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SOCIAL CHOICE AMONG COMPLEX

OBJECTS:MATHEMATICAL TOOLS

SIMONA SETTEPANELLA

Abstract. Here the reader can find some basic definitions and notations in
order to better understand the model for social choise described by L. Marengo
and S. Settepanella in their paper: Social choice among complex objects.
The interested reader can refer to [Bou68], [Massey] and [OT92] to go into
more depth.

Keywords: Arrangements, simplicial complexes, CW complexes, fundamental
group, Salvetti’s complex.

1. Arrangements

In geometry and combinatorics, an arrangement of hyperplanes is a finite
set A of hyperplanes in a linear, affine, or projective space S. Questions about
a hyperplane arrangement A generally concern geometrical, topological, or other
properties of the complement, M(A), which is the set that remains when the hy-
perplanes are removed from the whole space. One may ask how these properties
are related to the arrangement and its intersection semilattice.

The intersection semilattice of A, written L(A), is the set of all subspaces that
are obtained by intersecting some of the hyperplanes; among these subspaces are S
itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc.
(excluding, in the affine case, the empty set). These subspaces are called the flats
of A. L(A) is partially ordered by reverse inclusion.

If the whole space S is 2-dimensional, the hyperplanes are lines; such an ar-
rangement is often called an arrangement of lines. Historically, real arrangements
of lines were the first arrangements investigated. If S is 3-dimensional one has an
arrangement of planes.

More precisely, let K be a field and let VK be a vector space of dimension n.
A hyperplane H in VK is an affine subspace of dimension (n-1). A hyperplane
arrangement

AK = (AK, VK)

is a finite set of hyperplanes in VK.

We are interesting in the real and complex cases, then from now on K = R, C and
V = Rn, Cn. Then choosen the canonical basis {e1, . . . , en} in V , each hyperplane
H ∈ A is the kernel of a polynomial αH ∈ K[x1, . . . , xn] of degree 1 defined up to
a costant. The product:

Q(A) =
∏

H∈A

αH

is called defining polynomial of A.
The cardinality | A | of the arrangement A is the number of hyperplanes in A.

LEM, Scuola Superiore Sant’Anna, and Department of Mathematics, University of Pisa,
s.settepanella@sssup.it.
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2 SIMONA SETTEPANELLA

If B ⊂ A is a subset, then it is called a subarrangement of A. We define the
set of all nonempty intersections of elements of A as:

L(A) = {∩H∈BH | B ⊆ A}

Given an element X ∈ L(A), we define a subarrangement AX of A by:

AX = {H ∈ A | X ⊆ H},

and an arrangement in X by:

AX = {X ∩ H | H ∈ A \ AXandX ∩ H 6= ∅}.

AX is called the restriction of A to X .
Finally we define the complement of A by

M(A) = V \ ∪H∈AH.

The complement of an arrangementA in Rn is clearly disconnected: it is made up
of separate pieces called chambers or regions, each of which is either a bounded
region or an unbounded region which goes off to infinity.

Each flat of A is also divided into pieces by the hyperplanes that do not contain
the flat; these pieces are called the faces of A. The regions are faces because the
whole space is a flat. The faces of codimension 1 may be called the facets of A.

The face semilattice of an arrangement is the set of all faces, ordered by
inclusion. Adding an extra top element to the face semilattice gives the face lattice.

Example 1. Let us give examples:

• if the arrangement consists of three parallel lines, the intersection semilat-
tice consists of the plane and the three lines, but not the empty set. There
are four regions, none of them bounded.

• If we add a line crossing the three parallels, then the intersection semilattice
consists of the plane, the four lines, and the three points of intersection.
There are eight regions, still none of them bounded.

• If we add one more line, parallel to the last, then there are 12 regions, of
which two are bounded parallelograms.

Every arrangement (AR, Rn) gives rise to an arrangement over C. Let (AR, Rn)
be an arrangement with defining polynomial Q(AR). The C-extended arrangement
is in Cn. It consists of the hyperplanes which are the kernel of the polynomial αH

in Cn instead of Rn.

2. Basic notions in Topology

Topological spaces are mathematical structures that allow the formal definition
of concepts such as convergence, connectedness, and continuity. They appear in
virtually every branch of modern mathematics and are a central unifying notion.
The branch of mathematics that studies topological spaces in their own right is
called Topology.

A topological space is a set X together with T, a collection of subsets of X,
satisfying the following axioms:

(1) the empty set and X are in T;
(2) the union of any collection of sets in T is also in T;
(3) the intersection of any finite collection of sets in T is also in T.
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The collection T is called a topology on X.

The elements of X are usually called points, though they can be any mathe-
matical objects. A topological space in which the points are functions is called a
function space.

The sets in T are the open sets, and their complements in X are called closed
sets. A set may be neither closed nor open, either closed or open, or both.

Given an open set U ∈ T , the smaller closed set which contain it is called closure
of U and it is usually indicated by U .

Example 2. Let us give some elementary example of topological spaces:

(1) X = {1, 2, 3, 4} and collection T = {{}, {1, 2, 3, 4}} of two subsets of X
form a trivial topology.

(2) X = {1, 2, 3, 4} and collection T = {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}}
of six subsets of X form another topology.

(3) X = Z, the set of integers and collection T equal to all finite subsets of the
integers plus Z itself is not a topology, because (for example) the union over
all finite sets not containing zero is infinite but is not Z, and so is not in
T.

A variety of topologies can be placed on a set to form a topological space. When
every set in a topology T1 is also in a topology T2, we say that T2 is finer than T1,
and T1 is coarser than T2.

A neighbourhood of a point x is any set that contains an open set containing
x. The neighbourhood system at x consists of all neighbourhoods of x. A topology
can be determined by a set of axioms concerning all neighbourhood systems.

As usual in mathematics we define relations between topological spaces. These
relations are continuous functions.

A function between topological spaces is said to be continuous if the inverse
image of every open set is open. In mathematical terms, given two spaces X and
Y and topologies TX and TY on X and Y respectively, then a function

f : X → Y

is continuous if and only if f−1(U) ∈ TX for all U ∈ TY .
This is an attempt to capture the intuition that there are no breaks or separa-

tions in the function.

A homeomorphism is a bijection that is continuous and whose inverse is also
continuous. Two spaces are said to be homeomorphic if there exists a homeomor-
phism between them.

From the standpoint of topology, homeomorphic spaces are essentially identical.

The category of topological spaces with topological spaces as objects and contin-
uous functions as morphisms is one of the fundamental categories in mathematics.
The attempt to classify the objects of this category (up to homeomorphism) by
invariants has motivated and generated entire areas of research, such as homotopy
theory, homology theory, and K-theory, to name just a few.

Let see some other important and useful example of topologies on a given set
X , remarking that if a set is given a different topology, it is viewed as a different
topological space.
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Any set can be given the discrete topology in which every subset is open. Also,
any set can be given the trivial topology (also called the indiscrete topology), in
which only the empty set and the whole space are open.

However, oftentimes topological spaces are required to be Hausdorff spaces:
let x and y be points in a topological space X . We say that x and y can be separated
by neighbourhoods if there exists a neighbourhood U of x and a neighbourhood V
of y such that U and V are disjoint (U ∩ V = ∅). X is a Hausdorff space if any two
distinct points of X can be separated by neighborhoods.

There are many ways of defining a topology on R, the set of real numbers. The
standard topology on R is generated by the open intervals. The set of all open
intervals forms a base or basis for the topology, meaning that every open set is a
union of some collection of sets from the base. In particular, this means that a set
is open if there exists an open interval of non zero radius about every point in the
set.

More generally, the Euclidean spaces Rn can be given a topology. In the usual
topology on Rn the basic open sets are the open balls, meaning n-dimensional balls
centered in a point x ∈ Rn with radius ε > 0.

Similarly, C and Cn have a standard topology in which the basic open sets are
open balls.

Every metric space can be given a metric topology, in which the basic open sets
are open balls defined by the metric. This is the standard topology on any normed
vector space. On a finite-dimensional vector space this topology is the same for all
norms.

Many sets of operators in functional analysis are endowed with topologies that
are defined by specifying when a particular sequence of functions converges to the
zero function.

Any local field has a topology native to it, and this can be extended to vector
spaces over that field.

Every manifold has a natural topology since it is locally Euclidean.
The real line can also be given the lower limit topology. Here, the basic open

sets are the half open intervals [a, b). This topology on R is strictly finer than the
Euclidean topology defined above. This example shows that a set may have many
distinct topologies defined on it.

A very important notion in mathematics is the notion of substructure. Every
subset Y ⊂ X of a topological space X can be given the subspace topology or
induced topology in which the open sets are the intersections of the open sets of
X with the subset Y , i.e.

TY = {W ∩ X | U ∈ TX}.

For any indexed family of topological spaces {Xi}i∈I , the product
∏

i∈I Xi can be
given the product topology, which is generated by the inverse images of open
sets of the factors under the projection mappings

pj :
∏

i∈I

Xi → Xj.

For example, in finite products, a basis for the product topology consists of all
products of open sets. For infinite products, there is the additional requirement
that in a basic open set, all but finitely many of its projections are the entire space.
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A quotient space is defined as follows: if X is a topological space and Y is a set,
and if

f : X −→ Y

is a surjective function, then the quotient topology on Y is the collection

Tq,Y = {U ⊂ Y | f−1(U) ∈ TX}

of subsets of Y that have open inverse images under f . In other words, the quotient
topology is the finest topology on Y for which f is continuous. A common example
of a quotient topology is when an equivalence relation is defined on the topological
space X . The map f is then the natural projection onto the set of equivalence
classes.

Topological spaces can be broadly classified, up to homeomorphism, by their
topological properties. A topological property is a property of spaces that is
invariant under homeomorphisms. To prove that two spaces are not homeomorphic
it is sufficient to find a topological property which is not shared by them. Exam-
ples of such properties include connectedness, compactness, and various separation
axioms. See books on references for more details and examples.

3. Simplicial and CW complexes

In mathematics, a simplicial complex is a topological space of a particular
kind, constructed by ”gluing together” points, line segments, triangles, and their
n-dimensional counterparts. In order to define a simplicial complex we need to
define simplexes.

Let us define the convex hull for a set of points X = {x1, . . . , xm} in a real
vector space V as follow:

H(X) = {
k

∑

i=1

αixi | xi ∈ X, αi ∈ R, αi ≥ 0,

k
∑

i=1

αi = 1, k = 1, 2, . . .}.

In geometry, a simplex (plural simplexes or simplices) or n-simplex is an n-
dimensional analogue of a triangle. Specifically, a simplex is the convex hull of
a set of (n + 1) affinely independent points in some Euclidean space of dimension
n or higher (i.e., a set of points such that no m-plane contains more than (m + 1)
of them; such points are said to be in general position).

For example, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is
a triangle, a 3-simplex is a tetrahedron, and a 4-simplex is a pentachoron (in each
case with interior). The convex hull of any nonempty subset of the n+1 points that
define an n-simplex is called a face of the simplex. Faces are simplices themselves.

In particular, the convex hull of a subset of size m+1 (of the n+1 defining points)
is an m-simplex, called an m-face of the n-simplex.
The 0-faces (i.e., the defining points themselves as sets of size 1) are called the
vertices (singular: vertex), the 1-faces are called the edges, the (n-1)-faces are
called the facets, and the sole n-face is the whole n-simplex itself.
In general, the number of m-faces is equal to the binomial coefficient C ( n + 1 , m + 1 ).

A simplicial complex X is a set of simplices that satisfies the following condi-
tions:

(1) Any face of a simplex from X is also in X .
(2) The intersection of any two simplices σ1, σ2 ∈ X is a face of both σ1 and

σ2.
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Note that the empty set is a face of every simplex.
Let us remark that every n−simplex and every n−simplicial complex inherits a

natural topology from Rn.
A simplicial k-complex X is a simplicial complex where the largest dimension

of any simplex in X equals k. For instance, a simplicial 2-complex must contain
at least one triangle, and must not contain any tetrahedra or higher-dimension
simplices.

A pure or homogeneous simplicial k-complex is a simplicial complex where
every simplex of dimension less than k is the face of some simplex of dimension
exactly k. Informally, a pure 1-complex ”looks” like it’s made of a bunch of lines,
a 2-complex ”looks” like it’s made of a bunch of triangles, etc. An example of a
non-homogeneous complex is a triangle with a line segment attached to one of its
vertices.

A facet is any simplex in a complex that is not the face of any larger simplex.
(Note the difference from the ”facet” of a simplex.)

A pure simplicial complex can be thought of as a complex where all facets have
the same dimension.

Sometimes the term face is used to refer to a simplex of a complex, not to be
confused with the face of a simplex. For a simplicial complex embedded in a k-
dimensional space, the k-faces are sometimes referred to as its k-cells. The term
cell is sometimes used in a broader sense to denote a set homeomorphic to a simplex,
leading to the definition of cell complex.

A cell complex or simply complex in R
n is a set X in R

n of convex polyhedra,
i.e. the set of solutions to a finite system of linear inequalities, satisfying two
conditions:

(1) Every face of a cell is a cell (i.e. it is in X).
(2) If σ1 and σ2 are cells, then their intersection is a common face of both.

Each convex polyhedron is called cell.
A simplicial complex is a cell complex whose cells are all simplices.

We are interested in a particula cell complex, the CW-complex. In order to
define it we need to introduce the following:

A finite graph is a pair consisting of a Hausdorff space X and a subspace X0

(called the set of vertices of X ) such that the following conditions hold:

(1) X0 is a finite discrete (i.e. it inherits the discrete topology from X), closed
subspace of X. Points of X0 are called vertices;

(2) X \ X0 is the finite disjoint union of open subsets ei, where each ei is
homeomorphic to an open interval of the real line. The set ei are called
edges;

(3) for each edge ei, if ei is the closure of ei, then its boundary ei \ ei is
a subset of X0 consisting of one or two points. If ei \ ei consists of two
points, then the pair (ei, ei) is homeomorphic to the pair ([0, 1], (0, 1)),if
ei \ ei consists of one point, then the pair (ei, ei) is homeomorphic to the
pair (S1, S1 \ {1}), where S1 is the unit circle in the plane.

It is a simple remark to notice that the definition of graph is a generalization of a
1-dimensional simplicial complex.
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Moreover it is possible to give an orientation to a graph, simply ordering its
vertices. So an edge will be oriented going from the lesser to the bigger vertices.

Now, we can give the definition of CW-complex.
In topology, a CW complex is a type of topological space introduced by J. H. C.
Whitehead to meet the needs of homotopy theory. The idea was to have a class of
spaces that was broader than simplicial complexes, but still retained a combinatorial
nature, so that computational considerations were not ignored. For these purposes
a closed cell is a topological space homeomorphic to a simplex, or equally a ball (of
which a sphere is the boundary) or cube in n dimensions.

First of all we need to introduce the notion of adjoining cells to a space (for a
more precise definition see also [Massey] ).

A n-dimensional cell is attached to a space X by gluing a closed n-dimensional
ball Dn to the (n-1)-skeleton Xn−1 of X , i.e., the union of all cells of dimension
lower than n in X .

The gluing is specified by a continuous function

f : Sn−1 → Xn−1

from the n − 1-dimensional unit sphere Sn−1 = ∂Dn to Xn−1.
The points on the new space are exactly the equivalence classes of points in

the disjoint union X∪̇Dn of the old space and the closed cell Dn, the equivalence
relation being the transitive closure of x ≡ f(x) (i.e., the smallest transitive relation
that contains ≡).

The function f plays an essential role in determining the nature of the newly
enlarged complex. For example, if the 2−dimensional ball D2 is glued onto the
circle S1 in the usual way, i.e. with the funcion f given by the identity map, we
get D2 itself; if f has winding number 2, we get the real projective plane instead.

The process of adjoining cells to a space leads naturally to the notion of CW-
complex. Roughly speaking, a CW-complex is a space X which can be built up as
follows:

Start with a graph X1 and adjoin a collection of 2-cells as described above to
obtain a space X2. Next adjoin a collection of 3-cells and so on. Then

X = ∪∞
n=1Xn

is a CW-complex. Moreover if all attaching maps are homeomorphisms, the struc-
ture is called a regular CW-complex.

More precisely, a CW-complex is defined on an Housdorff space X by the pre-
scription of an ascending sequence

X0 ⊂ X1 ⊂ X2 ⊂ . . .

of closed subspaces of X which satisfies the following conditions:

(1) X0 is a discrete space;
(2) for n ≥ 0, Xn is obtained from X(n−1) by attachment of a collection of

n-cells as described above.
(3)

X = ∪∞
n=1Xn

(4) (weak topology)X and each of Xn have the weak topology; i.e, a subset
A of X ( or Xn) is closed if and only if the intersection A ∪ eq of A with
the closure of a q-cell eq is closed for each eq.
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The subspace Xn is called the n-skeleton of X .
If there are no cells of dimension greater than n, X is called finite dimensional.
Let us notice that a graph is a 1-dimensional CW-complex.
Note that there normally are many possible choices of a filtration by skeleta for

a given CW-complex. A particular choice of skeleta and attaching maps for the
cells is called a CW-structure on the space.

A subspace Y of a CW-complex X is called a subcomplex if Y is a union of
cells of X , and if for any q-cell eq, if eq ⊂ Y then eq ⊂ Y . If this is the case, we
define the n-skeleton Yn by

Yn = Xn ∩ Y.

It can be shown that Y is also a CW-complex, and it is a closed subset of X .
Associated to a cell complex there is the Euler characteristic which is defined

as the alternating sum

χ = k0 − k1 + k2 − k3 + . . . ,

where kn denotes the number of cells of dimension n in the complex.

4. Some notion of homotopy theory: the fundamental group

In mathematics, the fundamental group is one of the basic concepts of algebraic
topology. Associated with every point of a topological space there is a funda-
mental group that conveys information about the 1-dimensional structure of the
portion of the space surrounding the given point. The fundamental group is the
first homotopy group.

Before giving a precise definition of the fundamental group, we try to describe
the general idea in non-mathematical terms. Take some space, and some point in
it, and consider all the loops both starting and ending at this point: paths which
start at this point, wander around as much as they like and eventually return to
the starting point.

Two loops can be combined together in an obvious way: travel along the first
loop, then along the second. The set of all the loops with this method of combining
them is the fundamental group, except that for technical reasons it is necessary to
consider two loops to be the same if one can be deformed into the other without
breaking.

For the precise definition, let X be a topological space, and let x0 ∈ X be a
point of X . We are interested in the set of continuous functions

f : [0, 1] −→ X

with the property that f(0) = x0 = f(1). These functions are called loops with
base point x0. Any two such loops, say f and g, are considered equivalent if there
is a continuous function

h : [0, 1] × [0, 1] −→ X

with the property that, for all 0 ≤ t ≤ 1, h(t, 0) = f(t), h(t, 1) = g(t) and h(0, t) =
x0 = h(1, t). Such an h is called a homotopy from f to g, and the corresponding
equivalence classes are called homotopy classes.

The product f ∗ g of two loops f and g is defined by setting

(f ∗ g)(t) :=

{

f(2t), 0 ≤ t ≤ 1/2
g(2t − 1), 1/2 ≤ t ≤ 1.

Thus the loop f ∗ g first follows the loop f with twice the speed and then follows g
with twice the speed. The product of two homotopy classes of loops [f ] and [g] is
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then defined as [f ∗ g], and it can be shown that this product does not depend on
the choice of representatives.

With the above product, the set of all homotopy classes of loops with base point
x0 forms the fundamental group of X at the point x0 and is denoted:

π1(X, x0),

or simply π(X, x0). The identity element is the constant map at the basepoint, and
the inverse of a loop f is the loop g defined by g(t) = f(1 − t). That is, g follows
f backwards.

Although the fundamental group in general depends on the choice of base point,
it turns out that, up to isomorphism, this choice makes no difference if the space
X is path-connected, i.e. for all two points x1, x2 in X there is a path which joins
x1 and x2 in X , i.e. there is a continuous function

f : [0, 1] −→ X

such that f(0) = x1 and f(1) = x2.
For path-connected spaces, therefore, we can write π(X) instead of π(X, x0)

without ambiguity whenever we care about the isomorphism class only.

In many spaces, such as R
n, there is only one homotopy class of loops, and the

fundamental group is therefore trivial, i.e. π(Rn) = (0, +).
A path-connected space with a trivial fundamental group is said to be simply

connected.
A more interesting example is provided by the circle S1. It turns out that each

homotopy class consists of all loops which wind around the circle a given number of
times (which can be positive or negative, depending on the direction of winding).
The product of a loop which winds around m times and another that winds around
n times is a loop which winds around m+n times. So the fundamental group π(S1)
of the circle S1 is isomorphic to (Z, +), the additive group of integers.

Since the fundamental group is a homotopy invariant, the theory of the winding
number for the complex plane minus one point is the same as for the circle.

The fundamental group of a graph G is a free group. Here the rank of the free
group is equal to 1 − χ(G): one minus the Euler characteristic of G, when G is
connected, i.e., there is a path from any point to any other point in the graph.

Given two topologicxal spaces X and Y , if f : X −→ Y is a continuous map,
x0 ∈ X and y0 ∈ Y with f(x0) = y0, then every loop in X with base point x0 can
be composed with f to yield a loop in Y with base point y0.

This operation is compatible with the homotopy equivalence relation and with
composition of loops. The resulting group homomorphism, called the induced
homomorphism, is written as π(f) or, more commonly,

f∗ : π1(X, x0) → π1(Y, y0).

If f, g : X → Y are continuous maps with f(x0) = g(x0) = y0, f and g are
homotopic if and only if exists a continuous function

H : X × [0, 1] → Y

from the product of the space X with the unit interval [0, 1] to Y such that, for all
points x in X , H(x, 0) = f(x) and H(x, 1) = g(x).

If f and g are homotopic relative to {x0}, then f∗ = g∗.
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Given two spaces X and Y , we say they are homotopy equivalent or of the
same homotopy type if there exist continuous maps f : X → Y and g : Y → X
such that g ◦ f is homotopic to the identity map idX and f ◦ g is homotopic to idY .

The maps f and g are called homotopy equivalences in this case.
Clearly, every homeomorphism is a homotopy equivalence, but the converse is

not true: for example, a solid disk is not homeomorphic to a single point, although
the disk and the point are homotopy equivalent.

Intuitively, two spaces X and Y are homotopy equivalent if they can be trans-
formed into one another by bending, shrinking and expanding operations. For ex-
ample, a solid disk or solid ball is homotopy equivalent to a point, and R2 \ {(0, 0)}
is homotopy equivalent to the unit circle S1.

Spaces that are homotopy equivalent to a point are called contractible.

A function f is said to be null-homotopic if it is homotopic to a constant
function. The homotopy from f to a constant function is then sometimes called a
null-homotopy. For example, it is simple to show that a map from the circle S1 is
null-homotopic precisely when it can be extended to a map of the disc D2.

It follows from these definitions that a space X is contractible if and only if the
identity map from X to itself, which is always a homotopy equivalence, is null-
homotopic.

From the above definitions follows that two homotopy equivalent path-connected
spaces have isomorphic fundamental groups:

X ≃ Y ⇒ π1(X, x0) ∼= π1(Y, y0).

Moreover, if X and Y are path connected, then

π1(X × Y ) ∼= π1(X) × π1(Y )

and

π1(X ∨ Y ) ∼= π1(X) ∗ π1(Y ).

In the latter formula, ∨ denotes the wedge sum of topological spaces, and ∗ the free
product of groups. Both formulas generalize to arbitrary products.

5. Some notions on singular homology theory

In algebraic topology singular homology refers to the study of a certain set
of topological invariants of a topological space X , the so-called homology groups
Hn(X). Singular homology is a particular example of a homology theory, which
has now grown to be a rather broad collection of theories. Of the various theories,
it is perhaps one of the simpler ones to understand, being built on fairly concrete
constructions.

In brief, singular homology is constructed by taking maps of the standard n-
simplex to a topological space, and composing them into formal sums, called sin-
gular chains. The boundary operation on a simplex (see below) induces a singular
chain complex. The singular homology is then the homology of the chain complex.

The resulting homology groups are the same for all homotopically equivalent
spaces, which is the reason for their study.

These constructions can be applied to all topological spaces. These ideas are
developed in greater detail below.

Start defining singular simplices. A singular n-simplex is a continuous
mapping from the standard n-simplex ∆n to a topological space X .
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Notationally, one writes

σn : ∆n → X

. This mapping need not be injective, and there can be non-equivalent singular
simplices with the same image in X .

The boundary of σn, denoted as ∂nσn, is defined to be the formal sum of the
singular (n − 1)-simplices represented by the restriction of σn to the faces of the
standard n-simplex, with an alternating sign to take orientation into account.

That is, if

σn = [p0, p1, · · · , pn] = σn([e0, e1, · · · , en])

are the corners of the n-simplex corresponding to the vertices ek of the standard
n-simplex ∆n, then

∂nσn =

n
∑

k=0

(−1)k[p0, · · · , pk−1, pk+1, · · · pn]

is the formal sum of the (oriented) faces of the simplex.
Thus, for example, the boundary of a 1-simplex σ = [p0, p1] is the formal differ-

ence σ1 − σ0 = [p1] − [p0].

Consider first the set σn(X) of all possible singular n-simplices on a topological
space X . Then we can consider all finite formal sums of singular simplices with
integer coefficients. All these sums give rise to an abelian group which is very
large, usually infinite, frequently uncountable, as there are many ways of mapping
a simplex into a typical topological space. This group is commonly denoted as
Cn(X). Elements of Cn(X), i.e. a finite formal sum of simplices, are called singular
n-chains.

The boundary ∂ is readily extended to act on singular n-chains. The extension,
called the boundary operator, written as

∂n : Cn → Cn−1,

is a homomorphism of groups. The boundary operator, together with the Cn, form
a chain complex of abelian groups, called the singular complex. It is often
denoted as (C•(X), ∂•) or more simply C•(X).

The kernel of the boundary operator is Zn(X) = ker(∂n), and is called the group
of singular n-cycles. The image of the boundary operator is Bn(X) = im(∂n+1),
and is called the group of singular n-boundaries.

Clearly, one has ∂n ◦∂n+1 = 0. The n-th homology group of X is then defined
as the factor group

Hn(X) = Zn(X)/Bn(X).

The elements of Hn(X) are called homology classes.

A very important property of homology is the homotopy invariance.
If X and Y are two topological spaces with the same homotopy type, then

Hn(X) = Hn(Y ),

for all n ≥ 0. This means homology groups are topological invariants.
In particular, if X is a contractible space, then all its homology groups are 0,

except H0(X) = Z.

Given any unital ring R, the set of singular n-simplices on a topological space can
be taken to be the generators of a free R-module. That is, rather than performing
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the above constructions considering all the finite formal sums with integer coeffi-
cients, one instead uses as coefficients the elements of R. All of the constructions
go through with little or no change. The result of this is

Hn(X, R)

which is now an R-module. Of course, it is usually not a free module. The usual
homology group is regained by noting that

Hn(X, Z) = Hn(X)

when one takes the ring to be the ring of integers. The notation Hn(X, R) should
not be confused with the nearly identical notation Hn(X, A), which denotes the
relative homology (below).

For a subspace A ⊂ X , the relative homology Hn(X, A) is understood to be the
homology of the quotient of the chain complexes, that is,

Hn(X, A) = Hn(C•(X)/C•(A))

where the quotient of chain complexes is given by the short exact sequence

0 → C•(A) → C•(X) → C•(X)/C•(A) → 0,

where a sequence of maps ϕ1, ϕ2, . . . is exact if and only if Im ϕi ⊂ Ker ϕi+1.

There is an important relationship between homology and foundamental group.
The fundamental groups of a topological space X are related to its first singular

homology group, because a loop is also a singular 1-cycle. Mapping the homotopy
class of each loop at a base point x0 to the homology class of the loop gives a
homomorphism

ϕ : π(X, x0) → H1(X)

from the fundamental group π(X, x0) to the homology group H1(X).
If X is path-connected, then this homomorphism is surjective, then H1 is iso-

morphic to π(X, x0)/ Ker ϕ.
Moreover, for whom who knows theory of abelian group, Ker ϕ is the commuta-

tor subgroup of π(X, x0), and H1(X) is therefore isomorphic to the abelianization
of π(X, x0). This is a special case of the Hurewicz theorem of algebraic topology.

Clearly the singular homology theory can be generalized to simplicial homology,
i.e. the case which involve simplicial (or CW) complex instead of singular ones.

Let S be a simplicial complex. A simplicial k-chain is a formal sum of k-
simplices

N
∑

i=1

ciσ
i .

where ci are integers (or element in a ring R).The group of k-chains on S, the
free abelian group defined on the set of k-simplices in S, is denoted Ck.

Consider a basis element of Ck, a k-simplex,

σ =
〈

v0, v1, ..., vk
〉

.

The boundary operator
∂k : Ck → Ck−1

is a homomorphism defined by:

∂k(σ) =

K
∑

i=0

(−1)i
〈

v0, ..., v̂i, ..., vk
〉

,
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where the simplex
〈

v0, ..., v̂i, ..., vk
〉

is the i-th face of σ obtained by deleting its ith vertex.
In Ck, elements of the subgroup

Zk = ker∂k

are referred to as cycles, and the subgroup

Bk = im ∂k+1

is said to consist of boundaries.
Direct computation shows that Bk lies in Zk. The boundary of a boundary must

be a cycle. In other words,
(Ck, ∂k)

form a simplicial chain complex.
The k-th homology group Hk of S is defined to be the quotient

Hk(S) = Zk/Bk.

A homology group Hk is not trivial if the complex at hand contains k-cycles which
are not boundaries. This indicates that there are k-dimensional holes in the com-
plex.

For example consider the complex obtained by glueing two triangles (with no
interior) along one egde. The edges of each triangle form a cycle. These two cycles
are by construction not boundaries (there are no 2-chains). Therefore one has two
1-holes.

Holes can be of different dimensions. The rank of the homology groups, the
numbers

βk = rank(Hk(S))

are referred to as the Betti numbers of the space S, and gives a measure of the
number of k-dimensional holes in S.

The same construction applies if we consider CW-complexes instead of simplicial
ones.

6. Salvetti’s complex

The Salvetti’s complex is a CW-complex associated to an hyperplane arrange-
ment A which is the complexification of a real one.

This complex is very important in the arrangement theory because it is homo-
topically equivalent to the complement M(A) of the arrangement A.

This complex is interesting also for our studies. It will be useful in order to
describe our model for objects in social choise.

Let A = {H} be a finite affine hyperplane arrangement in Rn. Assume A essen-
tial, i.e. the minimal dimensional non-empty intersections of hyperplanes are points
(which we call vertices of the arrangement). Equivalently, the maximal elements of
the associated intersection lattice L(A) (see above) have rank n.

Let
M(A) = C

n \
⋃

H∈A

HC

be the complement to the complexified arrangement. We can construct (see [Sal87])
the regular CW-complex S = S(A) which is a deformation retract of M(A) as fol-
low:

Let
S := {F k}
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be the stratification of Rn into faces F k which is induced by the arrangement (see
above), where exponent k stands for codimension (i.e. the F 1 are the facets and
F 0 = C are the chambers of the complement M(A)). Then S has standard partial
ordering

F i ≺ F j iff clos(F i) ⊃ F j

where clos(F i) is the topological closure of the open F i (see section 1).
The k-cells of the Salvetti complex S bijectively correspond to pairs

[C ≺ F k]

where C = F 0 is a chamber of S.
Let |F | be the affine subspace spanned by F , i.e. the minimal subspace which

contains F , and let us consider the subarrangement

AF = {H ∈ A : F ⊂ H}.

A cell [C ≺ F k] is in the boundary of [D ≺ Gj ] (k < j) iff

i) F k ≺ Gj

ii) the chambers C and D are contained in the same chamber of AF k .

Previous conditions are equivalent to say that C is the chamber of A which is
”closest” to D among those which contain F k in their closure.

Then the boundary ∂[C ≺ F k] of a given k-cell on S is defined as an alternanting
formal sum of the (k − 1)-cells in its boundary.

It is possible to realize S inside Cn with explicitly given attaching maps of the
cells (see [Sal87]).
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