Selection for improved stress tolerance in rainbow trout (Oncorhynchus mykiss)

leads to reduced feed waste

Øyvind Øverli ${ }^{\mathrm{a}^{*}}$, Christina Sørensen ${ }^{\mathrm{a}, \mathrm{b}}$, Anders Kiessling ${ }^{\mathrm{a}}$, Tom G. Pottinger ${ }^{\mathrm{c}}$ and Hans M. Gjøen ${ }^{\text {a }}$
${ }^{\mathrm{a}}$ Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
${ }^{\mathrm{b}}$ Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, Oslo N-0316, Norway
${ }^{\mathrm{c}}$ NERC Centre For Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom

* Corresponding author. Tel.: + 4741506222 Fax: + 4764965101
e-mail: oyvind.overli@umb.no

Abstract

The magnitude of the cortisol response to a standardised stressor is a heritable trait in salmonid fishes, and selection for stress responsiveness induces differences in both behaviour and neuroendocrine function. For instance, in laboratory studies, fish with a high cortisol response show a greater propensity for stress induced anorexia. Some authors have, however, commented that controlled studies encompassing relatively small groups of fish hold little or no relevance to practical aquaculture. This notion may be flawed, since understanding the mechanisms behind the behaviour of individuals is a proviso to predict behaviour in groups even with the caveat that some behaviors may be modified by group size. As an example, optimal feeding regimes should be easier to predict in a population consisting of individuals whose appetite is relatively less affected by external stressors. In a fluctuating and potentially stressful environment, such a population should also generate less feed waste, if kept on fixed rations. In the present experiment, we tested this hypothesis by monitoring feed waste and feed conversion efficiency in lines of rainbow trout selected for a low (LR) or high (HR) cortisol response to stress. The study was carried out after fish had been transported between rearing sites in the United Kingdom and Norway. There was significantly more feed waste from rearing units containing HR fish, and these fish also showed lower feed efficiency (growth per unit feed consumed). The difference in feed waste became more apparent with increasing time after transport, as rations increased. Simultaneously, size was more variable and growth was slower in HR rearing units. These results suggest that there are several potential benefits of selection for low stress responsiveness in aquaculture.

1. Introduction

Intensive aquaculture of salmonid fish is a relatively new innovation, compared to the cultivation of most other animals. The process of domestication has only just begun in salmonids, and considerable effort is devoted to selecting for and estimating the heritability of economically important traits in these fish, such as growth rate, size at maturity, muscle composition, and disease resistance (see e.g. Gjerde, 1993; Gjøen and Bentsen 1997; Gjedrem, 2000; Midtlyng et al., 2002).

Fish under intensive culture conditions are exposed to a regime of both acute and chronic stressors, which have adverse effects on growth, immunocompetence, and flesh quality, among other things (Barton et al., 1987; Barton and Iwama, 1991; Balm, 1997; Sigholt et al., 1997; Schreck et al., 2001; Pottinger, 2001). As in other vertebrates, the blood concentration of corticosteroid hormones is used as an index of stress in fish, and elevated levels of these hormones arise from activation of the hypothalamus-pituitary-interrenal (HPI) axis (Wendelaar-Bonga, 1997). The main corticosteroid in teleosts is cortisol (Kime, 1987), and this steroid is a causal factor in many of the deleterious effects of stress (Barton et al., 1987; Barton and Iwama, 1991; Harris and Bird, 2000; Pankhurst and Van der Kraak, 2000; Schreck et al., 2001; Bernier et al., 2004).

In rainbow trout the magnitude of the cortisol response to stress is an individual characteristic which is stable over time, with a moderate to high degree of heritability (Pottinger et al., 1992, 1994; Fevolden et al., 1999). Thus, post-stress cortisol levels provide a trait of functional significance upon which selection pressure can be directed, and lines of high- (HR) and low-responsive (LR) trout have been established at the Windermere laboratory of the UK Natural Environment Research Council, Centre for Ecology and Hydrology (Pottinger and Carrick, 1999).

Selection for cortisol responsiveness is associated with a range of behavioural differences between the HR and LR trout lines (reviewed by Øverli et al., 2005). Specifically, LR fish show a tendency to become socially dominant (Pottinger and Carrick, 2001), a rapid recovery of food intake after transfer to a novel environment (Øverli et al., 2002), and a reduced locomotor response in a territorial intrusion test (Øverli et al., 2002). Experiments with non-selected aquaculture populations of rainbow trout later showed that large variation
in the cortisol response to stress also exists in such populations, and cortisol responsiveness predicts behaviour in a number of situations (Øverli et al., 2004, 2006).

The above associations between individual variation in stress responsiveness and behaviour have all been revealed in laboratory studies encompassing relatively low numbers of fish. There seems to be a strong notion, at least in some research milieus, that tightly controlled small-scale studies hold little or no relevance to practical aquaculture. We will argue, however, that proper understanding of mechanisms behind the behaviour of individual fish is a proviso to comprehend behaviour in groups. The latter a viewpoint is supported by recent work on the relative growth of the HR and LR selected fish over several years and two generations at near-production scale (Pottinger, 2006). In this study, the performance of the two lines in co-culture was found to be consistent with what might be predicted on the basis of the relative competitiveness/aggressiveness of the fish in smaller scale studies.

While the conclusions are so far equivocal with regard to the value of directly exploiting the LR line, several potential benefits of selection for reduced stress responsiveness in aquaculture can be nonetheless be identified. For instance, the amount of feed waste from a rearing unit, and the efficiency with which feed is transformed to somatic growth, are economically and environmentally important factors that may be affected by stress responsiveness. Optimal feeding regimes should be easier to predict in a population consisting of individuals whose appetite is less affected by external stressors. In a fluctuating and potentially stressful environment, such a population should also generate less feed waste, if kept on fixed rations.

Transport of live fish is a common procedure in aquaculture and fisheries management that exposes fish to multiple stressors, which may in turn cause production loss (see e.g. Iversen et al., 2005, and references therein). It is likely that an effect of heritable variation in stress responsiveness on feed utilisation would be particularly evident following exposure to a stressful procedure such as transport. To test this hypothesis, we monitored feed waste, growth, and conversion efficiency in HR and LR trout rearing units during twelve days after fish had been transported between the original rearing site (Windermere, UK) and a research station in Norway.

2. Material and methods

Experimental fish and procedures: The selection procedure yielding the HR and LR trout lines and the effect of the breeding program on cortisol responsiveness has been described in detail elsewhere (Pottinger and Carrick 1999, 2001), and will only be briefly reviewed here. The parental generation of the HR and LR trout lines was established in 1996 by repeated stress testing (3h confinement in 50 L water in groups of 6-7 individuals once monthly) of passive integrated transponder (PIT) tagged 2-year-old rainbow trout. The mean post-stress plasma cortisol content across five episodes of confinement was calculated for each fish, and individuals were ranked accordingly. Between testing, fish were kept in groups of 25 in 1500 L holding tanks, and the four most high-responding (HR) and the four most low-responding (LR) fish in each tank were removed from their home tank, segregated by sex, and kept separate in 4 tanks based on group (HR, LR) and sex until maturation.

The 1st generation offspring (F1) consisted of 15 HR and 14 LR families each resulting from a unique male-female crossing. A highly significant regression of mid-parent cortisol response on progeny response was seen (estimated $\mathrm{r}^{2}\left[\mathrm{~h}^{2}\right]$ value $=0.41$), and the six LR families with the lowest mean cortisol response and the six HR families with the highest mean cortisol response were identified and used for further work (Pottinger and Carrick, 1999). In the current experiment, 150 PIT-tagged fish from the third generation of offspring from each population (weight HR: $493 \pm 12 \mathrm{~g}, \mathrm{LR}: 477 \pm 9 \mathrm{~g}$, mean \pm SE) were starved for 5 days and loaded on a tank truck equipped to keep water fully oxygenated during transport (Donslund Special Transport, Hejnsvig, Denmark, http://www.donslund.dk). Water temperature was $14^{\circ} \mathrm{C}$ at departure from Windermere, increasing to $18^{\circ} \mathrm{C}$ during transport. On arrival at the Norwegian Institute for Water Research marine research station (Solbergstrand, Akershus county, Norway) two days later, all fish except 12 HR and 12 LR individuals used for another study were again weighed and distributed in 3 HR and 3 LR rearing units (tank volume $0.9 \mathrm{~m}^{3}$, water flow $30 \mathrm{l} / \mathrm{min}, 15-17^{\circ} \mathrm{C}$). HR and LR fish were not separated during the transport, but were sorted upon arrival based on PIT-tag readings. No mortalities occurred during the transfer.

Three days after arrival, a feeding regime was initiated in which all rearing units were hand fed a ration corresponding to 0.5% of the biomass (B.M.) present in that tank (Skretting, Standard Expanded 60). Feed was distributed once daily over a 20 min period. After three days, rations were increased to 1% B.M. / day, and after another 3 days to 2%
B.M. / day. All rearing units were equipped with PVC grid pellet traps at the water outlet, and uneaten pellets were collected and counted each day 15 min after termination of feeding. At this point in time, it was visually confirmed that all food had either been consumed or trapped. Quantification of uneaten food was stopped after 6 days of feeding at the 2% level, i.e. 12 days after feeding was initiated. At this point, all fish were again weighed and growth rates were calculated.

Data analysis: The feed waste from each rearing unit during the course of the experiment was recorded daily. Mean values for the amount of accumulated feed waste released by $\mathrm{HR}(\mathrm{n}=3)$ and $\mathrm{LR}(\mathrm{n}=3)$ rearing units were then expressed as a regression over time. The rate of increase in accumulated feed waste was compared between HR and LR lines using the method suggested by Armitage (1980) to test whether the regression slopes were different (using the t-statistics), and whether the lines were significantly separated (using the t-statistics for adjusted constants). The latter test corresponds to a co-variance analysis using lineage (HR, LR) as independent variable, accumulated feed waste as dependent variable, and time (days of feeding) as co-variate. Total feed waste from the two populations during the whole experiment was also calculated as the percentage of the food delivered to each tank, and compared using two-sided t-test. Two-sided t-tests were also used to compare biomass, size variation (coefficient of variance, CV), growth rates, and feed efficiency ratio (FER $=$ growth $/$ feed consumed) between the two lines. Relationships between relevant variables (see the results section) were tested using Pearsson correlation.

3. Results

Fish size, growth rates, and feed efficiency: In the following, data are reported as mean \pm S.E.M., and p values are the result of two-sided t-test unless otherwise stated. There was no significant difference in average fish size between the two populations prior to transport (HR: 493 ± 12 g, LR: 477 ± 9 g, p=0.25), or upon arrival in Norway (HR: 456 ± 12 g, LR: 442 ± 9 g, $\mathrm{p}=0.44$). There was a trend towards larger CV's for initial size in HR than LR rearing units (HR: 26.6 ± 1.9, LR: $23.2 \pm 0.6, \mathrm{p}=0.16$). Growth rates during the feeding experiment were, on average, higher in the LR than in the HR rearing units (HR: 2.1 ± 0.1 \% B.W. / day, LR: 2.6 ± 0.05 \% B.W. / day, $\mathrm{p}=0.02$). This difference was not fully explained by higher feed waste in HR rearing units (see below), because there was also a significant difference in feed
efficiency (growth/feed consumed) between the two populations (FCR HR: 1.53 ± 0.1, LR:1.86 $\pm 0.04, p=0.03$).

Feed waste: Accumulation of feed waste under the three different feeding regimes is shown in figure 1. Data for the two populations were distributed along two separate regression lines under all three feeding regimes, with significant differences between mean y in all cases, and slopes significantly different at the 1.0% and 2.0% feeding regimes, but not under the initial 0.5% regime. Hence, feed waste accumulated more rapidly from HR rearing units in the final stages of the experiment, when rations were higher. Total feed waste during the whole experiment was also calculated in relative terms (percentage of distributed feed lost) and compared between populations by unpaired t-test (figure 2). Despite the relatively low number of rearing units, total feed waste was also significantly higher from the HR rearing units ($\mathrm{p}=0.03$).

Relationship between size variation and feed waste: The fact that the cumulative difference in feed waste between the two lines increased with time after transport suggests that stress induced reductions in feed intake were not the only factor underlying the greater feed waste from the HR rearing units. As noted above, there was a trend towards a larger variation in fish size in the HR rearing units. We therefore analysed whether there was a correlation between initial size variation and total feed waste from the different rearing units. There was a strong trend towards such a relationship in pooled data from HR and LR rearing units ($p=0.08$, figure 3).

Discussion

These data demonstrate conclusively that during a 12 day period after transport between two rearing sites, feed waste from rearing units holding LR fish was lower than that from units containing HR fish. This observation is consistent with an earlier study, in which it was demonstrated that LR fish tend to resume feed intake more rapidly than HR fish in a new environment (Øverli et al., 2002). Furthermore, in the present study LR fish yielded more growth from each unit of food they consumed. Previous studies carried out at the original Windermere rearing site found no significant difference in growth between the lines when they were reared in separate tanks (Pottinger, 2006). Hence, at present it is not known if LR and HR fish also utilize feed resources differently under more undisturbed and stable
conditions. It should be noted, however, that in the present study the difference in feed waste between the two lines appeared to increase with time after transport. This may be a consequence of the fact that rations were increased with time, or indicate that different feed utilisation is a permanent characteristic of the HR and LR rainbow trout lines. The latter explanation may seem the less likely, since in a previous study no significant difference in growth was detected over time between HR and LR lines held separately for longer periods of time (Pottinger, 2006). An alternative explanation for this discrepancy could be that divergence in trait characters has been amplified in the subsequent generation of HR and LR fish that was utilised in the present study.

In salmonids, appetite inhibition is a prominent behavioural response to stress and aversive experience, which is in part mediated by neurotransmitters and hormones that are also involved in control of the physiological stress response (Øverli et al., 1998; Bernier and Peter, 2001; Carr, 2002; Bernier et al., 2004). It is, however, not immediately clear that increased feed waste from the HR rearing units depends only on stress induced anorexia in these fish. Stress responsiveness is also linked to aggressive behaviour and social dominance (Pottinger and Carrick, 2001; Øverli et al., 2004, 2005; Schjolden et al., 2005), and may thereby affect the structure of social hierarchies. Social interactions are in turn an important factor in the distribution and utilisation of feed resources (e.g. Jobling and Wandsvik, 1983; McCarthy et al., 1992). In the present experiment, there was no initial difference in mean body weight between HR and LR fish. On the other hand, HR fish were somewhat more heterogeneous in size at the beginning of the experiment. Furthermore, the data suggested a positive relationship between initial variance in body weight and feed waste resulting from a rearing unit (c.f. figure 3).

In light of the above, it would appear that homogenous populations generate less feed waste. It should, however, be noted that the number of rearing units in this experiment was too low to reveal whether there also was such a relationship within each population. Hence, these data only demonstrate that there was some correspondence between the magnitude of the difference in feed waste and enhanced size heterogeneity in the HR population, and does not constitute proof of a cause-effect relationship. The correlation should nevertheless be taken in concern to remind us that there are several plausible backgrounds for the association between increased feed waste and high stress responsiveness.

It should also be kept in mind that these measurements were made in a period following transport and starvation. Compensatory growth in salmonid fish appears to involve both increased feed intake and improved feed efficiency (Miglavs and Jobling, 1989; Jobling and Koskela, 1996, Boujard et al., 2000). Hence, our results are in line with recent reports demonstrating that feed conversion efficiency may have a substantial genetic component (Thodesen et al., 2001; Silverstein et al., 2005; Mambrini et al., 2006).

In summary, the present study suggests that both improved FCR and reduced feed waste are among the potential benefits selection for stress responsiveness could have on the production of salmonid fish in aquaculture. It should be kept in mind, however, that the present study was carried out after a significant transport stressor, coupled with exposure to a wholly novel environment. In this situation, the results clearly showed that LR fish were able to regain growth more rapidly after transport than HR fish. A reduction in the adverse effects on performance induced by the imposition of unavoidable stressors is likely to be among the potential benefits selection for stress responsiveness offers for the production of salmonid fish in aquaculture. Finally, it should be noted that there was close correspondence between the actual results obtained under conditions of intensive group rearing and the predictions made from previous, small-scale laboratory research. This observation underlines the importance of a functional interface between applied research and fundamental studies on the biology of species currently undergoing domestication.

Acknowledgements

This study was supported by the Norwegian Research Council and institutional funds from the Norwegian University of Life Science. David Abel (CEH) is thanked for maintaining the experimental fish populations at CEH Windermere. Arne Storset, director of research and development at Aqua Gen AS, is thanked for valuable discussions and suggestions towards the design of this study.

References

Armitage, P., 1980. Statistical methods in medical research. Blackwell Science, Oxford, pp. 279-301.

Balm, P.H.M., 1997. Immune-endocrine interactions. In: Iwama, G.K., Pickering, A.D., Sumpter, J.P., Schreck, C.B. (Eds.), Fish stress and health in aquaculture. Cambridge University Press, Cambridge, pp. 195-221.

Barton, B.A., Schreck, C.B., Barton, L.D., 1987. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow-trout. Dis. Aquat. Organ. 2, 173-185.

Barton, B. A., G. K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann. Rev. Fish Diseases 1, 3-26.

Bernier, N.J., Peter, R.E., 2001. The hypothalamic-pituitary-interrenal axis and the control of food intake in teleost fish. Comp. Biochem. Physiol. B. 129, 639-644.

Bernier, N.J., Bedard, N., Peter, R.E., 2004. Effects of cortisol on food intake, growth, and forebrain neuropeptide Y and corticotropin-releasing factor gene expression in goldfish. Gen. Comp. Endocrinol. 135, 230-240.

Boujard, T., Burel, C., Médale, F., Haylor, G., Moisan, A., 2000. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. Aquat. Living Res. 13, 129-137

Carr, J.A., 2002. Stress, neuropeptides, and feeding behavior: A comparative perspective. Integr. Comp. Biol. 42, 582-590.

Fevolden, S.E., Røed, K.H., Fjalestad, K.T., Stien. J., 1999. Poststress levels of lysozyme and cortisol in adult rainbow trout: heritabilities and genetic correlations. J. Fish Biol. 54, 900-910.

Gjedrem, T. 2000. Genetic improvement of cold-water fish species. Aquacult. Res. 31, 2533.

Gjerde, B. 1993. Breeding and selection. In: Heen, K., Monahan, R., Utter, F. (Eds.), Salmon Aquaculture. Blackwell, Oxford, pp. 187-208.

Gjøen, H.M., Bentsen, H., 1997. Past, present, and future of genetic improvement in salmon aquaculture. ICES J. Mar. Sci. 54, 1009-1014.

Harris, J., Bird, D.J., 2000. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol. 77, 163-176.

Jobling, M., Wandsvik, A., 1983. Effect of social interactions on growth rates and conversion efficiency of Arctic charr, Salvelinus alpinus L. J. Fish. Biol. 22, 577584.

Jobling, M., Koskela, J., 1996. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. J. Fish Biol. 49, 658-667.

Iversen, M., Finstad, B., McKinley, R.S., Eliassen, R.A., Carlsen, K.T., Evjen, T., 2005. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243, 373382.

Kime, D.E., 1987. The steroids. In: I. Chester-Jones, P. Ingleton, J.G. Phillips (Eds.), Fundamentals of comparative vertebrate endocrinology. Plenum Press, New York, pp. 3-56.

Mambrini, M., Labbé, L., Randriamanantsoa. F., Boujard, T., 2006. Response of growthselected brown trout (Salmo trutta) to challenging feeding conditions. Aquaculture 252, 429-440

McCarthy, I.D., Carter, C.G., Houlihan, D.F., 1992. The effect of feeding hierarchy on individual variability in daily feeding in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 41, 257-263.

Midtlyng, P. J., Storset, A., Michel, C., Slierendrecht, W.J., Okamoto, N., 2002. Breeding for disease resistance in fish. Bull. Eur. Assn. Fish Pathol. 22, 166-172.

Miglavs, I., Jobling, M., 1989. The effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth. J. Fish Biol. 34, 947-957.

Øverli, Ø., Winberg, S., Damsgård, B., Jobling, M., 1998. Food intake and spontaneous swimming activity in Arctic char (Salvelinus alpinus): role of brain serotonergic activity and social interactions. Can. J. Zool. 76, 1366-1370.

Øverli, Ø., Pottinger, T.G., Carrick, T.R., Øverli, E., Winberg, S., 2002. Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J. Exp. Biol. 205,391-395.

Øverli, Ø., Korzan, W.J., Höglund, E., Winberg, S., Bollig, H., Watt, M., Forster, G.L., Barton, B.A., Øverli, E., Renner, K.J., Summers, C.H., 2004. Stress coping
style predicts aggression and social dominance in rainbow trout. Horm. Behav. 45, 235-241.

Øverli, Ø., Winberg, S., Pottinger, T.G., 2005. Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout - A review. Integr. Comp. Biol. 45, 463-474.

Øverli, Ø., Sørensen, C., Nilsson, G.E. (2006). Behavioral indicators of stress-coping style in rainbow trout: Do males and females react differently to novelty? Physiol. Behav. 87, 506-512.

Pankhurst, N.W., van der Kraak, G., 2000. Evidence that acute stress inhibits ovarian steroidogenesis in rainbow trout in vivo, through the action of cortisol. Gen. Comp. Endocrinol. 117, 225-237.

Pottinger, T.G., Pickering, A.D., Hurley, M.A., 1992. Consistency in the stress response of individuals of two strains of rainbow trout, Oncorhynchus mykiss. Aquaculture 103, 275-289.

Pottinger, T.G., Moran, T.A., Morgan, J.A.W., 1994. Primary and secondary indexes of stress in the progeny of rainbow-trout (Oncorhynchus mykiss) selected for high and low responsiveness to stress. J. Fish Biol. 44, 149-163.

Pottinger, T.G., Carrick, T.R., 1999. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen. Comp. Endocrinol. 116, 122-132.

Pottinger, T.G., Carrick, T.R., 2001. Stress responsiveness affects dominant-subordinate relationships in rainbow trout. Horm. Behav. 40, 419-427.

Pottinger, T.G., 2001. Effects of husbandry stress on flesh quality indicators in fish. In: S.C. Kestin, P.D. Warriss (Eds). Farmed Fish Quality. Blackwell, Oxford, pp. 145160.

Pottinger, T.G., 2006. Context dependent differences in growth of two rainbow trout lines selected for divergent stress responsiveness. Aquaculture (In press)

Schreck, C.B., Contreras-Sanchez, W., Fitzpatrick, M.S., 2001. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 197, 3-24.

Schjolden, J., Stoskhus, A., Winberg, S., 2005. Does individual variation in stress responses and agonistic behavior reflect divergent stress coping strategies in juvenile rainbow trout? Physiol. Biochem. Zool. 78, 715-723.

Sigholt, T., Erikson, U., Rustad, T., Johansen, S., Nordtvedt, T.S., Seland, A., 1997. Handling stress and storage temperature affect meat quality of farm-raised Atlantic salmon (Salmo salar). J. Food Sci. 62, 898-905.

Silverstein, J.F., Hostuttler, M. Blemings, K.P., 2005. Strain differences in feed efficiency measured as residual feed intake in individually reared rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Res. 36, 704-711.

Thodesen, J., Gjerde, B., Grisdale-Helland, B., Storebakken, T., 2001. Genetic variation in feed intake, growth and feed utilization in Atlantic salmon (Salmo salar). Aquaculture 194, 273- 281.

Wendelaar-Bonga, S.E., 1997. The stress response in fish. Physiol. Rev. 77, 591-625.

Figure 1: Accumulation of feed waste from 3 HR (filled circles) and 3LR (open circles) rearing units in A) 0.5%, B) 1.0%, and C) 2.0% B.M. / day feeding regimes (mean \pm S.E.). Note that fish biomass and hence distributed feed was slightly higher in the LR rearing units (see text for details), while feed waste was higher in HR units. Likelihoods that slope and mean y are similar are given in each panel (ANCOVA).

Figure 2: Total feed waste over the 12 day observation period expressed as the proportion of food not eaten ($*=\mathrm{p}>0.05$, two-sided t -test).

Figure 3: Relationship between initial size variation and total feed waste in HR and LR rearing units (Pearsson r^{2} and p values).

