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Abstract 
 
Using different unconditional and conditional versions of the bivariate BEKK-
GARCH model of Engle and Kroner, we calculate time-varying hedge ratios for 
Indian stock futures market involving a cross-section of seven firms across a spectrum 
of industries. These models are solved not only with the usual square root exponent 
but also analysed with an unrestricted version where the exponent is set to one. Our 
results show time-varying hedge ratios with the exponent set to one improve over 
hedge ratios obtained from the square root exponent setup as well as over static hedge 
ratios calculated from the error correction types of models. Time-varying optimal 
hedge ratio calculation in this new framework makes perfect sense in terms of 
portfolio allocation decision involving individual stock futures.  
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1. Introduction 
 
Time-varying optimal hedge ratios are well established financial instruments of risk 

management. Calculating optimal hedge ratios and analyzing their reliability assume 

significant importance especially in cases where futures and cash price movements 

are not highly correlated, thus generating considerable basis risks. Although there has 

been a considerable literature comparing the performance between time-varying 

hedge ratios and static hedge ratios in commodity and index futures markets, there is 

little exploration of these estimators in stock futures markets. The aim of this paper is 

to explore both these estimators (and extensions of) and to evaluate these estimators 

using a subset of new and exciting stock futures contracts now traded in India’s 

National Stock Exchange (NSE), for almost four years. In addition, this study also 

illustrates a way to improve time-varying optimal hedge ratios in non-commodity 

futures market transactions. The improvement in the time-varying hedge ratio 

calculation is achieved when we place unity restrictions on parameter matrices in a 

BEKK type bivariate GARCH framework (based on Engle and Kroner (1995)) after 

allowing for lead-lag relationships between futures and cash returns. One main 

advantage of putting this restriction is to allow for mean reversion in volatility, i.e., 

we do not restrict the GARCH parameter estimates to be strictly positive. A second 

advantage is in terms of computational simplicity. We show how to derive dynamic 

hedge ratios using this alternative restriction. We expect that this approach will 

provide quite flexible volatility estimates with the potential to impose greater weights 

on most recent shocks, similar to any asymmetric GARCH process.  



We use daily closing cash and futures return data from January 2002 to September 

2005 for seven1 Indian firms to establish our findings, which includes big 

manufacturing firms (Associated Cement Company (ACC), Grasim Industries 

(GRASIM), and Tata Tea Companies Limited (TATATEA)), energy utilities firms 

(Bharat Heavy Electricals Limited (BHEL), and Tata Power and Utilities Company 

Limited (TATAPOW)) as well as telecommunication and information technology 

enabled services firms (Mahanagar Telephone Nigam Limited (MTNL) and Satyam 

Computers Limited (SATYAM)). In doing so, we deviate from existing literature (see 

Moschini and Myers (2002) for instance) which primarily analyzes optimal hedge 

ratios in commodity markets and not in other financial markets. We also provide 

contrasting examples where the variance ratios of the stock futures and spot returns 

are similar so that static models should provide good hedge ratio estimates.  

 It is well known in the finance literature that optimal hedge ratios need to be 

determined for risk management, and more so in cases where futures and cash price 

movements are not highly correlated, generating considerable basis risks. The current 

literature employs either autoregressive conditional heteroskedasticity (ARCH) 

framework of Engle (1982) or generalized ARCH (GARCH) approach of Bollerslev 

(1986) to estimate hedge ratios in commodities markets as underlying cash and 

futures prices show time-varying, persistent volatility. Among past studies, Baillie 

and Myers (1991) and Myers (1991) use bivariate GARCH models of cash and 

futures prices for six agricultural commodities, beef, coffee, corn, cotton, gold and 

soybeans to calculate optimal hedge ratios in commodity futures. Cecchetti, Cumby 

and Figlewski (1988) employ a bivariate ARCH model to generate optimal hedge 

                                                 
1 We have started with a sample of nineteen different firms across a broad spectrum of industries. 
However, in this paper, we present our findings involving seven firms only, as other firms’ data are 
either characterized by structural breaks due to price splitting within the sample period or not providing 
enough conditional volatility to pursue the analysis involving time-varying hedge ratios.  



ratios involving T-bond futures. Bera, Garcia and Roh (1997) use diagonal vech 

representation of bivariate GARCH model to estimate time-varying hedge ratios for 

corn and soybeans. Recently, Moschini and Myers (2002), using weekly corn prices, 

show that a new parameterization of bivariate GARCH processes establishes 

statistical superiority of time-varying hedge ratios over constant hedges. To derive 

optimal hedge ratios, all the above studies make simplifying but restrictive 

assumptions on the conditional covariance matrix to ensure non-negative variances of 

returns and generate tractable solutions. But the improvement in generating time-

varying optimal hedges over constant hedge ratios appears to be minimal even after 

imposing these restrictions.2 Other studies of financial futures such as Yeh and 

Gannon (1998) consider the Australian Share Price Index Futures (SPI) and Lee, 

Gannon and Yeh (2002) analyse the U.S Standard and Poor’s 500 (S&P), the Nikkei 

225 (Nikkei) Index Futures and the SPI Futures data. In all of these cases the static 

models provide a Beta of around 0.7 (substantial excess volatility in the futures 

relative to the cash index) and the conditional correlations GARCH model dominates 

in terms of variance reduction. The hedge ratios in Lee, Gannon and Yeh (2002) 

report substantial variation around the average of 0.7 for the S&P as well as the SPI 

and for the Nikkei, the variation ranged from 0.3 to 2.0. In another study, Au-Yeung 

and Gannon (2005) show that the square root BEKK-GARCH model provides 

substantial variation relative to more restrictive GARCH and static models. 

Furthermore, they also report statistically significant structural breaks in either or both 

of their cash or/and futures data, which corresponds to the timing of regulatory 

interventions. In all of these studies involving financial futures, the spot and futures 

are cointegrated in variance but there is substantial variation in the basis which 

                                                 
2 See Bera, Garcia and Roh (1997) for more discussion about potential gain in optimal hedge ratios 
after placing simplifying restrictions on conditional covariance matrix. 



allowed these time-varying hedge ratio estimators to dominate. If the spot and futures 

are not cointegrated in variance then these GARCH type estimators do provide 

substantial variation in hedge ratio estimates and dominate static models in terms of 

variance reduction.   

 The above discussion clearly shows that most of the earlier works in deriving 

hedge ratios have been done on either agricultural commodities or stock index futures 

markets. This focus on commodities comes from the fact that commodities are 

primarily consumables which varies significantly because of uncertainty regarding 

their production as well as seasonal effects. Also, commodities are generally not 

substitutable unlike other financial instruments. Similar observations can also be 

made for stock index futures. Like the commodity futures that impounds storage, time 

value and commodity specific risks in the futures contract, index futures also maintain 

basis risk because the cost of rebalancing the underlying portfolio is rather large. This 

means the resulting rebalancing in the futures contract generates excess risk.  On the 

other hand, other financial instruments like shares are held for investment and can be 

substitutable with each other (unless the investor wants to build an exposure specific 

to a company). Therefore in our study we concentrate on individual stock futures. For 

the investors dealing in particular stock(s), the individual stock futures market is most 

specific and appropriate to hedge their exposure. As a result, calculating optimal time 

varying hedge ratios becomes important from both the financial as well as policy 

perspectives. 

 

Looking at the way to improve the performance of time-varying optimal hedge ratio, 

we apply a far more general restriction on the conditional covariance matrix that 

allows for mean reversion in volatility and calculate time-varying optimal hedge 



ratios for seven Indian firms’ individual stock futures data. For comparison purposes, 

we generate optimal hedge ratios from the generic BEKK of Engle and Kroner (1995) 

after imposing square root restriction on parameter matrices (as is the norm in the 

existing literature). Our analysis shows considerable improvement in calculating time-

varying optimal hedge ratios from the general framework over the bivariate GARCH 

process of Engle and Kroner (1995). We also employ both of these estimators in a 

nested set of models to test the volatility lead/lag effect between the spot and futures 

markets, extending the approach of Au-Yeung and Gannon (2005). The final models 

are then compared with the classic static hedge ratio estimators in terms of 

minimizing the risk in the spot position.     

 The paper is organized as follows. In the next section, we highlight the 

methodology to calculate time-varying optimal hedge ratios after imposing a unity 

constraint on parameter matrices of a bivariate GARCH model. Standard stationarity 

and cointegrating relationships in returns are also explored in this section. Section 

three provides the data detail and reports preliminary analysis involving descriptive 

statistics from the data in our sample. Section four contains results and comparative 

discussions from the empirical analysis. Section five concludes after exploring 

directions in further research. All the results in tabular form are presented in appendix 

A. Appendix B has all the figures from the analysis. 

 
 
 
 
2. Empirical Methodology and Estimation of Time-Varying Hedge Ratios 
 
The standard ADF and PP unit root test results are reported in the table 4 of appendix 

A at the end of the paper. As it is usual in studies of cash and futures markets, we also 

find that the price series are generally non-stationary, the returns are very significant 



and stationary and the basis is also very significant and stationary. However, the level 

of significance for the basis is not of the same order as for the cash and futures 

returns. This may reflect the lack of speculative activity in the cash and futures for 

these series so that there is a low level of realized volatility.   

 After addressing the issues of stationarity in returns series, we model 

interactions in futures and cash returns with the following time-varying bivariate 

BEKK-GARCH procedures and impose general but non-restrictive assumption of 

unity constraint on parameter matrices to calculate time-varying optimal hedge ratios.  

 The daily continuous returns in the ongoing analysis are generated from the 

formula below: 

Futures daily continuous return: )(ln 1,1,1,1 −= ttt PPR                      
(1) 

 
Spot daily continuous return: )ln( 1,2,2,2 −= ttt PPR           

(2) 
 
Where,  and  represent the daily continuous return and daily price of futures at 

time  respectively, and  is the daily price of futures at time

tR ,1 tP ,1

t 1,1 −tP 1−t . Similarly,  

and   represent the daily continuous return and daily closing price of the spot at 

time , and  is the daily closing price of the spot one period prior. Preliminary 

estimation allowing the returns to follow an autoregressive process of order one and 

restricting the first lag parameter to zero in the returns equation provide similar results 

for the GARCH parameter estimates. It is therefore not necessary to report results of 

the spot and futures returns as an autoregressive process. Equation (3) shows that the 

returns are modeled by its mean return level only. To capture the second-order time 

dependence of cash and futures returns, a bivariate BEKK GARCH (1,1) model 

tR ,2

tP ,2

t 1,2 −tP



proposed by Engle and Kroner (1995) is utilized. The model that governs the joint 

process is presented below. 

tt uR +=α             

(3) 

),0(~1 ttt HNu −Ω            

(4) 

where, the return vector for futures and cash series is given by , the 

vector of the constant is defined by 

],[ ,2,1 ttt RRR =

],[ 21 ααα = , the residual vector ],[ ,2,1 tttu εε=  is 

bivariate and conditionally normally distributed, and the conditional covariance 

matrix is represented by , where tH { } 2,1,, == jiforhH tijt . 1−Ωt  is the information set 

representing an array of information available at time 1−t . Given the above 

expression, the conditional covariance matrix can be stated as follows: 

   1111111111100 GHGAACCH tttt −−− ′+′′+′= εε           

(5) 

where, the parameter matrices for the variance equation are defined as C0, which is 

restricted to be lower triangular and two unrestricted matrices A11 and G11. Therefore 

the second moment can be represented by: 
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(6) 

As we have mentioned before, the majority of existing literature impose simplifying 

but restrictive constraints on the parameters of the conditional covariance matrix. 

These constraints ensure that the coefficients to be strictly positive. In most of these 

studies a square root constraint is imposed on the parameter matrices. 



In this paper, we deviate from the above approach in the following two ways. First, 

we impose the square root constraint on the parameter matrices and second, we 

impose the unity constraint on the parameter matrices to leave the power parameter as 

one. In this latter case the interpretation of parameter estimates obtained will be 

different from the current literature. When the Beta GARCH parameters are allowed 

to be negative, the underlying interpretations change and point to mean reversion in 

volatility in the system. Also, with negative Betas, there are now greater weights 

allowed on more recent shocks leading to greater sensitivity to those shocks. When 

calculating hedge ratios with the parameter matrix exponents set to unity, the 

estimated covariance and variance terms still need to be positive as the square root of 

the ratio of the conditional variance between the spot and futures over the variance of 

the futures needs to be calculated. The parameter estimates in this case will be the 

square of those estimated from the former specifications so that the time-varying 

variance covariance matrix from this new specification will be the square of that 

obtained using the former model specification. Therefore, the estimated hedge ratio 

will be the square root of projected term from the covariance equation between the 

spot and futures divided by the projected term from the variance of the futures. This 

works well as long as none of the projected covariance or variance terms are negative. 

 The equation (6) for Ht can be further expanded by matrix multiplication and it 

takes the following form:  
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The application of the BEKK-GARCH specification in our analysis is advantageous 

from the interaction of conditional variances and covariance of the two return series; 

therefore it allows testing of the null hypothesis that there is no causality effect in 

either direction. In addition, although the current versions of the BEKK-GARCH 

model guarantees, by construction that the covariance matrices in the system are 

positive definite, we expect the same result although we are not strictly imposing this 

in the estimation procedure.  

Thereafter, we test the lead-lag relationship between return volatilities of spot 

and futures as restricted versions of the above model with both square root and unity 

restrictions imposed in the following way.3 First, either off diagonal terms of the 

matrix A11 and G11 is restricted to be zero so that the lagged squared residuals and 

lagged conditional variance of spot/futures do not enter the variance equation of 

futures/spot as an explanatory variable.  To test any causality effect from spot to 

futures, a12 and g12 are set to zero. The variance and covariance equations will take the 

following form.  
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3 This is an extension of the approach taken in Au-Yeung and Gannon (2005). 



 Conversely, a21 and g21 are set equal to zero when we test the causality effect 

from futures to spot. The log likelihood from these estimations is then compared 

against that of the unrestricted model by applying the likelihood ratio test in an 

artificial nested testing procedure. The likelihood ratio tests are reported in rows 

fifteen and sixteen of tables 7 and 8 in appendix A. The estimated outputs of 

unrestricted versions of the GARCH models are also presented in tables 7 and 8 in 

appendix A (see rows one to fourteen in each of these tables). 

  All the maximum likelihood estimations are optimized by the Berndt, Hall, 

Hall and Hausmann (BHHH) algorithm.4 From equations (7) to (12), the conditional 

log likelihood function L(θ) for a sample of T observations has the following form: 

∑
=

=
T

t
tlL

1
)()( θθ                     

(13) 

)()()(2/1)(log2/12log)( 1' θεθθεθπθ ttttt HHl −−−−=                   

(14) 

where, θ denotes the vector of all the unknown parameters. Numerical maximization 

of equation (13) and (14) yields the maximum likelihood estimates with asymptotic 

standard errors. 

 The likelihood ratio test is used for assessing the significance of the lead-lag 

relationship between the spot and futures return volatilities. This test is done by 

comparing the log likelihood of an unrestricted model and a restricted model: 

   )ln(ln2ln22 10
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(15) 
                                                 
4 Marquardt maximum likelihood has also been applied, however, BHHH algorithm is found to have 
better performance. 
 



where,  LLR = Log Likelihood Ratio 

 L0    = Value of the likelihood function of the restricted model 

 L1    = Value of the likelihood function of the unrestricted model  

The statistic D follows a χ-distribution with k degrees of freedom, where k is the 

number of restrictions in the restricted model.  The null hypothesis and alternate 

hypothesis of two tests are: 

0: 1212
*
0 == gaH  or 02121 == ga  

  : any off-diagonal term in the A and G matrix is not equal to zero *
1H

 
Given the models of spot and futures prices developed below, the time-varying hedge 

ratio can be expressed as: 

$
$

$
bt
* hsf,t

hff,t
=                          

(16) 

which is defined similarly in Baillie and Myers (1991) and Park and Switzer (1995). 

These hedge ratios are reported (plotted) in appendix B. 

3. Data and Descriptive Statistics 
 
The seven firms’ data for this study are downloaded from the National Stock 

Exchange (NSE) of India website5. We use a sample of seven most liquid stocks, 

which, the NSE has started trading from November 2001. The main sample for this 

study is the daily returns of these seven stock futures and the returns of their 

underlying stocks in the spot market. The stock futures series analyzed here uses data 

on the near month contracts as they carry the highest trading volume. We select 

January 2002 to September 2005 as our overall sample window, which gives us 944 

                                                 
5 The web address is http://www.nse-india.com. 



data points. To take care of any potential expiration effects in the sample, the stock 

futures contracts are rolled over to the next month contract on two days prior to their 

respective expiry date. 

All the stock returns and their basis plots are reported in appendix B. Figures 1 and 2, 

in appendix B, show returns from individual stock futures and their respective cash 

prices. Figure 3 reports the basis series. From figure 1, apart from SATYAM, all the 

futures returns seem close to zero (relatively smoothed returns), though BHEL and 

TATAPOW show the highest levels of excess kurtosis in futures returns (see table 1 in 

appendix A for reference). Closing cash returns series from figure 2, appendix B, also 

behave similarly to the patterns we have identified from the futures return series (see 

table 2 in appendix A for reference). A quick look at the higher order moments from 

the descriptive statistics (tables 1 and 2 in appendix A) clearly point that the all 

returns series are leptokurtic, a regular feature of financial returns series. We also 

looked for trends and seasonal components in these returns series, but could not find 

any evidence of trend or seasonality. Note that normality is rejected for all the cash 

and futures returns series. All the basis series from figure 3 in appendix B, show 

convergence around zero except for BHEL and GRASIM. Unit root tests involving 

Augmented Dickey-Fuller and Phillips-Perron test statistics show enough evidence of 

possible cointegrating relationships between futures and cash returns, as all the futures 

and cash prices series are integrated of order one in (log) levels (see table 4 in 

appendix A for reference). Table 5 in the first appendix report results from tests for 

cointegration, and we find that futures and cash returns for all the seven firms’ in our 

sample are cointegrated, thus sharing a long-term equilibrium relationship.  

4. Results and Discussion 
 



The results from estimated unrestricted versions of bivariate BEKKs of Engle and 

Kroner (1995) are reported in appendix A. Table 7 reports the parameters estimates 

involving square root constraint on parameter matrices and table 8 shows the 

estimated values from unity constraint on parameter matrices. First two rows in these 

tables report conditional means and rows three to thirteen show conditional 

covariance parameters from log-likelihood estimation. Rows fifteen and sixteen in 

both of these tables show likelihood ratio test statistics for lead-lag relationships 

between future and spot returns (denoted by LR-Test1) and vice-versa (denoted by 

LR-Test2). Model evaluation statistics involving third and fourth order moments 

(skewness and kurtosis) as well as tenth-order serial correlations6 from standardised 

residuals are reported in rows sixteen to twenty-three in each of these tables. To 

summarize the results based on conditional means, conditional variances, residual 

diagnostics checks and optimal hedge ratios, we find that the bivariate GARCH model 

with unity constraint on parameter matrices outperform the bivariate GARCH model 

with square root constraint on parameter matrices.  

 Looking at table 7 results involving conditional covariance between futures 

and cash prices (parameters  and ), we find strong evidence of interactions 

between futures and cash returns, as all parameter coefficients are positive and 

significant, except for MTNL. Therefore, as is emphasized in Baillie and Myers 

(1991) also, it is quite imperative to look for time-dependent conditional covariance 

(as well as time-varying hedge ratios) and not constant covariance. The sum of the 

parameter coefficients,  and  add up to one for three out of seven firms, for the 

other four firms, ACC, GRASIM, MTNL and TATATEA, it adds up to more than one. 

22Â 22Ĝ

11Â 11Ĝ

                                                 
6 We have also checked with first, fifth, fifteenth and twentieth orders of serial correlations from 
standardised residuals. However, the results do not improve much as compared to the tenth-order serial 
correlation test statistics. Therefore, we are presenting the results with tenth-order serial correlation in 
the appendix tables. Other results are available upon request from the authors. 



However, this is not unusual for these multivariate estimators and does not constitute 

a violation of the stationarity condition as required for univariate GARCH processes.  

The stationarity condition for the class of multivariate GARCH estimators has been 

derived for particular restricted versions.  

 The lead-lag relationships between futures and cash returns, analyzed with the 

artificial nesting of the likelihood-ratios, show unambiguous evidence of no lead-lag 

relationships between these two sets of returns data, except for TATAPOW series with 

the square root constraint. This is the only case where the restricted model is not 

dominated by the unrestricted model. It follows that an unrestricted GARCH 

estimator is preferred over the restricted causality versions and over pairs of 

univariate GARCH hedge ratio estimators. These nested tests provide quite different 

results than those reported in Au-Yeung and Gannon (2005) which finds a significant 

one way volatility transmission from the Hong Kong index futures to the cash index.   

 Specification tests indicate moderately excess kurtosis for all the residuals 

with one interesting fact that excess kurtosis from the cash returns series is higher in 

those four cases, where the conditional second-moment properties of the data would 

be considered non-stationary in variance for univariate GARCH (1,1) processes. 

Similarly, evidence of serial correlation in the standardized residuals can be detected 

for the same sets of firms. Overall, it seems that the modified bivariate BEKK of 

Engle and Kroner (1995) produces consistent results in terms of model estimations 

and residual diagnostics. The optimal hedge ratios estimates calculated from this 

framework are displayed in figure 4 in appendix B. It is interesting to note that 

TATAPOW series, which does support the evidence of a lead-lag relationship between 

the cash and futures returns show considerable volatility in the hedge ratio, whereas, 

all other hedge ratios seem to follow a smoothed pattern around one (perfect hedge). 



Also note that for those four series (ACC, GRASIM, MTNL and TATATEA); the 

optimal hedge ratio follows an almost smoothed pattern around one, thus calling for a 

perfect hedge.  

 Results from bivariate GARCH models with unity constraint on parameter 

matrices (see table 8 in appendix A for reference) show improvements in conditional 

covariance over the results from bivariate GARCH models with square root constraint 

(see table 7 in appendix 1 for reference), as now all the 22Â  and  parameter 

estimates are positive and significant. As in the case of square root constraint on 

parameter matrices, we also find that there is mixed evidence involving parameter 

matrices 

22Ĝ

11Â  and , with the sum of these coefficients add up to more than unity for 

four out of seven cases. Likelihood ratio tests unambiguously reject lead-lag 

relationships between futures and cash returns for all the seven firms. Diagnostic tests 

from the standardized residuals show evidence of moderate leptokurtosis from both 

the returns’ series. Box-Pierce test statistics show serial correlations in residuals for 

four firms, ACC, GRASIM, MTNL and TATATEA, as was the case in earlier scenario. 

Comparing the hedge ratios (see figure 5 in appendix B for reference) with the hedge 

ratios from earlier framework, we find that, except for ACC and TATAPOW series, all 

the other firms’ hedge ratios show less volatility and appear to be much more well 

behaved. This behavior can also be confirmed if we cross-check the fourth order 

moments (kurtosis) from these two different frameworks. Bivariate GARCH models 

with unity constraint on parameter matrices show some improvement over the 

bivariate GARCH framework with square root constraint on parameter matrices as for 

four firms (from futures equation), the evidence of leptokurtosis from unity constraint 

model is less than that of the square root constraint model. Overall, it seems that the 

bivariate GARCH model with unity constraint on parameter matrices fare well 

11Ĝ



compared with the bivariate GARCH model with square root constraint on parameter 

matrices, as conditional covariances, conditional means, residual diagnostics and 

hedge ratios from the unity constraint framework, and all show considerable 

improvements over the other alternative scenario.  

 When we consider the variance ratios reported in table 6 our earlier 

speculation of the performance of the static hedge ratios when the spot and cash 

variance ratios are close to one is confirmed. In 5 of the 7 cases the residual variance 

ratios calculated from the residual variance of the competing model relative to the 

variance of the spot return is smaller for the static model compared to our BEKK-

GARCH estimators. However, the variance ratios of the static model barely out 

perform the restricted model with Beta set to one. This confirms our previous 

conjecture. What is encouraging is the dominance of either of the BEKK-GARCH 

models over the static models in two of the cases. These cases correspond to series 

(the TATA conglomerations) where there appears to be either occasional excess 

volatility in the cash of futures series. It is also interesting to note that the BEKK-

GARCH model with unity constraint dominates the other version with the square root 

constraint, in terms of variance minimization, in six out of the seven cases. We expect 

that when we extend the analysis to the remaining Indian stock futures and cash stock 

prices the results may be more in line with some of the earlier reported results from 

cash index and futures price processes. We also suspect that these time varying 

models will provide strong results for data in these and similar markets sampled on an 

intra-day basis.   

 

 

5. Conclusion 



In this paper we have not delved into an extensive review of the relevant literature but 

instead focused on those important papers that have provided some initial evidence on 

the behavior of various commodities and index futures volatility behavior. We have 

extended this to consider the volatility of stock futures i.e., those traded on an 

emerging and of high interest market (Indian stock futures market). We identify the 

peculiar features of this dataset with those studied previously and find results that are 

sensible.   

 However, we do extend the BEKK-GARCH model and find that it does 

perform very well relative to the static models, given the data. The relaxation of the 

square root restriction in this multivariate framework does lead to more efficient 

estimation. The probability of obtaining hedge ratios with this latter model that must 

be set to zero (because we need to take the square root of the derived squared 

covariance to the squared variance of the futures) is low for this dataset. This may not 

be the case for other commodity and financial futures data.  

 One motivating factor for future research lies in further consideration of stock 

futures series where the volatility is more extreme. Another is the investigation of 

these models to allow structural breaks in either or both cash and futures equations 

and undertaking nested testing along similar lines as undertaken here for asymmetric 

effects. Sign effects can also be easily implemented within this framework as are 

higher order multivariate GARCH (M-GARCH) effects.  
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Appendix A 

 
Table 1: Descriptive Statistics for Futures Returns Series 

 
 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 

Mean 0.001 0.002 0.002 0.001 0.001 0.001 0.002 
Median 0.001 0.001 -0.001 0.000 0.001 0.001 0.001 



Maximum 0.071 0.141 0.110 0.141 0.102 0.134 0.123 
Minimum -0.115 -0.281 -0.076 -0.142 -0.163 -0.244 -0.138 
Std. Dev. 0.020 0.024 0.018 0.026 0.028 0.025 0.020 
Skewness -0.138 -1.379 0.108 0.211 -0.018 -1.086 -0.006 
Kurtosis 5.090 27.163 5.497 7.029 5.418 15.194 8.248 
Jarque-

Bera 174.680 23240.070 246.941 644.922 229.956 6028.288 1082.051 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Obs. 943 943 943 943 943 943 943 

 
Notes: “Std. Dev.” denotes standard deviation. “Jarque-Bera” represents Jarque-Bera test statistic for normality and 
“Prob.” denotes the corresponding p-value for testing normality. “Obs.” stands for the number of sample 
observations. 

 
 

Table 2: Descriptive Statistics for Cash Returns Series 
 

 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 
Mean 0.001 0.002 0.002 0.001 0.001 0.001 0.001 

Median 0.001 0.001 0.001 -0.000 -0.001 0.001 0.001 
Maximum 0.077 0.131 0.115 0.150 0.096 0.113 0.119 
Minimum -0.091 -0.234 -0.074 -0.139 -0.168 -0.227 -0.135 
Std. Dev. 0.020 0.024 0.019 0.027 0.028 0.024 0.020 
Skewness 0.038 -0.731 0.320 0.195 -0.009 -1.070 0.078 
Kurtosis 4.619 15.565 5.841 6.395 5.186 13.501 7.732 
Jarque-

Bera 103.243 6287.515 333.456 459.091 187.733 4512.868 880.615 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Obs. 943 943 943 943 943 943 943 

 
Notes: “Std. Dev.” denotes standard deviation. “Jarque-Bera” represents Jarque-Bera test statistic for normality and 
“Prob.” denotes the corresponding p-value for testing normality. “Obs.” stands for the number of sample 
observations. 

 
 

Table 3: Descriptive Statistics for Basis Series 
 

 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 
Mean -0.377 0.418 -0.974 -0.380 -0.538 -0.486 -0.850 

Median -0.700 -0.550 -1.500 -0.450 -0.600 -0.700 -1.000 
Maximum 9.300 24.250 22.250 4.700 13.750 42.000 16.250 
Minimum -5.150 -8.700 -19.300 -8.100 -5.650 -11.600 -9.650 
Std. Dev. 2.019 3.782 5.415 0.993 1.795 2.612 2.637 
Skewness 2.001 1.728 0.962 1.555 1.299 5.486 1.845 
Kurtosis 8.778 7.741 5.455 13.028 9.978 80.571 11.117 
Jarque-

Bera 1942.722 1354.308 382.633 4336.360 2181.193 2414.790 3127.227 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Obs. 944 944 944 944 944 944 944 

 
Notes: “Std. Dev.” denotes standard deviation. “Jarque-Bera” represents Jarque-Bera test statistic for normality and 
“Prob.” denotes the corresponding p-value for testing normality. “Obs.” stands for the number of sample 
observations. 

Table 4: Unit Root Tests for Returns and Basis Series 
 

 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 
ADF-FuPL 1.342 1.665 -0.3261 -2.763 -0.299 -0.223 2.942 
PP-FuPL 1.278 1.479 -0.398 -2.921 0.190 -0.305 2.716 

ADF-FuRD -24.357 -25.391 -23.621 -24.023 -23.770 -24.070 -13.456 
PP-FuRD -30.589 -29.114 -28.229 -27.574 -32.296 -29.805 -27.720 

ADF-CaPL 1.481 1.585 -0.343 -2.793 -0.363 -0.182 2.213 
PP-CaPL 1.522 1.462 -0.432 -2.935 0.199 -0.276 2.754 



ADF-CaRD -24.251 -25.251 -23.562 -24.057 -24.030 -23.920 -13.275 
PP-CaRD -31.176 -29.218 -27.953 -27.951 -32.357 -28.052 -27.871 
ADF-BaL -4.607 -4.340 -9.453 -8.975 -8.116 -8.917 -6.237 
PP-BaL -10.904 -15.658 -13.394 -11.018 -12.021 -20.702 -10.697 

 
Notes: “ADF-PL” denotes the value of Augmented Dickey-Fuller test statistic for price series in log-levels. “ADF-
RD” stands for Augmented Dickey-Fuller test statistic for returns series (or price series in log-difference). Similarly, 
“PP-PL” and “PP-RD” represent Phillips-Perron test statistics for prices in log-levels and in return series, 
respectively. “Fu” stands for futures, “Ca” stands for cash and “Ba” represents basis price series in the entire above 
notation.  

 
 
 
 

Table 5: Cointegration Test between Futures and Cash Return Series 

ttt vee ++=Δ −1ˆˆ γδ ;  ttt CaFue 21
ˆˆˆ ββ −−=

 
 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 

δ̂  
0.001 

(0.039) 
-0.003 
(0.085) 

-0.003 
(0.121) 

0.001 
(0.020) 

-0.001 
(0.038) 

0.001 
(0.074) 

0.001 
(0.051) 

γ̂  -0.214 
(0.020) 

-0.375 
(0.025) 

-0.272 
(0.022) 

-0.227 
(0.021) 

-0.246 
(0.021) 

-0.501 
(0.028) 

-0.198 
(0.019) 

testτ  -10.614 -14.733 -12.167 -10.976 -11.483 -17.740 -10.181 

criticalτ  -3.900 -3.900 -3.900 -3.900 -3.900 -3.900 -3.900 
 
Notes: Numbers in parentheses are standard errors; testτ  is the t (tau) test statistic for the estimated slope 

coefficient. criticalτ  shows the Davidson-MacKinnon (1993) critical value at 99% level of significance to test the 
null hypothesis that the least squares residuals are nonstationary. In the above table, we reject all the null hypotheses 
that least squares residuals are nonstationary, and conclude that futures and cash returns series are cointegrated. 

 
 
 

Table 6: Comparison of Variance Ratios from Different Models  
 

 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 
Ols_diffbeta 0.043 0.040 0.047 0.036 0.016 0.114 0.051 
Ols_beta1 0.045 0.041 0.048 0.037 0.017 0.127 0.052 
Sqrt_paras 0.050 0.044 0.060 0.137 1.053 0.080 0.049 

Unity_paras 0.335 0.043 0.055 0.041 0.017 0.078 0.048 
 
Notes: “Ols_diffbeta” denotes the ratio of variances from OLS regression of spot returns on futures and spot 
returns. “Ols_beta1” stands for the ratio of variances from OLS regression of spot returns on futures when the beta 
coefficient is restricted to one and spot returns. “Sqrt_paras” specifies the ratio of variances from bivariate 
GARCH models with square root constraint on parameter matrices and spot returns. “Unity_paras” refers to the 
ratio of variances from bivariate GARCH models with unity constraint on parameter matrices and spot returns. 

 
 
 
 

Table 7: Estimation of bivariate GARCH Models with Square Root Constraint on Parameter Matrices 

tt uR += α , [ ]′= ttt RRR ,2,1 , , ( )ttt HNu ,0~| 1−Ω  

1111111111100 GHGAACCH tttt −−− ′+′′+′= εε  
 

 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 

1α̂  0.144 
(0.000) 

0.245 
(0.000) 

0.162 
(0.000) 

0.167 
(0.000) 

0.152 
(0.000) 

0.194 
(0.063) 

0.221 
(0.000) 

2α̂  0.137 
(0.000) 

0.252 
(0.000) 

0.127 
(0.015) 

-0.062 
(0.000) 

0.189 
(0.000) 

0.201 
(0.061) 

0.208 
(0.032) 

011Ĉ  0.343 
(0.000) 

0.395 
(0.001) 

0.208 
(0.004) 

0.967 
(0.000) 

0.274 
(0.000) 

0.506 
(0.041) 

0.610 
(0.049) 



021Ĉ  0.146 
(0.000) 

0.093 
(0.095) 

0.010 
(0.006) 

-0.268 
(0.000) 

-0.288 
(0.000) 

0.186 
(0.007) 

0.443 
(0.077) 

022Ĉ  0.356 
(0.000) 

0.405 
(0.025) 

0.365 
(0.009) 

0.817 
(0.001) 

-0.131 
(0.001) 

0.479 
(0.037) 

0.664 
(0.091) 

11Â  0.055 
(0.000) 

0.354 
(0.039) 

0.152 
(0.002) 

0.581 
(0.000) 

0.149 
(0.000) 

0.433 
(0.032) 

0.091 
(0.067) 

12Â  -0.324 
(0.000) 

0.412 
(0.016) 

0.158 
(0.002) 

0.636 
(0.001) 

0.117 
(0.001) 

-0.233 
(0.033) 

-0.113 
(0.086) 

21Â  0.250 
(0.000) 

0.104 
(0.040) 

0.253 
(0.003) 

-0.136 
(0.000) 

0.204 
(0.000) 

-0.104 
(0.035) 

0.414 
(0.063) 

22Â  0.611 
(0.000) 

0.009 
(0.025) 

0.274 
(0.001) 

-0.233 
(0.000) 

0.215 
(0.001) 

0.556 
(0.038) 

0.586 
(0.083) 

11Ĝ  1.146 
(0.000) 

0.679 
(0.036) 

1.040 
(0.002) 

0.513 
(0.001) 

0.818 
(0.001) 

0.880 
(0.027) 

0.937 
(0.037) 

12Ĝ  0.243 
(0.000) 

-0.250 
(0.078) 

0.084 
(0.000) 

-0.560 
(0.001) 

-0.448 
(0.000) 

0.116 
(0.024) 

0.417 
(0.209) 

21Ĝ  -0.205 
(0.000) 

0.130 
(0.030) 

-0.180 
(0.002) 

0.255 
(0.000) 

0.076 
(0.001) 

0.038 
(0.025) 

-0.173 
(0.046) 

22Ĝ  0.696 
(0.000) 

1.082 
(0.069) 

0.778 
(0.001) 

1.351 
(0.000) 

1.369 
(0.000) 

0.800 
(0.023) 

0.366 
(0.203) 

Log-L -2733.584 -2726.748 -2675.222 -3490.872 -4020.872 -2683.115 -3022.363 
LR-Test1 940.286 342.308 609.726 1396.636 3086.112 22.614 1151.626 
LR-Test2 940.796 342.578 609.778 1401.950 3064.282 3.149 1126.142 

FuS  0.003 0.135 0.154 0.250 0.115 -0.610 0.131 

FuΚ  4.263 4.914 5.765 5.495 5.381 5.736 5.963 

( )10FuQ  12.162 12.089 16.915 22.348 6.998 14.346 17.920 

( )102
FuQ  4.996 7.609 9.631 14.031 8.711 15.022 9.466 

CaS  0.159 0.214 0.364 0.303 0.094 -0.400 0.198 

CaΚ  4.466 4.889 5.959 5.601 4.756 4.712 6.249 

( )10CaQ  11.521 10.625 20.884 19.769 9.491 23.745 23.922 

( )102
CaQ  3.408 5.396 7.251 16.843 16.964 14.726 9.703 

 
Notes: Numbers in parentheses are standard errors; LR-Test1 denotes likelihood ratio test involving first 
restriction: 01212 == ga  and LR-Test2 denotes likelihood ratio test involving second 

restriction: 02121 == ga ; represents skewness of standardised residuals and S Κ represents kurtosis of 
standardised residuals with subscripts “Fu” and “Ca” denoting the moments coming from futures and cash equation 

respectively;  and  show the Box-Pierce statistics for tenth-order serial correlations in the residuals 
and squared normalized residuals respectively, with the subscripts “Fu” and “Ca” denoting the moments coming 
from futures and cash equation, respectively. 

( )10Q ( )102Q

 
Table 8: Estimation of bivariate GARCH Models with Unity Constraint on Parameter Matrices 

tt uR += α , [ ]′= ttt RRR ,2,1 , , ( )ttt HNu ,0~| 1−Ω  

1111111111100 GHGAACCH tttt −−− ′+′′+′= εε  
 

 ACC BHEL GRASIM MTNL SATYAM TATAPOW TATATEA 

1α̂  0.185 
(0.000) 

0.049 
(0.000) 

0.080 
(0.028) 

0.033 
(0.000) 

0.142 
(0.000) 

0.191 
(0.056) 

0.158 
(0.060) 

2α̂  0.128 
(0.052) 

0.020 
(0.001) 

0.061 
(0.029) 

-0.065 
(0.000) 

0.178 
(0.025) 

0.195 
(0.854) 

0.144 
(0.062) 

011Ĉ  0.252 
(0.324) 

0.389 
(0.000) 

0.222 
(0.036) 

0.213 
(0.000) 

0.257 
(0.002) 

0.567 
(0.047) 

0.530 
(0.081) 

021Ĉ  -0.134 
(5.341) 

0.397 
(0.057) 

-0.156 
(0.019) 

0.466 
(0.000) 

0.182 
(0.142) 

0.182 
(0.008) 

-0.373 
(0.033) 

022Ĉ  0.939 
(0.778) 

0.655 
(0.104) 

0.041 
(0.033) 

0.279 
(0.001) 

0.286 
(0.036) 

0.598 
(0.038) 

0.646 
(0.107) 



11Â  
0.122 

(0.102) 
0.020 

(0.001) 
0.334 

(0.053) 
-0.207 
(0.001) 

0.082 
(0.006) 

0.434 
(0.036) 

0.723 
(0.151) 

12Â  
0.005 

(0.109) 
-0.159 
(0.034) 

0.166 
(0.046) 

0.009 
(0.000) 

0.032 
(0.023) 

-0.214 
(0.038) 

0.201 
(0.149) 

21Â  0.099 
(0.098) 

0.165 
(0.000) 

0.055 
(0.051) 

0.352 
(0.001) 

0.021 
(0.007) 

-0.100 
(0.040) 

-0.398 
(0.150) 

22Â  0.195 
(0.110) 

0.370 
(0.038) 

0.233 
(0.045) 

0.235 
(0.001) 

0.066 
(0.023) 

0.545 
(0.044) 

0.122 
(0.149) 

11Ĝ  0.958 
(0.108) 

0.684 
(0.015) 

0.809 
(0.028) 

0.446 
(0.000) 

0.878 
(0.027) 

0.859 
(0.029) 

0.894 
(0.201) 

12Ĝ  0.019 
(0.066) 

0.700 
(0.070) 

-0.006 
(0.033) 

-0.052 
(0.001) 

-0.063 
(0.102) 

0.086 
(0.027) 

0.742 
(0.218) 

21Ĝ  -0.181 
(0.096) 

0.266 
(0.017) 

0.112 
(0.027) 

0.501 
(0.001) 

-0.029 
(0.030) 

0.052 
(0.031) 

0.009 
(0.205) 

22Ĝ  0.779 
(0.090) 

0.244 
(0.077) 

0.928 
(0.032) 

0.908 
(0.001) 

0.911 
(0.109) 

0.815 
(0.031) 

0.143 
(0.222) 

Log-L -3758.781 -2642.024 -2406.334 -3479.952 -7388.717 -2685.579 -2450.568 
LR-Test1 844.526 74.282 330.004 1079.938 9821.802 341.782 10.514 
LR-Test2 2991.010 156.424 68.93 1377.788 2048.738 329.008 171.142 

FuS  -0.164 -0.371 0.396 0.197 0.012 -0.629 0.133 

FuΚ  4.416 7.788 5.933 5.303 4.759 5.857 5.059 

( )10FuQ  18.548 15.124 22.251 25.847 8.183 14.296 25.334 

( )102
FuQ  78.387 59.569 10.380 26.393 15.734 14.370 7.138 

CaS  -0.016 -0.089 0.715 0.219 0.001 -0.410 0.197 

CaΚ  4.170 6.121 7.815 5.393 4.584 4.728 5.626 

( )10CaQ  15.119 13.049 23.986 25.041 10.717 24.058 30.590 

( )102
CaQ  68.298 40.263 5.585 40.785 27.141 16.145 2.317 

 
Notes: Numbers in parentheses are standard errors; LR-Test1 denotes likelihood ratio test involving first 
restriction: 01212 == ga and LR-Test2 denotes likelihood ratio test involving second 

restriction: 02121 == ga ; represents skewness of standardised residuals and S Κ represents kurtosis of 
standardised residuals with subscripts “Fu” and “Ca” denoting the moments coming from futures and cash equation 

respectively;  and  show the Box-Pierce statistics for tenth-order serial correlations in the residuals 
and squared normalized residuals respectively, with the subscripts “Fu” and “Ca” denoting the moments coming 
from futures and cash equation, respectively. 

( )10Q ( )102Q

 
Appendix B 

 
Figure 1: Futures Returns Series 
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Figure 1: Futures Returns Series (continued) 
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Figure 2: Cash Returns Series 
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Figure 2: Cash Returns Series (continued) 
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Figure 3: Basis Series  
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Figure 3: Basis Series (continued) 
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Figure 4: Hedge Ratios from bivariate GARCH Models with Square Root Constraint  
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Figure 4: Hedge Ratios from bivariate GARCH Models with Square Root Constraint (continued) 
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Figure 5: Hedge Ratios from bivariate GARCH Models with Unity Constraint 
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Figure 5: Hedge Ratios from bivariate GARCH Models with Unity Constraint (continued) 
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