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ABSTRACT. We develop a simple behavioural asset pricing model with fundamen-
talists and chartists to study price behaviour in financial markets when chartists es-
timate both conditional mean and variance by using a weighted averaging process.
Through a stability, bifurcation, and normal form analysis, the market impact of the
weighting process is examined. It is found that the weighting process leads to dif-
ferent price dynamics when the fundamental price becomes unstable, depending on
whether the chartists act as either trend followers or contrarians. It is also found that
a time varying second moment of the chartists impacts differently on the stability of
the bifurcated price dynamics, but has no impact on the stability of the fundamental
price. Near the flip bifurcation boundary, the bifurcated period-two price dynamics
are stable for all time varying second moments, but near the Hopf bifurcation, the
bifurcated (quasi)periodic cycle is stable (unstable) when the time varying second
moment value is high (low). Different routes to complicated price dynamics are also
observed. The analysis provides an analytical foundation for the statistical analysis of
the corresponding stochastic version of this type of behavioural model.
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1. INTRODUCTION

As a result of a growing dissatisfaction with (i) models of asset price dynamics based
on the representative agent paradigm, as expressed for example by Kirman (1992),
and (ii) the extreme informational assumptions of rational expectations, research into
the dynamics of financial asset prices resulting from the interaction of heterogeneous
agents has developed strongly over the last decade and a half.1 In particular, Brock and
Hommes (1997b, 1998) have introduced the concept of anadaptively rational equilib-
rium, where agents adapt their beliefs over time by choosing from different predictors
or expectations functions, based upon their fitness functions measured by realized prof-
its. The resulting dynamical system is capable of generating the entirezooof complex
behaviour from local stability to high order cycles and chaos as various key param-
eters of the model change. The Brock and Hommes framework has been extended
further in Gaunersdorfer (2000) and Chiarella and He (2001, 2002, 2003b) to incorpo-
rate time-varying (homogeneous) variance and heterogeneous risk and learning under
both Walrasian auctioneer and market maker scenarios. It is found that the relative risk
attitudes, different learning mechanisms and different market clearing scenarios affect
asset price dynamics in a very complicated way. It has been shown (e.g. Hommes
(2002)) that such simple nonlinear adaptive models are capable of explaining impor-
tant stylized facts, including fat tails, volatility clustering and long memory, of real
financial time series.

It is well recognised that heterogeneous expectations play a key role in the dynam-
ical behaviour of asset price. Most of the literature cited above focuses on hetero-
geneous expectations of the first moment (of either price or return), rather than the
second moment. Empirically, it is believed that2 the second moments (i.e. conditional
variances) are much easier to estimate than the first moments (i.e. conditional mean)
and hence there should be more disagreement about the mean than about the variance
among traders. Mathematically, the second moments are associated with higher order
terms and they do not in general change the nature of local stability and bifurcations.
However, when traders are heterogeneous, they may be heterogenous not only in the
first moment but also in the second moment. This heterogeneity may come from their
different information sets or different trading strategies they are using. The aim of this
paper is to study the dynamical behaviour of prices when traders are heterogeneous
with respect to both moments.

Given the variety of technical trading rules and differing risk aversion of various
investors, this paper introduces a risk adjustment into the demand function for the
chartists by assuming that they use a weighted average process of past prices to esti-
mate and update both conditional mean and variance. Therefore their demand func-
tion is a nonlinear function of the conditional mean and variance, instead of a linear
function of the conditional mean only. It is found that the mechanism of a variance
adjusted demand function of the chartists is a natural way to prevent the price from

1See, for example Arthuret al. (1997), Brock and Hommes (1997a, 1997b), Brock and LeBaron
(1996), Bullard and Duffy (1999), Chen and Yeh (1997, 2002), Chiarella (1992), Chiarellaet al. (2002),
Chiarella and He (2001, 2002, 2003b), Dacorognaet al. (1995), Day and Huang (1990), Farmer and
Joshi (2002), Gaunersdorfer (2000), Gaunersdorferet al. (2003), Hommes (2001, 2002), LeBaronet al.
(1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999).
2See, for example, Nelson (1992) and Bollerslevet al. (1994) for some justification on this.
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getting stuckin a speculative bubble3. Similar to Brock and Hommes (1997b, 1998),
an adaptive model based on the fitness function is obtained. We then examine how the
price dynamics of the risky asset are affected by the reactions of investors, the switch-
ing intensity of the fitness function, and the weighting process and risk adjustment of
the chartists.

This paper is closely related to Gaunersdorferet al. (2003) who consider a simple
asset pricing model of fundamentalists and chartists. In their model, the fundamental-
ists believe that tomorrow’s price will move in the direction of the fundamental price,
while chartists derive their beliefs from a simple technical trading rule using only the
latest observed price (rather than a weighted average of the latest history of prices
in our paper) and extrapolation of the latest observed price change. They assume a
homogeneous time-varying conditional variance for both types of traders (as opposed
to a constant variance for the fundamentalists and the adjusted time-varying variance
which is estimated from the weighted average process for the chartists in our paper)
and impose a penalty function in the fitness function of the chartists (to ensure that
speculative bubbles cannot last forever). They go on to show that volatility clustering
can be characterized by the coexistence of a stable steady state and a stable limit cycle,
which arises as a consequence of a so-called Chenciner bifurcation.

To study the impact of the time-varying second moment, we use a normal form anal-
ysis associated with the standard stability and bifurcation analysis. Our analysis shows
that, when the fundamental price becomes unstable, the time varying second moment
and the weighting process lead to different price dynamics. This is due to the fact that
the loss of local stability is accompanied by either flip or Hopf bifurcations, depending
on whether the chartists act as either trend followers or contrarians. The time-varying
second moment has no influence on the stability of the fundamental price. However,
it does affect the stability of the bifurcated dynamics. Near the flip bifurcation bound-
ary, the bifurcated period-two price dynamics are stable for all time varying second
moments, but near the Hopf bifurcation, the bifurcated (quasi)periodic cycle is stable
(unstable) when the time varying second moment value is high (low). Different routes
to complicated price dynamics are also observed. The analysis provides an analytical
foundation for the statistical analysis of the corresponding stochastic version of this
behavioural model in Chiarellaet al. (2005).

The plan of the paper is as follows. Section 2 develops a simple fundamentalist and
chartist asset pricing model in a Walrasian market clearing scenario. The dynamics
of the deterministic system, including stability and bifurcation analysis, when chartists
are either trend followers or contrarians are examined in Sections 3 and 4, respectively.
Section 5 concludes. All proofs are included in the Appendix.

2. THE MODEL

2.1. Portfolio Optimization and Walrasian Equilibrium Price. Following the frame-
work of Brock and Hommes (1998), consider an asset pricing model with one risky

3In Gaunersdorferet al. (2003), this is ensured by artificially adding a penalty function in the fitness
function of the chartists, which is unnecessary in our model. A similarstabilizingforce is added to the
fitness function for the fundamentalists in Gaunersdorfer (2000) where a homogeneous time-varying
second moment is updated through an exponential moving average process.
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asset and one risk free asset. It is assumed that the risk free asset is perfectly elastically
supplied at the risk-free (annualised) rater. Let pt be the price (ex dividend) per share
of the risky asset at timet and{yt} be the stochastic dividend process of the risky
asset. Then the wealth of investorh at t + 1 is given by

Wh,t+1 = RWh,t + (pt+1 + yt+1 −Rpt)zh,t = RWh,t + Rt+1zh,t, (2.1)

where
Rt+1 = pt+1 + yt+1 −Rpt (2.2)

is the excess capital gain/loss,R = 1 + r/K, K is the trading frequency per annum4,
Wh,t is the wealth at timet andzh,t is the number of shares of the risky asset purchased
at t. Denote byFt = {pt−1, · · · ; yt−1, · · · } the information set formed at timet.
Let Eh,t, Vh,t be thebeliefsof investor typeh about the conditional expectation and
variance, based onFt. Then it follows from (2.1) and (2.2) that

Eh,t(Wt+1) = RWt + Eh,t(Rt+1)zh,t, Vh,t(Wt+1) = z2
h,tVh,t(Rt+1). (2.3)

Assume each investor has a CARA (constant absolute risk aversion) utility function
u(W ) = −e−ahW but with different risk aversion coefficientah, and maximises his/her
expected utility of wealth, leading the optimal demand

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.4)

As in Brock and Hommes (1998), a Walrasian scenario is used to derive the demand
equation, i.e. each trader is viewed as a price taker (see Brock and Hommes (1997a)
and Grossman (1989) for detailed discussion). The market is viewed as finding the
pricept that equates the sum of these demand schedules to the supply. Letzs,t denote
the supply of (risky) shares. Given bounded rationality, we classify all investors into
H different types in terms of their conditional expectations on both mean and variance.
Denote bynh,t the fraction of investors of typeh at t (so that

∑
h nh,t = 1). Then the

equilibrium of demand and supply implies
∑

h

nh,t
Eh,t(Rt+1)

ahVh,t(Rt+1)
= zst. (2.5)

Now assume zero supply of outside shares, i.e.zst = 0, then (2.5) leads to
∑

h

nh,t
Eht(Rt+1)

ahVht(Rt+1)
= 0. (2.6)

Under the conditions thatEt(yt+1) = ȳ andlimt→∞ Ept/R
t = 0, it can be shown that

thefundamental priceis constant and given byp∗ = ȳ/(R− 1), which corresponds to
the bench mark notion of the rational expectation; see Brock and Hommes (1998) for
related discussion.

2.2. Heterogeneous Beliefs.In the following discussion, we adopt the popular fun-
damentalist/chartist model by assuming that all investors can be grouped as either fun-
damentalists (type 1) or chartists (type 2).

4Typically, annually, quarterly, monthly, weekly and daily trading periods correspond toK =
1, 4, 12, 52 and250, respectively.
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2.2.1. Fundamentalists.The fundamentalists are assumed to believe that the expected
market pricept is mean reverting to their perceived fundamental valuep∗ and the con-
ditional variance of the market price is constant. That is,

{
E1,t(pt+1) = p∗ + v(pt−1 − p∗), 0 ≤ v ≤ 1
V1,t(pt+1) = σ2

1,
(2.7)

wherep∗ is the fundamental price of the risky asset estimated by the fundamentalists
at some cost,v is the speed of mean reversion estimated by the fundamentalists, and
σ1 > 0 is a constant. In particular,E1,t(pt+1) = p∗ for v = 0 andE1,t(pt+1) = pt−1 for
v = 1. The conditional expectation of the fundamentalists (2.7) can also be written as

E1,t(pt+1) = (1− v)p∗ + vpt−1, 0 ≤ v ≤ 1,

which is a weighted average of the fundamental price and latest price. Hence small
(large) values ofv indicate that the fundamentalists give more (less) weight to the
fundamental price and less (more) weight to the latest price, believing that price moves
quickly (slowly) towards its fundamental valuep∗. For convenience of discussion,
we say the fundamentalistsover(under)-react (to the market price) when more (less)
weightv is given to the market price.

2.2.2. Chartists. Unlike the fundamentalists who are able to work out the fundamen-
tal value, chartists base their trading strategy on signals generated from the costless
information contained in recent prices. The signal may be generated by comparing
the latest pricept−1 with some reference price trendsp̃t−1, such as a moving average
process. Specifically, the chartists consider the realizations ofp̃t−1 as random draws
from some distribution. The distribution can be conditional on past realized values.
For simplicity, we assume that̃pt−1 is conditionally distributed on pricespt−2 andpt−3

with weighting probabilitiesw and1−w, respectively. Then the conditional mean and
variance of the trend can be estimated by, respectively,

{
p̄t−2 ≡ wpt−2 + (1− w)pt−3, 0 ≤ w ≤ 1,
σ̄2

t−2 ≡ w[pt−2 − p̄t−2]
2 + (1− w)[pt−3 − p̄t−2]

2.
(2.8)

Based on the trading signalspt−1 − p̃t−1 and the conditional mean and variance esti-
mates (2.8), we make the following assumptions for the chartists:

{
E2,t(pt+1) = pt−1 + g(pt−1 − p̄t−2), g ∈ R,
V2,t(pt+1) = σ2

1[1 + bσ̄2
t−2], b ≥ 0,

(2.9)

whereg ∈ R is the estimated extrapolation rate of the chartists. That is, the chartists’
beliefs are based on the latest price and their extrapolation of the trading signals gen-
erated from the trend. In particular, chartists are calledtrend followerswheng > 0
and arecontrarianswheng < 0. Forw = 1, E2,t(pt+1) = pt−1 + g(pt−1− pt−2) which
is the case discussed in Gaunersdorferet al. (2003) and, forw = 0, E2,t(pt+1) =
pt−1 + g(pt−1 − pt−3). Similarly, for convenience of discussion, we say the chartists
over(under)-react when they extrapolate strongly (weakly), that is when|g| is large
(small). With regard to the chartists’ estimate of the variance, they use the historical
variance to scale up the fundamental variance through the parameterb. High b reflects
a greater sensitivity to variance risk.
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2.2.3. Optimal Demand for the Fundamentalists and Chartists.For the dividend pro-
cess, we assume that for all agents

E(yt) = ȳ, V (yt) = σ2
y. (2.10)

Note thatȳ = rp∗/K. Based on the above assumptions, one obtains that for the
fundamentalists{

E1,t(Rt+1) = p∗ + v(pt−1 − p∗) + ȳ −Rpt, 0 ≤ v ≤ 1
V1,t(Rt+1) = a1(σ

2
1 + σ2

y),
(2.11)

and for the chartists{
E2,t(Rt+1) = pt−1 + g(pt−1 − p̄t−2) + ȳ −Rpt, g ∈ R
V2,t(Rt+1) = a2(σ

2
y + σ1[1 + bσ̄2

t−2]), b ≥ 0.
(2.12)

Therefore, the optimal demands for the fundamentalists and chartists are given, re-
spectively, by

{
z1,t = [p∗ + v(pt−1 − p∗) + ȳ −Rpt]/A1,
z2,t = [pt−1 + g(pt−1 − p̄t−2) + ȳ −Rpt]/A2,t,

(2.13)

where
A1 = a1(σ

2
1 + σ2

y), A2,t = a2[σ
2
y + σ2

1(1 + bσ̄2
t−2)] (2.14)

andp̄t andσ̄2
t are defined by (2.8).

2.3. Performance Measure and Agent Adaptation.Let U1,t andU2,t be the realized
profit of the fundamentalists and chartists, respectively, defined by

Ui,t = Rtzi,t−1 − Ci, i = 1, 2

whereCi ≥ 0 measures the total cost. Let the updated fractions be formed on the basis
of discrete choice probability (see Manski and McFadden (1981), Anderson, de Palma
and Thisse (1993), Brock and Hommes (1997b, 1998),

ni,t = exp[βUi,t−1]/Zt−1, (i = 1, 2), Zt−1 =
2∑

i=1

exp[βUi,t−1], (2.15)

whereβ(> 0) is the intensity of choicemeasuring how fast agents switch among
different prediction strategies.5 Let mt = n1,t − n2,t. Thenn1,t = (1 + mt)/2, n2,t =
(1−mt)/2 and

mt = tanh

[
β

2
(U1,t−1 − U2,t−1)− β

2
(C1 − C2)

]

= tanh

[
β

2
Rt−1(z1,t−2 − z2,t−2)− β

2
C

]
, (2.16)

whereC = C1 − C2. Because the cost of information to work out the fundamental
values, the constantC ≥ 0 in general.

5To prevent the price from getting stuck in a speculative bubble, Gaunersdorfer (2000) introduces a
stabilizing force into the fitness functionUi,t, while Gaunersdorferet al. (2003) adds a penalty func-
tion in the changing population fraction. In our model, this is achieved naturally by incorporating the
conditional variance into the demand function of the chartists.
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2.4. The Complete Model. To sum up, assuming zero net supply the Walrasian equi-
librium pricept satisfies

(1 + mt)z1,t + (1−mt)z2,t = 0. (2.17)

Substituting (2.13) and (2.16) into (2.17), one obtains that

pt =
A2,t[p

∗ + v(pt−1 − p∗) + ȳ]eβUt−1 + A1[pt−1 + g(pt−1 − p̄t−2) + ȳ]

R[A2,teβUt−1 + A1]
, (2.18)

where

Ut = Rt(z1,t−1 − z2,t−1)− C

= (pt + yt −Rpt−1)

(
1

A1

[p∗ + v(pt−2 − p∗) + ȳ −Rpt−1]

− 1

A2,t−1

[pt−2 + g(pt−2 − p̄t−3) + ȳ −Rpt−1]

)
− C,

and p̄t, A1 andA2,t are defined by (2.8) and (2.14). Equation (2.18) determines the
Walrasian market cleaning pricept, which is summarized in the following Proposition
2.1.

Proposition 2.1. Denotex1,t = xt = pt− p∗, x2,t = xt−1, x3,t = xt−2, x4,t = xt−3 and
x5,t = xt−4. Then the market cleanning pricept = xt +p∗ is governed by the following
dynamical system in terms ofX = (x1, x2, x3, x4, x5)

T :

Xt = G(Xt−1), (2.19)

where

G(X) = (F (X), x1, x2, x3, x4)
T ,

F (X) = f1(X)/f2(X),

f1(X) = vA21x1e
βU(X) + A1(x1 + g(x1 − wx2 − (1− w)x3)),

f2(X) = R[A21e
βU(X) + A1],

U(X) = (x1 −Rx2)

(
vx3 −Rx2

A1

− x3 + g(x3 − wx4 − (1− w)x5)−Rx2

A22

)
− C

and

A1 = a1(σ
2
y + σ2

1), A21 = a2[σ
2
y + σ2

1(1 + bσ̄2
21)], A22 = a2[σ

2
y + σ2

1(1 + σ̄2
22)],

x̄21 = wx2 + (1− w)x3, σ̄2
21 = w[x2 − x̄21]

2 + (1− w)[x3 − x̄21]
2,

x̄22 = wx4 + (1− w)x5, σ̄2
22 = w[x4 − x̄22]

2 + (1− w)[x5 − x̄22]
2.

In addition, the population fraction differencemt = n1,t − n2,t evolves according to

mt = M(Xt−1),

where
M(X) = tanh[βU(X)/2].
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In the following discussion, we examine the dynamics of the nonlinear deterministic
system (2.19) by considering the chartists as either the trend followers or contrarians.
We first undertake a theoretical study of the existence of the steady state, its stability,
bifurcation, and normal form properties, followed by numerical simulations of the
nonlinear system (2.19) to obtain some insight into its global properties.

3. DYNAMICS OF FUNDAMENTALISTS AND TREND FOLLOWERS

In this section, we consider the situation in which the chartists are trend followers,
that isg > 0 in the model (2.19). We first have the following result on the existence of
steady state that corresponds to the fundamental pricep∗.

Proposition 3.1. For system (2.19), the fundamental pricept = p∗ is the unique steady
state, that isX∗ = 0.

Proof. See Appendix A.1. ¤

Results on the local stability of the unique steady state and its bifurcation when the
chartists are trend followers are given in the following Proposition.

Proposition 3.2. Assumeg > 0. Then the fundamental pricep∗ is locally asymptoti-
cally stable (LAS) if

• either

v < v3(g) ≡ c1
1

g
− c2 − c3g for w ∈ [0, 1), (3.1)

• or g < g1 ≡ (a + xo)R/a for w = 1,

where

c1 =
(x0 + a)2R2

ax0(1− w)
, c2 =

x0wR + awR + a(1− w)

x0(1− w)
,

c3 =
a(2− w)

x0

, x0 = e−βC , a =
a1

a2

.

If v = v3(g) for w ∈ [0, 1) or g = g1 for w = 1, then there exists a pair of complex
eigenvaluesλ = e±iθ for the linearized system at the steady state. If, in addition,
d 6= 0, where

d ≡ 1

2

1

e−3iθ − e−iθ + γ3(1− e−2iθ)

5∑

j,k,l=1

∂3F (0)

∂xj∂xk∂xl

e(j+k−l−5)iθ (3.2)

and

γ3 = −ga(1− w)

R(xo + a)
,

then, in the absence of strong resonances (i.e.,eikθ 6= 1 for k = 1, 2, 3, 4), a Hopf
(Neimark-Sacker) bifurcation emanates out of the steady stateX∗ = 0. Furthermore
the bifurcated periodic cycle or quasi-periodic cycle is supercritical whend < 0 and
subcritical whend > 0.

Proof. See Appendix A.2. ¤
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v

v = 1

g1 g

Stability region

Hopf bifurcation boundary

1

FIGURE 3.1. Local stability region of the steady state and the Hopf
bifurcation boundary forg > 0.

The local stability region of the steady state and the corresponding Hopf bifurcation
boundary are plotted in the(g, v) parameter plane in Fig. 3.1. It can be verified that,
along the Hopf bifurcation curve,g → g1 asw → 16. In this limiting case, the Hopf
bifurcation boundary is independent of the speed of price adjustment of the funda-
mentalists. In general, forw ∈ [0, 1), Proposition 3.2 indicates that the condition for
the Hopf bifurcation depends on the speed of price adjustment of the fundamentalists,
the extrapolation rate of the trend followers, and the weighting process used by the
trend followers to form the moving average7. More precisely, we have the following
observations:

• Along the bifurcation boundary,v3(g) decreases asg increases and this is illus-
trated by the bifurcation valueg∗ in Table 3.1 for fixedw = 0.5 and different
values ofv. This implies that the fundamental steady state price is locally sta-
ble as long as reactions of both types of investors are balanced. Over-reactions
from both fundamentalists and trend followers lead to instability of the funda-
mental price. This result is very intuitive. The same result obtained in Gauners-
dorferet al. (2003) whenw = 1, which is a special case of our result.

• Based on the fact thatg = v−1
3 (v) → g1 asw → 1, we can see that the stability

region of the fundamental steady state in(g, v) parameter space is enlarged as
w increases, in particular, this becomes even more significant whenv is close
to 1, as verified by bifurcation valuesg∗ in Table 3.2 for fixedv = 0.5 and
different values ofw. This indicates a stabilizing role when more weight is
given to the most recent price.

• Along the Hopf bifurcation boundary, the type of bifurcation depends on values
of θ in the pair of complex eigenvaluesλ2,3 = e±θi of the linearized system at

6It follows from v = v3(g) thatg = v−1
3 (v). Then it can be verified thatg → g1 asw → 1

7See Appendix A.2 for detailed discussion.
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the steady state, which in turn depends on values ofρ = 2 cos(θ) satisfying8

ρ =
R(x0 + a)− gaw

ga(1− w)
,

as illustrated in Tables 3.1 and 3.2. Similar to the findings in Chiarella and He
(2003a), depending on values ofρ (and hence ofθ), periodic (whenθ/(2π) is
a rational number) and quasi-periodic (whenθ/(2π) is an irrational number)
cycles can be generated through the Hopf bifurcation. The stability of the bi-
furcated cycles depends on the invariant expressiond of the norm form analysis
in Proposition 3.2. More details on normal form analysis in higher dimension
can be found from Kuznetsov (2004).

Guided by the stability, bifurcation and normal form results in Proposition 3.2, we
now turn to a numerical simulation study of the dynamics of the nonlinear system
(2.19).

Parameter selection—In the following, we choose the fundamental pricep∗ = $100,
annual risk-free rater = 5%, annual volatility of the fundamental priceσ = 20%.
For the trading frequency, we chooseK = 250, which corresponds to a daily trading
period. As a consequence9, the total risk-free return per trading dayR = 1 + r/K =
1.0002, daily price volatility σ2

1 = (p∗σ)2/K = 8/5 and daily dividend volatility
σ2

y = r2σ2
1 = 1/250. We also choose the risk aversion coefficients for both types

of investor asa1 = a2 = 0.8 and the cost differenceC = 0. We examine how the
dynamics of the nonlinear system is affected by the speed of price adjustment of the
fundamentalists (the parameterv), the extrapolation rate of the trend followers (the
parameterg), the coefficient of the variance adjusted demand (the parameterb), the
weighting parameter used by the trend followers (the parameterw), and the switching
intensity (the parameterβ).

v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g∗ 1.5169 1.4971 1.4775 1.4583 1.4395 1.4210 1.4029 1.3851 1.3676 1.3505 1.3337
ρ 1.63789 1.6725 1.7078 1.7434 1.7792 1.8154 1.8518 1.8884 1.9253 1.9625 2.0000

TABLE 3.1. Hopf bifurcation values ofg∗ and the corresponding val-
ues ofρ for variousv andw = 0.5, β = 2, C = 0.

For fixedw = 0.5, Table 3.1 lists the bifurcation valuesg∗ for various values ofv.
It clearly indicates that the fundamental price is always locally stable for any speed
of price adjustmentv ∈ [0, 1] when the trend followers under-react (i.e., extrapolate
weakly withg < g∗1(= 1.3337)). Otherwise (i.e., wheng ≥ g∗1), the stability region for
the extrapolation rate of the trend followers is enlarged as the fundamentalists under-
react, as suggested by Proposition 3.1. Consequently, over-reactions from both the
trend followers and fundamentalists can make the fundamental price become unstable
through a Hopf bifurcation.

Similarly, for fixedv = 0.5, Table 3.2 lists some Hopf bifurcation valuesg∗ for var-
ious values ofw, indicating that an increase of the weighting parameterw enlarges the
stability region for the extrapolation rate of the trend followers. This implies that, in

8See Appendix A.2 for the details.
9Motivated by the relation between annual mean dividendȲ = rp∗, we approximate the annual divi-
dend volatilityσY by r(p∗σ) and hence the daily dividend volatilityσy by r(p∗σ)/

√
K.
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w 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g∗ 1.0883 1.1422 1.2016 1.2671 1.3400 1.4208 1.5118 1.6137 1.7284 1.8572 2.0004
ρ 1.8380 1.8348 1.8310 1.8270 1.8219 1.8156 1.8079 1.7986 1.7867 1.7711 1.7499

TABLE 3.2. Hopf bifurcation values ofg∗ and the corresponding val-
ues ofρ for variousw andv = 0.5, β = 2, C = 0.

terms of the stability of the fundamental steady state, a simple trend following strategy
based on the difference of the latest two prices[pt−1−pt−2] is better (for stability) than
a more complicated strategy based on the differencept−1 − [wpt−2 + (1 − w)pt−3],
illustrating that a simplead hocexpectation scheme may work better than more so-
phisticated ones for the chartists to learn the steady state.
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FIGURE 3.2. Phase plots of(xt, xt−1) for w = 0.5, b = 2, β = 1, v =
0.2682 and four values ofg = 1.46 (upper left),g∗ (upper right), 1.48
(lower left), and 1.52 (lower right).

Proposition 3.2 states that the only bifurcation occurring at an unstable steady state
is the Hopf bifurcation. The nature of the (quasi)-periodicity of the Hopf bifurcation
is determined by values ofθ, which are in turn determined by values ofρ, illustrated
in Table 3.1. For example, letθ/(2π) = 1/12, thenρ = 1.73205 andg∗ = 1.464395,
which corresponds tov = 0.2682 with fixedw = 0.5. To see the price dynamics near
the Hopf bifurcation boundary, we chooseβ = 1, b = 2, w = 0.5, v = 0.2682 and four
different values ofg = 1.46, g∗, 1.48, 1.52. Fig. 3.2 gives the limiting phase plots in
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the (xt−1, xt) plane for these four different values. Forg = 1.46 < g∗, the upper left
panel shows that the trajectories converge periodically to the steady state. Forg = g∗,
the upper right panel shows that the trajectories converge to a period-12 cycle, which
verified the above calculation. Forg = 1.48 > g∗, the lower left panel shows that
the trajectories converge to a quasi-periodic orbit, which is characterized by a closed
orbit in the phase plane. Forg = 1.52(> g∗), the lower right panel shows that the
trajectories converge to a strange attractor. The corresponding bifurcation plot for the
parameterg is given in Fig. 3.3. This illustrates one of many routes to complicated
price dynamics through the Hopf bifurcation.

0.0

2.0

1.0

-1.0

-2.0
1.47 1.48 1.49 1.50 1.51 1.52

x1

g

FIGURE 3.3. Bifurcation plot for the parameterg with w = 0.5, b =
2, β = 1, v = 0.2682.

The effect of the switching intensityβ on the price dynamics is similar to that ob-
served in Brock and Hommes (1998). That is, when the fundamental price becomes
unstable, low switching intensities may lead solutions to converge to quasi-periodic
cycles; however, as the intensity increases, solutions becomes more volatile, leading
to explosive behaviour.

We now examine the effect of the variance adjustment coefficientb of the trend
followers (see equation (2.9)). Note that the local stability conditions are independent
of the variance coefficientb. However, the normal form analysis indicates that the
existence and stability of the bifurcated cycle turn out to depend onb. This observation
leads to a very interesting result—changes inb do affect the price dynamics when the
steady state is unstable, but do not affect the stability of the steady state. To illustrate,
we selectv = 0.3, w = 0.5 andβ = 1. It follows from Table 3.1 that the corresponding
Hopf bifurcation value10 is given byg∗ = 1.4583. Applying Proposition 3.2 to this
bifurcation value, we obtaind = 0.1508 − 0.05169b, implying d = 0 whenb = b∗ =

10SinceC = 0, the bifurcation valueg∗ is independent ofβ.



ASSET PRICING WITH A TIME-VARYING SECOND MOMENT 13

2.917. Hence, the bifurcated (periodic or quasi-periodic) cycle is unstable forb < b∗

and stable forb > b∗. This can be verified by numerical simulations.
In summary, when the chartists are trend followers, the stability of the fundamental

steady state of the nonlinear deterministic system can be characterized by stability,
bifurcation, and normal form analysis. It is found that (i) under-reactions from both
the fundamentalists and trend followers and low switching intensity can stabilize the
fundamental steady state; (ii) the fundamental price becomes unstable when traders
over-react; (iii) the stability of the bifurcated cycle (from the Hopf bifurcation), rather
than that of the fundamental price, depends on the coefficientb of the time-varying
second moment and a high (low) value ofb implies a stable (unstable) bifurcated cycle;
(iv) because of the trend following strategy, prices tend to the positively correlated (as
indicated by the phase plots in Figure 3.2.

4. DYNAMICS OF FUNDAMENTALISTS AND CONTRARIANS

In this section, we consider the situation in which the chartists are contrarians, that
is, g < 0 in model (2.19). Obviously the deterministic system has the same unique
steady state, which corresponds to the fundamental pricep∗. However, the dynamics
are different from the previous case.

Proposition 4.1. Assumeg < 0 for the deterministic system (2.19). There existw1 and
w2 satisfying0 < w1 < w2 < 1/2 such that:

(i) for w > w2, the fundamental pricep∗ of the deterministic system (2.19) is LAS
if

v > v2(g) ≡ −R(x0 + a) + a

x0

− 2aw

x0

g.

In addition, ifv = v2(g) and d̄ 6= 0 with

d̄ ≡ 1

6

1

3 + 2γ1 − γ2

5∑

j,k,l=1

∂3F (0)

∂xj∂xk∂xl

(−1)j+k+l+1, (4.1)

where

γ1 =
vx0 + a(1 + g)

R(x0 + a)
, γ2 = − gaw

R(x0 + a)
,

then a period two cycle bifurcates out of the steady stateX∗ = 0. Furthermore,
the period two cycle is stable when̄d < 0 and unstable when̄d > 0.

(ii) for w < w1, the fundamental pricep∗ of the deterministic system (2.19) is LAS
if

v > v3(g) ≡ c1
1

g
− c2 − c3g.

If v = v3(g), then there exists a pair of complex eigenvalueλ = e±iθ for
the linearized system at the steady state. If, in addition,d 6= 0, whered is
defined by (3.2), then, in the absence of strong resonances (i.e.,eikθ 6= 1 for
k = 1, 2, 3, 4), a Hopf (Neimark-Sacker) bifurcation emanates out of the steady
stateX∗ = 0. Furthermore the bifurcated periodic cycle or quasi-periodic
cycle is supercritical whend < 0 and subcritical whend > 0.
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(iii) for w1 ≤ w ≤ w2, there exists ag∗ < 0 such that the fundamental pricep∗ of
the deterministic system (2.19) is LAS if

v > v2(g) for g ∈ (g∗, 0), v > v3(g) for g < g∗.

In addition, forg ∈ (g∗, 0) andv = v2(g), flip bifurcations occur when̄d 6= 0,
while for g < g∗ and v = v3(g) Hopf (Neimark-Sacker) bifurcations occur
whend 6= 0. In addition, the bifurcated orbit is stable (unstable) whend̄ <
0(d̄ > 0) near the flip boundary andd < 0(d > 0) near the Hopf bifurcation
boundary.

Proof. See Appendix A.3. ¤

v

1

0
g

Stability Region

Flip Bifurcation

(a)

v

1

0
g

Stability Region

Hopf Bifurcation

(b)

1

FIGURE 4.1. Local stability region of the steady state forg < 0 and
(a) the flip bifurcation boundary forw ∈ [w2, 1], (b) the Hopf bifurca-
tion boundary forw ∈ [0, w1].

Based on Proposition 4.1, the local stability region of the steady state and the cor-
responding bifurcation boundaries for the three different cases are plotted in(g, v)
parameter space in Figs. 4.1 and 4.2, respectively. They illustrate that the fundamental
price is locally stable when the contrarians under-react. Note that bothv2(g) andv3(g)
decrease asg increases. This implies that the stability region of the extrapolation rate
of the contrarians (i.e. parameterg) is enlarged when the fundamentalists over-react
(i.e. whenv increases). However, it is very interesting to notice that, different from the
case when chartists are trend followers, the fundamental steady state price becomes
unstable through either flip (forw > w2), or Hopf (for w < w1), or both types of
bifurcation (forw1 < w < w2), depending on the weight parameterw.

When the contrarians put less weight (i.e.w < w1) on the more recent price, the
steady state fundamental price becomes unstable through a Hopf bifurcation. For fixed
w = 0.3, Table 4.1 lists the Hopf bifurcation valuesg∗h and the corresponding values
of ρ for variousv. One can see that, asv increases, the stability region for the extrapo-
lation rateg∗h is enlarged. Also, numerical calculations show that, asw increases (up to
w = 0.46), the Hopf bifurcation is shifting to the left in Fig. 4.1(b). In other words, as
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v

1

0
g

g
∗

Stability Region

Hopf Bifurcation

Flip Bifurcation

1

FIGURE 4.2. Local stability region of the steady state and the bifur-
cation boundaries forg < 0 andw ∈ (w1, w2).

the weightw increases (up to a certain value), the stability region for the extrapolation
rate is enlarged.

v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g∗h -2.4597 -2.4977 -2.5361 -2.5749 -2.6142 -2.6538 -2.6938 -2.7342 -2.7749 -2.8161 -2.8576
ρ -1.5904 -1.5727 -1.5538 -1.5384 -1.5217 -1.5054 -1.4894 -1.4738 -1.4584 -1.4434 -1.4286

TABLE 4.1. Hopf bifurcation valuesg∗h for various v and w =
0.3, a1 = a2 = 0.8, β = 0, C = 0.

When the contrarians put more weight (i.e.w > w2) on the more recent price, the
steady state loses local stability through a flip bifurcation. For fixedw = 0.9, Table
4.2 lists the flip bifurcation valuesg∗f for variousv. As v increases, the stability region
for the extrapolation rateg is enlarged. Numerical calculations also show that the flip
bifurcation boundary in Fig. 4.1(a) is shifting to the left asw increases, enlarging the
stability region for the extrapolation rate.

v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g∗f -1.6669 -1.7224 -1.7780 -1.8336 -1.8891 -1.9447 -2.0002 -2.0558 -2.1113 -2.1669 -2.2224

TABLE 4.2. Flip bifurcation valuesg∗f for variousv andw = 0.9, a1 =
a2 = 0.8, β = 0, C = 0.

When the weight parameterw ∈ (w1, w2) with 0 < w1 < w2 < 1/2, the funda-
mental steady state price loses its stability through both flip and Hopf bifurcations as
indicated in Fig. 4.2. Table 4.3 lists the bifurcation valuesg∗ for variousw with fixed
v = 0.5. In this case,w∗ ∈ (0.4, 0.5) andg∗ correspond to Hopf bifurcation values
for w < w∗ and flip bifurcation values forw > w∗. A similar result is also found
in Chiarella and He (2003a) when agents learn from a weighted average process. In
other words, Hopf bifurcations occur when less weight is given to the most recent
price, while flip bifurcations occur when more weight is given to the most recent price.
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w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
g∗ -2.0487 -2.3127 -2.6538 -3.1110 -3.5004 -2.917 -2.5003 -2.1876 -1.9447

TABLE 4.3. Hopf bifurcation valuesg∗ for w < w∗ and flip bifurca-
tion valuesg∗ for w > w∗ with w∗ ∈ (0.4, 0.5) andv = 0.5, a1 = a2 =
0.8, β = 1, C = 0.

Guided by the stability, bifurcation, and normal form analysis, we now examine the
dynamics of the nonlinear system (2.19) by using numerical simulations.
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FIGURE 4.3. Phase plots of(xt, xt−1) for g = −2.6,−2.7,−4,−5
(top left),g = −6 (top right),g = −7 (bottom left) andg = −8 (bottom
right) with fixedw = 0.3, v = 0.5, β = 0, b = 1, a1 = a2 = 0.8, C = 0.

We first examine the effect of extrapolation when the weighting parameter is low.
To illustrate, we selectw = 0.3, v = 0.5, C = 0, β = 0, b = 1. In this case, the
fundamental steady state is locally stable forg > g∗h = −2.6538 and loses its stability
through a Hopf bifurcation atg = g∗h. Similarly, the nature of the Hopf bifurcation is
determined by the values ofρ. In addition, using (3.2), one can verify that there exists
a b∗ ∈ (0, 1) such thatd < (>)0 for b > (<)b∗, implying that the bifurcated cycles
are stable forb > b∗ and unstable forb < b∗. Fig. 4.3 illustrates phase plots of the
system for various values ofg. It shows that, as the contrarians extrapolate weakly,
the solutions converge to either the steady state (forg > g∗) or (quasi-)periodic cycles
(for g = −2.7,−4,−5 < g∗). The corresponding bifurcated cycle is stable forg
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nearg∗h. However, as the contrarians extrapolate strongly, solutions converge to some
strange (forg = −6,−7) and even chaotic (forg = −8) attractors. The corresponding
bifurcation diagram in the parameterg is plotted in Fig. 4.4.
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0.0
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20.0

-10.0

g

x1

FIGURE 4.4. Bifurcation plot for the parameterg with fixed w =
0.3, v = 0.5, β = 0, b = 1, a1 = a2 = 0.8, C = 0.

The effect of extrapolation when the weighting parameter is high can be different
from the previous case. To illustrate, we choosew = 0.9 andv = 0.5, C = 0, β =
0, b = 1. Then the steady state is locally stable forg > g∗f = −1.9447 and loses
its stability through a flip bifurcation atg = g∗f . Using (4.1), one can verify that
d̄ < 0 for all b ≥ 0, implying that the bifurcated 2-period cycle is always stable
for all b ≥ 0 wheng = g∗f . Fig. 4.5 illustrates phase plots of the system forg =
−3,−4,−5,−5.5,−6. The corresponding bifurcation diagram for the parameterg is
given in Fig. 4.6. It shows that, as the contrarians increase their extrapolation activity,
the dynamics lead to a period doubling bifurcation (forg = −3) first, and then two
symmetric closed quasi-periodic cycles (forg = −4), and then to strange attractors
(for g = −5,−6). Note that, forg = −5.5, solutions converge to two 14-periodic
cycles. This shows a different route to complicated dynamics.

The effect of switching intensityβ is also different. To illustrate, we choosew =
0.48, v = 0.5, C = 0, b = 1. In this case the steady state is locally stable forg >
g∗ = −3.6057 and a Hopf bifurcation occurs forg = g∗. For fixedg = −6, Fig. 4.7
illustrates phase plots of the system forβ = 0 (top left),β = 0.01 (top right),β = 0.03
(bottom left), andβ = 0.1 (bottom right). Different from the findings in Brock and
Hommes (1998) and in the previous section, an increase in the switching intensity may
stabilize the dynamics. This may due to the stabilizing nature of both fundamental and
contrarian strategies.
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FIGURE 4.5. Phase plots of(xt, xt−1) for g = −3,−4,−5,−5.5 (left)
andg = −6 (right) with fixedw = 0.9, v = 0.5, β = 0, b = 1, a1 =
a2 = 0.8, C = 0.
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FIGURE 4.6. Bifurcation plot for the parameterg with fixed w =
0.9, v = 0.5, β = 0, b = 1, a1 = a2 = 0.8, C = 0.

In summary, for the model with contrarians, it is found that (i) within the local stabil-
ity region, low (high) extrapolations of the contrarians are associated with under(over)-
reactions of the fundamentalists; (ii) depending on the weight parameter, there are
different routes (through either flip, or Hopf, or both bifurcations) to complicated dy-
namics when the fundamental price becomes unstable; (iii) the bifurcated period-two
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FIGURE 4.7. Phase plots of(xt, xt−1) for β = 0 (top left),β = 0.01
(top right), β = 0.03 (bottom left) andβ = 0.1 (bottom right) with
fixedw = 0.48, v = 0.5, g = −6, b = 1.

cycle through a flip bifurcation is always stable near the bifurcation value, while the bi-
furcated (quasi-)periodic cycle through a Hopf bifurcation is stable (unstable) for high
(low) values ofb near the bifurcation value; (iv) because of the stabilizing nature of
both the fundamental and contrarian strategies, the price dynamics are less explosive,
but more sensitive to the switching intensity between the two strategies; (v) because of
the contrarian strategy, prices tend to negatively correlated (as indicated by the phase
plots); (vi) an increase in the variance coefficientb has a stabilizing effect.

5. CONCLUSIONS

We present a simple asset pricing model with fundamentalists and chartists to study
market price behaviour of the risky asset when chartists estimate both conditional mean
and variance by using a weighted averaging process. Within our model, the under-
reactions from both the fundamentalists and chartists can stabilize the fundamental
price. However, when the fundamental price becomes unstable, the weighting process
has a different effect on the market price behaviour, depending on whether the chartists
behave like trend followers or contrarians. When the chartists are trend followers, the
fundamental price becomes unstable through Hopf bifurcation only for all values of
the weighting parameter. However, when the chartists are contrarians, the fundamental
price becomes unstable through a Hopf bifurcation only when the weighting parameter
is low, a flip bifurcation only when the weighting parameter is high, and either Hopf or
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flip bifurcations when the weighting parameter is near 0.5. Using a normal form analy-
sis, it is found that the time-varying second moment coefficient is clearly related to the
stability of bifurcated orbits, rather than to the stability of the fundamental price. Near
the flip bifurcation boundary, the bifurcated period-two cycle is stable for all values of
the coefficients, but near the Hopf bifurcation boundary, the bifurcated (quasi)periodic
cycle is stable (unstable) when the value of the coefficient is high (low). To our knowl-
edge, this is the first theoretical result on the role of a time-varying second moment on
the stability of both the fundamental price and bifurcating orbits within the heteroge-
neous agent asset pricing framework. Different routes to complicated price dynamics
from this weighting process are also observed.

The interplay between stochastic elements and deterministic dynamics is an inter-
esting and important issue for model calibration. By assuming a random walk funda-
mental price process and introducing a noise trader to clear the market, a stochastic
version of the deterministic model established in this paper is examined in Chiarellaet
al. (2005). The relationship between the statistical properties of the stochastic version
and the stability and bifurcation of the underlying deterministic version, such as return
autocorrelation patterns of the stochastic version and types of bifurcation of the under-
lying deterministic version, is examined. It is found that the model displays some of
the stylised facts observed in high frequency financial data, such as fat tails, skewness
and high kurtosis. The model also has the potential to generate volatility clustering
and long memory features, which are the focus of much current research.

Appendix A. PROOF OFPROPOSITIONS

A.1. Proof of Proposition 3.1. Let X = X∗ be the steady state of the corresponding
deterministic system of (2.19). ThenX∗ satisfiesX∗ = G(X∗), which is equivalent to
x∗ = F (x∗, x∗, x∗, x∗, x∗). Let

m∗ = tanh

[
β

2
(1−R)

(
v −R

A1

− 1−R

A2

)
x∗2 − β

2
C

]
.

Thenx∗ satisfies

x∗ =
v(1 + m∗)x∗ + a(1−m∗)x∗

R(1 + m∗) + Ra(1−m∗)
. (A.1)

It follows that eitherx∗ = 0 or

(Ra−R + v − a)m∗ = RA + R− v − a. (A.2)

If Ra−R + v − a = 0, then (A.2) cannot hold. IfRa−R + v − a 6= 0, then

m∗ =
Ra + R− v − a

Ra−R + v − a
.

It is easy to see that|m∗| > 1. Thereforex∗ = 0 is unique fixed point.

A.2. Proof of Proposition 3.2. Let m0 = tanh(−β
2
C), and

x0 =
1 + m0

1−m0
= e−βC > 0. (A.3)
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We first examine the local stability and bifurcation. At the steady stateX = 0,

γ1 =
∂F

∂x1

∣∣∣∣
X=0

=
vx0 + a(1 + g)

R(x0 + a)
,

γ2 =
∂F

∂x2

∣∣∣∣
X=0

= − gaw

R(x0 + a)
,

γ3 =
∂F

∂x3

∣∣∣∣
X=0

= −ga(1− w)

R(x0 + a)
,

∂F

∂x4

∣∣∣∣
X=0

= 0,
∂F

∂x5

∣∣∣∣
0

X = 0 = 0.

Correspondingly, the Jacobin matrix of the system at the steady state is given by

J ≡




γ1 γ2 γ3 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




.

Hence the characteristic equation satisfies

Γ(λ) ≡ λ2(λ3 − γ1λ
2 − γ2λ− γ3) = 0.

Denote
π(λ) = λ3 − γ1λ

2 − γ2λ− γ3.

Then two of the eigenvalues ofΓ(λ) areλ4,5 = 0 (double), while the rest of three
eigenvalues satisfyπ(λ) = 0. Following from Jury’s test, all the eigenvalues ofπ(λ)
satisfy|λ| < 1 iff

(i) π1 ≡ π(1) = 1− γ1 − γ2 − γ3 > 0;
(ii) π2 ≡ (−1)3π(−1) = 1 + γ1 − γ2 + γ3 > 0;
(iii) π3 ≡ 1 + γ2 + γ3(γ1 − γ3) > 0;
(iii) π4 ≡ 1− γ2 − γ3(γ1 + γ3) > 0.

Note that

π1 =
(R− v)x0 + (R− 1)a

R(x0 + a)
> 0, (A.4)

π2 =
(R + v)x0 + a(R + 1 + 2gw)

R(x0 + a)
, (A.5)

π3 =
R2(x0 + a)2 − gawR(x0 + a)− (vx0 + a + ga)ga(1− w)− g2a2(1− w)2

R2(x0 + a)2
,

(A.6)
and

π4 =
R2(x0 + a)2 + gawR(x0 + a) + (vx0 + a + ga)ga(1− w)− g2a2(1− w)2

R2(x0 + a)2
.

(A.7)
Henceπ1 > 0 is always satisfied.

For g > 0, π2 > 0 andπ3 > 0 implies π4 > 0. Hence, all four conditions are
reduced toπ3 > 0. Therefore, the steady state is LAS ifπ3 > 0.
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For w = 1, π3 > 0 is reduced to the conditiong < g1 ≡ R(xo + a)/a and hence
the stability condition becomesg < g1 for w = 1. Forw ∈ [0, 1), solvingv from the
conditionπ3 > 0 leads to

v < v3(g) ≡ c1
1

g
− c2 − c3g, (A.8)

wherec1, c2 andc3 are defined as in Proposition 3.1. Hence the steady state is LAS if
v < v3(g) for w ∈ [0, 1).

Forw ∈ [0, 1), solvingg from v = v3(g) leads to

g+ =
1

2c3

[− (c2 + v) +
√

(c2 + v)2 + 4c1c3

]
.

One can verify thatg+ → g1 asw → 1.
It follows from π1 > 0 andπ2 > 0 that both saddle-node and flip bifurcations can

not occur. Hence the steady state becomes unstable only through the Hopf bifurcation
boundaryv = v3(g). Along the Hopf bifurcation boundary, the three eigenvalues must
satisfyλ1 ∈ (−1, 1) andλ2,3 = e±θi. This leads to

ρ + λ1 = γ1, 1 + ρλ1 = −γ2, λ1 = γ3, (A.9)

whereρ = 2 cos(θ). Forw ∈ [0, 1), usingπ3 = 0, one obtains that

ρ = γ1 − γ3 = −1 + γ1

γ3

=
R(x0 + a)− gaw

ga(1− w)
. (A.10)

For w = 1, the Hopf bifurcation boundary is given byg = g1, v ∈ [0, 1]. In this
case,λ1 = γ3 = 0, γ2 = −1 and ρ = γ1 = [vxo + a(1 + g1)]/[R(xo + a)] =
1+(vxo +a)/[R(xo +a)]. The nature of the Hopf bifurcation depends onθ, and hence
on the values ofρ. Note that, along the Hopf bifurcation boundary,g is a function of
v. Therefore types of Hopf bifurcation depend on the speed of the price adjustment
of the fundamentalists towards the fundamental price, the extrapolation rate, and the
weighting parameterw of the trend followers.

We now conduct a normal form analysis to show the existence and stability of the
Hopf bifurcation. Let the eigenvalues ofJ beλ1 ∈ (−1, 1), λ2 = eiθ, λ3 = λ̄2. Then

γ3 = λ1,
γ1 = eiθ + e−iθ + λ1,
γ2 = 1 + (eiθ + e−iθ)λ1.

(A.11)

Let q, p ∈ C5 be such thatJq = eiθq, JT p = e−iθp and 〈p, q〉 = 1, where〈., .〉
is the usual inner product. Then we can takeq = (e4iθ, e3iθ, e2iθ, eiθ, 1)T andp =

(1, e−iθ − γ1, e
iθγ3, 0, 0)T p1, wherep1 = e4iθ

2+e3iθγ3−eiθγ1
. A Neimark-Sarker bifurcation

occurs if the following value is not equal to zero (see Kuznetsov (2004)):

d ≡1

2
Re{e−iθ[〈p, C(q, q, q̄)〉+ 2〈p, B(q, (E − A)−1B(q, q̄)〉

+ 〈p,B(q̄, (e2iθE − A)−1B(q, q)〉]},
whereC(q, q, q), B(q, q) ∈ R5 and

Ci(q, q, q) =
5∑

j,k,l=1

∂3Gi(0)

∂xj∂xk∂xl

qjqkql,
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Bi(q, q) =
5∑

j,k=1

∂2Gi(0)

∂xj∂xk

qjqk,

E is the identity matrix. Note that∂
2Gi(0)

∂xj∂xk
= 0, i, j, k = 1, ...5. Hence

d = 1
2
Re{e−iθ[〈p, C(q, q, q̄)〉]}

= 1
2

1
e−3iθ−e−iθ+γ3(1−e−2iθ)

∑5
j,k,l=1

∂3F (0)
∂xj∂xk∂xl

e(j+k−l−5)iθ.
(A.12)

A.3. Proof of Proposition 4.1. Following from the first part of the proof of Propo-
sition 3.1 in Appendix A.2, all the three eigenvalues ofπ(λ) = 0 satisfy |λ| < 1
iff πi > 0 for i = 1, 2, 3, 4. π1 > 0 is always satisfied. Hence the stability bound-
aries of the local stability region of the steady state depend on the relative positions of
π2 = π2 = π4 = 0 on the(g, v) parameter plane. Solving forv in terms ofg from
π2 = π3 = π4 = 0 leads to the following equations, respectively,

v2(g) = −R(x0 + a) + a

x0

− 2aw

x0

g,

v3(g) = c1
1

g
− c2 − c3g,

v4(g) = −c1
1

g
− c2 − aw

x0

g.

Forw = 1, π2 > 0, π3 > 0 andπ4 > 0 are equivalent to

g > − 1

2a
[R(xo + a) + vx0 + a], g <

R(xo + a)

a
, g > −R(xo + a)

a
,

respectively. Givenv ∈ [0, 1] andR > 1, these three conditions are reduced tog >
− 1

2a
[R(xo + a) + vx0 + a], which is equivalent to

v > −R(xo + a) + a + 2ag

xo

.

In addition, along the boundary, one of the eigenvalues is−1, and hence a flip bifurca-
tion occurs.

Now let w ∈ [0, 1). Note thatv = v2(g) is a straight line with slop−2aw
x0

, which
is decreasing from 0 to− 2a

x0
asw varies from 0 to 1;v = v3(g) is concave up and

decreasing from+∞ to −∞ for g ∈ (−∞, 0), and it moves to the left asw varies
from 0 to 1;v = v4(g) is concave down andlimg→−∞ v4(g) = limg→0− v4(g) = +∞.

The relative position of the two curvesv = v3(g) andv = v4(g) is determined by

v43 = v4(g)− v3(g) = −2c1
1

g
+ (c3 − aw

x0

)g.

Hencev43 = 0 implies thatg = g43 = − (x0+a)R
a(1−w)

. Note that

v4(g43) = v3(g43) =
(x0 + a)R− a

x0

> 1.

Therefore two curvesπ3 = 0 and π4 = 0 intersect at one point, which is always
above the linev = 1. It is easy to see that∂v4

∂g
(g43) = a(1 − 2w)/x0 < 0, = 0, > 0

if w > 1
2
, = 1

2
, < 1

2
respectively. The relative positive positions of those curves are

plotted in Fig. A.1. Obviously, forw ≤ 1/2, the stability conditions are reduced to
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π2 > 0 andπ3 > 0. It can be shown11 that this is also true forw > 1/2. Therefore,
the boundaries of the stability of the steady state are determined byπ2 = π3 = 0.

v

g

π3 = 0

π4 = 0

π1 = 0

w >
1

2

v

g

π3 = 0

π4 = 0

π1 = 0

w =
1

2

v

g

π3 = 0

π4 = 0

π1 = 0

w <
1

2

1

FIGURE A.1. Relative position ofπi = 0 for i = 1, 3, 4.

The relative position of the curvesv = v2(g) andv = v3(g) is determined by

v32 = v3(g)− v2(g) =
(x + a)2R2

ax0(1− w)

1

g
+

(Rx0 + a)(1− 2w)

x0(1− w)
+

a(3w − 2)

x0

g.

It is easy to see that, forg < 0, v32 < 0 for w ≥ 2
3
, andv = v32(g) is decreasing from

+∞ to−∞ for g ∈ (−∞, 0) if w ∈ [0, 2
3
). Therefore, whenw ≥ 2

3
, the linev = v2(g)

is above the curvev = v3(g). Hence the stability conditions are reduced toπ2 > 0
and the stability region is bounded by flip bifurcation boundary only. Whenw < 2

3
,

there is a unique intersection for these two curves, and the relative position is shown
as Figure A.2. Consequently, there existw1 andw2 satisfying0 < w1 < w2 < 2/3
such that the intersection of these two curvesv = v2(g) andv = v3(g) is located in the
band region0 ≤ v ≤ 1 if w1 ≤ w ≤ w2.

Note that the curvesv = v1(g) andv = v2(g) intersect wheng = g12 = −(2Rx0 +
Ra + a)/(2aw). Obviously,g12 increases andg43 decreases forw ∈ (0, 1). Also,
g12 < g43 for w = 0 andg12 > g43 for w = 1/2. Hencew2 < 1/2.

We now conduct the normal form analysis.J has an eigenvalue of−1 if and only if
γ3 = −1− γ1 + γ2. Now we assume that this condition holds. Then a flip bifurcation
may occur, depending on the value of coefficient of the third order term in the normal
form. We now give the computation for the flip bifurcation.

Let q = (1,−1, 1,−1, 1)T andp = (1,−1− γ1, 1 + γ1 − γ2, 0, 0)T /(3 + 2γ1 − γ2).
ThenAq = −q, AT p = −p and〈p, q〉 = 1. The type of the flip bifurcation depends on
the value

d̄ ≡ 1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− E)−1B(q, q))〉,

11In fact, π2 = π4 = 0 intersect atg = g24 = −R(x0 + a)/(aw). Note thatv′4(g24) = aw(2w −
1)/(x0(1 − w)), which is positive forw > 1/2 and negative forw < 1/2. Hence, forw > 1/2, if
g24 < g < 0, the curveπ4 = 0 is above the curveπ2 = 0. Therefore,π4 > 0 whenv ≤ 1 andg > g24.
The stability boundaries are then determined byv = 0, v = 1 andπ2 = 0.
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v

g

v = v2(g)

v = v3(g)

w ≥
2

3

v

g

v = v2(g)

v = v3(g)

w <
2

3

1

FIGURE A.2. The relative position ofv = v2(g) andv = v3(g) for
bothw ≥ 2/3 andw < 2/3.

whereC(q, q, q), B(q, q) ∈ R5 are defined in the previous proof. Note that∂2Gi(0)
∂xj∂xk

=

0, i, j, k = 1, ...5. Sod̄ = 1
6
〈p, C(q, q, q)〉. Hence

d̄ =
1

6

1

3 + 2γ1 − γ2

5∑

j,k,l=1

∂3F (0)

∂xj∂xk∂xl

(−1)j+k+l+1.

The normal form calculation for the flip bifurcation is given in the proof of Proposition
3.2 in Appendix A.2.
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