, because of 0)1(u1 >′  and 

0)1(u 2 <′ , we have: 

 

1
)1(u2

)1(u)1(u4)]1(u[)1(u
)1(r1

)1(u2

)1(u)1(u4)]1(u[)1(u
)1(r

2

20
2

11
1

2

20
2

11
2 −

′
′⋅′−′+′−

=>−
′

′⋅′−′−′−
=  

 

and therefore, in order to prove that both )1(r1  and )1(r2  are strictly positive, it is sufficient to prove 

that 0)1(r1 > . 

Because of assumption 5, we know that )1(u)1(u)1(u 120 ′>′−′− . Indeed, since 0)1(u 2 <′ , we 

have: 2
21202 )]1(u[4)1(u)1(u4)1(u)1(u4 ′+′⋅′<′⋅′− . The addition of 2

1 )]1(u[ ′  to both sides gives us 

2
212

2
102

2
1 )]1(u[4)1(u)1(u4)]1(u[)1(u)1(u4)]1(u[ ′+′⋅′+′<′⋅′−′ , which implies10: 

 

)1(u2)1(u)1(u)1(u4)]1(u[ 2120
2

1 ′+′<′⋅′−′ . 

 

Therefore: 

 

1
)1(u2

)1(u)1(u4)]1(u[)1(u

2

20
2

11 >
′

′⋅′−′+′−
. 

 

There are thus two (disjointed) strictly positive interest rates at which the FOC is satisfied 

with θ = 1. Since )r(θ  is a continuous function, it is non-monotonic. � 

 

                                                
10 Note that 0)1(u)1(u 20 <′<′  and )1(u)1(u2)1(u 201 ′⋅′>′  imply 0)1(u2)1(u 21 >′+′ . 
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The conditions used in proposition 3 are non-restrictive in two senses. First, there is no 

general economic principle or hypothesis in conflict with them. Second, they are generic or robust, 

in that they are not affected by arbitrarily small changes in the underlying functions. 

 

5. DEMAND FOR CAPITAL 

 

For the economy addressed here, the vector of demand for capital per worker with technique 

θ is11: 

 

)(A)(q)(k θ⋅θ=θ          (15) 

 

and the demand for capital in value terms at prices p is therefore: 

 

p)(A)(qp)(kv ⋅θ⋅θ=⋅θ= .        (16) 

 

Now, for an interest rate r, if the technique in use is θ = θ(r) and there are zero extra-profits 

for every activity, the prices p must satisfy the following condition: 

 

)r,(w)(p)(A)r1(p θ⋅θ+⋅θ⋅+= �        (17) 

 

which implies: 

 

)r,(w)()(qp)(A)(q)r1(p)(q θ⋅θ⋅θ+⋅θ⋅θ⋅+=⋅θ � .    (18) 

 

Assuming commodity [1] as the numeraire, from equation (1) we have: 

 

p)(A)(q)(yp)(q ⋅θ⋅θ+θ=⋅θ        (19) 

 

                                                
11 Since commodity [1] is a pure consumption good, we have 0)(k1 =θ  ∀ θ ∈ Θ. 
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so that, combining equations (18) and (19) and remembering that 1)()(q =θ⋅θ �  because of equation 

(2), we have: 

 

)r,(wp)(A)(qr)(y θ+⋅θ⋅θ⋅=θ        (20) 

 

which allows us to obtain another expression for the demand for capital in value terms: 

 

r

)r,(w)(y
v

θ−θ= .         (21) 

 

We can now define the functions )r()(y)r(y θθ= �  and )r()r,(w)r(w θθ= � , respectively 

expressing the net product (per worker) and the wage rate as functions of the interest rate. In this 

way, equation (21) implies: 

 

)]r(v)r(w)r(y[
r

1
)r(v −′−′⋅=′        (22) 

 

with: 

 

)r()(y)r(y θ′⋅θ′=′          (23) 

 

and, remembering that 0)r,(w =θ′θ  when )r(θ=θ  (proposition 2), then: 

 

)r,(w)r,(w)r()r,(w)r(w rr θ′=θ′+θ′⋅θ′=′ θ .     (24) 

 

Moreover, it can be easily verified that in the model considered here, 0)r(w <′  and 

0)r(w >′′ . The following proposition can therefore be stated: 

 

Proposition 4. If 0)r(w <′  and 0)r(w >′′ , then )r(w)r(v ′−> . 
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Proof: from equations (7) and (13) we know that )0,(w)(y θ=θ  ∀ θ ∈ Θ. Therefore, given a 

technique θ ∈ Θ, the demand for capital in value terms is r)]r,(w)0,(w[v θ−θ= . 

According to a well-known result of analysis (the Taylor formula12), if 0)r,(w r <θ′  and 

0)r,(w rr >θ′′ , then )r,(wr)]r,(w)0,(w[ r θ′−>θ−θ . 

When )r(θ=θ , )r(vr)]r,(w)0,(w[ =θ−θ . Therefore, because of equation (24), we have: 

)r(w)r(v ′−> . � 

 

Since )(y θ′  is always positive because of assumption 5, proposition 4 implies that )r(v′  is 

certainly negative for every interest rate r such that 0)r( <θ′ . Moreover, if )r(θ  is non-monotonic, 

there must be at least one interest rate r  such that 0)r( =θ′ . In this case, because of the continuity 

of the functions in question here, )r(v′  is certainly negative for interest rates in a neighbourhood of 

r , regardless of the sign of )r(θ′ . 

We can therefore have 0)r(v <′  even for interest rates such that 0)r( >θ′  (and 0)r(y >′ ). 

In particular, as we will prove by means of the numerical example in the next section, we can even 

have a monotonically decreasing demand for capital in value despite reswitching of technique and 

reverse capital deepening. 

 

                                                
12 Let us take a twice differentiable function )(f ⋅ . Because of the Taylor formula we have:  

2)()x(f
2

1
)()(f)(f)(f β−α⋅′′+β−α⋅β′+β=α , with ),(x βα∈ . 

This formula implies: 

)()x(f
2

1
)(f

)(f)(f β−α⋅′′+β′=
β−α

β−α
. 

Therefore, if 0)x(f >′′  and 0<β−α , then:  

)(f
)(f)(f β′<

β−α
β−α

 or )(f
)(f)(f β′−>

α−β
β−α

. 

The result in the text is obtained on positing 0=α , r=β  and ),(w)(f ⋅θ=⋅ . 
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6. A NUMERICAL EXAMPLE 

 

We shall consider a very simple numerical example. Let us assume 
θ+

=
b

a
u 0 ; θ=1u  and 

θ+
=

b

c
u 2 , with a, b and c taken as given parameters. In this case, equation (7) implies 

cba

b
y

2 +θ+θ+
θ+=  and equation (13) 

22 )r1(c)r1)(b(a

b
w

+++θ+θ+
θ+= . 

Moreover, from the cost minimisation problem (11) and the first-order condition (12), we 

obtain 
��

�
�
	

��

�
�
�





�

�





�

�
−

+
++=θ b
)r1(

)r1(ca
;0max;1min

2

. 

On positing a = 3, b = 1 and c = 1, we therefore obtain the results presented in table 1 and 

represented graphically in figures 1 and 2, which show respectively the demand for capital schedule 

v(r) and the net product schedule y(r). 

 

Tab. 1 

interest 
rate 

tecnique 
in use wage rate net 

product 
demand 

for capital 
0,0 1,00000 0,33333 0,33333 0,22222 
0,1 0,95634 0,31211 0,33323 0,21111 
0,2 0,92354 0,29270 0,33300 0,20149 
0,3 0,89939 0,27484 0,33274 0,19299 
0,4 0,88225 0,25838 0,33252 0,18535 
0,5 0,87083 0,24316 0,33235 0,17837 
0,6 0,86414 0,22908 0,33224 0,17192 
0,7 0,86137 0,21605 0,33219 0,16592 
0,8 0,86190 0,20396 0,33220 0,16029 
0,9 0,86519 0,19276 0,33225 0,15499 
1,0 0,87083 0,18237 0,33235 0,14997 
1,1 0,87845 0,17273 0,33246 0,14521 
1,2 0,88776 0,16377 0,33259 0,14069 
1,3 0,89851 0,15544 0,33273 0,13637 
1,4 0,91050 0,14770 0,33287 0,13226 
1,5 0,92354 0,14049 0,33300 0,12833 
1,6 0,93748 0,13378 0,33311 0,12458 
1,7 0,95221 0,12752 0,33320 0,12099 
1,8 0,96759 0,12168 0,33327 0,11755 
1,9 0,98355 0,11622 0,33332 0,11426 
2,0 1,00000 0,11111 0,33333 0,11111 
2,1 1,00000 0,10633 0,33333 0,10810 
2,2 1,00000 0,10183 0,33333 0,10523 
2,3 1,00000 0,09761 0,33333 0,10249 
2,4 1,00000 0,09363 0,33333 0,09988 
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Fig. 1 
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Fig. 2 

Net product schedule
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For the numerical example considered here, the cost minimisation problem (11) has an 

interior solution for every 2r0 ≤≤  and, as predicted by proposition 3, the technique θ = 1 satisfies 

the first-order condition for two disjointed interest rates r = 0 and r = 2. (The data of our example 

were chosen precisely in order to obtain this result.) 
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As a result, reswitching occurs and the net product schedule has a non-monotonic shape. 

Despite this, however, the demand for capital schedule is monotonically decreasing. 

 

7. CONCLUSIONS 

 

The influence of a change in the interest rate on the demand for capital (in value terms) can 

be broken down into a “real effect” and a “price effect” (cf. in particular Bhaduri 1966, Burmeister 

1976 and Garegnani1984). The first is the effect of a change in interest rate on the technique in use, 

as well as the physical capital employed and the net product per worker obtained. The second is 

simply the effect on the value of the same physical capital caused by the change in relative prices of 

capital goods associated with a variation in interest rate. 

As defined at the outset, reswitching and reverse capital deepening exclusively regard the 

real effect and can in this connection affect the shape of the demand for capital schedule. This shape 

also depends, however, on the price effect, which may be opposite in sign to the real effect and may 

prevail. 

It is therefore possible to have a monotonically increasing demand for capital even in the 

case of a well-behaved choice of techniques and indeed a negative real effect. This possibility is 

well known and the simplest example is the case with a capital good whose production is more 

capital-intensive than that of a consumption good. Much less known is the possibility of a 

monotonically decreasing demand for capital associated with reswitching, reverse capital deepening 

and indeed a positive real effect. This is the case examined here. 

More precisely, a model with a continuum of linear techniques has been used to show two 

things. First, the demand for capital schedule may be decreasing even when a rise in the interest rate 

entails an increase of the net product per worker (section 5). Second, there may be a monotonically 

decreasing demand for capital schedule even though a sufficient condition for reswitching and 

reverse capital deepening is satisfied (section 6). Both those results are due to a negative price effect 

prevailing over the positive real effect. 
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Finally, the results obtained here suggest that the shape of the demand for capital schedule is 

not a good indicator for the phenomena of reswitching and reverse capital deepening. In particular, 

even when the demand for capital is monotonically decreasing, it is not possible to conclude that 

there are no problems arising from the choice of technique, just as an increasing demand for capital 

does not entail their presence. 
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