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Abstract

The paper studies intercity trade and growth in an overlapping-generations economy
where tradeable goods are produced using a composite of capital, raw labor and interme-
diates, and are combined in each city to produce a composite. The composite is used for
consumption and investment. Tax-financed investment that affects commuting costs endo-
genizes city size. A combination of weak (strong) diminishing returns and strong (weak)
market size effects can lead to increasing (decreasing) returns to scale. Autarkic urban
growth may be parallel or divergent. Capital growth in the integrated economy has the
same dynamic properties as its counterpart for an economy with autarkic cities but leads to
national constant returns to scale.
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INTERCITY TRADE AND
CONVERGENT VERSUS DIVERGENT URBAN GROWTH

1 Introduction

The history of urbanization is closely related to intercity and international trade. Cities grow

as they trade with their hinterlands, and with other nearby as well as more distant cities. This

process at a national and indeed a global scale is not fully understood. The system-of-cities

literature analyses urban development by means of growth in the number of cities [Black and

Henderson (1999); Berliant and Wang (2004); Henderson and Ioannides (1981); Ioannides

(1994); Ioannides and Overman (2004); Rossi-Hansberg and Wright (2007)]. While changes

in the fundamentals may affect relative sizes of cities, it is a key feature of the system-of-

cities approach that urban growth occurs through creation of new cities as well as expansion

of existing cities. Naturally, the process of economic growth may alter the fundamental

determinants of equilibrium city size.

The role of trade in growth is one of the areas that have attracted attention by the new

economic geography and the endogenous growth literature. Since in some of those theories,

endogenous technological change is driven by specialization, which is in turn driven by the

extent of the market, economic openness is naturally underpinning growth in the extent of

the market. At the same time, urban economic activity, indeed urban life itself, has been

credited for providing one of the key innovation engines of the economy. Such a dynamic role

of the urban economy within a national economy has been slow to receive fuller attention, in

spite of recognition accorded to the work of Jane Jacobs (1969) by Robert Lucas and others.

Cities are assumed to take the price of the output in which they specialize as given.

This is consistent with both the model and reality, if there are many cities of each type,

as in Henderson (1974) and Rossi-Hansberg and Wright (2007). In this paper, too, each

city is specialized in a single tradeable product, that is produced under conditions of per-

fect competition. Still, the setting is compatible with terms-of-trade effects. Recalling the

terminology of Eaton and Eckstein (1997), we distinguish among the following logical pos-

sibilities. If as an economy’s population grows, the number of cities grows but their relative

sizes do not change, then we say we have parallel growth; if the growth rate of smaller cities

increases relative to larger cities, then we have convergent growth; and if the size of larger

cities increases relative to those of smaller cities, then we have divergent growth. These

different possibilities may be handled only by a model that contains key forces that drive

urbanization. Population growth with a constant number of cities increases congestion and
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reduces welfare and thus disturbs the existing equilibrium. Increase in intracity commuting

costs induces emergence of new cities. However, once cities have specialized, the taste for

product variety drive the appearance of additional cities, while intercity transportation costs

limit the process and acts as a force of agglomeration. There are centrifugal forces, namely

congestion and the attendant problem of wasteful commuting and congestion costs in the

form of higher rents, and centripetal ones, favoring fewer and larger cities. Generally, the

earlier new economic geography works ignored the fact that cities have been growing in size

and number, and the reasons why very large cities have appeared. Especially in the third

world, cities of a range of sizes may coexist with large diversified cities.

In the remainder of this paper we obtain a precise description of the law of motion in

dynamic settings of either autarkic or specialized cities. A combination of weak diminishing

returns and strong market size effects can lead to increasing returns to scale in each autarkic

city. We extend this model to allow for investment by local governments that reduces ur-

ban commuting costs. Under appropriate conditions, unceasing growth sustains a divergent

pattern in city sizes. We examine economic growth in an integrated economy, that is in the

presence of intercity trade in manufactured goods and free factor mobility within the urban

system. The law of motion for capital of the integrated economy has the same dynamic

properties as its counterpart for an economy with autarkic cities. Cities specialize and thus

an industry with greater economies of scale need not be weighted down and be forced to

compete for inputs with another industry, which exhibits lower economies of scale. However,

we show that when cities specialize, the advantage of specialization is exactly offset by the

effect of its superior performance on the terms of trade. Different specialized cities can grow

in parallel, just as autarkic cities can growth in parallel.

2 A Ventura-type Model of Intercity Trade and Eco-

nomic Growth

Our model of urban growth builds on the model of trade and growth in Ventura (2005), but

introduces cities. A number of distinct cities (subject to congestion, unlike Ventura’s sites

or regions, or different nations), may produce one or both of two tradeable goods X and

Y. Each of these goods are produced using physical capital, raw labor and intermediates.

The tradeable goods are not consumed directly. Instead, they are combined in each city to

produce aggregates, or composite goods, by means of Cobb-Douglas production functions

with shares α, and 1 − α, respectively. The aggregates are in turn used for consumption

and for investment in physical capital. We start with the case of autarkic cities and refrain
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from indexing the respective quantities as long as no confusion arises. This specification

modernizes Henderson (1987; 1988) for the purpose of examining urban growth in particular.

It differs from Rossi-Hansberg and Wright (2007) because of that paper’s reliance on the

Lucas model to generate sustained growth. It differs from both the Henderson and Rossi-

Hansberg and Wright approaches because of its assumption that tradeable goods are not

consumed directly. It also allows comparison between autarky and intercity trade which

highlights the importance of intercity trade.

A number of individuals N̄t are born every period and live for two periods. The econ-

omy has a demographic structure of the overlapping generations model. We simplify the

behavioral model as much as possible by assuming that the individuals born at time t work

when young, consume their net labor income net of their savings, and consume again when

they are old, C1t, C2t+1, respectively. While numerous refinements of the model are possible,

this basic one allows us to bring to the fore the key tradeoffs associated with growth. We

assume Cobb-Douglas preferences over first- and second-period consumption for the typical

individual,

Ut = S−S(1− S)−(1−S)C1−S
1t CS

2t+1. (1)

Net labor supplied by the members of the young generation in a particular city at t is

given by Ht = Nt

(
1− κN

1
2
t

)
, with Nt the number of the members of the young generation

in a particular city at t, κ ≡ 2
3
π−

1
2 κ′, and κ′ the time cost per unit of distance traveled.1

Each young individual receives net labor income
(
1− κN

1
2
t

)
Wt, where Wt denotes the wage

rate. Let Rt+1 be the total return to physical capital, Kt+1, in time period t+1, that is held

by the member of young generation at time t. To the above utility function there corresponds

an indirect utility function:

RS
t+1

(
1− κN

1
2
t

)
Wt. (3)

We assume that capital depreciates fully in one period. Under the above utility function,

the young save a fraction S of their net labor income. The productive capital stock in period

t + 1, Kt+1, is equal to the total savings of the young at time t. Therefore, to preview our

growth model, we have: Kt+1 = S
(
1− κN

1
2
t

)
Wt.

1If individuals commute to the CBD, consume a unit of land each, and the city extends circularly around
it, a city of N residents has a radius π−

1
2 N

1
2 . If individuals are endowed with one unit of leisure and a unit

of distance traveled costs κ′ units of time, then an individual who travels distance r to the CBD is left with
1− κ′r units of time to work. Therefore, the total labor supply of a city with N residents is:

Hc(N) =
∫ π−

1
2 N

1
2

0

2πr(1− κ′r)dr = N
(
1− κN

1
2

)
. (2)

3



We develop first the case where all cities are autarkic, that is no intercity trade, and

thus produce both final goods, and use them in turn to produce the composite used for

consumption and investment.

Each of the final goods, J = X, Y, is produced by a Cobb-Douglas production function,

with constant returns to scale, using a composite of raw labor and physical capital, with

elasticities 1− φJ , and φJ , respectively, and a composite made of intermediates. The shares

of the two composites are uJ , 1− uJ respectively. There exists an industry J−specific total

factor productivity, ΞJt. Production conditions for each of two industries J are specified via

their respective total cost functions:

BJt(QJt) =


 1

ΞJt

(
Wt

1− φJ

)1−φJ
(

Rt

φJ

)φJ



uJ [∑
m

PZt(m)1−σ

] 1−uJ
1−σ

QJt, (4)

where QJt is the total output of good J = X, Y, PZt is the price of the typical intermediate,

elasticity parameters uJ , φJ satisfy 0 < uJ , φJ < 1, and the elasticity of substitution in the

intermediates composite σ is greater than 1. The total factor productivity ΞJt, summarizes

the effect on industry productivity of geography, institutions and other factors that are

exogenous to the analysis.2

Each of the varieties of intermediates used by industry J are produced according to a

linear production function with fixed costs (which imply increasing returns to scale) using

the same composite of physical capital and raw labor that is used in the production of

manufactured goods X and Y. The shares of the productive factor inputs used are the same

as, uJ and 1− uJ , respectively.3 The respective total cost function is

bit(ZJt(m)) =
f + cZJt(m)

ΞJt




(
Wt

1− φJ

)1−φJ
(

Rt

φJ

)φJ

 ,

and ZJt(m), the quantity and price of the input variety m used by industry J = X, Y. Its

price is determined in the usual way from the monopolistic price setting problem,4 and it is

equal to marginal cost, marked up by σ
σ−1

:

PZ,J,t =
σ

σ − 1

c

ΞJt

(
Wt

1− φJ

)1−φJ
(

Rt

φJ

)φJ

.

At the monopolistically competitive equilibrium with free entry, each of the intermediates

is supplied at quantity (σ − 1)f
c
, and costs σf

ΞJt

(
Wt

1−φJ

)1−φJ
(

Rt

φJ

)φJ
per unit to produce. Its

producer earns zero profits.

2This specification combines Anas and Xiong (2003) and Ventura (2005).
3This may be generalized to allow for input-output linkages by requiring (see also Fujita, et al. (1999),

Ch. 14), that each intermediate good industry use its own composite as an input. This is accomplished by
introducing as an additional term

[∫ Mit

0
p1−εi

it

]
on the r.h.s. of the cost function bit(ZJt).

4Dixit and Stiglitz (1976).
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3 Growth with Autarkic Cities

We examine first economic growth in an integrated economy consisting of autarkic cities,

where each city produces both manufactured goods. When these are available in quanti-

ties QXt, QY t, the quantity of the composite good that may be used for consumption and

investment is given by:

Qt = Qα
XtQ

1−α
Y t .

In order not to clutter up notation, we will index cities only when it is necessary. The natural

numeraire to use is, just as in Ventura, the composite output itself in every city. Its price is

set equal to 1:

Pt ≡ 1 ≡
(

PXt

α

)α (
PY t

1− α

)1−α

. (5)

Therefore, PtQt = Qt ≡ PXtXt + PXtYt, and:

Qt = Ct + Kt+1.

The final good industries X and Y receive share of aggregate spending α, 1− α, respec-

tively, of which fractions 1−φX , 1−φY , respectively go to labor. Therefore, aggregate labor

income as a function of output is:

WtHt = WtNt

(
1− κN

1
2
t

)
= (1− φ)Qt, (6)

where

φ ≡ αφX + (1− α)φY .

Clearly, 0 < φ < 1.

In order to characterize economic growth by means of a law of motion for industrial

capital, we express in terms of capital all endogenous quantities that would enter the law

of motion. Working with the production function of each final good industry, the output–

capital ratio, when the optimal quantity of each intermediate is used, may be written as:

QJt

KJt

=
(

σ

σ − 1

)−(1−uJ )

m
1−uJ
σ−1

Jt ΞJt

(
KJt

HJt

)φJ−1

. (7)

The range of intermediates used in the production of good J, mJt, which is referred to as the

technology, is endogenously determined in the model and may be expressed as a function of

productive factors used (HJt, KJt), as:

mJt =
1− uJ

fσ
ΞJtH

1−φJ
Jt KφJ

Jt .
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This result may be interpreted as follows. Increased factor use raises incentives to specialize,

allows the fixed costs of more varieties to be recouped and thus improves productivity. Equ.

(7) now becomes:
QJt

KJt

= Ξ̄JtH
µJ (1−φJ )
Jt KµJφJ−1

Jt . (8)

where the auxiliary variable µJ ,

µJ ≡ 1 +
1− uJ

σ − 1
,

measures the importance of market size effects, and

Ξ̄Jt ≡
(

σ

σ − 1

)−(1−uJ ) (
1− uJ

σ

) 1−uJ
σ

−1

fµJ ΞµJ
Jt

is an augmented measure of industry−J total factor productivity.

We note that µJ(1− φJ) > 0, the exponent of labor in (8) above, is positive. Intuitively,

increase in labor used raises the output–capital ratio, as the direct positive effect of making

physical capital more productive is reinforced by the indirect effect of increasing input variety.

Increases in physical capital, on the other hand, have an ambiguous effect on the output–

capital ratio, as the sign of µJφJ − 1 is ambiguous. The direct negative effect of making

physical capital abundant and the indirect positive effect of increasing input variety work

in opposite directions. Depending upon the magnitudes of market size effects, indicated by

µJ , and diminishing returns, φJ , that is, if µJφJ < (>)1, increases in physical capital reduce

(increase) the industry’s output capital ratio.

Next, in order to derive an expression for the aggregate output capital ratio as function of

the aggregate quantities of labor and physical capital, we express industry allocations of pro-

ductive factors, HXt, HY t and KXt, KY t, respectively, in terms of their respective aggregate

quantities, HXt + HY t = Ht, KXt + KY t = Kt. That is:

HJt = αJ
1− φJ

1− φ
Ht;

KJt = αJ
φJ

φ
Kt,

where αX = α, αY = 1 − α. By using these expressions in the right hand sides of (7), the

equations for the output–capital ratio in each of the final goods industries, we have

Qt

Kt

= Ξ∗t H
µ(1−φ)−υ
t Kµφ+υ−1

t , (9)

where µ is defined as

µ ≡ αµX + (1− α)µY = 1 +
1− (αuX + (1− α)uY )

σ − 1
> 1,
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and υ is the “covariance” between µJ , φJ ,

υ ≡ α(µX − µ)(φX − φ) + (1− α)(µY − µ)(φY − φ) = −α(1− α)
1

σ − 1
(uX − uY )(φX − φY ),

and

Ξ∗t ≡

αµX

(
1− φX

1− φ

)µX(1−φX) (
φX

φ

)µXφX

Ξ̄Xt




α 
(1− α)µY

(
1− φY

1− φ

)µY (1−φY ) (
φY

φ

)µY φY

Ξ̄Y t




1−α

.

Equ. (9) is the effective aggregate production function, in that it gives the output–capital

ratio for the entire economy after the endogeneity of the range of intermediates (technology)

has been accounted for. Just as with the individual final goods industries, increases in labor

have unambiguously positive effects on the output–capital ratio, because: µ(1− φ)− υ > 0.

Increases in physical capital, on the other hand, have ambiguous effects on the output-capital

ratio. If the “representative” industry has strong diminishing returns and weak market-size

effects, µφ + υ < 1, then increasing physical capital reduces the output–capital ratio. If

the “representative” industry has weak diminishing returns and strong market-size effects,

µφ + υ ≥ 1, increasing physical capital increases the output-capital ratio.

Since young individuals save a fraction S of their labor income, which aggregates to

(1− φ)Qt, and given the expression for the effective aggregate function (9), we have the law

of motion for the autarkic urban economy:

Kt+1 = S(1− φ)Ξ∗t H
µ(1−φ)−υ
t Kµφ+υ

t . (10)

This shows that each autarkic urban economy obeys a Solow growth model with a Cobb-

Douglas production function that exhibits increasing returns to scale, as the sum of the

factor share coefficients satisfies µ ≥ 1.

There is a total number of autarkic cities in the economy at time t, i ∈ It. The only

modification needed in the above theory is to account for the net quantity of labor available

for production, given city geometry, as a function of city population, Ni,t. That is, Hit =

Ni,t

(
1− κiN

1
2
i,t

)
. The law of motion (10) in city i becomes:

Ki,t+1 = (1− φ)SΞ∗i,t

(
Ni,t

(
1− κiN

1
2
i,t

))µ(1−φ)−υ

Kµφ+υ
i,t . (11)

It is straightforward to show that output of city i satisfies a similar equation,

Qi,t+1 = Ξ̂i,tQ
µφ+υ
i,t ,

where Ξ̂i,t, a function of parameters, is defined as follows:
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At long run equilibrium with free entry, city i would be populated by the maximum

possible population,5 which is given by 4
9
κ−2

i , and is therefore proportional to κ−2
i . As we

shall see further below, the factor multiplying κ−2
i . may differ, depending upon the intercity

trade regime. Suppose that each city is populated with the number of young people that

maximizes net labor supply and that the young share housing with the old. Suppose, also,

that local geography is uniform, so that commuting costs are the same across all urban sites:

κi = κ. Then, the number of cities is equal to

nt =
9

4
κ2N̄t.

The higher the commuting costs or the larger the national population, the more cities are

needed. This is in a nutshell the counterpart here of the case of urban growth as analyzed by

Henderson and Ioannides (1981). Unlike their case, however, in this model even if national

population is constant, sustained growth is possible, provided that the “representative”

industry has weak diminishing returns and strong market-size effects.

3.1 Investment in Urban Transportation

It is reasonable to assume that κ, the unit transportation cost parameter that was defined

in Section 2, may be affected through investment in physical capital. This assumption is key

to our results. We take no position at the moment on whether or not this would be public

capital or private capital. We assume that unit transportation cost κ may be reduced by

means of investing physical capital in the transportation system. We posit that

κi,t+1 ≡ κ̃i (Nitkg,i,t+1)
−η , η, κ̃ > 0, (12)

where (κ̃i, η) denote parameters, and kg,i,t+1 physical capital per young person at time t

invested in the transportation system (unit transportation capital, for short). Investment

undertaken at time t becomes productive in t+1. The unit transportation cost tends to zero

asymptotically and in a convex fashion, as total transportation capital tends to infinity.

This assumption has important consequences for our model and our results. In particular,

the maximum net labor supply and the young population of city i become functions of

transportation investment and given by 1
3
n∗i (Nitkg,i,t+1)

2η and n∗i (Nitkg,i,t+1)
2η , respectively,

5Alternatively, we may choose city population so as to maximize indirect utility of the typical individual
at each point in time, given by (3). Using (11), we may express Ri,t+1, the gross return to capital in terms
of Ni,t, as well. In the absence of free labor mobility, setting city populations in this fashion would fit
better a utility maximizing local government. Even in this case, however, the resulting optimum is inversely
proportional to the unit commuting costs, with the coefficient of proportionality being different, naturally.
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where n∗i = 4/9 1
κ̃2

i
. Transportation capital, like production capital, is assumed to depreciate

fully after one period.

We assume transportation investment takes the form of the same composite that is used

for consumption and investment in the production of goods. From among a whole host

of possible ways to finance transportation investment, we assume (for simplicity) that the

government of city i levies a lump sum tax equal to kg,i,t+1 per young individual, which it

uses to finance investment in transportation. Therefore, the law of motion for capital (10)

becomes:

Ki,t+1 = (1− φ)SQi,t −Ni,tkg,i,t+1.

We assume that the government of city i sets the amount of transportation investment so

as to maximize utility of the typical member of generation t, given by (3). At the capital

market equilibrium in city i, the gross return to physical capital is equal to marginal product

of capital in producing aggregate output, with the external effects on capital being taken as

given, that is:

Ri,t+1 = φΞ∗t H
µ(1−φ)−υ
i,t+1 Kµφ+υ−1

i,t+1 .

Since net labor supply at time t + 1 is proportional to κ−2
i,t+1, it may be written in view of

(12) as a function of kg,t+1. By rewriting the maximand from (3) we have:

[
φΞ∗t

[
n∗i
3

(Nitkg,i,t+1)
2η

]µ(1−φ)−υ

[(1− φ)SQit −Ni,tkg,i,t+1]
µφ+υ−1

]S

[(1− φ)Qit −Ni,tkg,i,t+1] N
−1
i,t .

Maximization of indirect utility of a young person with respect to ki,g,t+1 yields that total

investment in transportation, Ni,tkg,i,t+1, is a constant share of city labor income (1− φ)Qit

and given by 6:

Nitkg,i,t+1 = η̃(1− φ)Qi,t, (13)

where η̃ is a root between 0 and S of the quadratic equation with constant coefficients,

(1 + S∗ + Ŝ)η̃2 − (S + S∗ + Ŝ + SŜ)η̃ + SŜ = 0, (14)

6To see that, taking the log of the maximand above, for simplicity, and then differentiating it with respect
to kg,i,t+1 and rearranging yields:

Ŝ
1

kg,i,t+1
− S∗

Ni,t

(1− φ)SQit −Ni,tkg,i,t+1
− Ni,t

(1− φ)Qit −Ni,tkg,i,t+1
= 0,

where the auxiliary variables Ŝ, S∗ are defined as in the main text. This reduces to a quadratic equation in
the unknown quantity Ni,tkg,i,t+1. It is more convenient to seek a solution, equivalently, for the unknown as
η̃ ≡ Ni,tkg,i,t+1

(1−φ)Qit
, transportation investment as a share of labor income. The resulting quadratic equation has

time invariant coefficients.
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where

Ŝ ≡ 2η(µ(1− φ)− υ)S, S∗ ≡ S(µφ + υ − 1),

which is defined entirely in terms of parameters. In view of the properties of all the auxiliary

parameters we have that the quantity

µ(1− φ)− υ =
1

σ − 1
[σ(1− αφX − (1− α)φY ) + αφXuX + (1− α)φY uY ]

is positive. Therefore, Ŝ > 0. It can be shown that a root exists of (14) such that 0 < η̃ < S,

provided that S∗ > 0, for which it suffices that the returns to scale are sufficiently strong to

ensure that µφ + υ > 1. Just as before, this can occur if the “representative” industry of the

city has weak diminishing returns and strong market size effects.

Therefore, with total investment in transportation being a fraction of total output of city

i, the law of motion for productive capital becomes:

Ki,t+1 = (1− φ)(S − η̃)Qi,t. (15)

The evolution of city income implied by the law of motion may be characterized as follows.

Using the expression for productive capital in period t + 1 from (15) as a function of city i

output at t, and using (13) to express net labor supply also as a function of city i output at

t, along with the expression for the output–capital ratio from (9), we obtain the following

law of motion for city i output:

Qi,t+1 = Zi,t+1Q
2η(µ(1−φ)−υ)+µφ+υ
i,t , (16)

where:

Zi,t+1 ≡ Ξ∗i,t+1

(
1

3
n∗i

)µ(1−φ)−υ

[η̃(1− φ)]2η(µ(1−φ)−υ) [(1− φ)(S − η̃)]µφ+υ .

Clearly, because µ(1 − φ) − υ is positive, a sufficient condition for the economy of city i

to exhibit increasing returns to scale is µφ + υ ≥ 1, which is the same condition as for

the economy without transportation investment to exhibit increasing returns to scale. A

necessary condition may also be obtained. The larger is η, the more effective is transportation

capital investment in reducing unit commuting costs, and the more likely it is that the

economy of city i exhibit increasing returns to scale.

3.2 Divergent versus Convergent Autarkic Cities

How do city sizes vary over time, when transportation investment is endogenous? A key

result of the paper is to characterize exactly the pattern of evolution of city sizes. With total
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transportation investment evolving according to (13), the optimal number of young at time

t + 1, our definition of city size, is

νi,t+1 = n∗i (η̃(1− φ)Qi,t)
2η , (17)

from which we have that:
νi,t+1

νi,t

=

(
Qi,t

Qi,t−1

)2η

.

By using the law of motion for city output derived earlier (16), we may rewrite this in terms

of total city output only:

νi,t+1

νi,t

= (Zi,t)
2η Q

2η(2η[µ(1−φ)−υ]+µφ+υ−1)
i,t−1 . (18)

This renders endogenous the growth rate of city size and provides a direct relationship

between the growth rate of city size from time t to period t + 1 to the growth rate of city

output from t−1 to t, which in view of (16) may be written in terms of city output in period

t − 1. We note that Zi,t is larger the smaller is parameter κ̃i in unit commuting costs. So,

a particular advantage of a city’s urban transport system, perhaps due to local geography,

is translated to a growth effect for the sizes of the respective city type. Relative growth

rates depend on respective output ratios. Growth rates of cities are constant, increasing or

decreasing, depending upon whether city output is constant, increasing or decreasing.

An important consequence of endogenizing urban transportation costs, and therefore city

size as well, is that the number of cities is also endogenous. This implies, in turn, that if (16),

the law of motion of city output, exhibits increasing returns to scale, then city sizes will grow.

This follows from the fact that increasing returns to scale in city output are ensured if µφ+υ

exceeds 1, while µ(1 − φ) − υ is always positive. This is due to increasing returns to scale

in the urban economy, which originate, of course, in the specification of technology through

the use of intermediates. Consequently, whether or not the number of cities grows depends

on the rate of growth of population relative to the (endogenous) rate of growth of city size.

Furthermore, the economy here consists of a number of autarkic, that is independent cities,

which implies a great variety of possible outcomes.

Returning to the typology of Eaton and Eckstein (1997) and referring to (16) and (18),

we may note the following about urban growth rates in the long run. Parallel growth would

be a knife-edge case, where parameter values allow for a steady state, that is constant city

output over time. This requires decreasing returns to scale in city output:

2η(µ(1− φ)− υ) + µφ + υ < 1,

11



(and constant Zi,t). In that case, urban growth rates would be equal to zero in the long

run. If parameter values give constant returns to scale, that is, if the exponent of city i

output in (16) is exactly equal to 1, then the growth rate of city output is Zi,t+1−1, and the

corresponding growth rate in the number of cities is (Zi,t+1)
2η − 1. In that case, we would

have parallel growth only if the parameters Zi,t are constant and equal across all cities. In

the case of increasing returns to scale, that is if the exponent of city i output in (16) is

greater than 1, we have divergent urban growth, as urban growth rates are larger for large

cities. We conclude that convergent growth is not possible in the long run in this model.

Convergent growth may well be consistent with transient dynamics, however.

3.3 Economic Integration, Urban Specialization, and Growth

Equ. (11) demonstrates that in addition to differences in terms of city-specific total factor

productivities, the Ξ∗i,t, cities may also differ in terms of congestion parameters κi. If indi-

viduals are free to move across cities, then a spatial equilibrium requires that individuals

be indifferent as to where they locate. That is, individuals’ lifetime utilities are equalized

across all cities. This implies in turn conditions on intercity wage patterns. That is, unlike

the canonical case in Ventura, op. cit., wages will typically differ across cities at spatial

equilibrium. Similarly, if capital is perfectly mobile, it will move so as pursue maximum real

returns and in the process equalize them across all cities.

We refer to the case where capital and labor are free to move as economic integration.

With economic integration, industries will locate where industry productivities, the ΞJt’s

are the most advantageous ones, and capital will seek to locate so as maximize its return.

Unlike the consequences of economic integration as examined by Ventura, op. cit., here

urban congestion may prevent industry from locating so as to take greatest advantage of

locational factors. Aggregate productivity is not necessarily equal to the most favorable

possible in the economy, because free entry of cities into the most advantageous locations

may be impeded by competing uses of land as alternative urban sites, at the national level.

However, utilities enjoyed by city residents at equilibrium do depend on city populations,

and therefore, spatial equilibrium implies restrictions on the location of individuals. We

simplify the exposition by assuming that all cities have equal unit commuting costs κ.

We take up first resource allocation under the assumption that cities specialize in the

production of tradeable goods. Urban specialization and intercity trade are very important

phenomena.7 We examine the case when each specialized city also produces intermediates

7Alexandersson (1956) establishes the facts about specialization of U.S. cities and Henderson (1974)
provides the first model of the system of cities as trading entities.
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that are used in the production of the traded good. Let QXit, QY jt denote the total quan-

tities of the traded goods X,Y produced by cities i, j, that specialize in their production,

respectively. The situation is symmetrical for the two city types, and therefore, we work

with a city of type X. We suppress subscripts that are redundant and write for the nominal

wage and the gross rate of return in an X−city:

WXt = (1− φX)
PXQX

HX

, RXt = φX
PXQX

KX

, (19)

where PX denotes the local price of traded good X, which is expressed in terms of the

local price index, the numeraire. We follow Ventura and again adopt the ideal price index

as numeraire, which is equal to one in all cities. We also assume initially that there are no

intercity shipping costs for traded goods. With economic integration, the gross rate of return

is equalized across all city types, that is:

Rt = RXt = RY t.

Spatial equilibrium requires that indirect utility, (3), be equalized across all cities. In view

of free capital mobility, spatial equilibrium requires that:

RS
t+1

(
1− κN

1
2
Xt

)
WXt = RS

t+1

(
1− κN

1
2
Y t

)
WY t. (20)

Using the expression for net labor supply in each city yields the following condition for spatial

equilibrium:
PXQXit

PY QY it

=
1− φY

1− φX

NXit

NY it

. (21)

Free capital mobility requires that:

PXQXit

PY QY it

=
φY

φX

KXit

KY it

. (22)

Therefore, the full set of conditions for economic integration imply a relationship between

the ratios of capital per young person in the two types of cities:

KXit

NXit

=

φX

1−φX

φY

1−φY

KY it

NY it

. (23)

Alternatively, since the ratio of city populations, NXit

NY it
, is known at any point in time, eco-

nomic integration then implies that

KXit

KY it

=
NXit

NY it

φX

1−φX

φY

1−φY

.
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The demand for good Y by a city of type X is given by the share of income of city of

type X divided by PY . It suffices to work with the equilibrium conditions for intercity trade

in good X, which may be simply stated as the share of spending on good X by all Y cities

is equal to the spending on good Y by all X cities:

QY

QX

=
1− α

α

nX

nY

PX

PY

. (24)

Substituting into the spatial equilibrium condition (21) yields:

nXNX

nY NY

=
α(1− φX)

(1− α)(1− φY )
. (25)

This condition, along with the total labor supply condition, nXNX + nY NY = N̄ , yields the

equilibrium number of cities of each type:

nX =
N̄

NX

α(1− φX)

α(1− φX) + (1− α)(1− φY )
, nY =

N̄

NY

(1− α)(1− φY )

α(1− φX) + (1− α)(1− φY )
. (26)

Interestingly, the relative frequencies of the two types of cities differ, cet. par., between the

static and dynamic cases, only if φX 6= φY , that it, the capital intensity of production differs

among the two manufactured goods. The more labor intensive good requires a greater share

of population.

We may now solve for capital allocations in the two types of cities by using in addition

the condition for the total supply of capital, nXKXt + nY KY t = Kt. Thus:

KXt = NXt
Kt

N̄

φX

1− φX

1− αφX − (1− α)φY

αφX + (1− α)φY

.

Next we compute the real income of the two types of cities. For a city of type X this

is equal to PXQX . From the definition of the numeraire, we have in every city: PX =

αα(1 − α)1−α
(

PX

PY

)1−α
. By using (21) to obtain an expression for the terms of trade, the

price ratio, we obtain an expression for the real income of a type X city:

QXαα(1− α)1−α
(

PX

PY

)1−α

= α∗XQα
XQ1−α

Y

(
NXit

NY it

)1−α

,

where α∗X = αα(1− α)1−α
(

1−φY

1−φX

)1−α
. The real income of a city specializing in good X, Xt,

may be expressed, by using (8), in terms of city populations of both types of cities, (NX , NY ),

and total capital in the economy, Kt, and parameters as follows:

Xt = NX

(
Kt

N̄

)αµXφX+(1−α)µY φY

, (27)
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where the auxiliary variable NX is defined as a function of city sizes and parameters:

NX ≡ α∗XΞ̂tN
αµX+1−α
X

(
1− κN

1
2
X

)αµX(1−φX)

N
(1−α)µY −(1−α)
Y

(
1− κN

1
2
Y

)(1−α)µY (1−φY )

, (28)

the function of parameters Ξ̂t is defined as:

Ξ̂t ≡ Ξ̄α
XtΞ̄

1−α
Y t

(
φX

1− φX

)αµXφX
(

φY

1− φY

)(1−α)µY φY
(

1− αφX − (1− α)φY

αφX + (1− α)φY

)αµXφX+(1−α)µY φY

,

and the functions of parameters Ξ̄Xt, Ξ̄Y t were defined earlier. The counterpart of (27) for

PY QY , the real income of a city specializing in good Y, is given by:

Yt = NY

(
Kt

N̄

)αµXφX+(1−α)µY φY

, (29)

where α∗Y = αα(1− α)1−α
(

1−φX

1−φY

)α
,

NY ≡ α∗Y Ξ̂tN
αµX−α
X

(
1− κN

1
2
X

)αµX(1−φX)

N
(1−α)µY +α
Y

(
1− κN

1
2
Y

)(1−α)µY (1−φY )

. (30)

3.3.1 Law of Motion for Integrated Economy

We derive the law of motion for total capital in the integrated economy by recalling that

savings per person in an X−city is given by SWX

(
1− κN

1
2
X

)
. This implies that total savings

by both types of cities is given by the share of labor income that is saved: nXS(1−φX)PXQX

and nY S(1− φY )PY QY . Therefore, the law of motion for capital becomes:

Kt+1 = S [nX(1− φX)NX + nY (1− φY )NY ]
(

Kt

N̄

)αµXφX+(1−α)µY φY

. (31)

An important result readily follows from a comparison of (31), the law of motion of the

integrated economy, with (10), its counterpart for each autarkic urban economy. That is,

the elasticity of total savings with respect to capital for those respective cases coincide:

µφ + υ ≡ αµXφX + (1− α)µY φY .

The intuition of this result may be explained as follows. In the integrated economy, cities

specialize and thus an industry with greater economies of scale need not be “set back” and

be forced to compete for resources with another industry, that exhibits lower economies of

scale. However, when a city specializes, the advantage of specialization is exactly offset by

the effect of its superior performance on the terms of trade. In fact, it is a telling sign that

this is even ”mechanically” so in the above derivations. This, of course, follows from the
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fact that the terms of trade, PX/PY are evaluated at the general equilibrium of the national

economy.

With free movement of labor, individuals seek to maximize their lifetime utility and

therefore city populations would tend to their optimum sizes. It is easy to see that this is

equivalent to maximizing the value of a city’s output. The optimum city sizes follow from

the maximization of NX , with respect to NX , and NY , with respect to NY , for X− and Y−
types of cities, respectively. Again, the optimum values are inversely proportional to unit

commuting costs squared:

N∗
X =

(
2(αµX + 1− α)

2(αµX + 1− α) + αµX(1− φX)

)2
1

κ2
, (32)

N∗
Y =

(
2((1− α)µY + α)

2((1− α)µY + α) + (1− α)µY (1− φY )

)2
1

κ2
. (33)

It is important to note that the factors that multiply 1
κ2 in the expressions above differ from

4
9
, the one under autarky, the alternative trade regime we examined earlier. Accordingly,

the relative frequencies of the two types of cities are determined from (25) as functions of

parameters. However, a simple comparison shows that specialized cities are larger than

autarkic cities. That is, specialization confers an advantage because an increase in market

size allows each industry to support a higher degree of specialization and is accommodated

by larger city size.

In the canonical case of an integrated economy of many cities, even if goods and cap-

ital move at negligible cost, individuals might not be able to move accordingly, because

of “capacity constraints” in cities (in effect). Any geographical distribution of production

and factors is possible provided that capacity constraints are satisfied. Capacity constraints

prompt of course creation of new cities, a process that is implicit in our approach [Hender-

son and Ioannides (1981)]. In general, sites may differ in terms of efficiency, reflected in the

commuting cost parameter. So, unlike the canonical case examined by Ventura, op. cit.,

here it is indeed possible to determine production or spending located in each city. This is

one of the instances where the system of cities approach differs from the standard setup of

international trade theory.

It is straightforward, yet algebraically tedious, to show that other things being equal,

specialization improves welfare relative to autarky. This follows simply from comparing city

output under autarky and under specialization, from (9) and (27), respectively. As with

utility comparisons discussed earlier, given the same unit commuting cost, city sizes are

assumed to be equal among each type of cities in the specialization case, on one hand, and
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for all autarkic, on the other. Introduction of iceberg shipping costs, for either final goods

or intermediates, does not change these results qualitatively.

A number of remarks are in order. Our treatment of autarky in the growing economy

does not assume — in contrast to Anas and Xiong (2003) — intercity trade in intermediates.

Here, each city’s industries produce the intermediates it uses in its own production. It

is still the case with intercity trade and growth, where cities of either type still produce

the intermediates they need and do not import any other intermediates from other cities

of the same type. This assumption deprives cities of the benefits of a greater variety of

intermediates, which over time may grow with the number of cities, but does not affect the

returns to scale properties. It is made in order to be able to focus on intercity trade in goods.

3.3.2 Constant Returns to Scale Property at the National Economy

Factor mobility and economic integration alters the economies of scale properties of the

model. In particular, we may write real national income as the sum total of real incomes

generated in each city, from (27) and (29), respectively, multiplied by the number of cities

of each type,

Qt = nXtXt + nY tYt. (34)

At the optimum city size, the right hand side becomes proportional to

(Kt)
αµXφX+(1−α)µY φY N̄1−[αµXφX+(1−α)µY φY ].

Therefore, the national economy exhibits constant returns to scale with respect to total cap-

ital and labor, (Kt, N̄). This is, of course, a confirmation in a Dixit-Stiglitz inspired setting,

of the result of Rossi-Hansberg and Wright (2007), which is obtained in a Lucas-inspired

setting. It is in contrast to Ventura (2005), where integration alters the substitutability

among factors, and depends critically on the assumption that there is no congestion for sites

that are suitable for urban use, at the national level. The creation of new cities is the margin

that eliminates local increasing returns, when they would have been present, and thus con-

fers constant returns to scale at the level of the aggregate economy. This is exactly like the

description of industry equilibrium with free entry of firms, each operating with U-shaped

average cost curves, may be described as operating with constant returns to scale, with unit

cost being equal to the minimum average cost.

Finally, we speculate about possible uses of our results. The availability of the law of

motion for the autarkic and for the intercity trade case in closed form, and the fact that

they share the same returns to scale properties lend our approach nicely to modeling urban

business cycles. With industry-specific stochastic shocks, the behavior of aggregate output
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is different in the case of autarky versus the case of intercity trade. In addition, without

necessarily introducing unemployment, one may study the effects of labor market pooling,

when the shocks to the two industries are imperfectly correlated. Such issues have not been

examined in the literature. So, in principle, when both types of shocks coexist, one may

partially offset the effect on prices thus conferring an advantage to autarky, which then

allows for diversification of risks, relative to intercity trade. In this sense, then, the structure

of stochastic shocks to industry productivity may give rise to an advantage of autarky versus

specialization.

3.4 Investment in Urban Transportation with Specialized Cities

Just as with diversified cities, we retain assumption (12) and consider how investment in

urban transportation, financed out of lump-sum taxes in each type of city, may be chosen so

as to maximize utility of a typical member of generation at each period in time. Just as in

the earlier analysis in (3.1), we assume that city populations are chosen so as to maximize

city output, for each type of city. This yields expressions (32 – 33).

By using the expressions for factor prices from (19) and for output-maximizing city sizes

from (32) – (33) in the condition for spatial equilibrium across the two types of cities (20),

we obtain expressions for utility of young members of generation t who reside in type −X

and type −Y. At spatial equilibrium, they must be equal. Or:

[
φXNX,t+1

(
Kt+1

N̄

)α̃−1
]S [

(1− φX)N−1
X,tNX,t

(
Kt

N̄

)α̃

− kXg,t+1

]

=

[
φYNY,t+1

(
Kt+1

N̄

)α̃−1
]S [

(1− φY )N−1
Y,tNY,t

(
Kt

N̄

)α̃

− kY g,t+1

]
, (35)

where α̃ ≡ αµXφX + (1 − α)µY φY , and the expressions for NX,t,NX,t+1;NY,t,NY,t+1 are

obtained from (28), (30), respectively. Since equalization of the first term on each side above,

the gross returns to capital, which ensures capital market equilibrium, has already been

employed, it suffices for spatial equilibrium to ensure that wages, net of tax, are equalized:

(1− φX)N−1
X,tNX,t

(
Kt

N̄

)α̃

− kXg,t+1 = (1− φY )NY,tN
−1
X,t

(
Kt

N̄

)α̃

− kY g,t+1.

The law of motion, (31), is modified to account for investment in urban transportation:

Kt+1 = S [nX(1− φX)NX,t + nY (1− φY )NY,t]
(

Kt

N̄

)α̃

− nXNX,tkXg,t+1 − nY NY,tkY g,t+1.

(31′)
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Maximization of utility of the typical resident in each type of city with respect to

kXg,t+1, kY g,t+1, separately, and subject to the spatial equilibrium constraint yields a solution

via one of the roots of a quadratic equation.8 We may specify parameter restrictions under

which the solution is positive and feasible, that is, less than (1 − φX)N−1
X,tNX,t

(
Kt

N̄

)α̃
, (1 −

φY )NY,tN
−1
X,t

(
Kt

N̄

)α̃
, respectively, that is less than the respective wage rates.

Unfortunately, the solution for in the case of specialized cities does not admit a par-

ticularly simple expression, unlike in the case of diversified cities. Still, it follows that

kXg,t+1, kY g,t+1, scale with labor income per capita in each type of city. Some qualitative

properties readily follow. In view of expressions (32) – (33) both lagged transportation in-

vestments kXg,t, kY g,t, enter via (28), (30) in the solutions for kXg,t+1, kY g,t+1. This suggests

presence of spillovers across the two types of cities in the optimal setting of transportation

investment. These spillovers are due, in effect, to the pecuniary externalities associated with

use of intermediates in production, which make in turn the terms of trade depend on sizes of

both types of cities. This force is not present in the case of autarkic cities and necessitates

refinement of the concept of optimum city size in the presence of intercity trade. The solu-

tion may also involve complex dynamic dependence, as may be expected from the quadratic

solution.

4 Brief Summary and Conclusions

The paper adapts the Anas–Xiong (2003) static model of urban structure and combines it

with key features of the model of trade and growth in Ventura (2005) in order to explore

intercity trade and growth. The economy is populated by identical individuals and is assumed

to have an overlapping generations demographic structure. Individuals work when they are

8Specifically, by substituting for kY g,t+1 from the condition that expresses equalization of wages into (31’)
and then using the resulting expression for Kt+1 in each of the expressions for utility in (35), we may obtain
necessary conditions for utility maximization in the form of quadratic equations. For kXg,t+1 specifically,
this equation is:

(2Sη(αµX + 1− α) + S(ã− 1) + 1) k2
Xg,t+1 −

[
(2Sη(αµX + 1− α) + S(ã− 1))W̄Xt

+((2Sη(αµX + 1− α) + 1)K̄t+1

]
kXg,t+1 + 2Sη(αµX + 1− α)W̄XtK̄t+1 = 0,

where we have ignored some inessential constants and defined the auxiliary variables W̄Xt, K̄t+1 as follows:
W̄Xt ≡ (1− φX)N−1

X,tNX,t

(
Kt

N̄

)α̃
,

K̄t+1 ≡ N̄−1

[
S

N̄

NX
nX(1− φX)NX + (1− S)

(
nY

NY

NX
(1− φX)NX,t − nY (1− φY )NY,t

)](
Kt

N̄

)α̃

.

The quadratic equation for kY g,t+1 is symmetrical.
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young and consume in both periods of their lives. They work where they are born, but

may move in the second period of their lives. Cities produce either one or both of two

tradeable goods. These goods are used to produce a composite, which is used in turn for

final consumption and investment. The manufactured goods are produced using raw labor,

physical capital and intermediates. In the autarkic case, each city is self-sufficient in both

the manufactured goods and intermediates used in their production. Capital comes from the

savings of the young. Our assumptions allow us to obtain a precise characterization of the

law of motion, just like in Ventura (2005). So, a combination of weak diminishing returns

and strong market size effects can lead to increasing returns to scale in each autarkic city.

We extend the model of autarkic cities to allow for investment by local governments that

reduces intra-urban unit commuting costs and thus makes city size depend on equilibrium

in the capital market. We are able to solve for transportation investment in closed form.

Under appropriate conditions, unceasing growth sustains a divergent pattern in city sizes.

Finally, we examine economic growth in the presence of intercity trade in manufactured

goods and free factor mobility. Individuals will locate so as to equalize utility and capital

so as to equalize returns. In the integrated economy, cities specialize and thus an industry

with greater economies of scale need not be weighted down and be forced to compete for

resources with another industry, which exhibits lower economies of scale. However, when

cities specialize, their specialization advantage is exactly offset by the effect of its superior

performance on the terms of trade, under our assumptions. We also extend the model of

specialized cities to allow for investment by local governments to reduce commuting costs.

This reveals that there are spillovers across city types that must be recognized in setting

optimal city size. Different specialized cities grow in parallel, just as autarkic cities can

growth in parallel. One of our key results is that the law of motion for capital of the

integrated economy has the same dynamic properties as its counterpart for an economy with

autarkic cities. The key results of the paper are exploring conditions for divergent versus

convergent urban growth under alternative intercity trade regimes.

There are numerous issues which fall within the broader scope of the paper and de-

serve further attention. The study of the urbanization process along with intercity economic

integration, the relationship between different patterns of shipping costs and patterns of

specialization, and issues of policy stand out as particularly important. Patterns of special-

ization among cities map to different predictions about urban hierarchies and associated city

size distributions. Another issue of particular importance is modeling proximity between

cities and possible competition among alternative sites.
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