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Abstract. This paper considers the problem of when a local martingale is
a martingale or a universally integrable martingale, for the case of time-
homogeneous scalar diffusions. Necessary and sufficient conditions of a geo-
metric nature are obtained for answering this question. These results are
widely applicable to problems in stochastic finance. For example, in order to
apply risk-neutral pricing, one must first check that the chosen density process
for an equivalent change of probability measure is in fact a martingale. If not,
risk-neutral pricing is infeasible. Furthermore, even if the density process is a
martingale, the possibility remains that the discounted price of some security
could be a strict local martingale under the equivalent risk-neutral probability
measure. In this case, well-known identities for option prices, such as put-call
parity, may fail. Using our results, we examine a number of basic asset price
models, and identify those that suffer from the above-mentioned difficulties.
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1. Introduction

A classical problem of long-standing importance is to formulate conditions that
enable one to identify a given local martingale as one of the following: a uniformly
integrable martingale, a non-uniformly integrable martingale, or a strict local mar-
tingale. Due to the importance of Girsanov’s theorem, initial efforts to solve this
problem focussed on exponential local martingales. In this regard, noteworthy suf-
ficient conditions for guaranteeing that continuous exponential local martingales
are in fact uniformly integrable martingales were obtained by Novikov [37] and
Kazamaki [29, 30]. Extensions of these results to a general semimartingale frame-
work were subsequently presented by Lépingle and Mémin [33] and Kallsen and
Shiryaev [26].

The first conditions for classifying local martingales that are not necessarily
of exponential type may be attributed to Azema et al. [2], where the objects
of study were continuous local martingales that converge in L1. Necessary and
sufficient conditions were obtained there, under which such a local martingale
is a uniformly integrable martingale. The conditions themselves were expressed
in terms of the weak tails of the distributions of the supremum and quadratic
variation processes. These results were later systematically refined and extended in
a sequence of papers, including Galtchouk and Novikov [19], Novikov [38], Elworthy
et al. [14, 15], Takaoka [47] and Kaji [25].

In this article our attention is restricted to local martingales within the realm
of time-homogeneous scalar diffusions. So far only Delbaen and Shirakawa [11] and
Kotani [32] appear explicitly to have considered the problem of identifying such
processes as martingales or strict local martingales. The former article is concerned
with local martingales expressed as Itô integrals, and solves the problem by an
application of the first Ray-Knight theorem. Kotani [32], on the other hand, adopts
an analytic approach, and shows that the problem can be solved by investigating
the convergence of certain integrals (see Theorem 3.20).

In the interests of keeping the presentation as self-contained as possible, Sec-
tion 2 begins with a review of the analytic theory of time-homogeneous scalar
diffusions. We do, however, include a few results that are not readily found in
the literature. We refer, in particular, to Lemmas 2.3 and 2.4, Corollary 2.5 and
Proposition 2.6.

After a brief reacquaintance with some familiar concepts, Section 3 identifies
the objects of our investigation as time-homogeneous scalar diffusions in natu-
ral scale, whose finite boundaries are natural or absorbing. Proposition 3.6 shows
that these processes are local martingales, while Theorem 3.10 demonstrates that
they are integrable. The discussion then builds up to Theorem 3.14, which obtains
necessary and sufficient conditions under which the local martingales under consid-
eration are martingales. These conditions are strikingly graphical by nature (hence
the title of the paper), by which we mean that the problem of deciding whether a
given local martingale is a martingale is simply a matter of inspecting the graphs
of one or two functions. Next, Theorem 3.19 demonstrates that within the class of
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time-homogeneous scalar diffusions in natural scale, the difference between mar-
tingales and strict local martingales is purely a question of boundary behaviour.
Theorem 3.20 then shows that the conditions derived by Kotani [32], Thm. 1 are
equivalent to those presented in Theorem 3.14. Finally, Theorem 3.21 completes
the section, by establishing that the question of whether a time-homogeneous scalar
diffusion in natural scale is a uniformly integrable martingale is trivial.

Following the publication of Sin [46], which established the importance of
strict local martingales in stochastic volatility models, ever more attention has
been devoted to strict local martingales in stochastic finance. A popular idea is to
interpret strict local martingales as models for asset price bubbles (see e.g. Cox
and Hobson [6] and Heston et al. [22]). In Section 4 we study a number of popular
diffusive local martingales that have appeared in the stochastic finance literature.
In each case we apply the results from Theorem 3.14 to classify these processes as
martingales or strict local martingales.

2. An Overview of Time-Homogeneous Scalar Diffusions

This section is devoted to a concise overview of the theory of time-homogeneous
scalar diffusions, with the principal aims of establishing notation, and collecting
a few key results. We lean heavily on the excellent expositions in Borodin and
Salminen [5], Chap. II, and Rogers and Williams [44], § V.7, and direct the reader
there for further details. The aspects of the theory we most wish to highlight are
the boundary classification, attributed to Feller [17], and the elegant perspective
offered by the Laplace transform, as elaborated by Itô and McKean [23]. Inter-
spersed in the survey are a few results not typically available in textbooks. We
refer, in particular, to Lemmas 2.3 and 2.4, Corollary 2.5 and Proposition 2.6,
which all find application in Section 3.

Definition 2.1. Fix an interval I ⊆ R, with left end-point l ≥ −∞ and right
end-point r ≤ ∞. Denote the canonical space of continuous I-valued paths by
Ω := C(R+, I), and let X = (Xt)t∈R+ be the coordinate mapping process on this
space, defined by Xt(ω) := ω(t), for all ω ∈ Ω and t ∈ R+. Define the filtration
F◦ = (F ◦

t )t∈R+ , by setting F ◦
t := σ(Xs | s ≤ t), for all t ∈ R+, as well as the

σ-algebra F ◦
∞ := σ(Xt | t ∈ R+). Next, the shift operators ϑ = (ϑt)t∈R+ are

constructed, by setting (ϑtω)(s) := ω(t + s), for all ω ∈ Ω and t, s ∈ R+. Finally,
let P = {Px |x ∈ I} be a family of probability measures on (Ω, F ◦

∞), satisfying

(i) x 7→ Px(A) is measurable, for all A ∈ F ◦
∞;

(ii) Px(X0 = x) = 1, for all x ∈ I; and
(iii) Ex(η ◦ ϑσ |F ◦

σ+) = EXσ (η) Px-a.s.,

for all bounded F ◦
∞-measurable random variables η, and all F◦-stopping times σ.

The tuple (Ω, F ◦
∞,F◦, X, ϑ, P) is then called a canonical diffusion on I.
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Unfortunately, the filtration F◦ introduced above has two deficiencies that
lead to difficulties with respect to stopping times: Firstly, since it is not nec-
essarily right-continuous, there is an unwelcome disparity between F◦-stopping
times and F◦-optional times (see e.g. Karatzas and Shreve [28], Def. 1.2.1 and
Prop. 1.2.3, p. 6). Secondly, since it is not necessarily complete, the first-entrance
times of Borel sets are not guaranteed to be F◦-stopping times (see e.g. Rogers
and Williams [43], § II.75, pp. 184–186). These shortcomings are easily remedied,
by first introducing the right-continuous filtration F+ = (F+

t )t∈R+ , defined by
setting F+

t :=
⋂

ε>0 F ◦
t+ε, for all t ∈ R+. Next, we define the family of null-sets

N := {N ⊆ Ω |N ⊆ A, for some A ∈ F ◦
∞ satisfying Px(A) = 0, for all x ∈ I}.

Finally, the filtration F = (Ft)t∈R+ is constructed, by setting Ft := F+
t ∨ N ,

for all t ∈ R+. Since none of the above affects the strong Markov property of X,
as expressed by Definition 2.1 (iii), we shall henceforth regard (Ω, F∞, F, X, ϑ, P)
as the diffusion under consideration, where F∞ := F ◦

∞ ∨ N . Obviously, the
probability measures Px, for all x ∈ I, are easily extended to F∞, by setting
Px(N) := 0, for all N ∈ N .

For any x ∈ I, Px is the probability measure under which the initial value
of X is x. We may also start X with a random initial value. To do so, let ν be
a probability measure on I, referred to as the initial measure of X. Then there
exists a unique probability measure Pν on (Ω, F∞), such that

Pν(X0 ∈ A0, Xt1 ∈A1, . . . , Xtn ∈ An)

=
∫

A0

∫

A1

. . .

∫

An

Pyn−1(Xtn ∈ dyn) . . . Py0(Xt1 ∈ dy1) ν(dy0),

for all n ∈ N, A0, A1, . . . , An ∈ B(I) and t1, . . . , tn ∈ R+, with 0 < t1 < . . . < tn.
As a special case of this construction, we obtain Px = Pεx , for all x ∈ I, where the
probability measure εx on I is defined by

εx(A) :=

{
1 if x ∈ A;
0 if x /∈ A,

for all A ∈ B(I).
For any z ∈ I, we denote the first-passage time of X to z by

τz := inf{t > 0 |Xt = z}. (2.1)

We shall assume throughout that X is regular. Informally, this means that its state-
space I cannot be decomposed into smaller subsets from which X cannot escape.
Our definition of regularity does, however, allow for the possibility of absorbing
(finite) boundaries, the importance of which will become clear later on:

Definition 2.2. X is said to be a regular diffusion if and only if

Px(τz < ∞) > 0,

for all x ∈ int(I) and z ∈ I.
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Note that since Px(Ω) = 1, for all x ∈ I, it follows that X is a so-called
honest diffusion. Therefore, its behaviour is completely determined by its speed
measure m and scale function s. In particular, X is not killed, and there is no need
to specify a killing measure. In this sense, our setup is aligned with that of Rogers
and Williams [44], § V.7, and differs somewhat from that of Borodin and Salminen
[5], Chap. II.

The behaviour of X at the boundaries of its state-space is an important theme
in this article. The following table employs the boundary classification scheme de-
veloped by Feller [17] to classify the end-points of I as exit or entrance boundaries
for X, in terms of its speed measure and scale function, where z ∈ int(I) is arbi-
trary:

Lower Boundary l Upper Boundary r

Exit
∫
(l,z)

m(y, z) s(dy) < ∞ ∫
(z,r)

m(z, y) s(dy) < ∞

Entrance
∫
(l,z)

(
s(z)− s(y)

)
m(dy) < ∞ ∫

(z,r)

(
s(y)− s(z)

)
m(dy) < ∞

Boundaries that are both exit and entrance are called non-singular, while
boundaries that are neither are called natural. Boundaries that are either exit or
entry, but not both, are described as exit-not-entry or entry-not-exit, respectively.
Natural boundaries and entry-not-exit boundaries are not part of the diffusion’s
state-space. If the process is started from the interior of its state-space, it reaches
its exit boundaries with positive probability. It is also possible to start a diffusion
at an entrance boundary.

Note that the behaviour of X at its non-singular boundaries is not uniquely
determined by its speed measure and scale function, and must be specified sep-
arately, as part of the description of the process. Typical non-singular boundary
conditions include reflection, killing and absorption (see e.g. Borodin and Salminen
[5], § II.7, pp. 15–16). We shall specify absorption as the default condition for all
finite non-singular boundaries. There are two reasons for this: Firstly, in Section 3
we shall see that absorption at finite exit boundaries is a necessary requirement
to ensure that diffusions in natural scale are local martingales. Secondly, from
an economic perspective, if X represents the value of an asset, then no-arbitrage
considerations demand that once it has vanished, it should not reappear. In other
words, if it is attainable, the origin is required to be an absorbing boundary for
asset price processes.

We shall denote the transition density of X with respect to its speed measure
by the function q : R+ × I × I → R+, so that

Px(Xt ∈ A) =
∫

A

q(t, x, y)m(dy),

for all t ∈ R+, x ∈ I and A ∈ B(I). For any fixed α > 0, the associated Green’s
function Gα : I × I → R+ is defined as the Laplace transform (with respect to
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time) of the transition density:

Gα(x, y) := Lα{q(t, x, y)} =
∫ ∞

0

e−αtq(t, x, y) dt, (2.2)

for all x, y ∈ I. It has the following representation:

Gα(x, y) =

{
w−1

α ψα(x)φα(y) if x ≤ y;
w−1

α φα(x)ψα(y) if x ≥ y.
(2.3)

The functions ψα, φα : I → R+ appearing above are strictly convex, continuous,
strictly monotone, positive, and finite throughout int(I). Furthermore, they are
the unique (up to a multiplicative constant) increasing and decreasing solutions,
respectively, of the generalized ordinary differential equation (ODE)

(D−f)(z)− (D−f)(x) = 2α

∫

[x,z)

f(y)m(dy), (2.4)

for all x, z ∈ int(I), with x < z, that also satisfy appropriate conditions at the
non-singular boundaries of I. The Wronskian wα that appears in (2.3) is defined
by

wα := φα(x)(D−ψα)(x)− (D−φα)(x)ψα(x)

= φα(x)(D+ψα)(x)− (D+φα)(x)ψα(x)
(2.5)

for all x ∈ I, and is independent of x. Finally, in (2.4) and (2.5), the expressions

(D−f)(z) := lim
y↑z

f(z)− f(y)
s(z)− s(y)

and (D+f)(z) := lim
y↓z

f(y)− f(z)
s(y)− s(z)

for all z ∈ int(I), denote the left- and right-hand derivatives relative to scale,
respectively, of a convex function f : I → R.

For any z ∈ I, let pz : I × R+ → R+ denote the density (with respect to
Lebesgue measure) of the first-passage time τz, so that

Px(τz < t) =
∫ t

0

pz(x, s) ds,

for all t ∈ R+ and x ∈ I. We shall also write q̃z : R+ × I × I → R+ for the
transition density (with respect to speed measure) of X, with absorption at z. It
then follows that

Px(Xt ∈ A, τz ≥ t) =
∫

A

q̃z(t, x, y) m(dy),

for all t ∈ R+, x ∈ I and A ∈ B(I). The following integral equation expresses
the relationship between the transition densities of the diffusion with and without
absorption at z:

Lemma 2.3. Let t ∈ R+, and suppose that x, y, z ∈ I. Then

q(t, x, y) = q̃z(t, x, y) +
∫ t

0

pz(x, s)q(t− s, z, y) ds. (2.6)
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Proof. From the Markov property of X, we get

Px(Xt ≤ y) = Px(Xt ≤ y, τz ≥ t) + Px(Xt ≤ y, τz < t)

= Px(Xt ≤ y, τz ≥ t) +
∫ t

0

Px(τz ∈ ds)Px(Xt ≤ y | τz = s)

= Px(Xt ≤ y, τz ≥ t) +
∫ t

0

Px(τz ∈ ds)Pz(Xt−s ≤ y).

The result follows after differentiating with respect to y. ¤

Note that if t ∈ R+, and x, y, z ∈ I satisfy x ≤ z ≤ y or x ≥ z ≥ y, then
q̃z(t, x, y) = 0. Since the integral in (2.6) is a convolution, we then obtain the
following Laplace transform identity:

Lα{q(t, x, y)} = Lα{pz(x, t)}Lα{q(t, z, y)},
for all α > 0, from which it follows that

Ex

(
e−ατz

)
= Lα{pz(x, t)} =

Gα(x, y)
Gα(z, y)

=

{
ψα(x)
ψα(z) if x ≤ z;
φα(x)
φα(z) if x ≥ z.

(2.7)

This well-known formula can be found in Itô and McKean [23], p. 128, where it
is derived using a somewhat different argument. Note that our derivation of this
identity is purely formal, illustrating the usefulness of (2.6). Our interest in (2.7)
lies in the next result:

Lemma 2.4. Let x, z ∈ I. Then

Lα{Px(τz < t)} =

{
1
α

ψα(x)
ψα(z) if x ≤ z

1
α

φα(x)
φα(z) if x ≥ z,

(2.8)

for all α > 0, and

Px(τz < ∞) =

{
limα↓0

ψα(x)
ψα(z) if x ≤ z

limα↓0
φα(x)
φα(z) if x ≥ z.

(2.9)

Proof. Equation (2.8) follows from

Lα{Px(τz < t)} = Lα

{∫ t

0

pz(x, s) ds

}
=

1
α

Lα{pz(x, t)},

for all α > 0, together with (2.7). For (2.9), observe that

Px(τz < ∞) =
∫ ∞

0

lim
α↓0

e−αtpz(x, t) dt = lim
α↓0

Lα{pz(x, t)},

and the result follows from (2.7). Note that since the Laplace transform is uni-
formly convergent with respect to the parameter α, we may freely interchange
integral and limit in the above argument. ¤
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As a first application of Lemma 2.4, we establish some asymptotic identities
for the cumulative distributions of first-passage times. Note that these results can
also be obtained in certain non-diffusion settings. For example, Doob’s maximal
inequalities (see e.g. Borodin and Salminen [5], Sec. I.19, p. 10) could be used to
derive similar limits for general supermartingales and submartingales.

Corollary 2.5. Suppose l = −∞ and r = ∞. Then

lim
z↑∞

Px(τz < t) = lim
z↑∞

Px(τ−z < t) = lim
z↑∞

Px(τz ∧ τ−z < t) = 0, (2.10)

for all t ∈ R+ and x ∈ I.

Proof. Fix x ∈ I and α > 0, and note that since ψα is strictly increasing, we may
infer that ψα(∞−) = ∞. Consequently, by the dominated convergence theorem,
in conjunction with identity (2.8), we obtain

Lα

{
lim
z↑∞

Px(τz < t)
}

= lim
z↑∞

Lα{Px(τz < t)} = lim
z↑∞

1
α

ψα(x)
ψα(z)

= 0.

The uniqueness of Laplace transforms then implies that limz↑∞ Px(τz < t) = 0,
for all t ∈ R+. A similar argument, based on the fact that φα is strictly decreasing,
gives limz↑∞ Px(τ−z < t) = 0, for all t ∈ R+. Finally, note that

Px(τz ∧ τ−z < t) ≤ Px(τz < t) + Px(τ−z < t),

for all t ∈ R+ and z ∈ I, to obtain the final identity. ¤

To complete this section, we briefly consider the situation when the state-
space of the diffusion is truncated by the introduction of new absorbing boundaries.
As the next result shows, the fundamental solutions of the generalized ODE (2.4)
for the resulting absorbed diffusion can be read-off from the original solutions:

Proposition 2.6. Suppose a, b ∈ I satisfy a < b. Then the following statements are
true:

(i) The fundamental increasing and decreasing solutions of (2.4), corresponding
to a lower absorbing boundary for X at a, are

ψ̃a
α(x) := ψα(x)− ψα(a)

φα(a)
φα(x) and φ̃a

α(x) := φα(x), (2.11)

respectively, for all x ∈ I ∩ [a,∞) and α > 0.
(ii) The fundamental increasing and decreasing solutions of (2.4), corresponding

to an upper absorbing boundary for X at b, are

ψ̃b
α(x) := ψα(x) and φ̃b

α(x) := φα(x)− φα(b)
ψα(b)

ψα(x), (2.12)

respectively, for all x ∈ I ∩ (−∞, b] and α > 0.
(iii) If the process is absorbed upon reaching either boundary, then the relevant

increasing and decreasing solutions of (2.4) are ψ̃a,b
α := ψ̃a

α and φ̃a,b
α := φ̃b

α,
respectively.
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In each case, the respective Green’s function G̃a, G̃b or G̃a,b for the absorbed dif-
fusion is given by (2.3), with the appropriate functions replacing ψα and φα.

Proof. Fix α > 0, and suppose x, y, z ∈ I satisfy x, y ≤ z or x, y ≥ z. Combining
(2.2) with (2.6), (2.3) and (2.7) yields

G̃z
α(x, y) := Lα{q̃z(t, x, y)} = Lα{q(t, x, y)} −Lα{pz(x, t)}Lα{q(t, z, y)}

=

{
Gα(x, y)− ψα(x)

ψα(z)Gα(z, y) if x, y ≤ z;

Gα(x, y)− φα(x)
φα(z)Gα(z, y) if x, y ≥ z

=





w−1
α ψα(x)

(
φα(y)− φα(z)

ψα(z)ψα(y)
)

if x ≤ y ≤ z;

w−1
α ψα(y)

(
φα(x)− φα(z)

ψα(z)ψα(x)
)

if y ≤ x ≤ z;

w−1
α

(
ψα(x)− ψα(z)

φα(z)φα(x)
)
φα(y) if y ≥ x ≥ z;

w−1
α

(
ψα(y)− ψα(z)

φα(z)φα(y)
)
φα(x) if x ≥ y ≥ z.

(2.13)

Finally, set z := b in the first two lines above, and z := a in the second two, and
then compare the resulting expressions for the Green’s function with (2.3). ¤

Suppose a, b, x ∈ I satisfy a ≤ x ≤ b. We shall write P̃a
x (resp. P̃b

x) for the
probability measure under which X is absorbed from below at a (resp. absorbed
from above at b), after starting at x. Similarly, P̃a,b

x will denote the probability
measure under which X is absorbed at either a or b, after starting at x.

3. Classification of Diffusive Local Martingales

Throughout this section, let X be a time-homogeneous scalar diffusion with state-
space I, as specified in Section 2. Our concern here is the identification of con-
ditions under which X is a Pν-local martingale, a Pν-martingale, or a uniformly
integrable Pν-martingale, for any given initial measure ν. Unfortunately, there are
some inconsistencies in the way these concepts are defined in the literature. The
main difficulty arises from differing integrability assumptions concerning the ini-
tial values of local martingales. Although this is a technical issue, it is important
in our setup, since it determines how we handle the initial measure of X. There-
fore, to avoid ambiguity, and for easy reference later, we start with some familiar
definitions:

Definition 3.1. X is a Pν-martingale (resp. Pν-supermartingale; Pν-submartingale)
if and only if

(i) Eν(|Xt|) < ∞; and
(ii) Eν(Xt |Fs) = Xs (resp. Eν(Xt |Fs) ≤ Xs; Eν(Xt |Fs) ≥ Xs) Pν-a.s.,

for all s, t ∈ R+, with s ≤ t, and any initial measure ν.

Definition 3.2. X is a uniformly integrable Pν-martingale if and only if
(i) X is a Pν-martingale; and
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(ii) limK↑∞ supt∈R+
Eν

(
1{|Xt|>K}|Xt|

)
= 0,

for any initial measure ν.

Note that if l > −∞ and r < ∞, then X clearly satisfies the second con-
dition of the above definition, for any initial measure ν. If, in addition, X is a
Pν-local martingale (see Definition 3.3 below), then it is a uniformly integrable
Pν-martingale, by an application of the dominated convergence theorem. Uni-
formly integrable martingales may also be characterized in terms of convergence
conditions: X is a uniformly integrable Pν-martingale, for some initial measure ν,
if and only if the Pν-a.s. limit X∞ := limt↑∞Xt exists, and satisfies Eν(|X∞|) < ∞
and Eν(X∞ |Ft) = Xt, for all t ∈ R+.

Definition 3.3. X is a Pν-local martingale if and only if there exists an increasing
sequence of stopping times (σn)n∈N (called a localizing sequence), such that

(i) limn→∞ σn = ∞ Pν-a.s.; and
(ii) (Xσn∧t −X0)t∈R+ is a uniformly integrable Pν-martingale,

for each n ∈ N and any initial measure ν.

The feature of Definition 3.3 we wish to highlight is the fact that if X is
a Pν-local martingale, for some initial measure ν, it does not necessarily follow
that Eν(|X0|) < ∞. This is a point on which some textbook definitions of local
martingales differ. One may thus expect that the initial component of a local
martingale must be handled with care, and the next result illustrates this point. It
is a well-known consequence of Fatou’s lemma, used repeatedly in the remainder
of this article. We state a version that is consistent with the definitions above:

Lemma 3.4. Suppose X is a Pν-local martingale, for some initial measure ν. Then
the following statements are true:

(i) X is a Pν-supermartingale if Eν(|X0|) < ∞ and l > −∞.
(ii) X is a Pν-submartingale if Eν(|X0|) < ∞ and r < ∞.

Proof. See Rogers and Williams [44], Lem. (14.3), p. 22. ¤

The following observation is used repeatedly in the sequel: Suppose X is a Pν-
local martingale, for some initial measure ν satisfying Eν(|X0|) < ∞, and assume
that l > −∞. Then, according to Lemma 3.4 (i), X is a Pν-supermartingale that
is bounded from below. The martingale convergence theorem (see e.g. Lipster and
Shiryaev [34], Thm. 3.3, p. 61) then asserts that the Pν-a.s. limit X∞ := limt→∞Xt

exists, and satisfies Eν(|X∞|) < ∞. Furthermore, we have

Eν(X∞) = Eν

(
lim

t→∞
Xt

)
≤ lim inf

t→∞
Eν(Xt) = lim inf

t→∞
Eν(Eν(Xt |F0)) ≤ Eν(X0),

as a consequence of Fatou’s lemma and Definition 3.1 (ii). A similar observation
applies to the situation when X is a Pν-local martingale, for some initial measure
ν satisfying Eν(|X0|) < ∞, and r < ∞. In that case −X is a Pν-local martingale
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that is bounded from below, and the same argument as above asserts the existence
of X∞, such that Eν(|X∞|) < ∞ and Eν(X∞) ≥ Eν(X0).

Before continuing, we pause briefly to establish some conventions with re-
spect to the use of notation and terminology. In this regard, for any given initial
measure ν, the following notation and terminology will refer specifically to the as-
sociated probability measure Pν : Eν ; Pν-a.s.; Pν-martingale; Pν-supermartingale;
Pν-submartingale; uniformly integrable Pν-martingale; and Pν-local martingale.
On the other hand, the statement that X is a martingale (resp. supermartin-
gale; submartingale; uniformly integrable martingale; local martingale), without
any reference to an initial measure, should be understood to mean that it is a
Px-martingale (resp. Px-supermartingale; Px-submartingale; uniformly integrable
Px-martingale; Px-local martingale), for all x ∈ I. In a similar vein, unless explic-
itly indicated otherwise, all equalities and inequalities between F∞-measurable
random variables should be understood to hold Px-a.s., for all x ∈ I.

The first objective of this section is to identify necessary and sufficient con-
ditions under which X is a local martingale. In this regard, the concept of natural
scale will play an important role:

Definition 3.5. X is said to be in natural scale if and only if s(x) = x, for all x ∈ I.

As observed by Borodin and Salminen [5], Sec. II.16, p. 23, being in natural
scale imposes certain constraints on the boundary behaviour of X. In particular,
the finite end-points of I are then either natural or exit, while the infinite end-
points are either natural or entrance. The next proposition uses these observations
to formulate a necessary and sufficient condition for X to be a local martingale,
assuming that it is in natural scale. Remarkably, this boils down to a simple matter
of the interaction between X and its finite boundaries:

Proposition 3.6. Suppose X is in natural scale. Then it is a local martingale if and
only if its finite boundaries are either natural or absorbing.

Proof. (⇒) Suppose X is a local martingale. Since it is in natural scale, its fi-
nite boundaries are either natural or exit, as remarked above. So let l > −∞ be
an exit boundary, from which it follows that l ∈ I. By Lemma 3.4 (i), X is a
supermartingale, and so the optional sampling theorem gives

Ex

(
1{τl≤t}Xt

)
≤ Ex

(
1{τl≤t}Xτl∧t

)
= lPx(τl ≤ t),

for all t ∈ R+ and x ∈ I. Since Xt ≥ l, for all t ∈ R+, it then follows that

1{τl≤t}Xt = 1{τl≤t}l,

for all t ∈ R+. A similar argument applies when r < ∞.

(⇐) Suppose the finite boundaries of X are either natural or absorbing. Since X is
in natural scale, its infinite boundaries must be either natural or entrance, by the
discussion preceding this result. This means that τl = ∞ if l = −∞ and τr = ∞ if
r = ∞. Consequently, we have X = Xτl∧τr , irrespective of whether the end-points
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of I are finite and/or infinite, and the result follows from Rogers and Williams
[44], Cor. (46.15), p. 276. ¤

We now consider the question of how to recognize whether X is a Pν-
martingale, for any given initial measure ν. Since all martingales are also local
martingales, it seems reasonable, in view of Proposition 3.6, that we should re-
quire the following two conditions to hold:

Assumption 3.7. X is in natural scale.

Assumption 3.8. The finite end-points of I are either natural or absorbing.

With Assumptions 3.7 and 3.8 in place, we are therefore assured that X is
at minimum a local martingale. For it to be a martingale, it must meet the two
conditions in Definition 3.1. The next theorem demonstrates that the first of these
requirements is implicitly satisfied in our setup. Its proof requires that we briefly
present the family of local time processes of X:

Definition 3.9. The family of local time processes {Ly
t | y ∈ I} of X are given by

Ly
t := lim

ε↓0
1

m(y − ε, y + ε)

∫ t

0

1{Xs∈(y−ε,y+ε)} ds, (3.1)

for all t ∈ R+ and y ∈ I.

It is clear from (3.1) that the process Ly is continuous and increasing, for
all y ∈ I. Furthermore, given Assumptions 3.7 and 3.8, the family of local times
is Hölder-continuous in the spatial variable, with exponent α ∈ (

0, 1
2

)
, and this

continuity is uniform in the temporal variable, over compact time intervals:

sup
s∈[0,t]

|Ly
s − Lz

s | ≤ K(t)|y − z|α, (3.2)

for all t ∈ R+ and y, z ∈ I, and for some function K : R+ → (0,∞) (see e.g. Revuz
and Yor [42], Cor. (1.8), p. 226).

Theorem 3.10. Let Assumptions 3.7 and 3.8 be in force. Then the following state-
ments are true:

(i) There exists a function c : R+ → (0,∞), such that

Ex(|Xt|) ≤ c(t) + |x|, (3.3)

for all t ∈ R+ and x ∈ I.
(ii) Let ν be an initial measure. Then Eν(|Xt|) < ∞, for all t ∈ R+, if and only

if ∫

I

|x| ν(dx) < ∞. (3.4)
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Proof. (i) We start by fixing z ∈ int(I), and use Tanaka’s formula (see e.g. Revuz
and Yor [42], Thm. (1.2), p. 222) to obtain

|Xt − z| = |X0 − z|+
∫ t

0

sgn(Xs − z) dXs

︸ ︷︷ ︸
Mt

+ Lz
t ,

for all t ∈ R+. Observe that the process M , defined above, is a local martingale with
initial value zero. Letting (σn)n∈N be a localizing sequence of stopping times for
M , and applying Fatou’s lemma, followed by the monotone convergence theorem,
we then obtain

Ex(|Xt − z|) = Ex

(
lim

n→∞
|Xσn∧t − z|

)

≤ |x− z|+ lim
n→∞

Ex

(∫ σn∧t

0

sgn(Xs − z) dXs

)
+ lim

n→∞
Ex

(
Lz

σn∧t

)

= |x− z|+ Ex

(
Lz

t

)
,

(3.5)

for all t ∈ R+ and x ∈ I. Now fix α ∈ (
0, 1

2

)
and choose ε > 0, such that

(z − ε, z + ε) ⊂ int(I). It then follows from (3.2) that

sup
s∈[0,t]

|Ly
s − Lz

s | ≤ K(t)|y − z|α ≤ K(t)εα,

for all t ∈ R+ and y ∈ (z − ε, z + ε). Using the occupation-measure formula (see
e.g. Rogers and Williams [44], Thm. (49.1), p. 289), we thus obtain
(
Lz

t−K(t)εα
)
m(z−ε, z+ε) ≤

∫

I

1{y∈(z−ε,z+ε)}L
y
t m(dy) =

∫ t

0

1{Xs∈(z−ε,z+ε)} ds,

for all t ∈ R+. This yields the following upper bound for the expected local time
of X at z:

Ex

(
Lz

t

) ≤ K(t)εα +
1

m(z − ε, z + ε)

∫ t

0

Px

(
Xs ∈ (z − ε, z + ε)

)
ds

≤ K(t)εα +
t

m(z − ε, z + ε)
,

(3.6)

for all t ∈ R+ and x ∈ I, which is independent of x. Furthermore, this bound is
finite, since m(z − ε, z + ε) > 0 (see e.g. Rogers and Williams [44], Def. (47.4),
p. 277). Finally, combining (3.5) and (3.6) gives

Ex(|Xt|) ≤ Ex(|Xt − z|) + |z| ≤ |x− z|+ Ex(Lz
t ) + |z|

≤ 2|z|+ K(t)εα +
t

m(z − ε, z + ε)︸ ︷︷ ︸
c(t)

+ |x|,

for all t ∈ R+ and x ∈ I.
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(ii) (⇒) Suppose ν satisfies Eν(|Xt|) < ∞, for all t ∈ R+. It then follows that
∫

I

|x| ν(dx) =
∫

I

|x|Pν(X0 ∈ dx) = Eν(|X0|) < ∞,

in particular.

(⇐) Suppose ν satisfies condition (3.4). It then follows from (3.3) and ν(I) = 1
that

Eν(|Xt|) =
∫

I

Ex(|Xt|) ν(dx) ≤
∫

I

(
c(t) + |x|

)
ν(dx) = c(t) +

∫

I

|x| ν(dx) < ∞,

for all t ∈ R+. ¤

A similar result to the above is obtained in Kotani [32], Lem. 1. However,
the proof there is quite different, and relies heavily on the analytic theory of dif-
fusions, whereas our argument applies general techniques from stochastic calculus
(i.e. Tanaka’s formula and the occupation-measure formula). In particular, our ar-
gument can be adapted to the case of arbitrary continuous local martingales, to
establish an analogous and more general result.

We conclude from Theorem 3.10 that Defintion 3.1 (i) is satisfied if X con-
forms to Assumptions 3.7 and 3.8, and the initial measure ν satisfies condi-
tion (3.4). Our next step is to introduce a condition that, at first glance, appears
to be strictly weaker than Definition 3.1 (ii). Nevertheless, as we shall see, it is
precisely what we need to get a handle on martingales in our setup. Note that a
similar condition was studied in detail by Elworthy et al. [15], but in the more
general context of arbitrary continuous local martingales.

Definition 3.11. Define the function γ : R+ × I → R, by setting

γ(t, x) := x− Ex(Xt), (3.7)

for all t ∈ R+ and x ∈ I. We say that X satisfies the constant mean condition if
and only if γ(t, x) = 0, for all t ∈ R+ and x ∈ I.

Note that if X satisfies the constant mean condition, then for any initial
measure ν, we have

Eν(Xt) =
∫

I

Ex(Xt) ν(dx) =
∫

I

x ν(dx) =
∫

I

xPν(X0 ∈ dx) = Eν(X0),

for all t ∈ R+. In other words, the expected value of X remains constant, irrespec-
tive of its initial measure. Of course, having a constant expected value is necessary,
but not in general sufficient, to ensure that a local martingale is a martingale (see
e.g. Elworthy et al. [15], Prop. 3.8, p. 340). In the special case of diffusions, how-
ever, the situation is better:

Proposition 3.12. Suppose Assumptions 3.7 and 3.8 are in force. Then X is a Pν-
martingale, for every initial measure ν satisfying condition (3.4), if and only if it
satisfies the constant mean condition.
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Proof. (⇒) Suppose X is a Pν-martingale, for every initial measure ν satisfying
condition (3.4). In particular, X is then a Px-martingale, for all x ∈ I, and the
constant mean condition is clearly satisfied.

(⇐) Suppose X satisfies the constant mean condition, and let ν be an initial
measure satisfying condition (3.4). By Theorem 3.10 (ii), we need only verify Def-
inition 3.1 (ii). To do so, we use the Markov property of X (see Definition 2.1)
and the constant mean condition, as follows:

Eν

(
Xt

∣∣ Fs

)
= Eν(Xt−s ◦ϑs

∣∣ Fs

)
= EXs

(Xt−s) = Xs−γ(t−s,Xs) = Xs Pν-a.s.,

for all s, t ∈ R+, such that s ≤ t. ¤

As mentioned earlier, the behaviour of X at its boundaries is an important
theme in this paper. As a useful short-hand, we therefore adopt the following
simple scheme for describing the end-points of I:

l = −∞ l > −∞

r = ∞ Type I Type II

r < ∞ Type III Type IV

Subject to Assumptions 3.7 and 3.8, the next two theorems derive testable
conditions for determining whether X is a Pν-martingale, given an initial mea-
sure ν satisfying condition (3.4). These results focus only on the cases when the
boundaries of I are of Types I–III, since X is a bounded Pν-local martingale when
its boundaries are of Type IV, and hence a uniformly integrable Pν-martingale,
according to the discussion following Definition 3.2:

Theorem 3.13. Suppose Assumptions 3.7 and 3.8 are in force. Then the following
statements are true:

(i) Let the end-points of I be of Type I. Then X is a Pν-martingale, for every
initial measure ν satisfying condition (3.4), if and only if

lim
z↑∞

z
(
Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

)
= 0, (3.8)

for all t ∈ R+ and x ∈ I.
(ii) Let the end-points of I be of Type II. Then X is a Pν-martingale, for every

initial measure ν satisfying condition (3.4), if and only if

lim
z↑∞

zPx(τz < t) = 0, (3.9)

for all t ∈ R+ and x ∈ I.
(iii) Let the end-points of I be of Type III. Then X is a Pν-martingale, for every

initial measure ν satisfying condition (3.4), if and only if

lim
z↑∞

zPx(τ−z < t) = 0, (3.10)
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for all t ∈ R+ and x ∈ I.

Proof. (i) Fix x ∈ I, and note that Xτz∧τ−z is a bounded Px-local martingale, and
hence also a (uniformly integrable) Px-martingale, for all z ∈ (|x|,∞). Thus, for
any fixed t ∈ R+, we have

x = Ex

(
X

τz∧τ−z

t

)

= Ex

(
1{τz∧τ−z≥t}Xt

)
+ zPx(τz < τ−z, τz < t)− zPx(τ−z < τz, τ−z < t),

for all z ∈ (|x|,∞). By Corollary 2.5, limz↑∞ Px(τz ∧ τ−z ≥ t) = 1, from which
it follows that limz↑∞ 1{τz∧τ−z≥t}Xt = Xt Px-a.s. Since Ex(|Xt|) < ∞, by Theo-
rem 3.10 (i), the dominated convergence theorem gives

γ(t, x) = lim
z↑∞

z
(
Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

)
,

and the result follows from Proposition 3.12.

(ii) Fix x ∈ I, and note that Xτz is a bounded Px-local martingale, and hence
also a (uniformly integrable) Px-martingale, for all z ∈ (x,∞). Thus, for any fixed
t ∈ R+, we have

x = Ex(Xτz
t ) = Ex

(
1{τz≥t}Xt

)
+ zPx(τz < t),

for all z ∈ (x,∞). By Corollary 2.5, limz↑∞ Px(τz ≥ t) = 1, from which it follows
that limz↑∞ 1{τz≥t}Xt = Xt Px-a.s. Since Ex(|Xt|) < ∞, by Theorem 3.10 (i), the
dominated convergence theorem gives

γ(t, x) = lim
z↑∞

zPx(τz < t),

and the result follows from Proposition 3.12.

(iii) Since the state-space of −X is of Type II, this result follows from part (ii). ¤

Note that, with the exception of the use of Proposition 3.12, the proof of
the above theorem is not specific to diffusions. Rather, it relies almost entirely on
general results for local martingales. In fact, Theorem 3.13 falls within a tradition
of very similar results, which have appeared in e.g. Azema et al. [2], Novikov [38],
Elworthy et al. [14, 15] and Takaoka [47]. The next theorem is, however, entirely
new, and represents a view of the conditions in Theorem 3.13 from the perspective
of Laplace transforms:

Theorem 3.14. Suppose Assumptions 3.7 and 3.8 are in force. Then the following
statements are true:

(i) Let the end-points of I be of Type I. Then X is a Pν-martingale, for every
initial measure ν satisfying condition (3.4), if and only if

(D−ψα)(∞−) = ∞ and (D−φα)(−∞+) = −∞, (3.11)

for all α > 0.
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(ii) Let the end-points of I be of Type II. Then X is a Pν-martingale, for every
initial measure ν satisfying condition (3.4), if and only if

(D−ψα)(∞−) = ∞, (3.12)

for all α > 0.
(iii) Let the end-points of I be of Type III. Then X is a Pν-martingale, for every

initial measure ν satisfying condition (3.4), if and only if

(D−φα)(−∞+) = −∞, (3.13)

for all α > 0.

Proof. (i) (⇒) Suppose X is a Pν-martingale, for every initial measure ν satisfying
condition (3.4). In particular, X is then a Px-martingale, for all x ∈ I. Now fix
x ∈ I and α > 0, and consider imposing an absorbing lower boundary condition at
some fixed a ∈ (−∞, x). According to Proposition 2.6, the fundamental increasing
and decreasing solutions of (2.4), for the absorbed process, are given by ψ̃a

α and
φ̃a

α, respectively, as defined by (2.11). We then see that

(D−ψα)(z) =
(
D−ψ̃a

α

)
(z) +

ψα(a)
φα(a)

(D−φα)(z) ≥
(
D−ψ̃a

α

)
(z) +

ψα(a)
φα(a)

(D−φα)(a),

for all z ∈ [a,∞), with the inequality following from the fact the φα is both strictly
decreasing and strictly convex. However, since X is a P̃ a

x -martingale with Type II
boundaries, part (ii) of this theorem gives

(
D−ψ̃a

α

)
(∞−) = ∞, from which the

first identity in (3.11) follows. By a similar argument we may establish the limit
(D−φα)(−∞+) = −∞.

(⇐) Fix x ∈ I and α > 0, and suppose that ψα and φα satisfy condition (3.11).
From Lemma 2.4 and Proposition 2.6 we obtain

Lα

{
z
(
Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

)}

= Lα

{
z
(
P̃−z

x (τz < t)− P̃z
x(τ−z < t)

)}
=

z

α

(
ψ̃−z

α (x)
ψ̃−z

α (z)
− φ̃z

α(x)
φ̃z

α(−z)

)

=
z

α


ψα(x)− ψα(−z)

φα(−z)φα(x)

ψα(z)− ψα(−z)
φα(−z)φα(z)

−
φα(x)− φα(z)

ψα(z)ψα(x)

φα(−z)− φα(z)
ψα(z)ψα(−z)




=
z

α

ψα(x)[φα(−z) + φα(z)]− φα(x)[ψα(−z) + ψα(z)]
φα(−z)ψα(z)− φα(z)ψα(−z)

=

[
z

α

ψα(x)
ψα(z)︸ ︷︷ ︸
A1(z)

(
1 +

φα(z)
φα(−z)︸ ︷︷ ︸

B1(z)

)
− z

α

φα(x)
φα(−z)︸ ︷︷ ︸
A2(z)

(
1 +

ψα(−z)
ψα(z)︸ ︷︷ ︸
B2(z)

)][
1− φα(z)ψα(−z)

φα(−z)ψα(z)︸ ︷︷ ︸
C(z)

]−1

,

for all z ∈ (|x|,∞). Recall that ψα(∞−) = φα(−∞+) = ∞, since ψα and φα are
strictly increasing and decreasing, respectively. It follows from this observation
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that B1(∞−) = B2(∞−) = C(∞−) = 0. Furthermore, with the aid of L’Hôpital’s
rule, we obtain A1(∞−) = A2(∞−) = 0, from (3.11). So we have

lim
z↑∞

Lα

{
z
(
Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

)}
= 0.

A similar argument gives

Lα

{
z
∣∣∣Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

∣∣∣
}

≤ Lα

{
z
(
Px(τz < τ−z, τz < t) + Px(τ−z < τz, τ−z < t)

)}

=
A1(z)(1−B)1(z)) + A2(z)(1−B2(z))

1− C(z)
,

for all z ∈ [|x|,∞), from which it follows that

lim
z↑∞

Lα

{
z
∣∣∣Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

∣∣∣
}

= 0. (3.14)

Therefore, the function

[|x|,∞) 3 z 7→ Lα

{
z
∣∣∣Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

∣∣∣
}

is bounded. Consequently, we may apply the dominated convergence theorem ap-
plied to (3.14), giving

Lα

{
lim
z↑∞

z
(
Px(τz < τ−z, τz < t)− Px(τ−z < τz, τ−z < t)

)}
= 0.

By the uniqueness of Laplace transforms, condition (3.8) thus holds, for all t ∈ R+,
and so the result follows from Theorem 3.13 (i).

(ii) Fix x ∈ I and α > 0, and recall from the discussion following Lemma 3.4 that X
is a Px-supermartingale, and that X∞ exists Px-a.s. and satisfies Ex(|X∞|) < ∞.
Consequently, we obtain

0 ≤ zPx(τz < t) ≤ zPx(τz < ∞) ≤ |x|+ Ex(|X∞|),
for all t ∈ R+ and z ∈ R+ ∩ (x,∞), from Doob’s maximal inequalities (see e.g.
Borodin and Salminen [5], Sec. I.19, p. 10), and we also see that

Lα{|x|+ Ex(|X∞|)} =
|x|+ Ex(|X∞|)

α
< ∞.

Noting once again that ψα(∞−) = ∞, since ψα is strictly increasing, we now apply
the dominated convergence theorem, followed by Lemma 2.4 and L’Hôpital’s rule,
to get

Lα

{
lim
z↑∞

zPx(τz < t)
}

= lim
z↑∞

Lα{zPx(τz < t)} = lim
z↑∞

z

α

ψα(x)
ψα(z)

=
ψα(x)

α
lim
z↑∞

1
(D−ψα)(z)

.



A Visual Classification of Local Martingales 19

Finally, the result follows from Theorem 3.13 (ii), together with the uniqueness of
Laplace transforms.

(iii) Note that Î := {−x |x ∈ I} is the state-space of −X. Its end-points are clearly
of Type II. Next, let ψ̂α, φ̂α : Î → R+, for all α > 0, denote the fundamental
increasing and decreasing solutions, respectively, of (2.11) for −X. It is easy to
see that

ψ̂α(x) = φα(−x) and φ̂α(x) = ψα(−x),

for all x ∈ Î and α > 0. The result now follows from part (ii). ¤

Although conditions (3.11) and (3.12) appear rather forbidding at first glance,
we shall see in Section 4 that they are generally quite easy to test in practice. Fur-
thermore, they facilitate a remarkable extension of Proposition 3.6, which will be
the content of Theorem 3.19. To get there, we require the following three proposi-
tions, which collectively elaborate on Rogers and Williams [44], Thm. (51.2) (iv),
p. 295:

Proposition 3.15. Suppose Assumptions 3.7 and 3.8 are in force. Then the following
statements are true:

(i) Let the end-points of I be of Types I or II. Then

lim
x↑∞

Ex(τz) ≤ 2
∫

[z,∞)

(y − z) m(dy), (3.15)

for all z ∈ int(I).
(ii) Let the end-points of I be of Types I or III. Then

lim
x↓−∞

Ex(τz) ≤ 2
∫

(−∞,z)

(z − y)m(dy), (3.16)

for all z ∈ int(I).

Proof. (i) Fix x, z ∈ int(I), with x > z, and note that Xτz is a Px-supermartingale,
by Lemma 3.4 (i). Furthermore, we see from the discussion following Lemma 3.4
that the Px-a.s. limit Xτz∞ = Xτz exists and satisfies Ex(|Xτz |) < ∞. Next, using
Tanaka’s formula (see e.g. Revuz and Yor [42], Thm. (1.2), p. 222), we obtain

(Xt − y)− = (X0 − y)− +
∫ t

0

1{Xs≤y} dXs

︸ ︷︷ ︸
Mt

+
1
2
Ly

t ,

for all t ∈ R+ and y ∈ I. Since the process M , defined above, is a Px-local
martingale with initial value zero, we may infer the existence of an associated
localizing sequence of stopping times (σn)n∈N. Observe that

0 ≤ (Xσn∧τz − y)− ≤ (z − y)− Px-a.s.,

for all y ∈ I and n ∈ N, and recall that Ly is a Px-a.s. increasing process. Con-
sequently, using the dominated convergence theorem, followed by the optional
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sampling theorem and the monotone convergence theorem, we get

Ex

(
(Xτz

− y)−
)

= lim
n→∞

Ex

(
(Xσn∧τz

− y)−
)

= (x− y)− + lim
n→∞

Ex

(∫ σn∧τz

0

1{Xs≤y} dXs

)
+

1
2

lim
n→∞

Ex

(
Ly

σn∧τz

)

= (x− y)− +
1
2
Ex

(
Ly

τz

)
,

for all y ∈ I. Rearranging this expression, we obtain

Ex

(
Ly

τz

)
≤ 2

(
(z − y)− − (x− y)−

)
= 2

(
(x− z) ∧ (y − z)+

)
,

for all y ∈ I, since Xτz ≥ z Px-a.s. Finally, the occupation-measure formula (see
e.g. Rogers and Williams [44], Thm. (49.1), p. 289) yields

Ex(τz) = Ex

(∫ τz

0

1{Xs≥z} ds

)
= Ex

(∫

I

1{y≥z}Ly
τz

m(dy)
)

=
∫

[z,∞)

Ex

(
Ly

τz

)
m(dy) ≤ 2

∫

[z,∞)

(x− z) ∧ (y − z)m(dy),

and (3.15) follows as a consequence of the monotone convergence theorem.

(ii) The proof of (3.16) follows along the same lines as above. ¤

We remark that if the right-hand side of (3.15) is finite, for some z ∈ int(I),
then Ex(τz) < ∞, for all x ∈ (z,∞). This in turn implies that Px(τz < ∞) = 1,
for all x ∈ (z,∞), whence Xτz = z Px-a.s. A quick inspection of the proof of
Proposition 3.15 (i) reveals the inequality in (3.15) to be an equality in this case.
A similar observation holds if the right-hand side of (3.16) is finite. In this sense,
the inequalities in (3.15) and (3.16) are sharp.

Proposition 3.16. Suppose Assumptions 3.7 and 3.8 are in force, and assume that
the end-points of I are of Types I or II. Then the following conditions are equiva-
lent:

(i) φα(∞−) > 0;
(ii) (D−ψα)(∞−) < ∞; and
(iii)

∫
[z,∞)

(y − z) m(dy) < ∞,

for all z ∈ int(I) and α > 0.

Proof. (i)⇒(ii): Fix α > 0, and suppose that φα(∞−) > 0. Since φα is strictly
decreasing and ψα is non-negative, we obtain the following inequality from (2.5):

φα(x)(D−ψα)(x) = wα + (D−φα)(x)ψα(x) < wα,

for all x ∈ I. Taking limits, it therefore follows that (D−ψα)(∞−) < ∞.

(ii)⇒(iii): Fix z ∈ int(I) and α > 0, and suppose that (D−ψα)(∞−) < ∞. We
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now get∫

[z,∞)

(y − z) m(dy) ≤
∫

[z,∞)

ψα(y)− ψα(z)
(D−ψα)(z)

m(dy)

≤ 1
(D−ψα)(z)

∫

[z,∞)

ψα(y) m(dy) =
(D−ψα)(∞−)− (D−ψα)(z)

2α(D−ψα)(z)
< ∞,

from (2.4), together with facts that ψα is non-negative, strictly increasing and
strictly convex.

(iii)⇒(i): Fix z ∈ int(I) and α > 0, and suppose that
∫
[z,∞)

(y − z)m(dy) < ∞.
We then obtain

φα(∞−) = φα(z) lim
x↑∞

Ex(e−ατz ) ≥ φα(z) lim
x↑∞

e−αEx(τz)

≥ φα(z)e
−2α

∫
[z,∞)

(y−z) m(dy)
> 0,

from (2.7), followed by Jensen’s inequality and (3.15). ¤

Proposition 3.17. Suppose Assumptions 3.7 and 3.8 are in force, and assume that
the end-points of I are of Types I or III. Then the following conditions are equiv-
alent:

(i) ψα(−∞+) > 0;
(ii) (D−φα)(−∞+) > −∞; and
(iii)

∫
(−∞,z)

(z − y)m(dy) < ∞,

for all z ∈ int(I) and α > 0.

Proof. Similar to the proof of Proposition 3.16. ¤

Suppose Assumption 3.7 holds, and assume that the end-points of I are of
Type I. By inspecting the boundary classification table in Section 2, we observe,
with the aid of Propositions 3.16 and 3.17, that X has entrance boundaries if and
only if condition (3.11) is violated. In order to add more insight to this observation,
we first recall the following definition of entrance boundaries (see e.g. Revuz and
Yor [42], Def. (3.9), p. 305):

Definition 3.18. The lower end-point l (resp. upper end-point r) is an entrance
boundary if and only if limx↓l Px(τz < t) > 0 (resp. limx↑r Px(τz < t) > 0), for
some t ∈ R+ and z ∈ int(I).

We now prove an extension of Proposition 3.6, which characterizes martin-
gales in our setup purely in terms of their boundary behaviour. The proof is based
on first principles, in the sense that we use Definition 3.18 directly, rather than
the boundary classification table in Section 2.

Theorem 3.19. Suppose Assumptions 3.7 and 3.8 are in force. Then X is a Pν-
martingale, for every initial measure ν satisfying condition (3.4), if and only if its
infinite boundaries are natural.
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Proof. Suppose the end-points of I are of Types I or II, and fix α > 0. By an
application of the dominated convergence theorem and Lemma 2.4, we obtain

Lα

{
lim
x↑∞

Px(τz < t)
}

=
1
α

lim
x↑∞

φα(x)
φα(z)

,

for all z ∈ int(I). It then follows from the uniqueness of Laplace transforms that
φα(∞−) > 0 if and only if there exists an s ∈ R+, such that limx↑∞ Px(τz < t) > 0,
for all t ∈ [s,∞) and z ∈ int(I). In particular, by Proposition 3.16, we have
(D−ψα)(∞−) < ∞ if and only if r = ∞ is an entrance boundary. Similarly, if the
end-points of I are of Types I or III, then (D−φα)(−∞+) > −∞ if and only if
l = −∞ is an entrance boundary. Finally, the result follows from Proposition 3.6
and Theorem 3.14. ¤

Elegant necessary and sufficient conditions for X to be a martingale, subject
to Assumptions 3.7 and 3.8, have recently been obtained Kotani [32], Thm. 1.
As a second application of Propositions 3.16 and 3.17, we now establish the cor-
respondence between Kotani’s conditions and the classical probability-theoretic
conditions of Theorem 3.13:

Theorem 3.20 (Kotani [32]). Suppose Assumptions 3.7 and 3.8 are in force. Then
the following statements are true:

(i) Let the end-points of I be of Type I. Then X is a Pν-martingale, for every
initial measure ν satisfying condition (3.4), if and only if∫

[z,∞)

(y − z)m(dy) = ∞ and
∫

(−∞,z)

(z − y)m(dy) = ∞,

for all z ∈ int(I).
(ii) Let the end-points of I be of Type II. Then X is a Pν-martingale, for every

initial measure ν satisfying condition (3.4), if and only if∫

[z,∞)

(y − z)m(dy) = ∞,

for all z ∈ int(I).
(ii) Let the end-points of I be of Type III. Then X is a Pν-martingale, for every

initial measure ν satisfying condition (3.4), if and only if∫

(−∞,z)

(z − y)m(dy) = ∞,

for all z ∈ int(I).

Proof. This follows by using Propositions 3.16 and 3.17 to translate the conditions
in Theorem 3.14. ¤

We conclude this section by searching for conditions under which X is a
uniformly integrable Pν-martingale, for some initial measure ν satisfying condi-
tion (3.4), subject to Assumptions 3.7 and 3.8. According to the discussion fol-
lowing Definition 3.2, a necessary requirement is that the Pν-a.s. limit X∞ should
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exist, and satisfy Eν(|X∞|) < ∞ and Eν(X∞) = Eν(X0). As seen in the discussion
following Lemma 3.4, this limit exists and belongs to L1 if the end-points of I
are of Types II–IV. Of course, the case when the end-points of I are of Type IV
is trivial, since X is then a bounded Pν-local martingale, and consequently also
a uniformly integrable Pν-martingale, by the discussion following Definition 3.2
again. However, the situation when the end-points of I are of Types II or III is
perhaps a little surprising:

Theorem 3.21. Suppose Assumptions 3.7 and 3.8 are in force. Then the following
statements are true:

(i) Let the end-points of I be of Type II. Then X∞ = l Pν-a.s., for every initial
measure ν satisfying condition (3.4).

(ii) Let the end-points of I be of Type III. Then X∞ = r Pν-a.s., for every initial
measure ν satisfying condition (3.4).

Proof. (i) Fix x ∈ I, and note that l is either natural or absorbing, since l > −∞.
We start, therefore, by assuming that l is absorbing. This implies that

{τz < ∞} = {τz < τl},
for all z ∈ int(I). Since l ∈ I, the fact that X is in natural scale then yields

Px(τz < ∞) = Px(τz < τl) =
x− l

z − l
, (3.17)

for all z ∈ (x,∞), according to Rogers and Williams [44], Def. (46.10), p. 275.
Next, suppose that l is a natural boundary. In particular, l /∈ I, which implies that
limk→∞ τl+ 1

k
= ∞, from which it follows that

{τz < ∞} =
∞⋃

k=1

{
τz < τl+ 1

k

}
.

Since probability measures are continuous from below and X is in natural scale,
Rogers and Williams [44], Def. (46.10), p. 275 now gives

Px(τz < ∞) = Px

( ∞⋃

k=1

{
τz < τl+ 1

k

})
= lim

n→∞
Px

(
n⋃

k=1

{
τz < τl+ 1

k

})

= lim
n→∞

Px

(
τz < τl+ 1

n

)
= lim

n→∞
x− (

l + 1
n

)

z − (
l + 1

n

) =
x− l

z − l
,

(3.18)

for all z ∈ (x,∞). Next, observe that Xτz is in fact a uniformly integrable Px-
martingale, according to the discussion following Definition 3.2, since it is bounded.
Consequently,

x = Ex(Xτz∞) = Ex(1{τz=∞}X∞) + zPx(τz < ∞). (3.19)

Furthermore, it follows from (3.17) and (3.18) that

lim
z↑∞

Px(τz = ∞) = 1− lim
z↑∞

x− l

z − l
= 1,
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irrespective of whether l is natural or absorbing, whence limz↑∞ 1{τz=∞}X∞ = X∞
Px-a.s. Finally, since Ex(|X∞|) < ∞, an application of the dominated convergence
theorem to (3.19) yields

x− Ex(X∞) = lim
z↑∞

zPx(τz < ∞) = lim
z↑∞

z
x− l

z − l
= x− l, (3.20)

with the help of (3.17) and (3.18), once again. This implies that Ex(X∞) = l, from
which we obtain

Eν(X∞) =
∫

I

Ex(X∞) ν(dx) = lν(I) = l,

for any initial measure ν satisfying condition (3.4), and the result follows from the
fact that X∞ ≥ l Pν-a.s.

(ii) Similar to the proof of part (i). ¤

The rather startling implication of Theorem 3.21 is that there are no uni-
formly integrable martingales within the class of time-homogeneous diffusions in
natural scale, with one finite boundary. Rather, such processes are all extreme su-
permartingales or submartingales, in the sense that all their paths converge to the
finite boundary. A driftless geometric Brownian motion (see Example 4.3) provides
an important example of this phenomenon, since Theorem 3.21 (i) indicates that
all paths must converge to the origin. Of course, in the case of driftless geometric
Brownian motions, this behaviour is also a well-known consequence of the law of
large numbers (see e.g. Karatzas and Shreve [28], Rem., p. 193). We also note
the discussion in Karatzas and Shreve [28], p. 192, which highlights the impact of
Theorem 3.21 (i) on potential applications of Girsanov’s theorem.

4. Some Examples Relevant to Finance

In this section we consider the situation where the Px-dynamics of X are given by
a stochastic differential equation (SDE) of the form

Xt = x +
∫ τl∧τr∧t

0

a(Xs) dβs, (4.1)

for all t ∈ R+ and x ∈ I, where a : I → R+ and β = (βt)t∈R+ is a standard
Brownian motion. In this case the characteristics of X are absolutely continuous
with respect to Lebesgue measure, and we have

m(dx) = 2a−2(x) dx and s(x) = x, (4.2)

for all x ∈ I (see e.g. Borodin and Salminen [5], p. 17). It is also clear from
(4.1) that X is absorbed at its finite boundaries, by construction. According to
Proposition 3.6, we may thus conclude that X is a local martingale.
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The next step is to determine whether X is in fact a martingale. We start by
observing that the generalized ODE (2.4) now simplifies to

1
2
a2(x)f ′′(x) = αf(x), (4.3)

for all x ∈ I and α > 0 (see e.g. Borodin and Salminen [5], pp. 17–18). In gen-
eral, this equation is easily solved for the increasing and decreasing fundamental
solutions ψα and φα, respectively. Once these functions have been identified, The-
orem 3.14 (i) and (ii) may be used to answer the above question.

In financial applications, it is usually the case that I = R+ or I = (0,∞).
It then follows from Lemma 3.4 (i) that X is at minimum a supermartingale.
Generally speaking, there are two situations where it is important to know whether
X is also a martingale: Firstly, X may be the density process for a change of
measure, associated with a corresponding change of numéraire (see e.g. Geman
et al. [20]). In this case, if X is not a martingale, it is then a strict supermartingale,
and the resulting measure will be deficient (i.e. its total mass will be less than one).
In such circumstances the change of numéraire technique for pricing contingent
claims is not viable, and one has to adopt an alternative methodology, such as the
benchmark approach advocated by Platen and Heath [40].

The second situation where it is important to know whether X is a martingale
occurs when (4.1) describes the risk-neutral behaviour of a discounted asset. A
standard problem then is to determine the price of a European contingent claim,
with payoff function h : I → R+ and maturity T > 0. A well-established technique
for obtaining the discounted pricing function V : I × [0, T ] → R+ for the claim is
to solve the associated Black-Scholes partial differential equation (PDE)

∂V

∂t
(t, x) +

1
2
a2(x)

∂2V

∂x2
(t, x) = 0, (4.4)

for all (t, x) ∈ I × [0, T ], subject to the terminal condition

V (T, x) = h(x), (4.5)

for all x ∈ I. Now, since X is a supermartingale, it follows that the function
γ, given by (3.7), satisfies the inequality γ(t, x) ≥ 0, for all (t, x) ∈ R+ × I.
Furthermore, we see from e.g. Friedman [18], Thm. 6.1, p. 124 that the function
γ̄ : [0, T ] × I → I, defined by γ̄(t, x) := γ(T − t, x), for all (t, x) ∈ [0, T ] × I, also
satisfies the Black-Scholes PDE (4.4), with terminal condition γ̄(T, x) = 0, for all
x ∈ I. However, if X is not a martingale, then γ is not identically zero, according
to Proposition 3.12. Consequently, there exists a maturity T > 0, such that for
any solution V of (4.4)–(4.5), and any a ∈ R, the function

V̄a := V + aγ̄

provides another solution. This association between strict local martingales and
the non-uniqueness of solutions of the Black-Scholes PDE is discussed at length
by Heston et al. [22].
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Figure 4.1. The functions φα and ψα for Brownian motion.

The question of whether X is a martingale or a strict local martingale is
therefore of fundamental importance to stochastic finance. We now examine spe-
cific examples of (4.1), solving the ODE (4.3) in each case, and then applying
Theorem 3.14 (i) and (ii) to determine whether X is a martingale, in each case.
Our first example is simply Brownian motion itself:

Example 4.1 (Brownian motion). In this case I = R and a(x) := 1, for all x ∈ I.
Solving (4.3) then yields

φα(x) = e−
√

2α x and ψα(x) = e
√

2α x,

for all x ∈ I and α > 0 (see Figure 4.1). It is easily seen that φ′α(−∞+) = −∞ and
ψ′α(∞−) = ∞, for all α > 0, from which we may deduce that X is a martingale,
by Theorem 3.14 (i).

Our next example is based on the square-root process of Feller [16], which
continues to play a significant role in stochastic finance. For example, it features
in the Cox et al. [9] model for the term structure of interest rates, as well in the
Heston [21] stochastic volatility model. However, this process first appeared in the
finance literature in Cox and Ross [8], where it was considered as a model for stock
price dynamics—later becoming a special case of the constant elasticity of variance
(CEV) model (see e.g. Cox [7]). In this context, the question of whether X is a
martingale is crucial for determining whether options on the stock are sensibly
priced by solving the discounted Black-Scholes PDE (4.4)–(4.5).

Example 4.2 (Squared Bessel process of dimension zero). In this case I = R+ and
a(x) := 2

√
x, for all x ∈ I. Solving (4.3) then yields

φα(x) =
√

xK1

(√
2αx

)
and ψα(x) =

√
x I1

(√
2αx

)
,

for all x ∈ I and α > 0 (see Figure 4.2). It is easily seen that ψ′α(∞−) = ∞, for all
α > 0, from which we may deduce that X is a martingale, by Theorem 3.14 (ii).
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Figure 4.2. The functions φα and ψα for the squared Bessel
process of dimension zero.

Geometric Brownian motion was originally proposed as a model for risky
asset price dynamics by Samuelson [45]. Thereafter, Black and Scholes [4] and
Merton [36] famously solved the pricing problem for European puts and calls on
assets whose prices follow geometric Brownian motions. This gave geometric Brow-
nian motion the impetus for becoming the most widely-used general asset price
model today—both in practice and in the academic literature. Driftless geomet-
ric Brownian motion—which is a local martingale—appears to two contexts in
financial modeling: Firstly, in a market containing a savings account yielding a
constant risk-free rate of return, and a risky security whose price follows a geo-
metric Brownian motion, the density process defining the equivalent risk-neutral
probability measure is a driftless geometric Brownian motion. Secondly, under this
probability measure, the discounted price process of the risky asset is itself a drift-
less geometric Brownian motion. It is therefore vitally important that driftless
geometric Brownian motions are in fact proper martingales:

Example 4.3 (Driftless geometric Brownian motion). In this case I = (0,∞) and
a(x) := x, for all x ∈ I. Solving (4.3) then yields

φα(x) = x−
1
2

(√
8α+1−1

)
and ψα(x) = x

1
2

(√
8α+1+1

)
,

for all x ∈ I and α > 0 (see Figure 4.3). It is easily seen that ψ′α(∞−) = ∞, for all
α > 0, from which we may deduce that X is a martingale, by Theorem 3.14 (ii).

A new framework for asset price modeling and contingent claim valuation,
called the benchmark approach, has recently been advocated by Platen and Heath
[40]. The central idea of this approach is to focus on modeling the so-called growth-
optimal portfolio (GOP), which originated in a study by Kelly [31]. The proper-
ties of this portfolio, and questions about its existence, have been elucidated in a
stream of subsequent publications, including e.g. Long [35], Bajeux-Besnainou and
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Figure 4.3. The functions φα and ψα for driftless geometric
Brownian motion.

Portait [3], Platen [39] and Karatzas and Kardaras [27]. The most important of
these properties, from the perspective of stochastic finance, is that the GOP acts
as a numéraire for the real-world probability measure. This presents the enticing
possibility of contingent claim pricing under the real-world probability measure
(see Platen and Heath [40], § 9.1), without the sophisticated machinery of equiv-
alent changes of probability measure. The only requirement is a realistic model of
the GOP that is both realistic and tractable. This realization motivated the de-
velopment of the minimal market model (MMM), presented in Platen and Heath
[40], Chap. 13. The salient feature of this model is that the density process for a
putative equivalent risk-neutral probability measure is an inverted time-changed
squared Bessel process of dimension four. As the following example demonstrates,
this density process is a strict local martingale, which implies that risk-neutral
pricing is not possible with the MMM:

Example 4.4 (Inverted squared Bessel process of dimension four). In this case
I = (0,∞) and a(x) := 2x

3
2 , for all x ∈ I. Solving (4.3) then yields

φα(x) =
√

xI1

(√
2α

x

)
and ψα(x) =

√
xK1

(√
2α

x

)
,

for all x ∈ I and α > 0 (see Figure 4.4). It is easily seen that ψ′α(∞−) =
√

2α,
for all α > 0, from which we may deduce that X is a strict local martingale, by
Theorem 3.14 (ii).

Next, we present a famous example of a strict local martingale, originally
due to Johnson and Helms [24]. This process was later studied by Delbaen and
Schachermayer [10], where it was used to illustrate some of the pathologies arising
from strict local martingales in stochastic finance:
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Figure 4.4. The functions φα and ψα for the inverted squared
Bessel process of dimension four.
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Figure 4.5. The functions φα and ψα for the inverted Bessel
process of dimension three.

Example 4.5 (Inverted Bessel process of dimension three). In this case I = (0,∞)
and a(x) := x2, for all x ∈ I. Solving (4.3) then yields

φα(x) = x

(
e
√

2α
x − e−

√
2α
x

)
and ψα(x) = xe−

√
2α
x ,

for all x ∈ I and α > 0 (see Figure 4.5). It is easily seen that ψ′α(∞−) = 1,
for all α > 0, from which we may deduce that X is a strict local martingale, by
Theorem 3.14 (ii).

It is interesting to note that even though the processes in Examples 4.4 and 4.5
are strict local martingales, they nevertheless satisfy strong integrability condi-
tions. For example, the inverted Bessel process of dimension three from Exam-
ple 4.5 is bounded in L2 (see e.g. Revuz and Yor [42], Ex. (2.13), p. 194). On
the other hand, the inverted squared Bessel process of dimension four from Ex-
ample 4.4 is not square-integrable (see e.g. Platen and Heath [40], eqn. (8.7.14),
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Figure 4.6. The functions φα and ψα for Kummer’s local martingale.

p. 307), but it is bounded in L1. Both of these processes are uniformly integrable,
by an application of Doob [12], Thm. 11.3, p. 359.

Based on the above examples, it seems natural to speculate that the process
defined by (4.1) is a martingale if and only if its diffusion coefficient is asymptot-
ically sub-linear, in the sense that limx↑∞

a(x)
x < ∞. The following example from

Ekström and Tysk [13]—who analyze it by considering super-solutions of (4.4)
and (4.5), with h chosen as the identity function—is therefore slightly surprising:

Example 4.6 (Kummer’s local martingale). In this example we set a(x) := x
√

ln x,
for all x ∈ I. This specification implies that l = 1, so that either I = [1,∞) or
I = (1,∞). To resolve this issue, we examine the lower boundary behaviour of X,
by using (4.2) to compute

∫ z

1

m(y) dy =
∫ z

1

2
y2 ln y

dy = 2
(

li
1
z
− li

1
1 + ε

)
= ∞,

for all z ∈ (1,∞), where the function li is the logarithmic integral (see e.g.
Abramowitz and Stegun [1], Chap. 5). It therefore follows from the table in Sec-
tion 2 that the lower boundary is not exit, and so I = (1,∞). To investigate the
question of whether X is a martingale or not, we employ the transformation of
variables ln x 7→ ξ, and set vα(ξ) := uα(x), for all x ∈ I and α > 0, whereupon the
ODE (4.3) becomes

ξv′′α(ξ)− ξv′α(ξ)− 2αvα(ξ) = 0,

for all ξ ∈ (0,∞) and α > 0. This is recognizable as an instance of Kummer’s
equation—also known as a degenerate hypergeometric equation (see e.g. Polyanin
and Zaitsev [41], pp. 137–139)—whose solutions may be expressed in terms of the
confluent hypergeometric functions M and U (see e.g. Abramowitz and Stegun [1],
Chap. 13). For our original equation (4.3), we then obtain

φα(x) = ln xU(1 + 2α, 2, ln x) and ψα(x) = ln xM(1 + 2α, 2, ln x),

for all x ∈ I and α > 0 (see Figure 4.6). In this case we get ψ′α(∞−) = ∞, for all
α > 0, from which it follows that X is a martingale, by Theorem 3.14 (ii).
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As we have seen, the processes in Examples 4.2, 4.3 and 4.6 are all examples
of martingales that are bounded from below. Each of these processes therefore pos-
sesses an almost sure limit X∞, according to the discussion following Lemma 3.4,
with Ex(|X∞|) < ∞, for all x ∈ I. Although we already know that X∞ = l, by
Theorem 3.21 (i), we can verify this fact explicitly for the examples cited above.
To do so, we use the first equality in (3.20), as well as (2.9), to get

Ex(X∞) = x− lim
z↑∞

zPx(τz < ∞) = x− lim
z↑∞

z lim
α↓0

ψα(x)
ψα(z)

,

for all x ∈ I. In each of the three examples cited above, we obtain

lim
α↓0

ψα(x)
ψα(z)

=
x− l

z − l
,

for all x, z ∈ I, with x ≤ z, which implies that Ex(X∞) = l.
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In Séminaire de Probabilités XXXI, volume 1655 of Lecture Notes in Mathe-
matics, pages 126–135. Springer, Berlin, 1997.

[20] H. Geman, N. El Karoui, and J.-C. Rochet. Changes of numéraire, changes
of probability measure and option pricing. J. Appl. Probab., 32(2):443–458,
1995.

[21] S. L. Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Rev. Finan. Stud., 6(2):327–343,
1993.

[22] S. L. Heston, M. Loewenstein, and G. A. Willard. Options and bubbles. Rev.
Finan. Stud., 20(2):359–389, 2007.
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financial models. Finance Stoch., 11(4):447–493, 2007.

[28] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus.
Springer, New York, second edition, 1991.

[29] N. Kazamaki. On a problem of Girsanov. Tohōku Math. J., 29(4):597–600,
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