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Abstract. Monetary policy has pursued the concept of inflation targeting.
This has been implemented in many countries. Here interest rates are
supposed to respond to an inflation gap and output gap. Despite long term
continuing growth of the world financial assets, recently, monetary policy,
in particular in the U.S. after the subprime credit crisis, was challenged by
severe disruptions and a meltdown of the financial market. Subsequently,
academics have been in search of a type of monetary policy that does allow
to influence in an appropriate manner the investor’s behavior and, thus, the
dynamics of the economy and its financial market. The paper suggests a
dynamic portfolio approach. It allows one to study the interaction between
investors‘ strategic behavior and monetary policy. The article derives rules
that explain how monetary authorities should set the short term interest
rate in interaction with inflation rate, economic growth, asset prices, risk
aversion, asset price volatility, and consumption rates. Interesting is that the
inflation rate needs to have a certain minimal level to allow the interest rate
to be a viable control instrument. A particular target interest rate has been
identified for the desirable optimal regime. If the proposed monetary policy
rule is applied properly, then the consumption rate will remain stable and
the inflation rate can be kept close to a minimal possible level. Empirical
evidence is provided to support this view. Additionally, in the case of an
economic crisis the proposed relationships indicate in which direction to act
to bring the economy back on track.
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“... under the mandate it has been given by the Congress, the Federal Reserve
has a responsibility to take monetary policy actions to minimize the damage that
financial instability can do to the economy. .. Pursuing such policies does help
financial markets recover from episodes of financial instability, and so it can help
lift asset prices.” Frederic Mishkin (2007)

1 Introduction

It seems appropriate in current critical times to acknowledge the fact that the
financial market and economic activity strongly interact, representing some chal-
lenge for monetary policy. The question is what the quantitative relationships
are and what appropriate monetary policy rules should be. In times of normal
economic activity it has turned out that monetary policy, which sets the interest
rate appropriately, is sufficient to keep the economy on a sound path.

One of the most important recently established monetary policy rules was the
Taylor rule. Taylor (1993) has put forward the concept of inflation targeting,
suggesting the short term interest rate to respond to the inflation and output
gap. It has been made popular by economic research, for example by the works of
Svensson (1997, 1999) and Woodford (2003). The latter, among others, extended
the concept of inflation targeting to an optimizing framework, introducing some
optimal Taylor rule.

Yet, from early on, the question came up of whether the monetary authorities
should also give some weight to asset price movements. In the context of the
Bernanke, Gertler & Gilchrist (1999) framework of an imperfect capital market,
net worth moves procyclically and the financial accelerator can magnify distur-
bances. On the other hand, it has been proposed that asset price movements
should only be taken into account as much as they affect the inflation rate. It
was assumed that a central bank that responds strongly to inflation pressures
eliminates much of the distortionary effects of asset price movements on eco-
nomic activity. It should be mentioned that some monetary authorities refer to
the Tinbergen rule which says that one needs as many instruments in monetary
policy as there are targets.

Cecchetti et al. (2000) argued that monetary authorities would obtain beneficial
effects when responding to asset prices. This, in particular, should hold if there
are exogenous bubbles or non-fundamental asset price movements. In this con-
text Dupor (2005) emphasizes that capital valuations are impacted by asset price
bubbles which causes distortions in aggregate demand. Thus, the monetary au-
thority, by reducing distortions owing to variations in the return on capital, may
generate beneficial effects on real activity by also giving weight to asset prices.

Others have argued that these asset price bubbles could be seen as resulting
from asset price booms that occur in conjunction with changes in the underlying
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economic fundamentals, see Beaudry & Portier (2004). Along those lines, some
literature has attempted to construct models where bubbles arise due to misper-
ceived technology shocks, see Christiano, Motto & Rostagno (2005), suggesting
that asset prices should not be targeted by central banks.

Asset prices have become also important in the studies on the Japanese deflation
of the 1990s. In the last ten years, the literature has focused on the Japanese
deflationary experience and argued that when asset prices and product prices
decline and inflation rates approach zero, or become negative, there will be a
zero bound of the nominal interest rate that may create a liquidity trap for
monetary authorities. Central banks may not be able any longer to effectively
steer the economy with monetary policy to some targets, see Coenen & Wieland
(2004) and Eggertsson & Woodford (2003). When interest rates hit the zero level
bound, Bernanke, Reinhard & Sack (2004) have brought the monetary policy of
“quantitative easing” into the discussion, which is to provide the private economy
– suffering from a burst of an asset price bubble – with liquidity by providing
capital for credit, purchasing “bad assets” of the banking sector3. Now fiscal
policy has been added as policy tool reviving the economy through government
spending.

The experience of the extensive subprime crisis in the U.S. since the middle of
2007, and the subsequent global financial market meltdown and banking crisis
and their serious effect on real economic activity has shifted the emphasis to the
study of monetary policy in the context of asset markets. Asset price movements
since the beginning of 2008 entailed huge portfolio losses and led to extensive
rebalancing of portfolios, namely movements out of complex derivative securities,
real estate, stocks and commodities into treasury bonds and cash. The monetary
authority in the U.S., but also other central banks and governments worldwide,
reacted with extreme interest rate reductions, support for banks and substantial
government spending plans. In the U.S. interest rates were reduced from 5.25%
in 2007 to 0.25% in December 2008, yielding to virtually zero interest rates.
Moreover, the asset price deflation, the large losses in portfolios, and the danger
of a catastrophic meltdown, has led monetary policy to react strongly, not only
in terms of interest rate reduction by the monetary authority, but also in terms
of “quantitative easing”.4

Under these extreme conditions the study of the effects of monetary policy in
the context of asset accumulation and dynamic portfolio models have become
a challenging issue. The approach of this paper uses optimal asset allocation
in a dynamic setting. The resulting optimal solution implies certain relation-
ships between key quantities. This dynamic portfolio approach makes visible,
for instance, not only the transmission mechanism through which the financial

3The concept was already put forward by Bernanke, Reinhard & Sack (2004). It has been
pursued in the U.S. since the Fall of 2007, when the financial market meltdown became visible.

4Quantitative easing improves banks’ and firms’ balance sheets and is supposed to unlock
the credit channel.
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meltdown is translated into a real economic meltdown, but will allow us to study
properly the effectiveness and limitations of monetary policy. Such policy should
be conducted recognisant of the optimal relationships we are revealing.

The application of a portfolio model to macroeconomics has already been favored
by Tobin (1969, 1980) and Frankel (1995), to name a few. But this was mainly
a portfolio theory of static type. What is needed is a dynamic portfolio theory
that permits the economic agents to strategically respond to expected future re-
turns, inflation, interest rate, and other factors. Campbell & Viceira (2002) have
contributed in a seminal way to enhance our understanding of the potential of
dynamic portfolio theory and strategic asset allocation. They give an important
role to nominal and real bonds in financial investments and show how different
types of investors, that is investors with different risk aversion and different time
horizon, would react to a change of an investment environment created by mon-
etary policy. They also show that inflation rates, which the central banks try
to target, affect the composition of asset holdings strongly. They, for example,
demonstrate how the anti-inflation interest rate policy of the Volcker-Greenspan
area had substantial effects on the composition of asset holdings and, thus, on
the economy.

Whereas Campbell & Viceira (2002) when exploiting martingale properties of
asset prices use assumptions such as constant variances, constant expected risk
premia,5 a constant consumption-wealth ratio and the existence of an equivalent
risk neutral probability measure, in order to undertake a log-linearization of their
models, these assumptions do not seem to be too realistic if one studies the
interaction of monetary policy and the asset markets in more general terms over
long periods of time. Moreover, the impact of strategic portfolio shifts on the
real economy, for example, caused by strong asset price movements and monetary
policy changes, is not considered further in the literature. But this has become
an important trigger for the current deep and extensive recession.

Our approach suggested here is closely related to the work of Campbell & Viceira
(2002). We also introduce the distinction between nominal and real assets, and
use a martingale approach, however, the latter very generally under the real world
probability in the sense of Platen & Heath (2006). The key economic factors like
inflation rate, consumption rate, expected return, and volatility can be general
stochastic processes. Moreover we pursue more of a nonlinear approach when we
spell out a new interest rate rule and new inflation rate rule as a consequence
of the dynamic portfolio approach. As we show, there can arise important knife
edge problems in the interrelation of economic growth, inflation rate, interest
rate, risk aversion, return on the assets and consumption rate. These relations
are nonlinear ones and will be studied as such.

Overall, what we aim for is a better understanding about the impact of monetary
policy under extraordinary and, of course, also normal circumstances. It will turn

5For example, in Chapter 3 of the book by Campbell & Viceira (2002).

4



out that if monetary policy is not cautiously implemented with a long term view
for a sustainable economic and financial development, then situations may arise
where the economy cannot be controlled via monetary policy and can suffer for
long periods of time even with strong government intervention.

The paper will describe an interest rate rule that gives an understanding where
the interest rate should be set under given circumstances to ensure a sound long
term evolution of the economy and its financial market. In particular, the interest
rate it has to be set in the proposed interest rate rule at about

it =
(
at − γ σ2

t (1− |1− αt|)
)+

,

where at can be interpreted as the expected return of the equity index, γ as the
risk aversion, αt as the fraction of wealth invested in the equity market and σt

as the volatility of the equity index, where x+ = max(0, x). We will also indicate
how to reach a situation where monetary policy can safely operate and how to
maintain such a regime. In this context the importance of a critical minimal level
of the inflation rate will be emphasized by the inflation rate rule suggesting a
typical level of inflation at about

πt = at − ct +
γ σ2

t

2
αt (αt − 1),

and not much smaller, where ct is the consumption rate. A sufficient stimulus for
the economy can be shown to be essential to bring the economy back on track
in case zero interest rates emerge. Also the increase of the actual inflation which
lowers the real interest rate, may become necessary to steer the economy back
into an optimal dynamics. Removing “bad assets” and “quantitative easing” can
calm the volatility down, which acts in a similar direction. Finally, more foreign
debt in an economy which has already borrowed also helps to bring the interest
rate back into positive territory.

The paper is organized as follows. Section 2 considers the asset market dynamics
in the context of a dynamic portfolio decision model with the usual budget equa-
tions. Section 3 studies the optimal market dynamics and derives our proposed
interest rate and inflation rate rules. Section 4 provides comments on monetary
policy, pursued during the current and previous financial market meltdowns. Sec-
tion 5 then discusses some empirical facts illustrating our proposed interest rate
rule. Section 6 concludes the paper.

2 Asset Market Dynamics and Budget Equation

A common hypothesis about the behavior of asset prices is that they follow Itô
processes, see Merton (1992) and Cochrane (2001). We consider a continuous-
time market with continuous asset prices, where we examine a portfolio opti-
mization problem for given capital consumption as fraction of total wealth. To
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simplify our analysis, we model the fixed income segment of the market by a
locally riskless savings account and all risky investments via an aggregation into
a risky asset index.

Income from capital is generated through dividends from the risky asset index
and interest from the locally riskless savings. Additionally, capital gains on in-
vestments in the assets may benefit the investor. To model short term bonds we
introduce the locally riskless asset βt, which is also called the savings account,
where

βt = exp

{∫ t

0

is ds

}
, (2.1)

with nominal interest rate process i = {it, t ≥ 0}. The risky asset Pt shall
be interpreted as market capitalization weighted total return asset index. It is
assumed to satisfy the stochastic differential equation (SDE)

dPt = Pt (at dt + σt dzt) (2.2)

for t ≥ 0 with P0 > 0. Here z = {zt, t ≥ 0} denotes a standard Wiener process.
We ensure that the volatility σt > 0 of the asset index is always strictly positive.

To bring the average cost of living, for instance housing, energy and food into the
picture, we introduce a consumer price index It, satisfying the expression

It = exp

{∫ t

0

πs ds

}
, (2.3)

with inflation rate process π = {πt, t ≥ 0}.
The consumption rate process c = {ct, t ≥ 0} models the rate at which capital is
taken out of the financial market. This includes dividends and interest payments,
but also share buy backs, new share issues and similar activities. We assume, for
simplicity, that ct > 0 satisfies the equation

ct = c0 exp

{∫ t

0

es ds

}
(2.4)

for t ≥ 0 with c0 > 0. Here e = {et, t ≥ 0} denotes the growth rate process of
the consumption rate. If the consumption rate does not change, then we simply
have et = 0.

We assume that all processes a, σ, i, π, and e can be stochastic and there exists a
unique market dynamics where the following manipulations and statements are
meaningful. Therefore, these processes can have rather general dynamics which
can be specified later to study, for instance, feedback effects.

The wealth process W = {Wt, t ≥ 0} shall be interpreted as the total wealth of
all investors.6 They invest at time t the fraction αt in the risky asset index Pt

6Note that we can interpret total wealth here as the one generating income including equity,
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and the remainder in the locally riskless savings account βt. Note, for αt > 1 the
investors borrow locally riskless to invest in the risky asset index. For convenience,
we suppress in our notation the dependence of W on the choice of the fraction α,
see also Campbell & Viceira (2002) (Ch. 5.2). Since financial capital is consumed
with the given positive rate ct at time t, the SDE for the total wealth process is
of the form

dWt = Wt ((1− αt)it dt− ct dt + αt(at dt + σt dzt)) (2.5)

for t ≥ 0 with W0 > 0.

It is a challenge to interpret and understand the interplay between inflation rate,
interest rate, expected return, consumption rate, market volatility and the frac-
tion invested in the risky asset index. The government and monetary authority
have a responsibility to provide conditions so that the economy develops in the
long run sustainably and efficiently. From the beginning it should not be ignored
that in the long run the agents can only consume what is produced so that some
intertemporal budget constraint holds.

In monetary policy the inflation rate πt is typically aimed to be minimized, since
high inflation makes it difficult to transfer wealth over time through the finan-
cial market. On the other hand, it is well-known that a too low inflation rate is
not convenient for several reasons: Higher inflation makes the adjustment of real
wages easier since there is a psychological hurdle against dropping wages. Low
inflation could be easily mis-measured and there could be already a deflation even
when the statistics does not show it. If necessary, higher inflation can make the
real interest rate negative over certain periods of time. This raises the question,
what is a sustainable level for the inflation rate under particular economic condi-
tions? Obviously, the nominal interest rate can only be nonnegative, which is a
major constraint for monetary policy. Are there other lower or higher bounds for
the interest rate that when violated would make it a useless or counterproduc-
tive economic instrument? We will derive some relationships that may provide a
better understanding of the role that the interest rate can play.

What counts for an investor is, how much real wealth can be consumed per unit
of time sustainably. We will formulate this objective without introducing any
particular time horizon. To achieve this, we will introduce a different criterion
than typically employed in portfolio optimization, as for instance used in Merton
(1973), without imposing any artificial terminal date or discount rate. More
precisely, we assume that the objective of the investors in the market is the
maximization of aggregate consumed real wealth

csWs

Is

real estate as well as human capital. This, in principle, would require heterogeneous assets,
all generating different returns. In order to avoid such complicating modeling procedure we
consider here only two representative assets: a risky asset index and a locally risk free asset.
Extensions to heterogeneous assets could subsequently be undertaken.
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per unit of time for a given consumption rate cs at any given time s ≥ 0. Since this
quantity is random, we need to specify the aggregate preferences of the investors.
This we can achieve by using a utility function U(·) for evaluating the utility
from real wealth consumed per unit of time. Note that the consumption rate
is given and not part of the optimization, which is different to typical portfolio-
consumption optimizations. Our approach separates the optimal wealth evolution
from the specification of the consumption rate, which can later be modeled and
can depend on the evolution of all state variables and even external factors. We
see no need to make it part of the total wealth optimization.

We aim to identify the optimal total wealth dynamics of the market such that
it maximizes at each time the expected utility from consumed real wealth. This
should give us some insight in how the key quantities relate to each other. More
precisely, given some amount of wealth Wt > 0 at a given time t ≥ 0, we will
maximize at any such time the expected utility of consumed real wealth at any
later time s ∈ (t,∞). Our objective is then expressed in the maximization

max
W

Et

(
U

(
csWs

Is

))
(2.6)

for 0 ≤ t < s < ∞. Here the maximization is performed by identifying the
self-financing total wealth process W that yields the above maximum. Note that
Et denotes the conditional expectation operator under the real world probability
measure given the information at time t. Furthermore, for the utility function
U(·) we assume monotonicity via U ′(·) > 0, concavity via U ′′(·) < 0 and denote
by U ′−1(·) the inverse function of U ′(·). We allow rather general utility functions
to express the preferences and, thus, the risk aversion of the investors. Of course,
we request such mathematical properties that our following manipulations and
statements will be meaningful. To be specific, we will later concentrate on the
well-known power utility of the form

U(x) =
x(1−γ)

1− γ
. (2.7)

Here the risk aversion γ > 0, γ 6= 1, shall be constant. In the case γ → 1 we
have the logarithmic utility as limiting utility, which in the actual optimization
and calculations does not create any problem for our outcome. Note that in our
setting the notion of risk aversion may not be fully in line with what some readers
may be used to.

Let us emphasize again that we do not follow the classical approach that maxi-
mizes for a representative agent expected utility from terminal wealth and con-
sumption without the need to specify a time horizon. We focus here consciously
on the aggregate behavior of investors who decide to invest either in fixed income
or risky securities under a given consumption rate. Our proposed criterion (2.6)
shall allow us to identify the optimal dynamics that the wealth process follows
when investors maximize utility from the consumption of real wealth. As a result
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of keeping the consumption rate given, and out of the optimization, the resulting
optimal wealth dynamics can be characterized very generally without specifying
a time horizon and relying on any explicit evaluation of expectations of utilities.
This will allow us to cover a wide range of utility functions and market dynam-
ics. The results will be very robust and, in principle, model independent as a
consequence of our new approach.

3 Market Dynamics

To solve the above portfolio optimization problem, we apply the martingale ap-
proach of Cox & Huang (1989) described, for instance, in Campbell & Viceira
(2002) (Ch. 5). However, we combine it with the benchmark approach in Platen
& Heath (2006), which relies only on the real world probability measure when
forming expectations. This allows us to explore a much richer modeling world
than prescribed under the classical no-arbitrage theory with the restrictive as-
sumption on the existence of a risk neutral pricing measure when applied in the
established no-arbitrage approach. Furthermore, trends in the real world dynam-
ics of the market are taken into account, which are, in principle, ignored under
the classical risk neutral methodology.

3.1 Optimal Wealth Dynamics

First, we introduce the so called benchmark, which is the numeraire portfolio S∗t
of the financial market in the sense of Platen & Heath (2006) and in generaliza-
tion of Long (1990). It is the best performing portfolio in our investment universe
in several ways. It equals the growth optimal portfolio, also known as the Kelly
portfolio, see Kelly (1956) and Merton (1973), which maximizes expected loga-
rithmic utility from terminal wealth. When pricing a contingent claim according
to Platen & Heath (2006) its inverse will play the role of the stochastic discount
factor

Mt =
1

S∗t
,

similar as in Cochrane (2001). In our setting the stochastic discount factor Mt

satisfies the SDE
dMt = −θt Mt dzt − it Mt dt (3.1)

for t ≥ 0, where we set for simplicity M0 = 1, see Platen & Heath (2006). Here

θt =
at − it

σt

(3.2)

denotes the market price of risk. This is the central market invariant for the
investors, which is also the volatility of the numeraire portfolio S∗t . The accumu-
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lated total wealth at time t can be written as the product WtGt, where

Gt = exp

{∫ t

0

cs ds

}
. (3.3)

By application of the Itô formula one obtains for the benchmarked accumulated
total wealth

Wt Gt

S∗t
= Mt Wt Gt

the driftless SDE

d(Mt Wt Gt) = Mt Wt Gt (αt σt − θt) dzt. (3.4)

According to Platen & Heath (2006) all benchmarked nonnegative self-financing
wealth processes, when expressed in units of the numeraire portfolio S∗t , are down-
ward trending or have no trend. Those with no trend, which are so called mar-
tingales, are unique and deliver the minimal price of a corresponding replicable
payoff, see Platen & Heath (2006). Consequently, for the replicable payoffs that
we will consider it is sufficient to concentrate on total wealth processes where the
following martingale property holds

Et(WsMsGs) = Mt Wt Gt (3.5)

for 0 ≤ t ≤ s < ∞. This is in line with the driftless SDE (3.4). The above type
of wealth process provides the most cost efficient way to manage wealth under
some given objective. Such objective could be expressed as a derivative payoff
but it could also be the utility from consumed real wealth, as will be the case in
our study.

Similar as under the classical martingale approach, see Campbell & Viceira (2002)
(Ch. 5), the objective (2.6) translates with equation (3.5) into the constraint
optimization problem

vt = max
W

Et

(
U

(
csWs

Is

))
− `tEt(WsMsGs −WtMtGt)

= max
W

Et

(
U

(
csWs

Is

)
− `t(WsMsGs −WtMtGt)

)
(3.6)

for 0 ≤ t < s < ∞. Here `t is the Lagrange multiplier, which remains independent
of s and will capture the budget constraint and facilitate that Mt Wt Gt has to
form a martingale. We emphasize that expectation is here taken under the real
world probability measure and not under some putative risk neutral probability
measure as in most of the literature.

To identify the candidate for the optimal total wealth process we interchange in
(3.6) maximization and expectation and consider for each t ≥ 0 and s > t the
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static optimization problem

max
Ws

[
U

(
csWs

Is

)
− `t(WsMsGs −Mt Wt Gt)

]
,

which leads to the first order condition

U ′
(

csWs

Is

)
cs

Is

− `tMsGs = 0.

By using the inverse function U ′−1(·) of U ′(·) one obtains

csWs

Is

= U ′−1

(
U ′

(
csWs

Is

))
= U ′−1

(
`tMsGs

Is

cs

)
.

Consequently, the candidate for the optimal total wealth process is of the form

Ws =
Is

cs

U ′−1(`tφs) (3.7)

with

φs =
MsGsIs

cs

. (3.8)

From the initial total wealth W0 and initial consumption rate c0 one obtains
the corresponding constant Lagrange multiplier `t = `0 = c0U

′(c0W0) for all
0 ≤ t < s < ∞. Note that the fixed initial wealth W0 > 0 acts here as budget
constraint. To avoid technicalities we assume now that from the initial wealth
allocation onward the relation (3.7) for the candidate total wealth process is
indeed feasible and describes the evolution of the resulting minimal self-financing
portfolio that maximizes for any t and s the given expected utility

Et

(
U

(
csWs

Is

))
.

For a wide range of models for which an equivalent risk neutral probability mea-
sure exists, this can be easily confirmed by classical methods, see Campbell &
Viceira (2002), however it holds far more generally, see Platen & Heath (2006).
This means that the candidate wealth process we consider maximizes the given
expected utility.

It is important that we obtained the optimal total wealth Ws in formula (3.7) in
an explicit manner as a function of known quantities. The optimal fraction αt

for the investment in the risky asset index will be described below. It will make
the benchmarked accumulated total wealth

Wt Gt

S∗t
= Mt Wt Gt

11



a martingale. The current value of the benchmarked wealth process is then the
best forecast of all its future values. Note, the SDE for φt given in (3.8) follows
by the Itô formula as

dφt = φt([ct + πt − et − it] dt− θt dzt).

By the explicit relation (3.7) we can express the martingale

Mt Wt Gt = F (φt) (3.9)

via the function
F (φ) = φU ′−1(`0φ). (3.10)

Therefore, it follows by the Itô formula the SDE

d(Mt Wt Gt) =
∂

∂φ
F (φt)φt([ct + πt − et − it] dt− θt dzt)

+
1

2

∂2

∂φ2
F (φt)φ

2
t θ2

t dt. (3.11)

Comparison of the drift coefficients of the SDEs (3.4) and (3.11) yields the key
relation

0 = ct + πt − et − it − θ2
t

2 γt

, (3.12)

where

γt = −
∂
∂φ

F (φt)

φt
∂2

∂φ2 F (φt)
. (3.13)

Note that equation (3.12) could be also interpreted as a relation involving the real
interest rate rt = it − πt, which may be useful if some readers prefer to interpret
our results more in real terms. For the case of power utility the quantity γt in
(3.13) coincides with the risk aversion γ appearing in (2.7). We mention that for
the case of power utility it follows by (2.7) that

U
′−1(y) = y−

1
γ

and thus

F (φs) = `
1
γ

0 φ
1− 1

γ
s .

The function F (φs) covers also the case of logarithmic utility which emerges for
γ = 1.

The second key equation results from the comparison of the diffusion coefficients
of the SDEs (3.4) and (3.11), which yields the equation

Mt Wt Gt(αt σt − θt) = − ∂

∂φ
F (φt)φt θt.
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Thus, the optimal fraction of total wealth at time t invested in the risky asset Pt

is of the form

αt =
θt

γ̄t σt

(3.14)

with
1

γ̄t

= 1− φt

∂
∂φ

F (φt)

F (φt)
(3.15)

and using the function F (·) given in (3.10). Note that in the case of power utility
one obtains γ̄t = γ with γ denoting the risk aversion appearing in (2.7).

The fraction in (3.14) is consistent with the familiar optimal fraction that arises
when maximizing expected power utility from terminal wealth, see for instance
Merton (1973) and Campbell & Viceira (2002).

Above, we have derived the equations (3.12) and (3.14) which represent the two
core relationships between relevant quantities under an optimal wealth dynamics.
It is now possible to analyze how changes in one quantity may impact other
quantities. We emphasize that we have not specified at, σt, ct, πt, it and et.
Thus, the relations (3.12) and (3.14) hold generally when assuming an optimal
wealth dynamics under the objective (2.6) that maximizes expected utility at all
times. Of course, in reality there are perturbations distorting these relations.
However, in the long run and for understanding in which direction the economy
is likely to move under particular circumstances, the relationships could be rather
useful.

3.2 Optimal Interest Rate

To make the following analysis specific we assume that the preferences of the
investors can be expressed via power utility, which we substitute by logarithmic
utility in the case when the risk aversion γ equals one. Attempting to obtain an
optimal wealth dynamics we aim to reveal potential relationships between the
interest rate and other key quantities. By (3.2) and (3.14) this leads us to an
optimal interest rate ĩt in the form

ĩt = at − γ αt σ
2
t . (3.16)

Similar relations can be found, for instance, in Campbell & Viceira (2002) and
Platen (1999). As we will see later, this is the interest rate that a monetary
authority should approximately set when αt < 1, whereas in the case αt > 1 it
will have to work with a higher interest rate to steer the economy. However, in
the latter case the wealth dynamics will not be optimal since the interest rate
will be not optimal.

The optimal interest rate increases when the expected return at increases. It
increases when the fraction of wealth invested in the risky asset decreases or
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when the squared risky asset volatility σ2
t decreases, provided that the other

quantities remain unchanged. The relation (3.16) gives some guidance, where
the interest rate should be set for allowing the market to allocate its resources
of capital investment for an optimal wealth evolution. The optimal interest rate
level described in (3.16) is the one where the fluctuations of the wealth process
coincide with those optimal under power utility with risk aversion γ.

In reality the nominal interest rate it cannot become negative. This imposes
a constraint on monetary policy. Therefore, any theoretical interest rate ît, as
suggested in (3.16), has to be modified towards an adjusted interest rate e.g.

it = (̂it)
+. (3.17)

For instance, in the case of a negative optimal interest rate ĩt < 0 the wealth
dynamics cannot be optimal since the interest rate can then only rest at zero. As
a consequence, the evolution of wealth will not be optimal when this happens. The
monetary authority should avoid market scenarios that lead to negative optimal
interest rates. The expected utility from consumption of real wealth will be less
than optimal as a consequence of such a market failure, which is rather typical
in history during the time of recession after an extreme asset bubble.

In market situations when negative optimal interest rates arise, the expected
return of the risky asset is by (3.16) too low when compared to its squared
volatility for given risk aversion and fraction invested in the risky asset. Note that
also an increase in debt, that is the fraction held in the risky asset index, can cause
negative optimal interest rates. An example where in history zero interest rates
have occurred is the Japanese stagnation in the 1990s until recently. This market
situation emerged after the burst of the Japanese equity and housing bubble in
the 1980s, see Svensson (1999). The period during the great depression in the
1930s after the 1929 market crash provides another typical example. Finally, the
current financial crisis with virtually zero interest rates in the U.S. gives another
example. This crisis was triggered by the burst of the U.S. housing bubble and led
via a subsequent credit crunch to an equity market crash with a severe downturn
in real economic activity.

Prior to all these crises, during the build-up of a preceding asset bubble, the
expected returns were high, often enhanced by easily available credit. Such cheap
credit increased substantially over time the fraction invested in the risky assets.
Due to the leverage effect, where asset volatility is relatively small when asset
prices are relatively high, the volatilities became rather low at the peak of the
mentioned bubbles.

Due to the relatively high Sharp ratio during the build-up period of an asset
bubble, the investors feel usually safe, consume much and expect similar high
returns also in the future. Since risky assets become overvalued during a bubble,
any small market correction can make the market aware of the potential mag-
nitude of the looming necessary correction. Buyers may become rare, liquidity
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may shrink and lenders may not provide any further credit to highly leveraged
investors. This may trigger a downward spiral for asset prices, resulting in a
market crash. Consequently, the fraction invested in risky assets shrinks. In
particular, when the real economy is slowing down as a result of a market cor-
rection the situation can become serious. In that case the expected return is low
and the volatility becomes high, due to the already mentioned leverage effect.
In summary, the likelihood that the optimal interest rate becomes negative has
dramatically increased. This means that in the period after a market crash the
market may be forced into a non-optimal wealth dynamics due to a not opti-
mal zero interest rate policy. The potentially catastrophic consequences for the
real economy, in particular employment, can be dramatic. Consumption may
be reduced to relatively low volumes due to the loss in asset value even if the
consumption rate may not decrease much.

Zero interest rate policy may arise together with a potential credit shortage be-
cause of looming defaults in highly leveraged industries. This potentially could
delay a necessary increase in expected return for risky assets that could make
the optimal interest rate positive again. Only over time, volatility may decrease
and government stimulus packages together with “quantitative easing” may help
to sufficiently increase expected returns so that the optimal interest rate finally
becomes positive. The removal of “bad assets” may help to reduce volatility as
part of the equation (3.16). We will see in the next section that positive optimal
interest rates are necessary but not sufficient for a successful monetary policy.

3.3 Interest and Inflation Rate Rule

We have not discussed so far the role of inflation in monetary policy when tar-
geting an optimal market dynamic. The inflation comes into consideration when
we match the trend in the total wealth process with its optimal trend under
power utility, resulting from equation (3.12). When exploiting (3.2) and (3.12)
we obtain for the change in the consumption rate the differential equation

dct

dt
= ct et

= ct

(
ct + πt − it − (at − it)

2

2γ σ2
t

)

= ct

(
πt − π̃t − (it − φt)

2

2γ σ2
t

)
(3.18)

with critical inflation rate

π̃t = at − ct − γ σ2
t

2
(3.19)

and intrinsic interest rate
φt = at − γ σ2

t . (3.20)
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The sign of the combination of quantities on the right hand side of (3.18) deter-
mines the direction in which the consumption rate is moving in a given market
situation that aims for an optimal wealth dynamic. We emphasize that ct de-
notes the consumption rate, whereas the consumption per unit of time amounts
to ctWt. This means that a dramatic decline in asset prices triggers even for a
slowly moving consumption rate a sharp decline in real economic activity. This
indicates that asset prices matter in monetary policy.

Note by (3.16) and (3.20) that for αt = 1 the intrinsic and optimal interest rates
coincide. In this case all wealth is invested in the productive units of the economy.
This is the important case when borrowing and lending offset each other, and
we call this the case of credit clearing in the economy. If we consider an open
economy, credit may not clear and it is possible that αt may not equal one. For
instance, the U.S. economy has built up substantial foreign debt after the 1980s,
which yields an αt greater than one. Other economies have been lending and are
on the opposite side with αt < 1, for instance China and Japan.

When applying the optimal interest rate (3.16) in equation (3.18), it follows that

dct

dt
= ct

(
πt − π̃t − γ σ2

t

2
(1− αt)

2

)
. (3.21)

Consequently, if one assumes a stable consumption rate, which appears to be
reasonable, together with the optimal interest rate, then the inflation rate should
be about

πt = π̃t +
γ σ2

t

2
(1− αt)

2 (3.22)

to support an optimal wealth evolution. We call this the inflation rate rule. We
will show below that (3.22) suggests an inflation rate level for which a monetary
policy, based on setting interest rates, may practically work. To see this, we
discuss in the following several market situations under different inflation rate
regimes:

1. Subcritical inflation:
In this case, (3.22) is violated and the inflation rate is below the critical
inflation rate, that is πt < π̃t. Since the consumption rate is always assumed
to be above zero, that is ct > 0, it follows from (3.18) under subcritical
inflation that the consumption rate decreases, no matter where the interest
rate is set. When the interest rate is close to the intrinsic interest rate, the
decline is minimized. In this situation there is nothing in our equations that
can stop this downward trend in the consumption rate. Due to the resulting
decrease in consumption in the real economy the expected return at may
decrease. A recession and eventually a depression could result if nothing
else changes. This is in line with Bernanke, Gertler & Gilchrist (1999) who
emphasize that investors or net worth moves procyclically and can magnify
economic disturbances. One notes from this discussion that the scenario of
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subcritical inflation can be rather dangerous. In such low inflation regime
there is no possibility to counteract the decrease in the consumption rate
by setting the interest rate at any level. We have seen that no change in
the direction of a moving consumption rate can be achieved if the inflation
rate is kept subcritical. This is an important insight which questions a
rigid policy of low inflation rate targeting. Without enough reasoning for
the choice of the targeted inflation rate level such monetary policy can have
catastrophic effects.

2. Supercritical inflation:
Let us now study the case when the inflation rate is supercritical, πt > π̃t.
We discuss first the case without sufficient credit clearing, which means that
αt is significantly above or below one:

(a) Supercritical inflation without sufficient credit clearing:
In the following supercritical inflation rate regime the monetary au-
thority implements the optimal interest rate (3.16) but does not have
sufficient credit clearing such that it still remains

πt − π̃t <
γ σ2

t

2
(1− αt)

2, (3.23)

which means that the inflation rate is not optimal and lower than in
(3.22). This yields by (3.21) and (3.23) a decreasing consumption rate.
This downward trend in the consumption rate is not as strong as in the
case under subcritical inflation, but it cannot be stopped, unless the
inequality (3.23) is reversed. Such reversal can be achieved under the
optimal interest rate (3.16) by making the inflation rate sufficiently
high or balancing sufficiently the credit market. A complete balance
between borrowing and lending for the economy, that is credit clearing
with αt = 1, will always safely increase the consumption rate under
supercritical inflation. However, increased borrowing for αt > 1 under
lower than optimal inflation may further decrease the consumption
rate and, thus, lead to a downturn in the real economy.

(b) Supercritical inflation and approximating the optimal
interest rate:
Let us now relax the request on implementing exactly the optimal
interest rate (3.16). Instead let the monetary authority deliberately
deviate from it by setting the interest rate slightly above or below the
optimal interest rate so that the consumption rate moves in one or the
other desired direction. The aim is to identify a control mechanism
that keeps the consumption rate almost constant.

Under supercritical inflation we know from (3.18) that in the case

(it − φt)
2 ≤ 2γ σ2

t (πt − π̃t) (3.24)
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the consumption rate is increasing. It will not stop to increase if
nothing else changes and the market may then overheat. However, by
increasing the interest rate it above the level

īt = φt +
√

2 γ σ2
t (πt − π̃t) (3.25)

the monetary authority can stop the increase of the consumption rate.
If it moves the interest rate back to a level below īt, then this increases
again the consumption rate. This property of an approximately opti-
mal wealth evolution provides a convenient mechanism for controlling
the consumption rate via the setting of the interest rate. It is essential
that the inflation rate is supercritical to make this control mechanism
working. It represents the core feature that a successful monetary
policy can sustainable exploit under normal circumstances.

When for αt < 1 the inflation rate πt and risky fraction αt are such that
the inflation rate rule (3.22) holds, then the interest rate īt becomes
the optimal interest rate, see (3.16). In this case the inflation gap
πt − π̃t has by (3.22) the magnitude

πt − π̃t =
γ

2
σ2

t (αt − 1)2. (3.26)

Note that for the case of credit clearing one obtains the minimal pos-
sible inflation rate, which is the critical inflation rate given in (3.19).
In this case the total wealth dynamic is optimal.

For αt > 1 the interest rate īt is not so close to the optimal one and
the monetary authority should keep the inflation gap rather small be-
cause of the otherwise even less optimal wealth dynamics. The control
mechanism still works similar as for the case αt < 1. We emphasize
that in this case the total wealth evolution is not optimal.

Taking the nonnegativity of nominal interest rates into account leads
by summarizing the above findings to the following interest rate rule,
where the interest rate

it = (̄it)
+ =

(
at − γt σ

2
t (1− |1− αt|)

)+
(3.27)

should be targeted by the monetary.

In summary, to implement a successful monetary policy, the monetary authority
has to create an economic environment where the optimal interest rate ĩt is safely
located above zero. This means one needs to have

at > γ αt σ
2
t . (3.28)

For this to happen, the expected return at of the risky asset index has to be
large enough. Extremely high risk aversion but also excessive foreign debt can

18



reverse this relationship. Governmental stimulus packages can increase expected
returns, but increase also the fraction αt in the risky asset due to additional
debt. Fortunately, a substantial increase in debt for stimulating the economy
in the case αt > 1 does not worsen the problem of negativity for the optimal
interest rate. A calming down of the volatility of the risky asset index leads to a
higher optimal interest rate. But this is not easily controllable by the monetary
authority and happens only over longer periods of time. Removing “bad assets”
from the market can, however, reduce the leverage and, thus, the risk that some
institutions have and can bring the asset index volatility down. We emphasize
again that it is the responsibility of the monetary authority to avoid the trap of
negative optimal interest in the first place. This means, the monetary authority
should act responsibly with a long term view by letting market corrections happen
when they are due. Stimulating the development of asset bubbles by allowing
cheap credit, which finally may lead to potentially extreme market corrections,
is short sited.

Since politicians have rather short time horizons due to the election cycle, they
should not be allowed to interfere in any way with monetary policy. Exceptions
may arise in times of a crisis where the government should help to bring the
economy back on track so that monetary policy can work again. It is irresponsible
to overstimulate an economy for political or other reasons. It is particularly
dangerous to let credit become too easily available. Cheap credit first pushes
risky asset prices up and after the necessary market correction it makes it more
likely that negative optimal interest rates occur and the above described economic
trap emerges.

To make our findings even clearer we summarize below in other words how mon-
etary policy should theoretically function:
When a positive optimal interest rate is secured for the economy, then the infla-
tion rate has to be at least on its critical level π̃t, shown in (3.19), but preferably
on its optimal level, as described in the inflation rate rule (3.22). This means
for αt < 1 by (3.22) and (3.19) that the monetary authority should target the
inflation rate level

πt = at − ct +
γ σ2

t

2
αt (αt − 1). (3.29)

This could mean that after a crash there may be a deflationary period, in partic-
ular, for the case when αt is located between zero and one, and relatively large
volatility and risk aversion are present. In the case when αt is greater than one a
deflation is not so likely. The recent Japanese deflation is a typical example for a
deflation when αt < 1. The US economy with its substantial debt, that is αt > 1,
is not similarly likely to experience a deflation.

In the case when the inflation rate is on its target level (3.29) according to the
inflation rate rule and the optimal interest rate is positive, then for αt ≤ 1 the
monetary authority can steer the economy in a sustainable optimal mode by
controlling the consumption rate in the following way: If the consumption rate
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is considered to be too high for the economy, then the interest rate should be set
slightly above the optimal interest rate

ĩt = at − γ αt σ
2
t .

To have a strong impact on the market, the interest rate could be set to a level
as high as the monetary authority wishes. This is also intuitive and applied in
monetary policy.

In the case when the consumption rate is considered to be too low for the economy,
the monetary authority should reduce the interest rate to a level below the optimal
interest rate. For αt < 1, the interest rate level providing the strongest impact
on an upward trend for the consumption rate is the intrinsic interest rate level

φt = at − γ σ2
t ,

see (3.20).

A more subtle case arises in the situation when αt > 1, that is, when the fraction
invested in the risky asset index is above one. To decrease here the consumption
rate, the interest rate has to be set above īt, see (3.25). For increasing the
consumption rate, it should be set below this rate, for instance, at the optimal
interest rate ĩt, see (3.16). The resulting wealth dynamic under such monetary
policy is not as close to the optimal one as was the case for αt < 1. To minimize
for αt > 1 the effect of non-optimality the monetary authority could target an
inflation rate slightly above the critical inflation rate π̃t, see (3.19). However,
this is a dangerous ride, which could easily lead into an economy with subcritical
inflation creating either an uncontrolled boom or bust, as discussed previously.

Under the above monetary policy rules, it follows that the interest rate has to be
somehow close to the optimal interest rate ĩt. This needs to be complemented
by an inflation policy that targets an inflation rate slightly above the critical
inflation rate π̃t. If the economy is in disarray and such monetary policy is
currently out of reach, then the economy has to be brought into a regime where
the above described monetary policies can be applied again. Unfortunately, the
above relationships do not suggest that there exists an automatically stabilizing
mechanism that brings the economy by itself back on track. Most important
seems to be the insight that it is necessary to allow inflation to increase to a level
where monetary policy works. This questions the low inflation targeting policies
that have been supported by many politicians and economists.

4 Evaluation of Current Monetary Policy

The currently popular monetary policy rule, the Taylor rule, is supposed to re-
spond to the output and inflation gap, which are in our notation given by at − ā
and πt − π̄, respectively. Here ā is the long run average expected return and π̄
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the long run average inflation rate. This may work reasonably well in normal cir-
cumstances, since it reflects roughly what our findings suggest in the case αt > 1
and ĩt > 0. However, this may not be adequate for extreme situations as in a
financial crisis or deflationary phase. When compared with the Taylor rule the
interest rate rule (3.16) and the inflation rate rule (3.22) are clearly different in
detail. Current monetary policy focuses primarily on holding the inflation rate
low. For example, it has been set at a fixed target level of about 2% in several
countries. Holding the inflation rate low is still reasonable as long as the inflation
rate is above the critical inflation rate π̃t given in (3.19). Holding it dogmati-
cally at a fixed 2% level may eventually bring it below the critical inflation rate
and can then be extremely damaging to the economy. As discussed above, the
consumption rate will then move uncontrolled in one direction and drives the
economy either into a recession or into an asset bubble, depending on the course
it already has.

The interest rate rule (3.27) links the productivity of the economy, reflected by the
expected return at, with the risk aversion γ, the fraction αt of wealth invested in
the risky asset index, the market risk, which is expressed via the squared volatility
σ2

t , and the fixed income market governed by the interest rate itself. Under this
rule and normal economic circumstances, higher expected returns trigger higher
interest rates, and higher squared market volatility results in lower interest rates.
These statements are in line with common perception where monetary policy is
expected to move interest rates when one of these quantities changes. The interest
rate rule (3.27) puts this perception into a clear quantitative relationship. Due
to the quadratic dependence of the consumption rate on the interest rate, the
formula is nonlinear and quite subtle.

The fraction αt of wealth invested in the risky asset index plays in the interest
rate rule (3.27) an important role which has been probably not much perceived
among central bankers and economists. An economy that has foreign debt, that
is αt > 1, is more susceptible with its interest rate policy to the volatility of its
equity market than is one which runs a surplus. We saw in our previous discussion
in Section 3 that for an economy with foreign debt it is more difficult to create
an approximately optimal wealth evolution by setting the interest rate than it is
for an economy with a surplus. On the other hand, an economy with αt < 1 faces
for certain situations the danger of a deflation.

From the interest rate rule it follows that a combination of low expected returns at

with high volatility σt, high risk aversion γ and high debt αt can bring the interest
rate to zero. This then makes the economy uncontrollable via interest rate policy.
The nominal interest rate can in this case only rest at zero and the economy drifts
on its own course. Investors react to signals other than the level of the interest
rate. Consequently, the monetary authority has lost control, which could result in
a massive meltdown of the real economy due to an almost unstoppable decrease
in consumption. If the monetary authority and government do not gain control
again, only after such catastrophic scenario has run its course, the market and
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the economy can pragmatically start from scratch. This means, if asset values
are destroyed in relative economic terms and vulnerable leveraged companies
defaulted, then expected returns will eventually come back to positive territory
and volatilities may calm down. The inflation rate could pick up sufficiently so
that the interest rate finally matters again and monetary policy starts to work.

The above analysis explains that the monetary authority always has to have the
long term prosperity of an economy in mind and needs to avoid an economic
trap of zero interest rate in the first place. Our results give the monetary au-
thority some guidance how to avoid the indicated undesirable scenarios and how
eventually to come out of such an economic trap.

One notes from the inflation rate rule (3.29) that the inflation rate is minimal
in the case when the credit market clears, that is αt = 1. This represents an
economy with balanced lending and borrowing. Consequently, a minimal inflation
rate policy and a functioning monetary control of the economy via the interest
rate favor the situation where all financial wealth is invested in the risky assets,
and the fixed income market clears. In this way the economy uses all of its own
wealth to support maximally its long term sustainable growth. A reliance on
credit, that is αt > 1, for building economic growth increases in the long run
the inflation rate needed to obtain a sustainable optimal wealth development.
On the other hand, for αt < 1 inflation is lower, but deflation may emerge in
certain situations. We may add that the interest rate rule (3.27) shows that the
suggested interest rate level is highest for αt = 1. This means that an economy
that clears its credit has the best chance to avoid the trap of negative optimal
interest when following the described policies.

Finally, we remark that for the case of power utility with constant consumption
rate ct = c under minimal inflation targeting and credit clearing one can show
that the resulting utility of real capital consumption turns out to be trendless.
That is, one has a martingale and, thus,

U

(
cWt

It

)
= Et

(
U

(
cWs

Is

))

for all 0 ≤ t < s < ∞. This is a reasonable relationship, because a fair monetary
policy should provide similar expected utility from real consumption per unit of
time also for future generations without any upward or downward trend. Under
the prescribed objective there is no postponing of real consumption into the
future or any consumption at the cost of some future generation if the monetary
authority acts according to the derived interest rate rule and avoids extreme
scenarios like the build up of significant risky asset bubbles with subsequent deep
recessions.

It follows by relation (3.4) that the accumulated wealth WtGt, when expressed in
units of the benchmark S∗t , is trendless and thus a martingale with

Wt Gt

S∗t
= Et

(
Ws Gs

S∗s

)
.
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Since S∗t is the best performing portfolio this guarantees that the utility we aimed
to maximize is achieved in the least expensive manner. This is an important fact
since more expensive strategies are possible under the benchmark approach, see
Platen & Heath (2006). We emphasize that a wide range of market models
can be employed under the provided framework. Furthermore, we have focussed
here only on general relationships of the key quantities involved. When using
particular models for the market dynamics additional insights can be expected.

Finally, we remark that if one is solving the optimization problem of Section 3
directly by calculating expected utility from terminal wealth for the case of power
utility and assuming a Black-Scholes model for the risky asset index, then one
obtains for this special case by classical dynamic programming, see Campbell
& Viceira (2002) (Ch. 5.1.), the same formulae as derived in Section 3.1. We
emphasize that the above interest rate and inflation rate rules hold for very general
market dynamics and utility functions and are in this sense universal.

5 Some Empirical Facts

It makes sense to discuss the theoretically derived interest rate rule by looking
at long term historical data. Since our results are independent of the particu-
lar market dynamics, we can leave substantial freedom for the modeling of the
quantities involved.

Let us assume that the processes for the various rates and volatilities, this means
the expected return, interest rate, inflation rate, asset volatility and consumption
rate, are in a stationary mode, which shall reflect an equilibrium dynamic of the
market. In this case one can estimate the relevant quantities. At least for the long
term average and when taking an average over markets, the proposed equations
have to be reasonably reflected. In Table 1 we show long run estimates for the
nominal equity index return a, the nominal T-bill return i, the inflation rate π,
the volatility σ, together with some dividend rate d taken for sixteen countries
over the last century by Dimson, Marsh & Staunton (2002).

The long run estimate for the market price of risk θ ≈ a−i
σ

, see (3.2), is calculated
in the table. It reaches on average 23.6%, which is not far from a typical equity
index volatility, which shows an average of 22.7%.

Of particular interest is the product γα of the risk aversion parameter and the
fraction held in the risky asset. It follows by (3.14) that

γ α ≈ a− i

σ2
=

θ

σ
,

which turns out to be on average at a level of about one for the sixteen economies.
The risk aversion times the fraction invested in risky assets, γα, seems to be
higher for Anglo-Saxon economies, which use a well developed equity market
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Country a i π σ d θ γα c πmin π − πmin

Australia 0.119 0.045 0.041 0.177 0.048 0.418 2.362 0.091 0.034 0.007

Belgium 0.082 0.052 0.055 0.228 0.028 0.132 0.577 0.0056 0.039 0.016

Canada 0.097 0.049 0.031 0.168 0.041 0.286 1.701 0.059 0.032 -0.001

Denmark 0.089 0.07 0.041 0.201 0.044 0.095 0.47 0.0334 0.035 0.006

France 0.121 0.043 0.079 0.231 0.036 0.338 1.462 0.021 0.046 0.033

Germany 0.097 0.046 0.051 0.323 0.036 0.158 0.489 0.0075 0.035 0.016

Ireland 0.095 0.058 0.045 0.222 0.033 0.167 0.751 0.027 0.044 0.001

Italy 0.12 0.047 0.091 0.294 0.038 0.248 0.845 -0.013 0.045 0.046

Japan 0.125 0.054 0.076 0.303 0.057 0.234 0.773 0.0055 0.033 0.043

Netherlands 0.09 0.037 0.03 0.21 0.049 0.252 1.202 0.039 0.015 0.015

S. Africa 0.12 0.057 0.048 0.228 0.025 0.276 1.212 0.047 0.064 -0.016

Spain 0.1 0.065 0.061 0.22 0.047 0.159 0.723 0.030 0.036 0.025

Sweden 0.116 0.058 0.037 0.228 0.035 0.254 1.116 0.053 0.052 -0.015

Switzerland 0.076 0.033 0.022 0.204 0.029 0.211 1.033 0.033 0.026 -0.004

UK 0.101 0.051 0.041 0.2 0.038 0.25 1.25 0.041 0.038 0.003

US 0.101 0.041 0.032 0.202 0.041 0.297 1.47 0.053 0.030 0.002

Average 0.103 0.05 0.049 0.227 0.039 0.236 1.09 0.033 0.038 0.011

Table 1: Estimates from sixteen markets

for capitalizing their industries and have in most cases some foreign debt, that
is α > 1. Countries where during the last century the credit system provided
primarily capital to industry or which have been lending to other economies, that
is α < 1, seem to give lower estimates for γα.

Since, for instance, the economies of the US, UK, Canada and also Australia
have certain debt, setting αt equal to one is probably not adequate in these cases.
For these countries αt should be higher, which would bring the corresponding
estimates for γ closer to one. As long as these countries can serve their debt in
the long run, a higher fraction α > 1 is not a problem. However, these economies
are with their wealth not growing optimally as could be when α and γ were both
close to one. In the long run it seems to be possible that a risk aversion parameter
not too far from one could be realistic, which opens an interesting line of thought.
If one has then also credit clearing, that is, α ≈ 1, then the total wealth process
of the economy has maximum expected growth. As we have discussed earlier, in
the case α ≈ 1 one achieves the minimal possible inflation rate and is furthest
away from a zero interest trap.

Let us estimate the long run consumption rate c for each country by assuming,
for simplicity α = 1. Based on relation (3.18) we have

c ≈ i− π +
(a− i)2

2 γ σ2
.

The resulting average of this value over all countries amounts to 3.3% which
appears to be reasonable. Note that this is also close to the magnitude of the
average dividend rate d of about 3.9%.

We show in Table 1 also the minimal possible or critical inflation rate π̃ ≈ a −
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c− γ σ2

2
, see (3.19), where we again assume α ≈ 1. The resulting average critical

inflation rate of 3.8% is roughly about 1% below the average inflation rate of 4.9%
shown in Table 1. This makes sense, since the inflation rate rule and interest rate
rule require an inflation rate slightly above the minimal possible rate so that
monetary policy can work.

The theoretical relationships that we revealed appear to be rather plausible. Of
course, empirical work needs to be undertaken to obtain more precise statements
about their validity in a dynamical sense, which represents a challenging direction
of research.

6 Conclusions

Monetary policy was challenged by the subprime credit crisis, severe financial
disruptions and the meltdown of the financial market. There was panic and
sudden shift of the investors‘ investment behavior. This led to a visible shift of
monetary policy from inflation targeting to intervention into the financial market
and economy. Academics have been in search of a type of monetary policy model
that does allow to consider investor’s behavior and the disruptive dynamics of the
financial market. We suggested here a dynamic portfolio approach, which allows
one to study the interaction between investors‘ strategic behavior and monetary
policy. We derived policy rules that explain how monetary authorities should set
the short term interest rate in interaction with inflation, economic growth, asset
prices, risk aversion, market volatility, and consumption rate. We also discussed
the dangers of deflation, too low inflation and zero interest rates. As we showed,
the inflation rate needs to have a certain minimal level to allow the interest rate to
be a viable control instrument. If our proposed monetary policy rules are applied
properly, then the consumption rate will remain stable and the inflation rate can
be kept at a minimal possible level. As the monetary policy focuses currently
under the Taylor rule on the inflation and output gap, it should also have an eye
on the necessary minimum level of inflation and the optimal interest rate. Our
proposed relationships also indicate how to act in a crisis to bring the economy
back on track.

We pursued a nonlinear approach when we spelled out the new inflation rule
and interest rate rule in the context of portfolio optimization for investors. As
we showed, there can arise important knife edge problems in the interrelation of
inflation rate, interest rate, consumption rate, risk aversion, asset price volatility
and expected return on the risky assets. Overall, we aimed to advance a better
understanding about the impact of monetary policy under extreme financial and
economic circumstances but also for an optimal long term wealth evolution.
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