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Abstract 
A number of investment strategies designed to maximise portfolio growth are tested 
on a long run Australian equity data set.  The application of these growth optimal 
portfolio techniques produces impressive rates of growth, despite the fact that the 
assumptions of normality and stability that underlie the growth optimal model are 
shown to be inconsistent with the data. 
 
Growth optimal portfolios are constructed by rebalancing the portfolio weights of 25 
Australian listed companies each month with the aim of maximising portfolio growth.  
These portfolios are shown to produce growth rates that are up to twice those of the 
benchmark, equally weighted, minimum variance and 15% drift portfolios.  The key 
to the success of the classic, no short-sales, growth optimal portfolio strategy lies in 
its ability to select for portfolio inclusion a small number of Australian stocks during 
their high growth periods. 
 
The study introduces a variant of ridge regression to form the basis of one of the 
growth focussed investment strategies.  The ridge growth optimal technique 
overcomes the problem of numerically unstable portfolio weights that dogs the 
formation of short-sales allowed growth portfolios.  For the short sales not allowed 
growth portfolio, the use of the ridge estimator produces increased asset 
diversification in the growth portfolio, while at the same time reducing the amount of 
portfolio adjustment required in rebalancing the growth portfolio from period to 
period.  
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Introduction 
The expected rate of growth of value is considered by many investors to be the pre-
eminent characteristic of an investment portfolio.  Ways to construct portfolios that 
maximise expected growth are well documented.1  Considering the importance of 
expected portfolio growth to both professional and retail investors, it is surprising that 
so few examples of studies that focus on the empirical strategies to maximise 
portfolio growth exist.  This study aims to redress this deficiency by applying growth 
optimal techniques to long-run Australian equity data.  As a first step in the study, let 
us set out a stochastic model of asset price evolution, upon which the growth 
optimising investment strategy will be based. 
 
Suppose that investment choice is confined to n assets, each governed by geometric 
Brownian motion (generalised Wiener process).  That is, the value of the ith asset, Vi, 
evolves as:2 
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where, ? i is the ith asset’s rate of drift and z is a Wiener process with zero mean and 
variance, ? i

2.  The expected rate of growth of the asset, E[Gi], over time t, can, using 
Ito’s lemma, be derived as: 
 

t
2
1

µ
)0(V
)t(V

lnE]G[E 2
ii

i

i
i ?

?
??

?
? ????

?

?
?
?

?
???
?

???
??  (2) 

 
The variance of this growth is: 
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Consider the dynamics of a portfolio constructed using specific asset weights, wi.  The 
rate change of portfolio value is thus the weighted sum of the rates of change of the 
individual assets: 
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Assuming that the n assets are correlated through the Wiener process, ie, 

dtji,)jdz ,i(dzcovariance ?? , the value of the portfolio, Vp(t), also follows 

geometric Brownian motion with per period, expected growth, gp, given by: 
 

                                                
1 See Hakansson (1971), Luenberger (1998) and Hunt (2002) 
2 The derivation of the portfolio dynamics follows Luenburger (1998), pp 428-429.  
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Where, wT = (w1, … , wn) is the vector of portfolio weights,  ? T = (? 1, … , ?  n) is the 
vector of asset drift parameters and ?  is a matrix containing n2 variance and 
covariance terms, ? i,j. 
 
It is evident from (5) that the rate of growth of a portfolio of assets is governed by the 
choice of the individual asset weightings, w.  Naturally, the structure of w may be 
fashioned to maximise the expected rate of growth.  The portfolio, w*, that maximises 
expected portfolio growth is referred to as the growth optimal portfolio.   
 
A strategy designed to maximise expected growth has an obvious and intuitive appeal.  
Moreover, maximising expected growth has strong theoretical support.  Consider the 
broad class of power utility of wealth functions: 
 

?

?
? W1)W(U   (6) 

It is easily shown that for individuals possessing a utility function such as (5), the 
problem of maximisation of expected utility of wealth after n periods, Wn, reduces to 
the myopic strategy of the maximisation of wealth over one period, W1.3  Further, if ?  
is small, the expected value of power utility E[U(W)] is closely approximated by: 
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Thus, when ? ?is small, it follows that the only two variables of interest in the quest to 
maximise expected utility of n period wealth, are expected growth rate and the 
variance of the growth rate.  Investors with a log utility function )Wln()W(U nn ? , 
which is the limit case of (7) when ??0, will choose between investments based 
solely on expected portfolio growth.4  
 

                                                
3 See Luenberger (1998) pp 425-427. 
4 Luenberger (1993) provides a broader rationale for basing portfolio choice on expected growth using 
so called tail preference theory.  
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Investment techniques based on optimising expected growth have appeal to both 
theorists and practitioners as they: 
 
??are consistent with asset diversification, 
??are consistent with n period utility maximisation, 
??maximise expected terminal value of wealth and 
??minimise the expected time required for accumulated wealth to reach any 

specified threshold value. 
 
The theoretical attractiveness of maximal growth portfolios is clear.  What is less 
apparent is whether or not investment strategies based on growth portfolios are 
efficacious.  The aim of this paper is to examine the suitability of growth optimal 
portfolio techniques to the Australian equity investment environment.  

Data 
Hakansson (1971) suggested that growth optimum portfolios dominate all other 
portfolios in the long run.  While Merton and Samuleson (1974) pointed out the 
fallacy in this argument, it remains true that it is easier to identify the characteristics 
of alternative investment portfolios when observed over a long period of time.  The 
desire to test the efficacy of growth-oriented investment led us to seek out a long run 
Australian equity data set.  The study applies the growth optimal portfolio investment 
strategy techniques to 25 years of monthly data, starting in April 1977 and ending in 
March 2002.  The data were obtained from Reuter’s Australia’s Beacon data service. 
 
The data set comprises price observations on 25 Australian listed companies.  These 
companies selected themselves, being the only corporations currently included in the 
ASX’s 150 largest capitalised companies (as at March 2002) whose prices from 
March 1972 were recorded in the Beacon data tables. 5  The price data was 
transformed into measures of periodic growth (or returns) using the formula for 
continuous compounding: 
 

)P/Pln(g 1t,it,it,i ??  (8) 
 
where Pt is the price of asset i in month t and gi,t is the growth of asset i in month t.6 
 
Table 1 displays annualised statistics on rates of growth and volatility of growth for 
the companies included in the data set.  The annual rate of growth of asset i, iĝ , was 
estimated as the sample aggregate growth divided by the 25 years of the sample.  The 
estimate of the asset drift rate, ,î? , was computed as 2/ˆĝ 2

ii ?? , where 2
î?  is the 

estimate of the ith asset variance.  
  

                                                
5 Although the growth techniques were applied to 300 monthly observations, beginning in April 1977,  
the actual data set employed by the study starts in April 1972, to facilitate historical parameter 
estimation.  
6 The expected return over a very short period of time is ? ?? t.  However, over a longer period of time 
the expected return is ?  - ? 2/2.  As Hull (2000), pp240-241 notes, “the term expected return is 
ambiguous.  It can either refer to ?  or ?  - ? 2/2”.  When the term expected return ( or symbol r) is used 
in this paper it is in reference to the drift term, ? , in a generalised Wiener process. 
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As expected, there is some survivor effect to be evident in the 25-company data set.  
Table 1 shows that the All Ordinaries Index grew at a rate of 9.68%p.a. whereas the 
equally weighted portfolio grew at a rate 11.71%p.a. 
 
Table 1: Australian Equity Performance Summary Statistics  

Code 
 

Name 
 

Growth 
(g, %pa) 

Rank 
 

Drift* 
(? , ? pa) 

Rank 
 

Volatility 
(? , %pa) 

Rank 
 

AGL Australian Gas Light 13.28%      7  17.99%       6  30.71%    8  
AMC Amcor 8.62%     19  11.22%      19  22.80%  23  
ANZ ANZ Bank 13.09%      8  16.11%      12  24.57%  19  
BHP BHP Billiton 12.61%     10  16.06%      13  26.25%  17  
BIL Brambles Industries 14.74%      5  17.75%       7  24.52%  20  
CML Colonial Mutual  11.49%     13  14.10%      16  22.82%  22  
CSR Colonial Sugar 3.95%     23  7.75%      22  27.55%  15  
FGL Fosters Brewing 11.10%     14  15.46%      14  29.53%  10  
GMF Goodman Fielder 3.72%     24  7.28%      23  26.71%  16  
GPT General Property Trust 4.29%     22  5.57%      25  16.01%  25  
LLC Lend Lease 12.48%     11  16.30%      11  27.64%  14  
MAY Mayne Nicholas 9.04%     18  13.20%      17  28.83%  11  
MIM Mt. Isa Mining -2.70%     25  5.73%      24  41.06%    2  
NAB National Australia Bank 12.67%      9  15.22%      15  22.60%  24  
NCP News Corporation 23.49%      2  32.86%       2  43.29%    1  
ORI Orica 6.05%     20  10.12%      20  28.51%  12  
PDP Pacific Dunlop 6.05%     21  10.04%      21  28.27%  13  
QBE QBE Insurance 18.60%      3  23.21%       3  30.39%    9  
RIO Rio Tinto 10.57%     15  16.79%       9  35.27%    7  
SRP Southcorp 14.35%      6  17.68%       8  25.79%  18  
STO Santos 15.33%      4  21.79%       4  35.94%    5  
WBC Westpac Bank 9.54%     17  12.41%      18  23.97%  21  
WMC Western Mining 9.86%     16  16.78%      10  37.21%    4  
WPL Woodside Petroleum 11.68%     12  18.00%       5  35.54%    6  
WSF Westfield Holdings 38.82%      1  47.23%       1  41.02%    3  
ZAORD All Ordinaries Index 9.68% 11.61%  19.65%  
Equal Equally weighted portfolio 11.55% 13.35%  18.95%  

* The implied ?  of equation (1) was computed for each stock using equation (4) as the rate of growth 
plus the half the variance. 
 
Some impressive individual growth performances are evidenced in Table 1.  
Westfield Holdings and News Corp have grown on average 39%pa and 23%pa 
respectively.  At the other end of the performance spectrum lies MIM who managed 
an almost 3%pa decline in value over the 25 year period.  Table 1 contains some 
superficial evidence of a positive relationship between historical share growth and the 
volatility of that growth.  For example, the two highest growth stocks are also the two 
most volatile stocks.  Further analysis reveals that the correlation and the rank 
correlation between growth and volatility for the 25 stocks are 0.37 and 0.21 
respectively.   
 

Testing the Assumptions of the Growth Model  
There are a number of assumptions implicit in the model of growth upon which the 
investment strategies tested in this paper are based.  Most obviously, the Wiener 
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process of equation (1) assumes investment returns are normally distributed.  Possibly 
less obvious is the model’s reliance on the stability of stochastic process parameters 
of ?  and ? .  The degree to which these assumptions are consistent with the features of 
the historical data set ought to provide a guide to the likely success or otherwise of 
growth optimal investment strategies. 

Normality 
The 25 companies and the benchmark equally weighted portfolio and All Ordinaries 
Index series were tested for normality of returns with the results recorded in Table 2.  
Three tests of normality, based on skewness and kurtosis measures, were applied to 
the data set.  The results of these tests reveal that the period-by-period returns in the 
data set were far from normally distributed.   
 
Twenty-two of the 25 stocks displayed significant skewness.  In addition, all 25 
stocks had returns that were significantly leptokurtic (at the 1% level).  Naturally, the 
Jacque-Berra statistic, which jointly tests for skewness and kurtosis, rejected 
normality in all cases, including the two benchmark series. 
 
Figure 1: Distribution of Returns of an Equally Weighted, 25 Stock Portfolio 
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Figure 1 depicts the distribution of returns for the equally weighted portfolio 
compared to its equivalent normal distribution.  The typical peaked centre of a 
leptokurtic distribution is clearly displayed.  
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Table 2: Tests of Normality7 and Stability 
Code Skewness Kurtosis† Jacque-Berra1 ANOVA Kruksal-Wallis Variance Ratio 
AGL -0.66** 7.02 ** 109.36** 1.06 2.08 4.72** 
AMC -0.58** 4.76 ** 76.30** 0.37 1.82 2.58* 
ANZ -0.54** 2.05 ** 40.23** 0.34 0.80 1.94 
BHP -0.19 1.51 ** 20.73** 0.96 3.02 2.27 
BIL -0.91** 4.50 ** 98.03** 0.66 3.74 2.02 
CML -0.98** 7.19 ** 137.96** 0.64 4.38 2.74* 
CSR -0.53** 2.74 ** 48.22** 0.06 0.89 3.56** 
FGL -1.73** 19.40 ** 391.97** 1.66 5.86 5.38** 
GMF -0.64** 4.41 ** 75.65** 2.49* 7.17 3.92** 
GPT -0.77** 4.12 ** 81.16** 0.87 4.22 2.32 
LLC -1.62** 11.51 ** 275.80** 1.23 2.93 4.54** 
MAY -0.95** 6.27 ** 123.83** 0.60 3.25 2.21 
MIM -0.66** 3.82 ** 69.78** 0.04 0.89 4.00** 
NAB -0.70** 2.76 ** 58.95** 0.32 1.29 2.49* 
NCP -1.39** 9.84 ** 219.03** 2.67* 9.08 6.58** 
ORI -0.41** 5.41 ** 76.19** 0.78 3.66 2.37 
PDP -0.64** 3.34 ** 61.96** 3.06* 12.59* 1.87 
QBE -2.14** 13.49 ** 398.45** 1.00 4.30 3.62** 
RIO -1.42** 13.66 ** 271.06** 0.42 3.44 8.52** 
SRP -0.62** 7.23 ** 109.70** 0.75 3.65 2.19 
STO 0.18 3.39 ** 43.97** 3.16* 9.50* 7.01** 
WBC -0.50** 3.64 ** 57.93** 0.32 1.77 2.75* 
WMC -0.36* 4.25 ** 59.39** 0.16 0.31 3.61** 
WPL 0.15 1.97 ** 25.72** 0.37 1.20 6.68** 
WSF 5.29** 67.36 ** 2241.86** 0.14 5.64 26.28** 
ZAORD -3.27** 31.04 ** 921.65** 1.29 5.54 5.18** 
Equal -2.80** 25.30 ** 709.05** 0.98 5.30 5.20** 

* indicates significance at the 5% level,  ** indicates significance at the 1% level 
†  The kurtosis figure displayed was computed using Excel’s KURT() function and is equal to 
the traditional measure of kurtosis less 3.   

 
The results of the analysis of skewness and kurtosis allow us to confidently conclude 
that the data upon which we are to test the growth optimal portfolio strategies is non-
normal.  Exactly how the non-normality will impinge upon the investment results is 
problematical.  For example, it is not clear that excessive kurtosis will have a 
deleterious effect on the growth optimal investment strategies.  Of more concern is the 
question as to the stability of the distributional statistics overtime. 

                                                
7  The skewness and kurtosis tests are based on the following.  For a normal distributed random 
variable, x, the skewness coefficient, 33

1 /])x[(E ?????  estimated from a sample of size n is 
distributed as )n/6,0(N?̂1 ? .  The coefficient of kurtosis, 44

2 /])x[(E ????? is distributed as 
)n/24,3(N?̂ 2 ? , where E is the expectation operator, ?  is the mean and ?  is the standard deviation.  

The Jacque-Berra statistic, J, where: 
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Serial Stability 
The expected growth rate for each stock, the variance of that growth rate and the 
covariances between each stock’s growth rates are essential inputs to the process of 
determining growth optimal portfolio weights.  Thus any serial instability in these 
input parameters will imperil the success of any investment strategy based on an 
assumption of parameter constancy.  The growth optimal strategy relies on the 
stability of the input parameter estimates. 
 
Table 3: Sub-period Statistics 

Period All Ordinaries Index Equally weighted portfolio 
 Growth Volatility Growth Volatility 

1977-82 8.70% 19.79% 13.25% 18.45% 
1982-87 12.48% 19.76% 14.06% 18.04% 
1987-92 -1.31% 29.38% 4.50% 27.76% 
1992-97 8.51% 12.91% 8.59% 12.32% 
1997-02 7.55% 12.93% 6.61% 13.42% 

 
Table 3 sets out estimates of the average growth and volatility of growth, for the two 
benchmark series, for the five equal sub-periods that make up the overall data set 
period.  Casual analysis of the range of sub-period estimates suggests parameter 
instability.  However, the result of applying formal tests for instability of the mean of 
growth for the individual stocks does not lead to the conclusion that these are 
unstable.  Analysis of variances indicates instability in only four of the 25 stocks.  The 
Kruksal-Wallis test, which is the more suitable test given the non normality of the 
data, rejects the hypothesis of constancy of growth rates in all five sub-periods for 
only two of the 25 stocks. 
 
The proposition that variance of growth rates is identical in each of the 5 sub-periods, 
was checked by using Hartley’s test for homogeneity of variance.  The ratio of the 
largest sub-period variance to the smallest sub-period variance, which is the key 
statistic in Hartley’s test, is displayed in Table 2. 8  Hartley’s test indicates that the 
presence of serial instability of variance of growth rates exists in many of the sample 
stocks.  The null hypothesis of equality of sub-period was rejected, at the 5% level at 
least, for 17 of the 25 companies.   
 
The variance for each stock is an input into the formation of growth optimal 
portfolios.  However, it is the full covariance matrix that is the essential input item 
and the variances represent only a small proportion of the larger covariance matrix.9  
However, the preceding evidence of variance instability justified further research to 
ascertain whether the variance instability was also mirrored in covariance instability.   
 

                                                
8 The ratio of the highest to the lowest sub-period variance is theoretically distributed as Fn1,n2, where 
n1 is the number of sub-samples and n2 is the number of observations in each sub-sample, ie F5,60 in 
our case.  For more fulsome explanation of Hartley’s test see Berenson and Levine (1992) pp506-507. 
9 A covariance matrix contains n variance terms and n (n-1) covariance terms.  n = 25 in this study.  
Thus for this study the variances represent only 25/600=4% of the terms in the covariance matrix.   
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A test of the hypothesis of equality of sub-period covariance matrices employs the 
Box’s M statistic, where: 
 

????
??

m

1i
is

m

1i
lnnlnnM OO  (8) 

 
where m is the number of sub-periods, n = m ns is number of observations in the full 
sample, ns is the number of observations in each sub-period, |? | is the determinant of 
the overall, p dimensioned, covariance matrices and |?? i| is the determinant of the ith 
sub-period covariance matrix.  Pearson (1969) shows that for large p, M is distributed 
as b Ff1,f2 .10   
 
The sample M/b was computed as 1.75.  This is to be compared to the 1% critical F of 
1.09.  Hence, it must be concluded that the sample data covariance matrix is not 
stationary. 
 
The preceding results do not allow much scope for optimism as to the successful 
application of investment techniques based on growth optimal portfolios, as the 
techniques rely on an assumption of normality of period-by-period growth rates, and 
an implicit assumption of the stability of the distributional parameters contained 
within the expected growth rates and the covariance matrix of growth rates.  Contrary 
to these assumptions, the analysis has shown that long run Australian equity data is 
leptokurtic and somewhat skewed and is characterised by a non-stationary covariance 
matrix.  However, the facts of the situation notwithstanding, we proceeded to test 
efficacy of growth optimal portfolio investment techniques using the historical 
Australian data. 

Application of Growth Optimal Portfolio Investment Techniques 
This paper attempts to test a simple, practical investment strategy based on portfolios 
selected to have maximum expected growth rate.  Testing any proposed investment 
strategy on the historical data involved stepping through each of the 300 monthly 
observations on the return of 25 Australian companies.  At any period, k, the 
following steps are undertaken: 
 
1. The data on the previous n periods are employed to provide estimates of the 

expected growth rate for each stock in the sample and to estimate each element of 
the 25 x 25 growth rate covariance matrix.  

2. The expected growth and covariance matrix estimates are used to produce growth 
optimal portfolio weights, wk. 

3. The return on this portfolio in the next, ie k+1, period is computed. 
4. The time-frame is moved forward one observation. 
 
Steps 1 to 4 are repeated until the data set is exhausted. 
 

                                                
10 The calculation of M/b is rather daunting with f1, f2 and b having more terms than a Mettalica tour 
contract. See Pearson (1969) p 219.  An example of the use of M to test equality of covariance matrices 
can be found in Morrison (1976) pp 252-253 (note, however, the error in Morrison’s equation (2)).  
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Short-sales Allowed Portfolios 
Growth optimal portfolios lie on a minimum variance frontier formed when portfolio 
variance is minimised for a range of expected portfolio drift (see Figure 2).   The 
short-sales allowed, growth optimal portfolio, w*, vector has the following structure: 

11 
 

bµAw* ??  (9) 
 
where: 
 

???
?

???
? ?? ?

?
?

?O?
O??

IOA 1T

1T
1  ,  

?O?
?O

b 1T

1

?

?

?  and ? is the unit vector. 

 
It is our aim to proceed through the historical data set, estimating ?  and ? , using these 
estimates to calculate the growth optimal weights, w*, and to use these weights to 
produce a set of one-step-ahead returns for each of the 300 observations in the data 
set.  The success or failure of the growth optimal investment techniques will be 
judged on the nature of the one-step-ahead returns produced by the strategy.  The 
returns on three alternative investment strategies will provide a base against which to 
measure the growth optimal techniques.   
 
These benchmark portfolios are: 
 

1. the equally weighted portfolio, 
2. the minimum variance portfolio and  
3. the portfolio with an expected drift of 15%pa. 

 
The equally weighted portfolio is a simple passive investment strategy and represents 
the absolute minimum “bar” against which alternatives ought to be measured.  The 
minimum variance point (MVP) strategy aims to minimise portfolio variance 
regardless of the expected level of portfolio drift.  Weights for the minimum variance 
portfolio (MVP), wMVP are given by: 
 

?O?
?O

bw 1T

1

MVP ?

?

??  (10) 

 
The final benchmark portfolio is one with an expected drift rate of 15%pa.  The figure 
of 15%, while being arbitrary, is consistent with the historical record and is in general 
accord with Australian investors’ expectations of reasonable share market returns. 
 

                                                
11 The structure of short-sales allowed growth optimal portfolios is extensively explored in Hunt 
(2002).   
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Figure 2:  Growth Portfolio and the Benchmark Portfolios 
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A stylised representation of the relative positions of the growth portfolio and the three 
benchmark portfolios is depicted in Figure 2.12  
 
The inverse of the covariance matrix, ? -1, is necessary for the determination of the 
weights of the growth optimal portfolio, the MVP and the 15% drift portfolio.  
Unfortunately, a problem arises in the computation of ? -1 due to the multi-collinear 
nature of the periodic stock growth rates.  The empirical estimate of the 25-stock 
covariance, ? ? is at times close to being singular.  The near singularity of ? ?results in 
a loss of numerical precision which in turn results in estimates of individual stock 
weights, w*i, that gyrate wildly from observation to observation.   
 
The replacement of ?  with an amended covariance matrix, ? + in the estimation 
process provides a solution to the multi-collinearity problem, where: 
 

Id??? OO  (11) 
 
where d is a scalar and I is the identity matrix.   
 
The approach embodied in (11) is analogous to the ridge solution to multi-colinearity 
in regression analysis.13  The use of a non-zero d in (11) produces “biased” estimates 
of the growth optimal portfolio and the benchmark portfolios.  As the pivot d 
increases, the ridge estimate of growth optimal portfolio weights, w+*, is biased away 
from the classic growth optimal portfolio weights towards the equally weighted 
portfolio.  That is, in the limit: 
 

                                                
12 Hunt (2002) shows that the growth optimal portfolio lies on the minimum variance frontier drawn in 
expected drift-variance space. 
13 Judge (1985) pp. 474-486 provides an exhaustive review of ridge estimators.  An alternative form of 
ridge estimator, ? +=? +d D where d is a diagonal matrix of individual stock variances, was also 
considered.  The weights produced by this ridge estimator are inversely proportional to the stock 
variances in the limit as d? ? .  

Equal weights 

15% drift 

MVP 

Growth optimal 

Minimum variance frontier 
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where n, the number of assets in the set, is 25 in our case.  In other words, the ridge 
estimator produces weights that are a combination of the classic estimator weights and 
those of the equally weighted portfolio.   
 
A decision to use a ridge estimator necessarily requires a particular value for d.  A 
common approach in ridge regression analysis is to choose a value for d that provides 
“stabilised” estimates of the system parameters.  We have taken a similar approach in 
choosing a suitable d on the basis of its influence on portfolio length defined by:14 
 

w)wTn(length ?    (13) 
 
Figure 3: Portfolio Length Versus the Size of the Ridge Constant  
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Figure 4 plots the growth portfolio length (estimated over the entire sample) against d. 
It was decided, on the basis of this plot, that setting d equal to 0.35 (35%) represented 
a reasonable compromise between portfolio length and the portfolio weight bias15. 
 
The results of applying the MVP, the 15% drift and the growth optimal strategy, with 
the ridge constant set to both zero and 0.35, for parameter estimation period lengths of 
3, 4 and 5 years, are set out in Table 4.  These results need to be measured against the 
equally weighted portfolio, which in shown in Table 1 to have an average growth of 
11.55%p.a. (and thus an aggregate growth of 288.7%) with a volatility of 18.9%pa. 
 
The first notable result is the volatility associated with the non-ridge (ie d=0.00) 
growth portfolios.16.  While the results in Table 4 show that the non-ridge portfolios 

                                                
14 Under this definition the minimum length portfolio, ie the equally weighted portfolio, has unit length. 
15 The growth portfolio estimated with d=0.35 has a length that is less than 2% of that of the classic, 
d=0.0, growth portfolio. 
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were numerically attainable, they do not provide evidence that a growth oriented, 
short-sales allowed, investment strategy was realistic or feasible.  The short-sales 
allowed, zero ridge constant, growth portfolios had gearing ratios that any investor 
would find impractically high.  For example, the average length of the 4-year 
estimation period, zero ridge constant, growth portfolio exceeded a value of 300.  The 
strategy routinely required an asset to be short-sold more than 1000%.  The highly 
geared portfolios were naturally characterised by high volatility of investment returns. 
 
Table 4: Short-sales Allowed Portfolio Strategy Returns 
 Ridge constant = 0.00 Ridge constant = 0.35 
 MVP 15% drift Growth MVP 15% drift Growth 
Estimation period = 3 years 
Aggregate 213.8% 282.0% 12018.2% 292.2% 284.1% 359.0% 
Average 8.6% 11.3% 480.7% 11.7% 11.4% 14.4% 
Volatility 25.0% 23.7% 2549.9% 18.7% 17.7% 22.4% 
Estimation period = 4 years 
Aggregate 195.2% 225.9% 12420.5% 290.1% 281.0% 344.4% 
Average 7.8% 9.0% 496.8% 11.6% 11.2% 13.8% 
Volatility 20.4% 20.4% 1057.2% 18.7% 18.2% 21.8% 
Estimation period = 5 years 
Aggregate 169.0% 254.9% 11305.1% 289.1% 291.4% 337.9% 
Average 6.8% 10.2% 452.2% 11.6% 11.7% 13.5% 
Volatility 19.8% 20.0% 699.9% 18.7% 18.1% 21.5% 
 
The short-sales allowed growth portfolios, whose weights were estimated with a ridge 
factor of 0.35, were much better behaved than their zero ridge factor counterparts.  
The growth strategy portfolios outperformed the other bench marks by more or less 
than 3%pa depending on the length of the estimation period.  It is worth noting 
similarity in performance of each of the three bench mark portfolios for d=0.35.  The 
equally weighted portfolio, the MVP portfolio and the 15% drift portfolio each 
produced a rate of growth of a little under 12%p.a., with an associated volatility of 
about 18% regardless of the length of the estimation period.17  In fact the performance 
of all four strategies, including the growth strategy, appears to be relatively 
independent of the length of the estimation period for both the classic, and the ridge 
non-ridge portfolios. 
 

                                                                                                                                       
16 With 25 assets in the portfolio, the maximum rank of the covariance matrices is n-26, where n is the 
number of months in the estimation period.  The portfolio weights estimated over the 3-year period are 
thus particularly susceptible to the problem of multicollinearity. 
17 The equally weighted portfolio performance is of course independent of the estimation period. 
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Figure 5: Short -sales Allowed Portfolio Growth in Value  
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Figure 5 shows the dollar extent of the superior performance by the short-sales 
allowed, ridge constant=0.35, 4-year estimation period, portfolio over the 25 years of 
the data set.  As previously stated, the presence of short-sold shares in the portfolios 
of either professional or retail investors is not typical.  An analysis of the results of 
growth portfolios where short-selling is not allowed will provide a more practical test 
of the growth investment strategy.   

Short-selling not allowed growth portfolios  
While the short-selling of stock in most equity markets, including Australian, is 
allowed, it is not typical.  Trialling growth optimal portfolios where a no short-sales 
restriction is imposed on portfolio weights, is a more realistic test of the strategy.  The 
results from testing no short-sales growth portfolios are set out in Table 5. 
 
The no short-sales growth portfolio performances are impressive.  The statistics 
recorded in Table 5 show that the classic no short-sales, non-ridge ( ie d=0), estimator 
produces portfolio growth rates in excess of 20%pa and up to 31%pa, depending on 
the length of the input estimation period.   
 

- 
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Table 5: No Short-sales Allowed Portfolio Strategy Returns 
  Ridge constant = 0.00 Ridge constant = 0.35 
  MVP 15% drift Growth MVP 15% drift Growth 
Estimation period = 3 years 
Aggregate 260.6% 289.2% 792.5% 292.2% 295.7% 358.1%
Average 10.4% 11.6% 31.7% 11.7% 11.8% 14.3%
Volatility 16.2% 15.4% 45.7% 18.7% 17.8% 22.2%
Estimation period = 4 years 
Aggregate 258.7% 278.3% 563.0% 290.1% 284.8% 345.2%
Average 10.3% 11.1% 22.5% 11.6% 11.4% 13.8%
Volatility 16.5% 16.3% 37.7% 18.7% 18.5% 21.8%
Estimation period = 5 years 
Aggregate 262.8% 276.8% 569.0% 289.1% 264.6% 337.8%
Average 10.5% 11.1% 22.8% 11.6% 10.6% 13.5%
Volatility 16.7% 18.1% 36.2% 18.7% 19.0% 21.5%
 
The aggregate growth for the 2-year, 3-year and 4-year estimation period growth 
portfolios is depicted in Figure 618.  The extent to which the growth portfolios 
outpaced the benchmark portfolios is clearly evident.  The growth portfolios’ 
performance is even more impressive when stated in dollar terms.  One dollar 
invested in the no short-sales, 3-year, 3-year and 5-year estimation period, growth 
optimal portfolio strategy in March 1977 would have returned $2,764, $278 and $295 
respectively at the end of March 2002.  These figures grossly exceed the return on the 
All Ordinaries Index and the equally weighted portfolio, of $11.24 and $18.61 
respectively. 
 
Figure 6: Short-sales Not allowed Aggregate Growth Rates  
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The impressive performance of the no short-sales growth strategy begs further 
analysis.  A couple of points about the performance of the growth portfolios can be 
                                                
18 From here on, the analysis of results is restricted, for the sake of brevity, to the 2-year and the 3-year 
estimation period.  The choice of these two estimation periods is justified as they yield both the highest 
and lowest growth rates respectively. 
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made with reference to Figure 6.  First the growth strategy accumulation of value is 
slower in the second half of the period than it is in the first half.  Moreover, the 
performance in the last couple of years has been notably negative.19 
 
Table 6 sets out growth and volatility statistics for the classic and ridge short-sales not 
permitted portfolios and for each of the benchmarks, for the 4-year estimation periods.   
It is clear from Table 6 that the growth oriented strategies, while having considerably 
higher growth rates than the benchmark strategies, also have much higher volatility 
than the benchmark MVP and 15% growth and equally weighted strategies.  The 
direct relationship between growth and volatility is also evident in the 3-year and 5-
year estimation period as Table 5 shows.  The evidence shows that no single 
investment strategy clearly dominates any other strategy.  Indeed, the results of this 
study provide strong support for what Luenberger (1998) calls the log mean-variance 
model.20    
 
Low growth portfolios are associated with low volatility and high growth portfolios 
are associated with high volatility.  The point is, however, that regardless of the cost 
in terms of volatility, the portfolios designed for maximal growth did produce quite 
remarkable rates of growth.  It is worth investigating the source of this growth. 
 
Table 6: No Short-sales, 4-year Estimation Period, Portfolio Properties 

Input estimation 
period 
 

Portfolio type

 

Average 
growth 

rate 
 

Volatility 
of growth 

rate 

Average 
portfolio 
length 

Average no 
of included 

assets 

Average 
turnover of 

assets 

 
Equal 
weights  11.55% 18.94% 1.00 25.00 0.00% 

MVP 10.35% 16.49% 2.60 8.53 6.94% 
15% drift 11.13% 16.32% 2.39 8.56 11.33% 

Classic no short-sales 
growth portfolios 
(d=0.00) 
 Growth 22.52% 37.65% 4.36 1.71 11.83% 

MVP 11.61% 18.70% 1.00 25.00 0.25% 
15% drift 11.39% 18.53% 1.19 22.46 7.40% 

Ridge no short-sales 
growth portfolios 
(d=0.35) 
  Growth 13.81% 21.75% 1.26 23.18 4.97% 

 
It is insightful to examine the average portfolio length and average number of 
included assets in the no short-sales growth optimal portfolios.  The length of a no 
short-sales allowed portfolio is inversely indicative of its “diversity”21.  The length of 
a no short-sales, 25-stock portfolio, can take values between one and five.  The 
maximum portfolio length of 5 is achieved, for any 25-stock portfolio, when 100% of 
portfolio value is held in a single stock.  At the other end of the spectrum is the 
maximally diversified, equally weighted portfolio with unit length.   
 
Table 6 shows that the “classic” no short-sales allowed, growth optimal portfolio with 
an average length of 4.36, is at the lower end of the diversity spectrum.  Moreover, 

                                                
19 Perhaps the poor recent performance of the growth portfolios may be summarised in the old adage, 
“if one lives by the sword (in this case an instrument finely crafted by Messes Murdoch and Lowey) 
one dies by the sword”.  
20 Luenburger (1998) pp 425-427 
21 The use of vector length to measure diversity is related to Fernholz’s measure of diversity 
Dp=(? wi

p)1/p . See Fernholz,Garvy and Hannon (1998). 
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Table 6 shows that this portfolio contains on average only 1.71 assets in each period.  
Further, Figure 7, which shows the distribution of the number of assets held in each 
period, reveals that for the majority of the 300 monthly periods, the no short-sales 
growth optimal portfolio consisted of a single asset.   
 
Table 7: Growth Portfolio Included Companies* 
Company 

 
No. of 

appearances 
First appears 

 
Last appears 

 
Growth while 

included (%pa) 
Overall growth 

(%pa) 

AGL 4 Jul-92 Dec-98 13.28% 

AMC 4 Jul-92 Aug-92 8.62% 
ANZ 1 Nov-92  
BHP 10 Dec-91 Mar-02  12.61% 
BIL 18 Mar-90 Dec-99 -0.35% 14.74% 
CSR 1 Mar-02  3.95% 
FGL 11 Sep-82 Sep-83  11.10% 
MAY 4 Jun-78 Jul-90 9.04% 
MIM 1 Mar-02  
NAB 1 Jun-99  
NCP 118 Apr-77 Feb-02 18.05% 23.49% 
ORI 3 Dec-94 Jan-95   
QBE 39 Jan-83 Sep-01 0.33% 18.60% 
RIO 9 Apr-90 Sep-01  10.57% 
SRP 2 Feb-84 Aug-91  14.35% 
STO 74 May-77 Jun-83 51.27% 15.33% 
WMC 23 Dec-88 Jan-02 0.95% 9.86% 
WPL 26 Feb-89 Sep-01 -4.18% 11.68% 
WSF 155 Feb-79 Mar-02 23.44% 38.82% 
The statistics in the table are for stocks included in a no short-sales, classic growth 
optimal portfolio strategy, employing a 3 year estimation period.   

 
The low number of assets held in each period results in an overall low rate of 
inclusion of individual companies over the 25 years.  Table 7 sets out statistics 
relating to included stocks in a growth optimal strategy over 25 years.  Only seven of 
the 25 stocks are included in the strategy for 12 months or more.  Table 8 shows that 
the 25-year strategy is dominated by three stocks: STO, NCP and WSF.  NCP and 
WSF are Australian share market stellar performers producing fairly steady growth 
over 25 years of 23.49%pa and 38.82% respectively.  In contrast, STO was a patchy 
performer. However, STO was well-performed stock over the period of its inclusion 
in the growth portfolio in the first five years of the 25-year trial period.  STO 
contributed to the strategy 55%pa while it was included, compared to a more modest 
15%pa over the whole period. 
 
The success of the no short-sales allowed, growth optimal strategy appears to lie in its 
ability to identify companies during their periods of high growth for portfolio 
inclusion. 
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Figure 7: Distribution of the Number of Assets Held in Growth Portfolios 
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Increased transaction costs are a practical consideration for any strategy that results in 
the placement of portfolio value in a few assets.  Transaction costs will be significant 
if a strategy requires the flip-flopping of large asset weights from one asset to another.  
One can see that this is the case to a degree with the no short-sales allowed growth 
portfolios.  Table 6 shows that the maintenance of this growth optimal portfolio 
strategy would have required on average a turnover of stock of about 12% per month.  
The transaction costs associated with any strategy that turns over 12% of a portfolio 
per month are considerable, and will significantly lower the effective rate of portfolio 
growth.22 
 
The ridge estimator was employed to produce short-sales allowed portfolio weights 
that were numerically stable and produced acceptable gearing levels .  The 
justification for this use of a ridge estimator does not have the same force for short-
sales not allowed portfolios.  The no short-sales restriction considerably reduces the 
dimension of the covariance matrix that is inverted to produce portfolio weights.  
Classic short-sales not allowed portfolio weights are numerically stable and are by 
definition not geared.  There is, however, an argument for the use of a ridge growth 
estimator in the short-sales not allowed context, on the grounds that it produces more 
diversified, less risky portfolios.   
 
The ridge growth portfolio estimator is a combination of the classic growth optimal 
portfolio estimator and the maximally diversified, equally weighted portfolio.  The 
size of the ridge constant, d, determines the extent to which a ridge growth estimator 
is biased away from the classic estimator towards the equally weighted estimator.   
 
We have computed no short-sales, ridge, growth optimal portfolios using a ridge 
constant of 0.35 to facilitate comparison with the short-sales allowed results.  
Predictably, Table 6 reveals that the no short-sales allowed, ridge, growth portfolio 
performance lies somewhere between the performance of the classic growth optimal 
portfolio and the equally weighted portfolio.  The no short-sales allowed, ridge, 
                                                
22 For example, the cost of portfolio adjustment would be 2.9%pa if a round transaction cost was 2% of 
traded value. 
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growth portfolio contains more assets (see Figure 7), is less risky and has a lower 
growth rate than the classic growth portfolio.    

Conclusion 
Growth optimal portfolio investment strategies were applied to a 25-year data set of 
25 Australian companies.  Initial statistical investigation of data provided no reason to 
be optimistic about the successful application of the growth techniques.  The growth 
optimal technique assumptions of normality and stability were violated by the nature 
of the Australian data.  Returns on the 25 stocks were found to be skewed and 
leptokurtic and to have time varying variances and covariances.  However, the growth 
optimal techniques perform well, despite the assumptions not being met.   
 
The growth optimal portfolios, both short-sales allowed and short-sales not allowed, 
produced rates of growth that exceeded those of the benchmark portfolios.  The 
classic no short-sales allowed, growth optimal portfolios produced impressive rates of 
growth that were more than double those of the benchmark portfolios.  Analysis of the 
structure of these portfolios showed that, at any point in time, they consisted of a very 
small number of included stocks.  The secret of the success of these portfolios appears 
to lie in their ability to select a few stocks during their high growth periods. 
 
This study details the successful inclusion of a variant of ridge regression as the basis 
of a growth optimal strategy.  The ridge growth optimal technique facilitated 
production of numerically stable weights for short-sales allowed portfolios.  When 
short-sales were not allowed, the use of the ridge estimator produced more diversified 
growth portfolios.   
 
There are two possible answers to the question of why the growth optimal techniques 
performed well in the face of non-normality and instability in the data.  The first 
reason, which cannot be dismissed, is that the techniques work well on this particular 
data set by pure chance alone.  The second explanation is that the assumptions of 
normality and stability are not necessary to the success of the technique.  While the 
model used in this paper assumes normality in the Ito process, it may be that growth 
investment strategy is equally efficacious under alternative stochastic processes that 
allow kurtosis.  Why does the investment strategy copy with distributional instability?  
Perhaps the use of a moving window estimation process may counter the problems 
arising from the instability of mean growth rates and growth rate covariances. 
 
The study details the successful application of growth optimal techniques.  There is, 
however, no evidence of the general superiority of growth optimal techniques.  
Growth portfolio strategies are also high volatility strategies.  While the results of an 
empirical study such as this are necessarily limited to the specific market and to the 
specific time-frame of the study, the point that this study makes is, however, that 
regardless of their other properties and potential drawbacks, the portfolios designed 
for maximal growth did in fact produce quite remarkable rates of growth.  
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