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Abstract. We analyse the procedure for determining volatility presented by
Lagnado and Osher, and explain in some detail where the scheme comes from.
We present an alternative scheme which avoids some of the technical compli-
cations arising in Lagnado and Osher's approach. An algorithm for solving
the resulting equations is given, along with a selection of numerical examples.

1. Introduction

Arbitrage free pricing of a derivative security begins with the speci�cation of a
stochastic process describing the dynamics of the underlying asset price. For many
options, such as stock options, the most commonly used model is that of Black
and Scholes. We assume that the asset price S, evolves according to a Stochastic
Di�erential Equation (SDE) of the form

dS = �Sdt+ �SdWt (1.1)

where Wt is a Wiener process, � is the drift and � is the volatility.
Once the model has been chosen it must be calibrated to the market. That is,

the numerical values of the model's parameters must be determined. The price of
an option written on the asset is given by the Black-Scholes equation
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where the only parameter not freely observable in the market is the volatility �.
Here r is the constant rate of interest and D is the continuously compounded
dividend on the underlying asset. A common approach to determining � is to
observe the market prices for a range of options and, using the price provided by
the Black -Scholes formula, calculate an implied volatility. However it is known that
the standard Black-Scholes model does not generate the observed option prices for
all possible strike prices and expiry dates for any single value of the volatility.

Recently a number of authors Dupire [Dup94], Derman and Kani [DK94], Ru-
binstein [Rub94] and Lagnado and Osher [LO97] have attempted to deal with this
problem for a class of index options. They assume that the index level S follows a
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di�usion process, governed by the SDE

dS = �Sdt+ �(S; t)SdWt (1.3)

� is a strictly deterministic function, which may depend explicitly upon the index S
as well as time t. It is the approach of Lagnado and Osher which we are concerned
with in this article. We will �rst demonstrate how their calibration procedure
arises from the theory of inverse problems via Tikhonov regularisation. Then we
will develop an alternative strategy which avoids some technical implementation
problems. Finally we will present a relatively fast algorithm for solving the par-
tial di�erential equations which determine the volatility function and give some
numerical examples.

We should note here that an alternative approach to determining the volatil-
ity function when � is independent of time has recently been presented by Bou-
chouev. In this procedure the volatility is determined by solving a non linear inte-
gral equation. [Bou97]. A detailed discussion of this technique, which relies upon
the construction of an approximation to the fundamental solution of a generalised
Black-Scholes equation, may be found in [CCEH99]. An excellent general survey
article on the state of the art for inverse problems arising in �nance is the paper
by Bouchouev and Isakov [BI99].

In the current work we assume that the market prices for a series of options with
expiration dates T1; T2; : : : TN are known. We also assume that for each expiration
date Ti, options with strike prices Ki1;Ki2; : : :KiMi

are traded. Given an option
with expiry date Ti and strike Kij we let the bid and ask prices for the option be
denoted V b

ij and V
a
ij respectively.

By use of the no arbitrage pricing process for an option written on an index
following (1.3) we �nd that the price V of the option is given by
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= rV: (1.4)

Once we specify the functional form of � in (1.4) together with appropriate �nal
and boundary conditions, we can determine the theoretical price V (S; t;K; T; �)
of an option on a process following (1.3). Market calibration then requires us to
�nd a local volatility function such that the predicted value V falls between the
corresponding bid ask spreads. In other words

V b
ij � V (S0; 0;Kij ; Ti; �) � V a

ij (1.5)

To satisfy (1.5) we try to minimise the functional

G(�) =

NX
i=1

MiX
j=1

(V (S0; 0;Kij ; Ti; �)� Vij)
2 (1.6)

where Vij =
1
2
(V a

ij + V b
ij); with respect to �:

Unfortunately however there is simply not enough market data available to
uniquely determine the value of � which minimises (1.6). Moreover the minimum
value of a functional like (1.6) typically does not depend continuously on the data.
Consequently the problem of determining � in this way is ill posed. Ill posed prob-
lems are often dealt with using regularisation strategies. Recently, Lagnado and
Osher [LO97] proposed a strategy for determining � which is based upon the well
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known Tikhonov regularisation. Before we discuss Lagnado and Osher's method-
ology we therefore present a brief introduction to some of the ideas and results in
the theory of inverse problems.

2. Inverse Problems and Tikhonov Regularisation

Let us review the problem discussed in the introduction. We are interested in
determining an unknown function �(S; t) from market data. In other words, given
the option pricing PDE
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+ (r �D)S

@V

@S
= rV (2.1)

and a space 
 containing the market data, determine the coe�cient �(S; t): This
is an example of an inverse problem. The general theory of inverse problems is
discussed in Kirsch [Kir96]. For an overview of the relevant material from functional
analysis, see Rudin [Rud73].

An inverse problem is simply the converse of a direct problem. For example,
determining the zeroes of a polynomial is a direct problem. If instead we are asked
to determine which polynomial has a given set of zeroes then we have an inverse
problem. At �rst glance there appears to be some arbitrariness involved in deciding
which of these two problems is the direct one and which is the inverse. However
there is a fundamental distinction between the two.

To understand this distinction we observe that inverse problems may often be
cast in the following form:

De�nition 2.1. Let X and Y be linear spaces. The standard form for an inverse
problem is as follows: Given y 2 Y and K : X ! Y , �nd x 2 X such that

Kx = y (2.2)

In applications K is frequently a compact operator. A compact operator is one
which takes bounded sets to compact (i.e. closed and bounded) sets. Compact
operators are as \nice" as one can reasonably hope a linear operator on an in�nite
dimensional space to be, duplicating many of the properties of linear operators (i.e.
matrices) on �nite dimensional vector spaces.

It is very important to note, for reasons discussed below, that in a real application
we are unlikely to know y exactly. Rather, we will have information about it to
some degree of precision. More precisely, if y 2 Y , where Y is a normed linear
space with norm k � k, then we have an element y� 2 Y with ky � y�k < �. That is,
we know y to within � of its true value.

This fact has important consequences for the problem of solving (2.2). Inverse
problems are typically ill posed. To understand what an ill posed problem is we
need to know the de�nition of a well posed problem. (Historically the de�nition is
due to Hadamard).

De�nition 2.2 (well posedness). Problem (2.2) is said to be well posed if

1. For every y 2 Y , 9x 2 X such that Kx = y
2. For every y 2 Y 9 at most one x 2 X such that Kx = y, and
3. The solution x depends continuously on the data y

A problem is said to be ill posed if it is not well posed. Most inverse problems are
ill posed. It is this fact which distinguishes the direct from the inverse problem. For
the case where K is a compact operator, the inverse problem is always ill posed.



4 CARL CHIARELLA, MARK CRADDOCK AND NADIMA EL-HASSAN

This is the content of the next result which we have taken from Kirsch ([Kir96]
p13).

Theorem 2.3. Let X;Y be normed spaces and K : X ! Y be a compact linear
operator with nullspace N (K) := fx 2 X : Kx = 0g: Let the dimension of X=N (K)
be in�nite. Then there exists a sequence (xn) � X; such that Kxn ! 0 but (xn)
does not converge. We can even choose (xn) such that jjxnjj ! 1: In particular if
K is one to one, the inverse K�1 : Y � K(X)! X is unbounded.

This result tells us that inverse problems involving compact operators on in�nite
dimensional spaces are always ill posed. In particular part 3 of de�nition 2.2 fails.

The fact that the solution fails to depend continuously upon the data is the source
of many of the di�culties inherent in solving an inverse problem. As mentioned
above, typically we do not know the value of y in (2.2), rather we know some
approximation to it, y�. Since the inverse problem is ill posed, even assuming that
we are able to obtain a solution x� to the approximating problem

Kx� = y�; (2.3)

there is no guarantee that the approximating solution x� is anywhere near the true
solution to problem (2.2), since the solution does not depend continuously upon y:
Moreover there is no a priori guarantee that the data y� is in the range of K!

One tries to ameliorate this problem by introducing a regularisation strategy.

De�nition 2.4. A regularisation strategy for the equation Kx = y is a family of
linear and bounded operators

R� : Y ! X;� > 0 such that
lim�!0R�Kx = x;8x 2 X

i.e. the operators R�K converge pointwise to the identity. The real number � is
known as the regularisation parameter.

The content of this de�nition is that the operators R� form a `sequence' of
approximations to the inverse K�1 of K. Pointwise convergence of the operators
R� is the best that we can expect. Indeed if the operator is compact, then the
operators R� are not uniformly bounded, the sequence (R�Kx) does not converge
uniformly and the operators R�K do not converge to the identity in the operator
norm topology. (See Theorem 2.2 of Kirsch [Kir96])

The de�nition of a regularisation strategy assumes that we know the data y
for the equation Kx = y exactly. In practice however we have data y� where
ky�y�k � �: If we apply the regularisation strategy to the problem with perturbed
data we obtain a family of approximate solutions

x�;� = R�y
� (2.4)

to our real problem Kx = y: We can compute the error in the approximation by
the triangle inequality.

kx�;� � xk � kR�y
� �R�yk+ kR�y � xk (2.5)

� kR�kky
� � yk+ kR�Kx� xk (2.6)

which implies that

kx�;� � xk � �kR�k+ kR�Kx� xk (2.7)

The inequality (2.7) shows that the error between the true solution and the
approximate solution obtained from the regularisation strategy depends upon both
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the error from the regularisation strategy applied to the real data y and the error in
the data �multiplied by the norm kR�k (this norm is called the condition number for
the regularisation strategy). We choose a regularisation strategy so as to minimise
the right hand side of (2.7).

The philosophy behind this strategy is one of pragmatism. We cannot hope to
determine the exact solution to our problem because of its very nature. Conse-
quently we attempt to �nd an approximation which is as close to the true solution
as possible. To achieve this we are moved to replace our problem with one which
is \close" to the original, but does not possess the ill conditioning which the makes
the original intractable. In other words: Don't try and solve the given problem,
try and solve a di�erent one whose solution is close to that of your problem. This
is the essence of all regularisation methods.

There are many approaches to constructing regularisation strategies. Probably
the best known is due to Tikhonov. (See [Tik63] for the original discussion). The
origin of the so called Tikhonov regularisation scheme lies with the problem of
dealing with an over determined linear systemKx = y, whereK is a linear operator
on a �nite dimensional vector space. i.e. a matrix. Typically one tries to minimise
the defect kKx � yk with respect to x 2 X for some norm on Y: We might try
the same strategy on an in�nite dimensional space, however if the operator K is
compact then the problem is ill posed (see Lemma 2.10 of Kirsch [ibid]).

Tikhonov proposed the following alternative. Given the problem of solving (2.2)
whereK : X ! Y is a bounded linear operator, we instead determine the minimum
value of the Tikhonov Functional

J�(x) = kKx� yk2 + �kxk2; for x 2 X (2.8)

Tikhonov proved the following result. See Kirsch, Theorem 2.11 for a straightfor-
ward proof. The positive real number � is known as the regularisation parameter.

Theorem 2.5. Let K : X ! Y be a linear and bounded operator between Hilbert
spaces and let � > 0: Then the functional (2.8) has a unique minimum x� 2 X,
which is the unique solution of the normal equation

�x� +K�Kx� = K�y (2.9)

Here the operator K� : Y ! X is the adjoint of the operator K: i.e. the operator
such that

(Kx; y)Y = (x;K�y)X (2.10)

for all x 2 X; y 2 Y: (�; �)X and (�; �)Y are the inner products for the Hilbert
spaces X and Y respectively.

Given a linear space X and norms k � k and k � k1 on X we say that k � k1 is a
stronger norm than k � k if there exists c > 0 such that for all x 2 X we have

kxk � ckxk1:

An important fact is that if we replace the Tikhonov functional (2.8) with

J1�(x) = jjKx� yjj2 + �jjxjj21 (2.11)

in which jj � jj1 is a stronger norm de�ned on some subspace X1 � X then a result
similar to theorem 2.5 holds.
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With these details in mind we now return to the original problem, namely deter-
mining a volatility function �(S; t) from market data. In particular we discuss the
regularisation strategy devised by Lagnado and Osher to determine this function.

3. A Regularisation Strategy for Determining Volatility

The aim of section 4 is to develop a regularisation strategy for the determination
of asset volatility. Our regularisation strategy is an alternative to the procedure of
Lagnado and Osher [LO97]. For this reason we will present here a brief discussion
of Lagnado and Osher's technique.

In [LO97] a regularisation strategy based upon minimising the functional

F (�) = kjr�jk22 + �G(�); (3.1)

where G is given by (1.6), is developed . Here, r is the usual gradient operator
from multivariable calculus.

To understand where this strategy comes from we must recall that the goal is to
minimise the functional

G(�) =

NX
i=1

MiX
j=1

[V (S0; 0;Kij ; Ti; �)� Vij ]
2 : (3.2)

Since this problem is ill-posed, the discussion in section the use of a regularisation
strategy. Lagnado and Osher introduce one based upon the Tikhonov functional
(2.11). The standard Tikhonov approach, based upon (2.8) would, in this instance,
be to minimise the functional

~F�(�) =
NX
i=1

MiX
j=1

[V (S0; 0;Kij ; Ti; �)� Vij ]
2 + �k�k2 (3.3)

which is of course equivalent to minimising

�

NX
i=1

MiX
j=1

[V (S0; 0;Kij ; Ti; �)� Vij ]
2
+ k�k2 (3.4)

Lagnado and Osher have chosen a slightly di�erent regularisation. Heuristically
their strategy is easy to understand. Recall that the gradient of a function yields a
vector which is normal to the surface described by the function. It therefore gives
a vector which points in the direction in which the function value changes most
rapidly. Therefore, the strategy involved with (3.1) is to minimise the functional
G(�); while simultaneously mimimising the speed at which the function � moves
away from the minimum.

Technically this amounts to minimising in a stronger norm. We may consider a
space of twice di�erentiable functions on (0;1)�(0;1) which are square integrable,
for which Z

1

0

Z
1

0

j�(S; t)j2dSdt � c

Z
1

0

Z
1

0

((
@�

@S
)2 + (

@�

@t
)2)dSdt (3.5)

for some c > 0. Such a set of functions form a Sobolev space1, H2, which is also
a Hilbert space. On H2 the norm kjr�jk2 is stronger than the norm k�k2: By

1In general, a Sobolev space is a Hilbert space of square integrable functions with certain
smoothness conditions imposed. For a detailed discussion of such spaces refer to chapter one of
[Wlo87].



MODEL CALIBRATION 7

the comments immediately following theorem 2.5, the functional (3.1) has a unique
minimum � 2 H2: This minimum will be taken as the solution to our problem.

Let us rewrite the right hand side of (3.1) as an integral:

F (�) =

Z
1

0

Z
1

0

�
(
@�

@S
)2 + (

@�

@t
)2 + �

NX
i=1

MiX
j=1

(V (S; t;Kij ; Ti; �)� Vij)
2h(S; t)

�
dSdt

(3.6)

where h(S; t) = �(S � S0)�(t); and �(x � x0) is the Dirac delta function. The
problem is now to minimise the functional (3.6). In order to do this we apply the
Euler-Lagrange equation from the calculus of variations to

L = (
@�

@S
)2 + (

@�

@t
)2 + �

NX
i=1

MiX
j=1

(V (S; t;Kij ; Ti; �)� Vij)
2�(S � S0)�(t): (3.7)

We should make a technical comment at this point. The application of the Euler-
Lagrange equations in this context requires justi�cation. The rationale behind the
calculus of variations is to allow the functional we are minimising to vary over
some space of suitably chosen functions. However, in order to bring the functional
G(�) under the integral sign it was necessary to introduce the Dirac delta function.
Consequently we are dealing with a functional which consists of the gradient of a
smooth function with a tempered distribution added on to it. Whether the Euler
Lagrange equations will yield the minimum for such a functional, or what such a
minimum would be is far from clear, as there is no established theory to guide us in
such a situation. (For a discussion of the calculus of variations and the conditions
under which the Euler-Lagrange equations are known to yield a miniumum, see the
book by Ewing, [Ewi85]).

Leaving this technical issue to one side, we formally apply the Euler-Lagrange
equations, namely

d

dS

@L

@�S
+

d

dt

@L

@�t
�
@L

@�
= 0 (3.8)

where �S is the partial derivative of � with respect to S and �t is the partial
derivative with respect to t. We have

d

dS

@L

@�S
= 2

@2�

@S2
;

d

dt

@L

@�t
= 2

@2�

@S2

and

@L

@�
= 2�

NX
i=1

MiX
j=1

(V (S; t;Kij ; Ti; �)� Vij)
@V

@�
�(S � S0)�(t) (3.9)

Recall that the variational derivative of V with respect to � is

�V ij

��
=

�
d

d�
V (S; t;Kij ; Ti; � + �h)

�
�=0

(3.10)

The references [Ewi85] and Olver [Olv93] contain discussions on the properties of
the variational derivative.

In this case h(S; t) = �(S �S0)�(t): We may evaluate (3.10) by the chain rule to
obtain

�V ij

��
=

@

@�
V (S0; 0;Kij ; Ti; �)�(S � S0)�(t) (3.11)
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From these calculations we �nally obtain the Euler-Lagrange equations for the
functional F (�)

@2�

@S2
+
@2�

@t2
� �

NX
i=1

MiX
j=1

�V ij

��
(S0; 0;Kij ; Ti; �) [V (S0; 0;Kij ; Ti; �)� Vij ] = 0

(3.12)

Thus to determine the function �(S; t) we must solve equation (3.12). To do this we
require an e�cient procedure for the evaluation of the variational derivative (3.11).
Lagnado and Osher have produced a technique for computing (3.11), which they
employ together with a gradient descent method to solve (3.12).

To determine the variational derivative, we need only compute @V=@�, and this
may be done in the following manner. We consider the partial di�erential operator

L(�) =
@

@t
+ (r � q)S

@

@S
+

1

2
�2(S; t)

@2

@S2
� r (3.13)

Then if we pick some suitably smooth function h, we may formally di�erentiate
the expression

L(� + �h)V (S; t;Kij ; Ti; � + �h) = 0 (3.14)

with respect to �. We obtain

h
@

@�

@V

@t
+ h(r � q)S

@

@�

@V

@S
+

1

2
h�2S2

@

@�

@2V

@S2
+ h�S2

@2V

@S2
� rh

@V

@�
= 0 (3.15)

When we reverse the order of di�erentiation this leads to the equation

L(�)
@V

@�
= ��2(S; t)S2

@2

@S2
V (S; t;Kij ; Ti; �) (3.16)

With suitable (homogeneous) initial and boundary conditions imposed, we may
solve (3.16) for @V=@�, which upon multiplication by the Dirac distributions, leads
to the variational derivative in (3.12).

4. Alternative Regularisation Strategies

Lagnado and Osher's regularisation strategy calibrates the model for one �xed
value of the index S0, at one �xed point in time t = 0: There is consequently no
guarantee that the value of � determined by this procedure will be correct either
for other values of the index or at future times. Nor is there any guarantee that �
will be everywhere positive.

We now present two alternatives to this strategy. In the �rst alternative, the
aim is to take into account variation of the option price with changing value of the
index over time. In other words attempt to minimise

H(�) =

NX
i=1

MiX
j=1

Z
1

0

Z Tcur

0

(V (S; t;Kij ; Ti; �)� V ij)2dSdt: (4.1)

Here Tcur is the current time. In this case of course V ij will be a set of empirical
option prices taken over a range of values of S and t: In other words, we calibrate
the volatility to the options's history.

This problem is also ill posed and following Lagnado and Osher we propose the
regularisation strategy of minimising the Tikhonov functional

J�(�) = kjr�jk2 + �H(�): (4.2)
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This regularisation strategy has the technical advantage that it contains no terms
involving the Dirac delta function. Consequently, the standard results from the
calculus of variations apply.

The Euler-Lagrange equations for (4.2) are

@2�

@S2
+
@2�

@t2
� �

NX
i=1

MiX
j=1

@V

@�
(S; t;Kij ; Ti; �)(V (S; t;Kij ; Ti; �)� V ij) = 0 (4.3)

We need to impose boundary conditions on (4.3). We set �(0; t) = 0 and �(S; 0) =
�0(S): �0(S) is an unknown function of S which we must determine from the data.
One possibility is to take the implied volatilities at at a set of points f(n�S; 0)gn=Nn=0

for a particular strike and �t a spline function to those values to obtain an approx-
imation for the lower boundary.

The second, somewhat easier alternative, is to replace the elliptic PDE (4.3)
with a second order ODE. In order to do this, we make the simplifying assumption
that the volatility function � is independent of time. Set the current time as t = 0:
Then the obvious regularisation strategy is to minimise the Tikhonov functional

J�(�) =

�
@�

@S

�2
+ �

NX
i=1

MiX
j=1

Z
1

0

(V (S; 0;Kij ; Ti; �)� V ij)2dS; (4.4)

for which the Euler-Lagrange equations read

@2�

@S2
� �

NX
i=1

MiX
j=1

@V

@�
(S; 0;Kij ; Ti; �)(V (S; 0;Kij ; Ti; �) � V ij) = 0 (4.5)

There remains the question of what the appropriate conditions are to impose on
this problem to ensure a unique solution? For equation (4.5) the natural problem
would seem to be a two point boundary value problem, since the alternative initial
value problem requires knowledge of the �rst derivative of � at some point. Con-
sequently the problem which we propose is to solve equation (4.5) on the interval
[S0; S1] with the values of �(S) at the endpoints speci�ed.

To determine the values of �(S0) and �(S1) there are various approaches which
are possible. The simplest of these is to take the Black-Scholes implied volatility
for options of a speci�ed strike at the points S = S0 and S = S1:

5. Solving the Equation

In this section we will deal with the elliptic PDE (4.3). The equation (4.5) may
be dealt with by standard numerical procedures for solving second order nonlinear
ordinary di�erential equations. The book by Iserles [Ise96] contains an extensive
discussion of numerical procedures for ODEs.

Equation (4.3) contains no terms involving the Dirac delta, consequently it does
not have the same technical problems associated with it that the original Lagnado
and Osher equation possess. Our purpose in this section is to present a method for
solving this equation for �(S; t): In section 6 we present some numerical examples.

Given a set of data V ij we wish to use (4.3) to determine the volatility �(S; t)
which minimises the functional (4.2). To do this we solve the PDE (4.3) according
to the following iterative procedure.
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We replace the region f0 � S < 1g � f0 � t < 1g with the �nite rectangle

 = [0; Smax]� [0; tmax]: We will construct an approximation for �(S; t) at a set of
points (m�S; n�t) on 
: First we choose a value for the regularisation parameter
�:

Algorithm for solving equation (4.3)

1) Introduce a function '0(S; t): This will be the initial approximation to the true
volatility �:

2) At each point (m�S; n�t) determine '0(m�S; n�t):
3) Use the Black-Scholes formula as an approximation for

V (m�S; n�t;Kij ; Ti; '0(m�S; n�t))

and
@V

@�
(m�S; n�t;Kij ; Ti; '0(m�S; n�t))

That is, if the Black-Scholes price of a European call is C(S; t;K; T; �), then use

C(m�S; n�t;Kij ; Ti; '0(m�S; n�t))

as the approximation for V . Similarly, use

@C

@�
(m�S; n�t;Kij ; Ti; '0(m�S; n�t))

as the approximation for @V
@�
: The put case is analogous.

4) Use the values obtained in 3 to approximate

W (S; t;Kij ; Ti; ) =

NX
i=1

MiX
j=1

@V

@�
(S; t;Kij ; Ti; �)(V (S; t;Kij ; Ti; �)� V ij)

5) Solve the Poisson equation

@2�

@S2
+
@2�

@t2
= �W (S; t;Kij ; Ti);

where the value ofW was obtained in step 4, subject to the appropriate boundary
conditions.

6) Take the function obtained in step 5 and call this '1: Repeat the above procedure
from step 3, using '1 in place of '0 to obtain the next approximation. Continue
until the di�erence between successive iterates 'k and 'k+1 is smaller than some
desired tolerance.

End of algorithm

In step 3 we employ the Black-Scholes formula to obtain approximate values for
V and @V=@�: This greatly improves the speed of implementation. Other methods
may be preferred. For example one could employ some analytical approximation
to the solution of (1.4) such as that developed by Bouchouev. (See [Bou97] and
[BI97] for the details). Lagnado and Osher determine V and @V=@� by solving
the appropriate parabolic PDEs at every iteration, which is computationally very
intensive. We have preferred speed of implementation over the additional accuracy
provided by solving the PDEs. Fortunately however, the Black-Scholes formula
is extremely robust. For many volatility functions '0, the actual option value
V (m�S; n�t;Kij ; Ti; '0(m�S; n�t)) is very close to the price given by the Black-
Scholes formula as described in step 3. Consequently, we expect that the loss of
accuracy due to the use of the Black-Scholes formula will only be marginal.
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6. Numerical Results

To test this procedure we attempted to recover known volatility functions from
solutions of the corresponding Black Scholes equation. We �rst choose a volatility
function �(S; t) and use it to generate a set of option prices V ij by solving the
Black Scholes equation (1.4). Next we employ the algorithm described in section 4
to see if we can recover the function �(S; t) from the arti�cial prices V ij :

For our �rst test, we consider the volatility function �(S) = 0:2 + 0:1e�0:2S:
The interest rate r = 0:05 We considered only one time to option maturity

T = 10: We take 11 strikes: K1 = 50;K2 = 60; :::K11 = 160: We set �S = 1:6 and
�t = 0:004:

We present the L2 norm of the di�erence between successive iterates 'k and 'k+1
and the maximum di�erence between the true value of � and the �nal approximation
over the given domain.

1)Initial estimate: '0 = 0:1 Regularisation parameter: � = 1. Process termi-
nated after 6 iterations.

max j�(S) � '6(S)j = 0:00716727

k'1 � '0k2 = 9:8041089894303202

k'2 � '1k2 = 2:3566551888897506� 10�2

k'3 � '2k2 = 6:4383818723267293� 10�4

k'4 � '3k2 = 2:0466438806148549� 10�5

k'5 � '6k2 = 7:1647139139197532� 10�7

k'6 � '5k2 = 0:264708� 10�7

2) Initial estimate: '0 = 0:2 Regularisation parameter: � = 1: Process termi-
nated after 4 iterations.

max j�(S) � '4(S)j = 0:00715878

k'1 � '0k2 = 0:1037174077597777

k'2 � '1k2 = 3:0325555794476101� 10�5

k'3 � '2k2 = 6:3646217735724078� 10�7

k'4 � '3k2 = 0:168184� 10�7

3) Initial estimate: '0 = 0:3 Regularisation parameter:� = 1 Process terminated
after 6 iterations.

max j�(S) � '6(S)j = 0:00715471

k'1 � '0k2 = 9:5881790823710862

k'2 � '1k2 = 7:3680277273244360� 10�2

k'3 � '2k2 = 1:3635998687818252� 10�3

k'4 � '3k2 = 3:8256836564473186��5

k'5 � '4k2 = 1:2287543708140822� 10�6

k'6 � '5k2 = 0:430032� 10�7

4) Initial estimate: '0 = 0:1: Regularisation parameter: � = 0:10: Process
terminated after 3 iterations.

max j�(S) � '3(S)j = 0:00769063

k'1 � '0k2 = 9:5179392683130626
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k'2 � '1k2 = 1:9029430309230468� 10�4

k'3 � '2k2 = 0:501462� 10�7

5) Initial estimate: '0 = 0:1 Regularisation parameter: � = 0:20 Process termi-
nated after 4 iterations.

max j�(S) � '4(S)j = 0:00152660

k'1 � '0k2 = 9:5484992994518212

k'2 � '1k2 = 7:8009681711020294� 10�4

k'3 � '2k2 = 8:2606991761690897� 10�7

k'4 � '3k2 = 0:104276� 10�8

Clearly the results for this simple example are good. The true volatility function
varies between 0.2 and 0.3. Thus 6 iterations was usually su�cient to recover the
true volatility function correct to within 4% of the true value. The procedure was
also quite fast. However we would expect that with more complicated volatility
functions and more expiry times the complexity, and hence computation times will
increase.

Next we consider the volatility function �(S) = 0:6(1 � e�0:03S): We take one
maturity date, T = 10=252; let 0 � S � 160 and pick eleven strikes: K1 =
50;K2 = 60; : : :K11 = 160: The constant rate of interest is taken to be 0.05. The
regularisation parameter is � = 0:3.

The �rst problem is to determine the boundary conditions. We set �(0; t) = 0
and �(160; t) = 0:5951 � 0:6(1� e�4:8) . The boundary conditions for �(S; 0) and
�(S; T ) are more di�cult. In a real problem we would not know these boundary
values.

There are a number of approaches to determining the upper and lower boundary
conditions. The method we have employed here is to take a simple linear �t of the
implied volatilities at the endpoints, for the strike K = 60. This yields the functione�(S) = 0:29662+ 0:003248S:

For comparison we have computed the volatilities for two cases, namely:

Case 1 : �(S; 0) = e�(S); �(S; T ) = 0:6(1� e�0:03S); (6.1)

Case 2 : �(S; 0) = �(S; T ) = e�(S): (6.2)

The algorithm terminated after 5 iterations for both cases. The results are
presented in �gures 1 and 2. In both graphs the continuous curve represents the
true volatility function, and the dotted curve the reconstructed values. We see
that with Case 1, the derived volatility function is indistinguishable from the true
function, which is what we would expect, since we have supplied one of the true
boundary conditions. The results for Case 2 are only fair. The reconstructed
volatility function matches the true volatility in the middle of the interval, that is
for, approximately, 35 � S � 90, and at the endpoints. For values towards the ends
of the interval however, the error becomes quite large.

Clearly then, the accuracy of the algorithm is determined by how close the
boundary conditions we supply are to the true boundary conditions. If these cannot
be found the algorithm will not yield accurate results.

Next we apply this methodology to some market data. The date we use is from
the FTSE100 for an index option expiring on December 11, 1999. The data was
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Figure 1. Volatility reconstruction. Case 1

Figure 2. Volatility reconstruction. Case 2

obtained through Datastream. We have a range of evenly spaced strikes between
5500 and 6900, over 67 days, from August 28, 1999 to November 30,1999.

In order to determine the volatility we require boundary conditions. In partic-
ular we require �(S; 0); �(S; Tfin); �(0; t) and �(Smax; t): We will set �(0; t) = 0:
To determine �(S; 0) and �(S; Tfin) we will use the integral equation method of
Bouchouev [Bou97] in the form described in [CCEH99]. This allows us to take the
values of the option across the strikes for a �xed time t and, by solving an integral
equation, determine a volatility function �(S) for that particular time. We do this
for the option values for August 28 and November 30, and set the functions so
obtained to be �(S; 0) and �(S; Tfin) respectively.
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