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Abstract

We present a geometric model of social choice when the latter
takes place among bundles of interdependent elements, that we will
call objects. We show that the outcome of the social choice process is
highly dependent on the way these bundles are formed. By bundling
and unbundling the same set of constituent elements an authority
enjoys a vast power of determining the social outcome. We provide
necessary and sufficient conditions under which a social outcome may
be a local or global optimum for a set of objects, and we show that,
by appropriately redefining the set of objects, intransitive cycles may
be broken and the median voter may be turned into a loser.
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1 Introduction

Social choice theory usually assumes that agents are faced with a set of ex-
ogenously given and mutually exclusive alternatives. These alternatives are
given in the sense that the pre-choice process through which they are con-
structed is not analyzed. Moreover, these alternatives are “simple”, in the
sense that they are one-dimensional objects or, even when they are mul-
tidimensional, they are simply points in some portion of the homogeneous
Rn space and they lack an internal structure that limits the set of possible
alternatives.

Many choices in real life situations depart substantially from this simple
setting. Choices are often made among bundles of interdependent elements.
Those bundles may be formed in a variety of ways, which in turn affect the
selection process of a social outcome. Let us consider, for instance, a typ-
ical textbook example of social choice, i.e. the case of a group of friends
deciding how to spend the evening by democratic pairwise majority vot-
ing. The textbook would start from a given and predefined choice set as
X = {A,B,C,D, . . .} where the set {A,B,C,D, . . .} could stand for movie,
concert, restaurant, dinner at home, . . . . At closer scrutiny, these alterna-
tives are neither primitive nor exogenously given. Going to the movies or
to a restaurant are labels for bundles of elements (e.g. with whom, where,
when, movie genre, director, type of food, etc.) and everyone’s preference
is unlikely to be expressed before these labels are specified in their consti-
tuting elements. A skillful member of the group could easily obtain a social
outcome close to the one he or she prefers by carefully crafting the objects
A,B,C,D, . . . and possibly by designing a new set of objects.

Moving on, to more serious examples, candidates and parties in political
elections stand for complex bundles of interdependent policies and personal-
ity traits. Committees and boards are called upon to decide upon packages
of policies, e.g. a recruitment package that a university governing board has
to approve. In principle, any combination of elements (subject to a budget
or some other constraint) could be considered and compared (e.g. through
majority voting) with any other, but in reality only a relatively small num-
ber of packages undergo examination. Typically, the bundling of elements
serves the purpose of reducing the number of alternatives to be examined,
by decomposing the whole space of alternatives into smaller subspaces.

In this paper we present a geometric model of social choice among bun-
dles of elements, which we call objects. Geometric approaches have already
been used in the literature on social choice. Donald Saari has greatly con-
tributed to establishing general geometric representations of voting mod-
els and voting paradoxes (Saari 1994, Saari 2000a, Saari 2000b), and we
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will argue later that our representation is more general in many respects.
(Eckmann 1954), (Eckmann, Ganea, and Hilton 1962), (Chichilnisky 1980),
(Chichilnisky 1983) study the problem of the existence of a social decision
function from a topological point of view and show that the paradoxes of
social choice are partly a consequence of the topological structure of the
spaces of ordinal preferences. On the other hand, (Baryshnikov 1997) dis-
cusses the possibility of introducing topological methods in the combinatorial
paradigm of social choice theory. (Weinberger 2004) and (Terao 2007) extend
well-known results on social choice functions to, respectively, CW complexes
and arrangements, thus obtaining new results for both mathematical objects.
In this respect, our model is a novel contribution to the analysis of discrete
problems of social choice.

We deal with the issue of object construction that has not been dealt
with by economic models. The main idea is that, first, generally objects
are not simply aggregations of primitive components but have an internal
structure that is likely to determine interdependencies and non-separabilities
in individual preferences. In the “what shall we do tonight” choice setting,
my preferences on the with whom element is likely to be highly interdependent
with the other elements, as I may well find a given person a perfect companion
for an evening at the movies but relatively dislike her or his company if we
finally decide to go to a restaurant. Second, objects provide structure to
the choice problem. Consider again the “what shall we do tonight” case.
A possible reply to our point on bundles would be that the choice set X
is underspecified and that we should start from a choice set formed by all
possible combinations of the elements. However, for obvious combinatorial
arguments, this set, even in this simple example, would be so large that
any exhaustive choice procedure, e.g. pairwise majority voting, could not be
completed in a feasible time span. In our approach, objects decompose the
search space into quasi-separable subspaces (Simon 1982) and simplify the
computational task, making decisions possible.

There is also another way objects can contribute to making the determi-
nation of a social outcome easier. We will show that, by appropriate object
construction, intransitive cycles that often characterize social decisions can
almost always be eliminated. In general, coarse objects, i.e. those made of
many elements, tend to produce many cycles, whereas fine objects do not.
However finer objects do so by increasing the number of locally stable social
optima and thereby making the social outcome more manipulable through
the control of object construction, initial conditions and agendas. All in all,
we will analyze how different sets of objects strike different balances in the
trade-off between decidability and non-manipulability.

Our work is closely linked to the literature on agenda power (McKelvey
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1976, Plott and Levine 1978), and we will show that we generalize some
of its results in the sense that even agenda power is subject to manip-
ulation through object design. It is also related to recent literature on
multidimensional voting models (Kramer 1972, Shepsle 1979, Denzau and
Mackay 1981, Enelow and Hinich 1983, Shepsle 1979) and the one that has
begun to analyze decision-making when agents group states of the world into
coarse categories (Mullainathan 2000, Fryer and Jackson 2008), but there are
fundamental differences that make our model new.

In order to formally analyze the properties of a social choice model with
object construction power we use tools of hyperplane arrangements theory
and graph theory. Thanks to them, we show that the way objects are con-
structed by bundling (or unbundling) elements can strongly impact on the
outcome of social choice. We show that, in general, by appropriately con-
structing objects, the outcome of a social choice process, e.g. pairwise ma-
jority voting, may be heavily manipulated. An authority who has the power
to construct objects may obtain a desired outcome even when the latter is
chosen democratically. We will prove necessary and sufficient conditions for
any social outcome to be a locally or globally stable social optimum for a
social decision rule under a specific set of objects. We will also show an
algorithmic procedure to determine which set of objects, agendas and initial
conditions can lead society, through a given social choice procedure, to select
a given outcome. Moreover, the object construction power that we describe
and analyze in this paper will be proven to be stronger and more general than
the well-known agenda power in the sense that also the agenda power may
be manipulated by appropriate object construction. Finally, we will discuss
how another classic result, i.e. the so-called median voter theorem, may be
reverted by appropriate modification of the set of objects, thus transforming
the median voter into an outright loser.

This paper is structured as follows: in section 2 we outline our geometric
model. A key ingredient of our analytic approach is the theory of hyperplane
arrangements. Then, in section 3 we draw the main results concerning how,
through object construction, it is possible to manipulate social outcomes,
create or eliminate agenda power, create or eliminate intransitive cycles, and
turn the median voter into a loser. We will also demonstrate that our object
construction power is stronger and more general than the traditionally consid-
ered agenda power and that objects strike a balance in the trade-off between
decidability and non-manipulability. In a companion paper (Marengo and
Pasquali 2008) many analytical results obtained here are illustrated through
examples and computational models. The interested reader can refer to it
for algorithmic implementations of most of the arguments contained in the
present paper.
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2 Definitions and structure of the model

Features We assume that choices are made over bundles of elements that
we call features. The number of features is finite and each feature may take
one value out of a finite set of alternatives. We call F = {f1, . . . , fn} the
set of such features. In order to simplify the notation and without loss of
generality, we assume that all features may take the same number m + 1 of
values in the set {0, 1, 2, . . . ,m} ∀i = 1, . . . , n.

The space of social outcomes is given by the (m+1)n n−tuples specifying
one value for every feature. We call X the set of all possible social outcomes
and x = (v1. · · · .vn) a generic element thereof.

Example 1. Let us consider an example of 3 features {f1, f2, f3} taking a
value out of the binary set {0, 1}. This is equivalent to, e.g., the case of
presence or absence of three possible traits. Thus the space X of possible
social outcomes is a set of 8 ordered 3-tuples of the form x = (v1.v2.v3) for
vi ∈ {0, 1}, i = 1, 2, 3. This can be regarded as the example in Introduction:
a group of friends deciding how to spend the evening. Hence the 3 features
could be {where to go, when to go, how to go} taking a value in {0, 1},
e.g. where to go {restaurant, movies}, when to go {8pm, 10pm}, how to go
{by car, walking}. An element x = (v1.v2.v3) in X would be, for example,
(restaurant.8pm.car).

The hyperplane arrangement Given a set of features F = {f1, . . . , fn}
taking values in the set {0, 1, 2, . . . ,m}, we can associate to it the hyperplane
arrangement1 in Rn

An,m =
{

Hi,j | αHi,j
= λi − j

}

16i6n

06j6m−1

1For the reader who is unfamiliar with hyperplane arrangements, we provide some basic
notions in (Settepanella 2010)
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where indices 1 6 i 6 n and 0 6 j 6 m − 1 vary, respectively, among the
index of features and the index of values taken by features.

The social outcome x = (v1. · · · .vn) will correspond to the chamber Cx

that contains the open set

{(λ1, . . . , λn) ∈ Rn | vj − 1 < λj < vj, j = 1, . . . , n} .

Let us remark that in our framework the number n of features gives the
dimension of the space Rn and the values vi ∈ {0, 1, . . . ,m− 1} taken by the
feature fi provide a set of parallel hyperplanes.

Example 2. In example 1 the associated arrangement A3,2 is simply the
arrangement given by the coordinate hyperplanes of an orthogonal Cartesian
system in R3. Hence we get 8 chambers corresponding to the 8 different
octants in which the orthogonal Cartesian system divides R3. Each social
outcome x ∈ X corresponds to an octant Cx.

Let us remark that, in general, there isn’t any relation between the n-tuple
x = (v1. · · · .vn) and the point (v1, . . . , vn) ∈ Rn. Nevertheless, depending
on what we are choosing upon (e.g. if features take values on real numbers),
we can slightly modify the arrangement of hyperplanes defining it in such
a way that the point (v1, . . . , vn) ∈ Rn is contained in the chamber Cx,
x = (v1. · · · .vn). This is just one of the many way in which our framework
can be adapted in order to include different informations.

Social decision rules Consider a population of ν agents. Each agent
i is characterized by a system of transitive preferences �i, i.e. transitive
relations, over the set of social outcomes X. The set of systems of transitive
preferences �i is denoted by P . Let Pν be the Cartesian product of ν copies
of P , a social decision rule R is a function:

R :Pν =
ν
∏

i=1

P −→ P

(�1, . . . ,�ν) 7−→ �R(�1,...,�ν)

which determines a system of social preferences �R(�1,...,�ν) from the pref-
erences of ν individual agents. With P we denote the set of systems of
(non-necessarily transitive2) social preferences, i.e. a set of relations. Any

2It is well known that individual transitivity does not guarantee transitivity for a social
rule (Condorcet de Caritat marquis de 1785).
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type of social decision rule may fit into our framework, provided individ-
ual preferences are expressed sincerely. For the time being we rule out the
possibility of strategic misrepresentation of a person’s preferences.

In order to completely describe P , let us recall that if ∆ = {(x, x) ∈
X × X} is the diagonal of the Cartesian product X × X, then an element
�R∈ P defines a subset:

Y1,�R
⊂ X ×X \∆

as follows: a pair (x, y) is in Y1,�R
if and only if x �R y.

Without loss of generality we will indicate by �R∈ P a generic element
in the image of R.

We call Y0,�R
the set of relevant social outcomes, i.e. the set of all social

outcomes on which social preferences are expressed:

Y0,�R
= {x ∈ X | ∃y : (x, y) ∈ Y1,�R or (y, x) ∈ Y1,�R

}.

The subset Y0,�R
⊆ X is in one to one correspondence with a subset

C�R
⊂ C of the set of chambers in An,m:

Cx ∈ C�R
⇔ x ∈ Y0,�R

.

Example 3. Let us consider the space of social outcomes X as in example
1.Let us assume that the aggregated preferences of the group of friends upon
the 3 features give rise to the following rule ≻R:

(0.0.0) preferred to all, except (1.1.0) ≻R (0.0.0), (0.0.1) ≻R (0.0.0);

(0.1.0) ≺R (0.1.1), (0.1.0) ≺R (1.1.1), (0.1.0) ≺R (1.0.0),

(0.1.0) ≻R (1.0.1), (0.1.0) ≻R (1.1.0), (0.1.0) ≺R (0.0.1);

(0.1.1) ≻R (1.1.1), (0.1.1) ≻R (1.0.0), (0.1.1) ≻R (1.0.1),

(0.1.1) ≻R (1.1.0), (0.1.1) ≺R (0.0.1);

(1.1.1) ≻R (1.0.0), (1.1.1) ≻R (1.0.1), (1.1.1) ≻R (1.1.0), (1.1.1) ≻R (0.0.1);

(1.0.0) ≻R (1.0.1), (1.0.0) ≻R (1.1.0), (1.0.0) ≺R (0.0.1);

(1.0.1) ≻R (1.1.0), (1.0.1) ≺R (0.0.1);

(1.1.0) ≺R (0.0.1).

For the sake of simplicity, when possible, we will use notation v1v2v3 instead
of (v1.v2.v3). Thus Y0,�R

= {v1v2v3 | vj = 0 or 1} = X.
Y1,�R

is given by all pairs (v1v2v3, g1g2g3) such that v1v2v3 ≻R g1g2g3; i.e.,
for example, (000, 101), (011, 000) ∈ Y1,�R

while (000, 011) 6∈ Y1,�R
.
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Let us remark that when individual preferences are strict, as in the exam-
ple above, then they are total orders on the space of relevant social outcomes
Y0,≻R

(i.e. antisymmetric, transitive relations). While the aggregated pref-
erences give rise, in general, to non transitive relations, i.e. the rules ≻R are
not, in general, orders.

If social preferences are complete over X, then Y0,�R
= X. In the sequel

we will consider only complete preferences, although our framework may
easily accommodate the more general case where Y0,�R

⊆ X.

Graphs We can represent the sets Y0,�R
and Y1,�R

respectively as the set
of vertices and edges of an oriented graph Y�R

. Two vertices x and y in Y0,�R

are connected by an edge if and only if (x, y) ∈ Y1,�R
or (y, x) ∈ Y1,�R

, while
the orientation is from x to y in the former case and from y to x in the latter.
In a natural way this construction applies to all subsets Y ⊂ X ×X \∆.

Without loss of generality we will denote by x the vertices of Y�R
and by

(x, y) its edges.

Example 4. The social preferences of example 3 are fully described by the
oriented graph in figure 1.

Figure 1: The oriented graph derived from example 3

Notice that the assumption of complete preferences guarantees that we
will deal only with connected graphs.

A cycle of length h in the oriented graph Y�R
is a subgraph γI with ver-

tices {x1, . . . , xh} and edges {(x1, x2), (x2, x3), . . . , (xh, x1)}. It corresponds
to a Condorcet-Arrow cycle, i.e. to the sequence x1 �R x2 �R . . . �R xh �R

x1. In example 3 and in the corresponding graph of figure 1 we find a three
outcomes cycle 000 ≻R 101 ≻R 011 ≻R 000.
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Salvetti’s complex As shown by (Salvetti 1987), we can put together the
hyperplane arrangements theory and the graph description in a more general
context that allows us to use both geometric and algebraic tools. Indeed
we can construct a CW-complex S(A)3 having the homotopy type of the
complement M(A) when the arrangement A is the complexification of a real
one. In this complex each element �R∈ P is equivalent to a subcomplex of
the 1-skeleton of S(An,m).

Let us characterize the 0 and 1-dimensional cells (also called 0 and 1-
skeletons or vertices and edges) of the Salvetti complex and show how they
are related to the graph Y�R

for a given social rule �R.
Let An,m be the arrangement associated to the space of social outcomes

and S(An,m) the correspondent Salvetti complex. The set of generators
S0(An,m) of the 0-skeleton of the complex S(An,m) is in a one-to-one cor-
respondence with the set of chambers in An,m, i.e. with the set of social
outcomes X. Thus:

S0(An,m) = Y0,�R
= X

for any given social rule �R.

Example 5. The 0-skeleton S0(A3,2) associated to example 1 is given by
8 points that can be chosen freely one in each chamber of the coordinate
arrangement A3,2, i.e. one in each octant. Thus they can be represented as
the vertices of a cube or, more generally, as the vertices of a 3-dimensional
polyhedron.

As remarked before the vertex x ∈ R3 corresponding to the social outcome
x = v1v2v3 is not the point (v1, v2, v3), e.g. 000 is not the point (0, 0, 0) which
is the origin of the orthogonal system and hence doesn’t lie in any octant.

Let us recall that two chambers Cx and Cy are said to be adjacent if
and only if they are separated by only one hyperplane H. If x and y are
the 0-cells corresponding to Cx and Cy, then we can consider the edge (x, y)
between them.

The generators of the 1-skeleton can be described as the elements in the
set:

S1(An,m) = {(x, y) ∈ X ×X \∆ | x and y are adjacent}.

Two elements in S1(An,m) are consecutive if and only if the second entry
of the first pair is equal to the first entry of the second pair: for example,
(x, y) and (y, z). Given a subset of consecutive elements in S1(An,m)

{(x1, x2), (x2, x3), . . . , (xk−2, xk−1), (xk−1, xk)} ∈ S1(An,m)

3In the appendix we briefly recall the construction of the first boundary map of this
complex.
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we define their formal sum as:

(x1, xk) =
k−1
∑

j=1

(xj, xj+1). (1)

Let Cx and Cy be two adjacent chambers separated by the hyperplane
H. We say that we move from Cx to Cy across H if we move along the
edge (x, y). Thus, by moving across hyperplanes, we can reach any chamber
of the arrangement starting from a given one. If we only cross each hyper-
plane once, we call this path minimal. Obviously, there are many minimal
paths, depending on which order we cross hyperplanes, however, they are all
homotopically equivalent (Salvetti 1987).

It follows that, given a rule �R, any edge (x, y) ∈ Y1,�R
can be written

as a formal sum of a minimal number of consecutive elements in S1(An,m).
The number of elements is exactly the number of hyperplanes that separate
the two social outcomes x, y ∈ X.

Remark 2.1. Notice that Salvetti’s complex is a CW-complex in Cn, but
it has a underlying real structure which is a purely simplicial complex. This
structure can be used in order to recast and generalize some existing geo-
metric models of voting such as those provided by (Saari 1994).

3 Object construction and social outcomes

In this section we develop our main results. We define objects as bundles
of features, and show that, in general, by appropriate manipulations of the
set of objects, almost every social outcome may be obtained from a given
social rule (e.g. majority voting). Such “object construction power”, that
is, the power of determining social outcomes by appropriately bundling or
unbundling features, is stronger than the agenda power traditionally studied
in the literature (McKelvey 1976). We then show that this power of manipu-
lation also includes the possibility of breaking or creating intransitive cycles
à la Condorcet-Arrow and of overturning the median voter effect. Finally we
discuss the emerging trade-off between non manipulability and decidability.
Coarser objects make social decisions less manipulable but they also increase
the likelihood of intransitive cycles and the time required to reach a socially
optimal outcome (if any). On the other hand finer objects make cycles less
likely and allow reaching a social outcome more quickly, but the number of
locally optimal social outcomes greatly increases and, therefore, the scope
for manipulability becomes broader.
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xj

xj(AI
)

Figure 2: A graphical characterization of object instantiation

3.1 Objects in social choice

In this paragraph we give the main definitions and notations useful in the
rest of the paper.

Objects schemes With the notation introduced above, let An,m be the
hyperplane arrangement defined by n features F = {f1, . . . , fn} indexed by
the set {1, . . . , n} and m possibilities for each of them. Let �R be the social
preferences over the set of social outcomes X. Given a subset I ⊂ {1, . . . , n},
an object AI is a non empty subset of the arrangement An,m of the form:

AI = {Hi,j} i∈I

0≤j≤m−1

.

The cardinality of AI is called the size of the object AI . We will also denote
by AIc = An,m \ AI the complement of the arrangement AI in An,m.

A set of objects A = {AI1 , . . . ,AIk} such that ∪k
j=1Ij = {1, . . . , n} is an

objects scheme. Notice that the subsets I1, . . . , Ik don’t have to partition the
set I as some index h may belong to more than one subset. Since each subset
Ij naturally corresponds to a subset {fi}i∈Ij of features, this is equivalent to
notice that an objects scheme does not have to partition the set of features,
as some of them may belong to more than one object. However, we require
that the union of all objects covers all the features, otherwise the remaining
features would not be decided on and could be simply omitted from the
model.

Let y be a social outcome in X, i.e. a chamber of An,m, then the object
instantiation y(AI) is the chamber of the subarrangement AI which contains
the chamber corresponding to y, as shown, for instance, in figure 2.

11



Moreover, the size of an objects scheme is the size of its largest object:

| A |= max{| AI1 |, . . . , | AIk |}.

Neighbors of a social outcome Given an objects schemeA = {AI1 , . . . ,AIk},
we say that a social outcome y is a preferred neighbor of a social outcome x
with respect to an object AIh ∈ A if the following conditions hold:

1. y �R x,

2. y(AIc
h
) = x(AIc

h
), i.e. x and y belong to the same chamber of the

arrangement AIc
h
,

3. y(AIh) 6= x(AIh), i.e. x and y belong to different chambers of the
arrangement AIh .

In words, a preferred neighbor of a social outcome x with respect to an
object is another social outcome y which is preferred to x and differs from x
only in features that belong to that object. The set of all preferred neighbors
of the social outcome x with respect to AIh ∈ A is denoted by Φ(x,AIh).
The set of all preferred neighbors of the social outcome x is denoted by
Φ(x,A) =

⋃k

j=1 Φ(x,AIj).
A social outcome y ∈ Φ(x,AIh) is said to be a best neighbor of a social

outcome x with respect to an object AIh ∈ A if

y �R w ∀w ∈ Φ(x,AIh).

The set of all best neighbors of the social outcome x with respect to AIh ∈ A
is denoted by B(x,AIh). The set of all best neighbors of the social outcome

x is denoted by B(x,A) =
⋃k

j=1 B(x,AIj).

Paths and reachable social outcome A path P (x, y, A) through A, start-
ing from x and ending in y, is a sequence of best neighbors with respect to
objects in A, i.e. a sequence

x = x0 �R x1 �R . . . �R xs+1 = y (2)

such that there exist objects AIh1
, . . . ,AIhs

∈ A with xi ∈ B(xi−1,AIhi
) for

all 1 6 i 6 s.
A social outcome y is said to be reachable from x with respect to an objects

scheme A if there exists a path P (x, y, A).
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Local optima A social outcome x is said to be a local optimum for A if and
only if for all y ∈ Φ(x,A), (x, y) ∈ Y1,�R

. In the case of strict preferences,
this amounts to the condition Φ(x,A) = ∅.

Agenda Let A = {AI1 , . . . ,AIk} be an objects scheme. An agenda α of
A is an ordered tuple of indices (h1, . . . , ht) such that the set {h1, . . . , ht} =
{1, . . . , k}. An agenda α states the order in which objects AIi are decided
upon. In general all objects of the given scheme appear at least once in
an agenda, but they may appear more than once. In fact, because of non-
separabilities, it is possible that after modifications of other objects, an object
previously set into what appeared to be a locally optimal social outcome,
may undergo further improvements. In order to study only the stable limit
properties of agendas, we suppose that the agenda is repeated over and over
again until either a local optimum or a cycle is reached.

The ordered tuple of objects (AIh1
, . . . ,AIht

) is denoted by Aα. The set
of all possible agendas of A is denoted by Λ(A). Let α = (h1, . . . , ht) be an
agenda. A path

x0 �R x1 �R . . . �R xs (3)

is said to be ordered along α if

xi ∈ B(xi−1,AIhq+1
)

where hq is the remainder of the division of i − 1 by t. Such a path will be
denoted by P (x0, xs, Aα).

Maximal paths A path is said to be maximal if it ends in either a local
optimum or a limit cycle, i.e. a cycle such that there is no social outcome
not belonging to the cycle itself which is a preferred neighbor to any social
outcome in the cycle. Thus a limit a cycle, once entered, cannot be exited.

Basin of attraction The basin of attraction Ψ(x,A) of a local optimum x
with respect to an objects scheme A is the set of the social outcomes y such
that there exists a maximal path P (y, x, A) that ends up in x.

The ordered basin of attraction Ψ(x,Aα) of x with respect to an agenda
α of A is the set of the social outcomes y such that there exists a maximal
path P (y, x, Aα) that ends up in x. Clearly, we have

Ψ(x,A) =
⋃

α∈Λ(A)

Ψ(x,Aα).
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Global optima A social outcome z ∈ X is said to be a global optimum for
an agenda α if Ψ(z, Aα) = X holds. It is said to be a global optimum for the
objects scheme A if and only if Ψ(z, Aα) = X holds for all agendas α ∈ Λ(A),
i.e. it is a global optimum for all the agendas of A.

It is easy to verify that local and global optima strictly depend on the
choice of the objects scheme A.

Example 6. Let us go back to example 3 and denote by Hi the hyperplane
kernel of the polynomial αHi

= λi for i = 1, 2, 3. If the objects scheme is
given by A = {{H1, H2, H3}}, i.e. agents have to decide where, when and
how simultaneously or by A = {{H1, H2}, {H3}}, i.e. agents decide where
and when, given how, and, separately, they decide upon how, then the social
rule always produces a cycle, that may be either 001 ≻R 011 ≻R 111 ≻R 001
or 000 ≻R 010 ≻R 110 ≻R 000 depending on the chosen agenda and initial
condition. While if A = {{H1, H3}, {H2}} or A = {{H2, H3}, {H1}} then
there exists a unique global optimum 001 for all agendas.

The dependence of the optimum on the objects scheme is very strong.
Indeed, it is easy to provide examples in which two different social outcomes
z1, z2 ∈ X are global optima for two different choice of objects schemes. More
precisely, there exist two objects schemes A1 and A2 such that Ψ(zi, Ai) = X
and Ψ(x,Ai) = ∅ for all social outcomes x 6= zi and i = 1, 2.

Example 7. Let us consider the space of social outcomes X as in example
1 with the following preferences ≻R:

(0.0.0) preferred to all except (0.1.1) ≻R (0.0.0)

(0.1.1) preferred to all except (1.0.1) ≻R (0.1.1)

(1.0.1) ≺R (1.0.0), (1.0.1) ≻R (1.1.1), (1.0.1) ≻R (0.0.1),

(1.0.1) ≺R (1.1.0), (1.0.1) ≺R (0.1.0);

(0.0.1) ≻R (1.1.1), (0, 0, 1) ≺R (0, 1, 0), (0.0.1) ≺R (1.1.0), (0.0.1) ≺R (1.0.0);

(1.1.0) ≻R (1.1.1), (1, 1, 0) ≻R (1, 0, 0), (1.1.0) ≺R (0.1.0);

(1.1.1) ≺R (0.1.0), (1.1.1) ≺R (1.0.0);

(0.1.0) ≻R (1.0.0).

With the objects scheme A1 = {{H1, H2}, {H3}} the social outcome (0.0.0) is
the unique global optimum, while with the objects schemeA2 = {{H2, H3}, {H1}}
the unique global optimum is (0.1.1).

From now on A will be an objects scheme for a given social rule ≻R on a
social outcome space X that corresponds to the arrangement An,m.
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A fundamental question is whether and under which conditions, given a
social outcome z ∈ X, it is possible to choose an objects scheme A such
that the basin of attraction Ψ(z, A) is not empty, i.e. such that z is a local
optimum or a global one for some objects scheme and some agenda. The
answers to these questions are given in the next two sections.

3.2 Objects and manipulability: local optimality

Suppose one of the agents has a preferred social outcome z ∈ X and some
form of power in the determination of the objects, e.g. because he or she is
chairing a committee or can somehow influence the cognitive framing of the
choice, for instance through persuasion (Mullainathan, Schwartzstein, and
Shleifer 2008). An interesting question is whether there exists an objects
scheme A = {AI1 , . . . ,AIk} such that z is a local optimum for A, and which
combination of initial conditions and agenda will make social choice converge
to z. The conditions under which this is possible will be provided in theorem
2 that we will prove after introducing notions of separation and distance in
hyperplane arrangements.

Let x and y be two social outcomes. They are said to be separated by
an hyperplane H ∈ An,m if H separates the chambers Cx and Cy. In this
case, the notation x | H | y will be used. Moreover, x and y are said to
be prominently separated if there exist two hyperplanes Hi1,j1 , Hi2,j2 ∈ An,m

with i1 6= i2 (i.e. non-parallel) such that x | Hi1,j1 | y and x | Hi2,j2 | y hold.
We will say that x = (v1. · · · .vn) and y = (g1. · · · .gn) are separated by the
feature fi if vi 6= gi, i.e. the value of the feature fi of y differs from that of x.
The set of the features that separate x and y is denoted by Hx,y.

Distance of social outcomes The distance between x and y is the mini-
mum number of hyperplanes that separate x from y. The prominent distance
dp(x, y) is the number of features that separate x from y, i.e. #Hx,y. Note
that dp(x, y) equals the minimum number of hyperplanes that prominently
separate x from y.

Recall that, by definition, if Hi,̄ belongs to the object AI for some ̄, then
Hi,j belongs to AI for all 0 6 j < mi − 1. Therefore, the subarrangement

Hx,y =
{

Hi,j ∈ An,m | i ∈ Hx,y, 0 6 j < mi − 1
}

of An,m has been considered. Note that, if we have dp(x, y) = 1 and d(x, y) >
1, all the hyperplanes in Hx,y are parallel.

Remark 1. The sets Hx,y and Hx,y are strictly interconnected. For instance,
we will use the fact that Hx,y is contained in Hz,w if and only if Hx,y is
contained in Hz,w.

15



From now on, for the sake of simplicity, we will consider only social rules
with strict preferences. This restriction is almost always unnecessary, but it
greatly simplifies the presentation. Therefore, from now on, ≻R will always
denote a social rule with complete strict preferences.

If z is a social outcome such that all social outcome x1, . . . , xk with xj ≻R

z verify dp(xj, z) > 1, then xj and z are prominently separated at least by
two hyperplanes.

It follows that we can build an objects scheme Az such that Hxj ,z * A
for all A ∈ Az and all 1 ≤ j ≤ k. For example, if H1

j , H
2
j ∈ Hxj ,z are two

hyperplanes related to different features for 1 ≤ j ≤ k, then let us consider
an objects scheme Az such that for any xj there exist two objects A1

j ,A
2
j in

Az with H1
j ∈ A1

j , H
2
j ∈ A2

j and {H1
j , H

2
j } * A for all A ∈ Az.

It is obvious that such an objects scheme exists. Moreover z is a local
optimum for Az. Indeed for all xj ≻R z and for all A ∈ Az the chambers
Cxj

(Ac) and Cz(A
c) are always separated by H1

j or H2
j . That is xj(A

c) 6=
z(Ac) and then Φ(z,A) = ∅ for all A ∈ Az. It follows that z ∈ Ψ(z, Az) and
then z ∈ Ψ(z, Az,α) for all agendas α, i.e. z is a local optimum.

On the other hand if x is a social outcome x ≻R z such that dp(x, z) = 1
then for any objects scheme A there is at least one object A such that all
hyperplanes H separating x from z are in A. Then, by definition, x ∈
Φ(z,A) 6= ∅. Hence we get the following easy fact.

Theorem 2. Let z be a social outcome. Then, there exists an objects scheme
Az for which z is a local optimum if and only if the inequality dp(w, z) > 1
holds for any social outcome w with w ≻ z.

Remark 3.1. Theorem 2 also tells us that the condition for a social out-
come to be a local optimum does not depend on the agenda. If z is a local
optimum for an agenda α ∈ Λ(A) it will be a local optimum also for any
other agenda β ∈ Λ(A), Thus object construction power is, in some sense,
stronger than agenda power. Notice, however, that the basin of attraction of
a local optimum is, in general, different for different agendas and, therefore,
even when starting from the same initial social outcome the choice processes
may end up in different local optima for different agendas.

Moreover in order to verify if a social outcome is a local optimum we need
only to verify if it is greater than all the n(m+ 1)− 1 social outcomes with
prominent distance equal one from it, instead of checking all (m+1)n−1 social
outcomes in X. The above construction implicitly gives also an algorithmic
description of how to construct an objects scheme which makes social choice
converge to a desired local optimum.

Finally, notice that the independence of our construction from the 1-
dimensional distance, i.e. the distance along the 1-dimensional family of
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hyperplanes {Hi,j}0≤j≤m−1 for a fixed i, is a consequence of the independence
of the choice from the order in which a 1-dimensional list of objects is given.

Example 8. Let ≻R be the social decision rule of example 7. Thanks to
Theorem 2 it is very simple to verify that (0.0.0) and (0.1.1) are the only
local optima for ≻R. Moreover, exploiting the above procedure, we can
construct all objects schemes for which (0.0.0) and (0.1.1) are reachable.
Hence we can notice that, if A1 and A2 are the objects schemes of example
7, then their basins of attraction coincide with X, Ψ((0.0.0), A1) = X and
Ψ((0.1.1), A2) = X, i.e. (0.0.0) and (0.1.1) are global optima for, respectively,
object schemes A1 and A2. On the contrary, if we consider for instance the
objects scheme A3 = {{H1}, {H2}, {H3}} then (0.0.0) and (0.1.1) are both
reachable local optima, each of them with its own basin of attraction such
as Ψ((0.0.0), A3) ⊂ X and Ψ((0.1.1), A3) ⊂ X.

If a social outcome z does not meet the necessary and sufficient condition
of theorem 2 it cannot be a local optimum. However, an agent with object
construction power may nevertheless make choices converge to another social
outcome close enough to z.

Free social outcome We say that a social outcome z is free with respect
to a social decision rule ≻R if and only if for any social outcome x such that
x ≻R z then dp(x, z) > 1. Thus, by the theorem 2, z is the local optimum
for an objects scheme Az if and only if z is free.

Moreover a social outcome z has minimal distance from z with respect to
≻R if and only if z is free with respect to a decision rule R and

d(z, z) = min{d(z, x) | x is free }

Thus it is always possible to build an objects scheme Az such that the
social outcome z of minimal distance from z with respect to ≻R is a local
optimum.

Remark 3.2. If we consider the classical 1-dimensional problem, then the
prominent distance between two social outcomes x and z is always dp(x, z) =
1. It follows:

• the social outcome z is free if and only if z is an optimum, i.e. for any
social outcome x, z ≻R x;

• if the social outcome of minimal distance from z with respect to ≻R

exists then it is the only optimum;
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• if the social outcome of minimal distance from z with respect to ≻R

does not exist, then our theorem simply recovers the usual intransitive
cycles.

3.3 Objects and manipulability: global optimality

We now analyze under which conditions a social outcome z is a global opti-
mum for an agenda α and under which conditions it is a global optimum for
all agendas α ∈ Λ(A).

From now on, given a social outcome z ∈ X, we will denote by Az an
objects scheme such that Φ(z, Az) = ∅, i.e. it admits z as local optimum.

Let us remark that, given a social outcome z ∈ X, if z is a global optimum
for an agenda α ∈ Λ(Az) then the following two conditions hold:

1. if x ∈ X is a social outcome such that x ≻R z then there exist social
outcomes {x1, . . . , xk} such that

z ≺R x ≺R x1 ≺R . . . ≺R xk ≺R z

Indeed if this is not the case, all paths starting from x would never
end up in z for all possible objects schemes A; i.e. x 6∈ Ψ(z, A) for any
objects scheme A.

2. Φ(x,Az) 6= ∅ for all social outcomes x 6= z. Otherwise if Φ(x,Az) = ∅,
then x ∈ Ψ(x,Az,α) for all agendas α ∈ Λ(Az).

The first condition is simple to verify. The second one is true for all social
outcomes x ∈ X that are not free (see theorem 2), while free social outcomes
must satisfy the following conditions.

Theorem 3. Let z be a free social outcome. Then, there exists an objects
scheme Az such that Φ(z, Az) = ∅ and Φ(x,Az) 6= ∅ for all free social out-
comes x if and only if the condition

∃y ≻ x such that Hw,z * Hx,y ∀w ≻ z (4)

holds for all free social outcomes x 6= z.

Proof: Sufficiency: if Φ(x,Az) 6= ∅ then there exists a social outcome y
in Φ(x,Az). By construction y satisfies the following two conditions:

1. y ≻R x
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2. there exists A ∈ Az such that Hx,y ⊂ A or, equivalently,
Hc

x,y ⊃ Ac.

Moreover Φ(z, Az) = ∅ implies that for all objects A ∈ Az and for all w ≻R z
the intersection Ac ∩Hw,z 6= ∅, then Hc

x,y ∩Hw,z 6= ∅, i.e. Hw,z * Hx,y for all
w ≻R z. Hence y is the social outcome verifying condition (4).

Necessity: let G(z, Az) ⊂ X be the set

G(z, Az) = {x ∈ X | Φ(x,Az) = ∅}

i.e. if x ∈ G(z, Az) then it is a local optimum for Az. If G(z, Az) = ∅ we
proved necessity, otherwise given x ∈ G(z, Az) we can build a new objects
scheme A′

z as follows. Let y ≻R x as in the hypothesis, then we can consider
the new objects scheme

A′
z = Az ∪Hx,y

Clearly y ∈ Φ(x,Hx,y), i.e. x is not a local optimum for A′
z while z is still

a local optimum for A′
z. Indeed Φ(z,A) = ∅ for all A ∈ Az by construction

while Φ(z,Hx,y) = ∅ by hypothesis:

let w be a social outcome in Φ(z,Hx,y) 6= ∅. Then w ≻R z and Hw,z ⊂
Hx,y, but this is an absurd since Hw,z * Hx,y for all w ≻R z by condition
(4).

We have a new objects scheme A′
z such that z is a local optimum for A′

z

and G(z, A′
z) ⊂ G(z, Az) \ {x}. We can iterate this construction until we

obtain an objects scheme A such that z is a local optimum and G(z, A) = ∅.
�

The above theorem gives us a necessary and sufficient condition for the
existence of an objects scheme Az such that for all possible agendas and all
possible starting social outcomes x ∈ X the voting process ends up in z or in a
cycle. Following the proof of this theorem we can also provide an algorithm
which computes such an objects scheme Az (Amendola and Settepanella
2012). Moreover, given a starting social outcome x ∈ X, condition (4)
allows us to construct an objects scheme Az and an agenda α in A such that
x ∈ Ψ(z, Az,α).

Example 9. Let us consider the social outcome z = (0.0.0) and the social
rule ≻R as in example 7. Thanks to Theorem 3 it is easy to prove the exis-
tence of an objects scheme A such that (0.0.0) is the only possible optimum.
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Indeed the only social outcome x preferred to z, i.e. x ≻R z, is x = (0.1.1)
and the social outcome (1.0.1) = y ≻R x verifies that

Hx,z = {H2, H3} * Hx,y = {H1, H2}.

Then, by theorem 3, there is an objects scheme Az for which z is the only
possible optimum. Hence or z is a global optimum for the objects scheme
Az, i.e. Ψ(z, A) = X, or there is a social outcome x ∈ X such that any path
through Azstarting from x ends up in a cycle.

The same argument applies for the social outcome z = (0.1.1).

Example 10. Let us consider the space of social outcomes X as in example
1 with the following preferences ≻R:

(0.0.0) preferred to all except (0.1.1) ≻R (0.0.0)

(0.1.1) preferred to all except (1.0.0) ≻R (0.1.1)

(1.0.1) ≺R (1.0.0), (1.0.1) ≻R (1.1.1), (1.0.1) ≻R (0.0.1),

(1.0.1) ≺R (1.1.0), (1.0.1) ≺R (0.1.0)

(0.0.1) ≻R (1.1.1), (0.0.1) ≺R (0.1.0), (0.0.1) ≺R (1.1.0), (0.0.1) ≺R (1.0.0)

(1.1.0) ≻R (1.1.1), (1.1.0) ≻R (1.0.0), (1.1.0) ≺R (0.1.0)

(1.1.1) ≺R (0.1.0), (1.1.1) ≺R (1.0.0)

(0.1.0) ≻R (1.0.0).

The social outcome z = (0.0.0) is a local optimum by Theorem 2, but it is
not a global optimum for any objects scheme. Indeed the social outcome
x = (0.1.1) is a free outcome and it verifies x ≻R z. Moreover y = (1.0.0) is
the only social outcome preferred to x, i.e. y ≻R x, and it verifies

Hx,z = {H2, H3} ⊂ Hx,y = {H1, H2, H3}.

Then, by Theorem 3, it follows that if (0.0.0) is a local optimum for an
objects scheme A, then also (0.1.1) is a local optimum for A and hence
(0.1.1) /∈ Ψ((0.0.0), A).

3.4 Objects and manipulability: obtaining a social out-
come from a given status quo

So far we have analyzed cases in which objects, agendas and initial status
quo may all be manipulated in order to obtain a desired social outcome. In
this section instead we assume that the initial status quo is exogenously given
and only objects and agenda are subject to manipulation. In theorem 4 we
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give a necessary and sufficient condition that a status quo x needs to satisfy
in order to belong to the basin of attraction of a chosen social outcome z
with respect to some objects scheme A. In other words, given an agent with
preferred free social outcome z, we find the conditions under which he or she
may obtain z from the given initial condition.

Universal basin of attraction Let Π(An,m) be the set of all possible
objects schemes inAn,m. The universal basin of attraction of a social outcome
z ∈ X is the set

Ψ(z) =
⋃

A∈Π(An,m)

Ψ(z, A),

i.e. the set of all the social outcomes x such that there exists an objects
scheme for which there is a path starting from x and ending up in z.

By Theorem 2, the universal basin of attraction of the social outcome z
is non-empty if and only if z is free.

As above, let x ∈ X be a starting social outcome. Let us define the
following set:

Gz
x = {y ≻R x | Hw,z * Hx,y ∀w ≻R z and B(x,Hx,y) 6= ∅}. (5)

Proposition 3.3. Given two social outcomes x, z ∈ X, if x is in the universal
basin of attraction Ψ(z) then Gz

x 6= ∅.

Proof. Let us assume that Gz
x is empty then either:

i) condition 4 is not met by any of the social outcomes y ∈ X. Therefore,
by theorem 3, it follows that Φ(x,Az) = ∅ for all Az such that Φ(z, Az) = ∅,
i.e. if x is the starting social outcome then all maximal paths in Az end up
in x for any agenda α;

or:

ii) Φ(x,Az) 6= ∅ but B(x,Az) = ∅ for all objects schemes Az such that
Φ(z, Az) = ∅, i.e. if x is the starting social outcome then all voting processes
end up in a cycle.

In both cases x /∈ Ψ(z) and this concludes the proof �

Suppose now that x is a social outcome such that Gz
x is non-empty (there-

fore z is free 4). If B(x,Hx,y) is non-empty, its cardinality is one. The only
element of B(x,Hx,y) will be denoted by bx,y and we can define the set

BGz
x = {bx,y | y ∈ Gz

x}.

4For the sake of completeness, we assume Gz

x
to be ∅ if z is not free.

21



Then we can consider the following finite subsets5 in X:

Ez
0 = {z};

Ez
1 = {x ∈ X \ {z} | z ∈ BGz

x};

Ez
2 = {x ∈ X \ ∪1

i=0E
z
i | Ez

1 ∩ BGz
x 6= ∅};

...

Ez
h = {x ∈ X \ ∪h−1

i=0 E
z
i | Ez

h−1 ∩BGz
x 6= ∅};

Ez
h+1 = {x ∈ X \ ∪h

i=0E
z
i | Ez

h ∩ BGz
x 6= ∅} = ∅

where h is the smallest integer such that Ez
h+1 is empty, and:

Ez =
h
⋃

i=1

Ez
i . (6)

We have the following:

Theorem 4. Let x and z be two social outcomes. Then x is in the universal
basin of attraction Ψ(z) if and only if x belongs to Ez, i.e.

Ψ(z) = Ez.

Proof. Sufficiency: the proof is by induction. If x ∈ Ψ(z), then there
exists an objects scheme A = {AI1 , . . . ,AIt} such that x ∈ Ψ(z, A) and an
agenda α = (hk, . . . , h1) for A such that the ordered path along α

x = xk ≺R xk−1 ≺R . . . ≺R x1 ≺R x0 = z

is maximal.
The social outcome x0 = z is in Ez and, by induction, we assume that there
is a 0 ≤ j ≤ k such that xj ∈ Ez, i.e. xj ∈ Ez

i for an integer 0 ≤ i ≤ h. By
construction xj ∈ B(xj+1,Ahj+1

) then xj ∈ B(xj+1,Hxj+1,xj
) 6= ∅. Moreover

Hw,z * Hxj+1,xj
∀w ≻R z, indeed if w ≻R z is a social outcome such that

Hw,z ⊆ Hxj+1,xj
⊆ Ahj

then z /∈ Ψ(z, A) which is absurd. It follows that
xj ∈ BGz

xj+1
.

Since xj ∈ Ez
i ∩ BGz

xj+1
6= ∅ then either xj+1 ∈ Ez

i+1 or xj+1 ∈ ∪i−1
s=0E

z
s ,

i.e. xj+1 ∈ Ez.

Necessity: viceversa, if x ∈ Ez then there is an integer 0 ≤ i ≤ h such that
x ∈ Ez

i and we can construct a path

x = xi ≺R xi−1 ≺R . . . ≺R x1 ≺R x0 = z (7)

5Once again, for the sake of completeness, we assume all these sets to be empty if z is
not free.
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such that xj ∈ Ez
j ∩ BGxj+1

for 0 ≤ j ≤ i− 1.
Let us consider an objects scheme Az such that z ∈ Ψ(z, Az), then

A = {Hxj ,xj+1
}0≤j≤i−1 ∪ Az

still satisfies z ∈ Ψ(z, A).
Moreover let α = (h1, . . . , hk) be an agenda for A such that the ht-object in
the ordered scheme Aα isHxi−t−1,xi−t

for 0 ≤ t ≤ i−1. Then, by construction,
the path (7) is exactly the maximal path P (x, z, Aα) and x ∈ Ψ(z). �

Example 11. Let us consider again the social outcome z = (0.0.0) and the
social decision rule ≻R as in example 7. The social outcome w = (0.1.1) is
the only outcome preferred to z and Hw,z = {H2, H3}. It is easy to verify
that:

Ez
0 = {(0.0.0)};

Ez
1 = X \ {(0.0.0), (0.1.1), (1.1.1)};

Ez
2 = {(0.1.1), (1.1.1)}.

Then the universal basin of attraction Ψ(z) is the whole set X.
With the above notations, if we consider the social rule ≻R defined in

example 10, then Gz
w = ∅ and hence w = (0.1.1) /∈ Ez.

3.5 Breaking intransitive cycles

In this section we show that also intransitive cycles which, as well known,
can be generated by any social aggregation rule are subject to manipulation
through object construction. The main result of this section, theorem 5,
demonstrates that almost any intransitive cycle can be broken by appropriate
modification of the objects scheme. It actually turns out that cycles can
be broken by introducing new local optima. Thus, we observe a trade-off
between decidability, i.e. the possibility of reaching some social optimum
in a feasible time, and non-manipulability, that is, the convergence of the
social decision process to a unique global outcome that does not depend on
initial condition and agenda. The balance in this trade-off is struck by the
objects scheme. In particular, we will show that coarse objects containing
many features tend to produce many cycles and few local optima, whereas
fine objects containing only one or a few features are much less likely to
induce cycles but tend to generate many local optima and, therefore, greatly
increase the opportunity for manipulation.

Suppose that for some objects scheme A′ social preferences may encounter
a set of cycles Γ. We will say that an objects scheme A 6= A′ breaks the cycles
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Γ if social choice does not enter into any cycle belonging to Γ with the new
objects scheme.

Given a cycle γ : x1 ≺R . . . ≺R xk ≺R xk+1 = x1, let us define the
following subset of hyperplanes in An,m:

Hγ =
⋃

1≤j≤k+1

Hxj ,xj+1
. (8)

We will say that a cycle γ : x1 ≺R . . . ≺R xk ≺R xk+1 = x1 is free if there
are at least two consecutive indices j, j + 1 such that dp(xj, xj+1) > 1.

Then we have the following:

Theorem 5. Let Y≻R
be the oriented graph for a given social rule ≻R and

An,m the arrangement associated to the space of social outcomes. Then for
any given set Γ = {γ1, . . . , γh} of free cycles in Y≻R

there exists an objects
scheme A such that all voting process will never end up in any cycle of Γ.
Moreover this scheme can be chosen with maximum size.

In order to prove this theorem we remark that if γ ∈ Y≻R
is a cycle and

A an objects scheme such that:

1. Hγ * A for any object A ∈ A,

2. any path ordered along α and starting in x does not end up in γ for
any agenda α,

then γ disappears in A.

Lemma 3.4. Let γ ∈ Y≻R
be a cycle and A an objects scheme such that at

least two consecutive outcomes xj ≺R xj+1 in the cycle satisfy Hxj ,xj+1
* A

for any object A ∈ A. Then γ disappears in A.

Proof. Condition 1 above is trivially satisfied. Moreover, by hypothesis,
let xj ≺R xj+1 be two consecutive outcomes in γ such that Hxj ,xj+1

* A
for any object A ∈ A. Then, by definition, xj+1 /∈ B(xj,A) for all objects
A ∈ A, i.e. it is not possible to move from xj to xj+1 directly and then
condition 2 holds. This conclude the proof. �

As a direct consequence of the above Lemma any free cycle γ ∈ Y≻R

disappears for the trivial object scheme

A = {{Hi,j} 1≤i≤n

0≤j≤m−1

} .
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Proof of Theorem 5. Let us consider the finite set AΓ of all possible
objects schemes A of An,m such that all voting processes in A will never end
up in any cycle in Γ. This set is not empty, indeed the trivial objects scheme

A = {{Hi,j} 1≤i≤n

0≤j≤m−1

}

is such that any social choice process will never end up in any cycle in Γ.
Moreover the set of the sizes of elements A ∈ AΓ is a finite non-empty set of
natural numbers N and then it admits a maximum.
This conclude the proof. �

Example 12. In the example 6 the objects schemes A = {{H1, H3}, {H2}}
and A = {{H2, H3}, {H1}} break at once all cycles in the graph Y≻R

of
example 3.

Remark 3.5. A cycle γ which is not free can also be broken in most cases,
but not always. An example is given by the cycle γ : 00 ≺R 01 ≺R 11 ≺R

10 ≺R 00 in the case A2,1. Indeed, in this case, the only two objects schemes
are A = {{H1, H2}} and A = {{H1}, {H2}} and none of them breaks γ.

The above theorem proves the existence of a non trivial objects scheme
A such that all the cycles in a given set Γ = {γ1, . . . , γh} are broken, while
Lemma 3.4 shows how to construct it.

All in all, a cycle γ may be broken, i.e. it disappears for a given objects
scheme A, if there exist consecutive social outcomes x, w involved in the cycle
γ such that Hx,w * A for all A belonging to the scheme A. Thus, the number
of cycles broken by a given objects scheme A increases when the size of A,
i.e. the cardinality of its largest object, decreases.

Symmetrically, the number of local optima increases when the size of the
objects scheme A decreases. Indeed by theorem 2, a free social outcome z is
a local optimum for a scheme A if and only if for all social outcomes x ≻R z
Hx,z * A, for all A belonging to the scheme A. It follows that if the objects
scheme A is composed by k objects, then we have at least (k − 1)! different
local optima. Thus we obtain a decidability vs. non-manipulability trade-
off. Schemes composed of few large objects tend to produce cycles, while
schemes of many small objects tend to produce considerably fewer cycles but
increasingly many local optima.

Remark 3.6. From what we have seen until now, it is obvious that, in
order to work with the object construction power, it is helpful to find the
hyperplanes involved in the fundamental cycles that generate all the others.
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Figure 3: Reduced graph from example 3

In this respect, given an oriented graph Y�R
, it is helpful to consider a

reduced homotopic one. Hence, for example, if (x, y) ∈ Y1,�R
is an edge

given by a formal sum with coefficient 1 of edges which are in Y1,�R
then it

can be deleted. So the graph in figure 1 strongly simplifies in that in figure
36.

To be precise, the graph in figure 3 does not exactly represent Salvetti’s
one, as the latter is in the complexification of A3,2, i.e. in C3 ≃ R6, which
allows paths to “go around” hyperplanes (e.g. the line and the arc joining
000 and 100 form, in the complex space, a loop around the hyperplane of
equation λ1 = 0). However figure 3 gives a useful, though not totally precise,
visual representation.

Looking at this figure we remark that it is not possible to retrieve the
social rule from the graphic representation of the Salvetti’s graph: we don’t
know if agents prefer the social outcome 101 to 111 or viceversa; we only
know that there is a cycle involving these two preferences. In order to get
the precise information about two social outcomes we have to look at the
rule.

Nevertheless the reduced graph carries very useful information. For ex-
ample it is relatively simple to find the fundamental cycles that generate all
the others. Looking at the graph in fig. 3 it is clear that, for this base, the

6For simplicity reason we omitted, in the figure, the hyperplanes, i.e. the coordinate
hyperplanes of equations λi = 0, i = 1, 2, 3.
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fundamental cycles are:

001 ≻R 011 ≻R 111 ≻R 001,

000 ≻R 010 ≻R 110 ≻R 000,

000 ≻R 011 ≻R 111 ≻R 110 ≻R 000,

000 ≻R 100 ≻R 101 ≻R 110 ≻R 000.

(9)

By construction, the first one depends on the existence of the edge (111, 001),
while the other three depend on (110, 000). This information allows us to
determine which set of objects can break the cycles in the given social rule.

Clearly, there are many ways we can reduce the set Y1,�R
to a basic num-

ber of elements, and this number is not unique. However, all the reduced
graphs represent exactly the same pairwise social preferences.

3.6 On the median voter theorem

In addition to intransitive cycles and agenda power, also another classic result
of social choice theory, the median voter theorem, is subject to manipulability
through object construction. By appropriately modifying the objects scheme,
the outcome of a social decision may be made as distant as one wishes from
the median voter’s preferred social outcome.

Recall that the median voter theorem in its strong version (Black 1958,
Downs 1957) states that if a voter with median preferences exists, her/his
most preferred outcome will beat any other alternative in pairwise majority
voting.

Indeed given a rule ≻R with a median voter m, if z is the opposite social
outcome with respect to the median voter’s preferred one and z is free, then
it is possible to find a scheme with preferred outcome z.

This is equivalent to saying that in our construction it is always possible to
manipulate the objects scheme in such a way that the median voter theorem
does not apply and social choice may converge to social outcomes very distant
from the median voter’s preferred one.

A Appendix: Salvetti’s complex

In Section 2 we described the cells of a complex. Obviously there is a bound-
ary map on Salvetti’s complex which is also very informative 7. We will

7The boundary map is a well know map in mathematics and it is a basic ingredient of
Homology Theory
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introduce the boundary only for the 1-skeleton of the complex S(An,m).
Let us consider the free abelian groups S1(An,m) and S0(An,m) generated by
S1(An,m) and S0(An,m) considering all the formal sums with integer coeffi-
cients. The boundary map ∂ : S1(An,m) −→ S0(An,m) is defined as follows:

∂(xi, xj) = xj − xi

for any generator (xi, xj) ∈ S1(An,m) and the map extends to S1(An,m) by

linearity, i.e. if c = ∂
∑k−1

j=1 aj(xij , xij+1
), aj ∈ Z, is an element in S1(An,m),

then

∂c = ∂

k−1
∑

j=1

aj(xij , xij+1
) =

k−1
∑

j=1

aj∂(xij , xij+1
).

Given a social rule �R we obtain a graph Y�R
which is, as we have seen in

Section 2, a subcomplex of Salvetti’s complex in 0 and 1-dimensions. Then
we can compute its boundary map. We may begin noticing that pairwise
preferences correspond to formal sums with coefficients 1 in Y1,≻R

and that if
two such formal sums are equivalent from a social point of view, i.e. they cor-
respond to the same pairwise preferences, then they have the same boundary.
Indeed, by linearity, the boundary of the sum in (1) is given by:

∂

k−1
∑

j=1

(xj, xj+1) =
k−1
∑

j=1

∂(xj, xj+1) =

k−1
∑

j=1

xj+1 −
k−1
∑

j=1

xj = xk − x1 = ∂(x1, xk),

namely it depends only by its initial and final vertices.
Recall that a cycle γI ∈ Y is a subgraph with vertices {x1, . . . , xh} and edges
{(x1, x2), (x2, x3), . . . , (xh, x1)}. Hence the boundary ∂γI of a cycle is equal to
0. Indeed it is the formal sum with coefficient 1 of the edges in the subgraph
γI with same initial and final vertex x1, i.e.

∂γI = ∂(x1, x2)+∂(x2, x3) + . . .+ ∂(xh, x1) =

x2 − x1 + x3 − x2 + . . .+ x1 − xh = 0.

Then to study the boundary map of a graph Y�R
is equivalent to study

the Condorcet-Arrow’s cycles of the corresponding social rule. The boundary
operator transforms a geometric problem into an algebraic one and makes it
possible to develop an algorithm that computationally performs the reduction
of a given directed graph and allows to find cycles.
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Figure 4: Reduced graph with a base of 11 elements

Example 13. In example 3 the boundary of each edge in Y1,≻R
is

∂(v1v2v3, g1g2g3) = g1g2g3 − v1v2v3.

We get a boundary matrix of 28 columns, one for each edge, and 8 rows, one
for each vertex, with two entries equal 1 and −1 (those corresponding to the
vertices of the edge in question) in each column and all the other entries equal
to 0. Now our algorithmic implementation must simply delete any column
which is the sum of two or more other columns. In our example, we can get
the following reduced matrix:































−1 −1 −1 1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 −1 0 0

1 0 0 0 1 −1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 1 −1

0 0 0 −1 0 0 1 0 1 0 1

0 0 0 0 0 1 −1 −1 0 0 0































where the columns are ordered as follows:

{(000, 011), (000, 010), (000, 100), (110, 000), (001, 011), (011, 111),

(111, 110), (111, 001), (010, 110), (100, 101), (101, 110)}

and the rows are ordered lexicographically. If the sum, with coefficient 1, of
three or more columns is the zero column, then we have a cycle. Indeed, for

29



example, the sum of the 5-th 6-th and 8-th columns is 0 and it corresponds
to the first cycle described in (9). Hence from the above matrix it is compu-
tational easy to retrieve all cycles. Moreover we get that the graph in figure
1 can be reduced to the one in figure 4 where cycles are easier to be noticed.
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