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1. Introduction

Kunitomo and Takahashi (1995, 1998, 2001, 2003a) have introduced and de-
veloped a new methodology, called the Small Disturbance Asymptotics, for the
valuation problem of financial contingent claims when the underlying asset prices
follow a general class of continuous Itô processes. This method can be appli-
cable to a wide range of valuation problems including complicated contingent
claims associated with the Black-Scholes model and the term structure model of
interest rates in the Heath-Jarrow-Morton (HJM) framework. They have given
rather simple formulae which are useful for various valuation problems of con-
tingent claims in financial economics. Mathematically, the asymptotic expansion
approach can be rigorously justified by an infinite dimensional analysis of the
Malliavin-Watanabe Calculus in stochastic analysis, which was essentially devel-
oped by Watanabe (1987) as a theory of probability and subsequently refined by
Yoshida (1992a, 1992b) for statistical applications 1 . Therefore the asymptotic
expansion method we shall discuss is not an ad hoc approximation method and it
is quite different from some numerical approximation methods in the sense that
we have a firm mathematical basis.

In this paper, we first give a brief summary of the asymptotic expansion
approach based on the Malliavin-Watanabe Calculus or the Watanabe-Yoshida
theory for applications in finance. Then we shall discuss three applications of
the asymptotic expansion approach, which are (i) the dynamic optimal portfolio
insurance problem, (ii) the improved Monte Carlo method with jumps and average
options, (iii) the valuation of interest rates contingent claims in the Heath-Jarrow-
Morton (HJM) model. Since it has been known in mathematical finance that
these problems are difficult to be solved, it may be appropriate to use these
examples for illustrating the power and usefulness of the asymptotic expansion
approach in the area of mathematical finance. Among these problems, the first
and second applications are closely related to the formulation and results by
Takahashi and Yoshida (2001a, 2001b), but we shall show some new results on
the portfolio insurance problem. Also the third application is closely related to
the study of Kunitomo and Takahashi (2001), but we shall show that some of
their analysis can be simplified considerably by means of changing measures.

In each problem we shall discuss in subsequent sections it has been known in
mathematical finance and financial industries that the explicit solutions of the
problems can be hardly obtainable unless some strong assumptions are made on
the underlying stochastic processes and the utility functions. For instance, the
explicit solution of the dynamic optimal portfolio optimization as mentioned in
the problem of (i) has been known only for very special cases. It is also true for
the problem of (ii), and it may be one of the reasons why some past studies on
the related topics in the finance literatures have used some simple stochastic pro-
cesses or utility functions without explicit justifications. However, we shall show
in this paper that the asymptotic expansion method gives useful expressions both
in theory as well as in practice including numerical analyses. Although we shall

1 Alternatively, we shall call it the Watanabe-Yoshida theory based on the Malliavin Calculus.
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discuss some examples in this paper, the asymptotic expansion method we are
developping is very general and there are many possible applications. Additional
important applications by the use of the asymptotic expansion approach in fi-
nancial problems have been reported in Kunitomo and Takahashi (2003b), Muroi
(2003), and Takahashi and Saito (2003).

In Section 2 we give a summary of the asymptotic expansion approach in
mathematical finance. Then in Sections 3-5, we shall discuss three important
applications of the asymptotic expansion approach in finance. Finally, some con-
cluding remarks will be given in Section 6.

2. The Asymptotic Expansion Approach

For the Black-Scholes economy, Takahashi (1999) has systematically investigated
the valuation problem of various contingent claims when the vector of n asset
prices S(t) = (Si(t)) (i = 1, · · · , n ; 0 ≤ t ≤ T < +∞) follows the stochastic
differential equation :

(2.1) Si(t) = Si(0) +
∫ t

0
µi(S(v), v)dv +

d∑
j=1

∫ t

0
σ∗

ij(S(v), v)dBj(v) ,

where n × 1 vector µ(S(v), v) = (µi(S(v), v)) and n × d matrix σ∗(S(v), v) =
(σ∗

ij(S(v), v)) are the instantaneous mean and the volatility functions, respec-
tively, and {Bj(v)} are Brownian motions with respect to a complete filtered
probability space 2 (Ω,F , {Ft}t∈[0,T ], P ) and T < +∞ .

In this Black-Scholes economy, we have to change the underlying measure be-
cause of the no-arbitrage theory 3 in finance. Then we can consider the situation
when S(ε)(t) satisfies

(2.2) S(ε)(t) = S(0) +
∫ t

0
r(S(ε)(v), v)S(ε)(v)dv + ε

∫ t

0
σ(S(ε)(v), v)dB∗(v) ,

where S(ε)(t)(= (S
(ε)
i (t))) is an n × 1 vector with the parameter ε (0 < ε ≤ 1),

σ(S(ε)(v), v) (n× d) is the volatility term, r(·, ·) is the risk free (positive) interest
rate, and B∗(v)(= (B∗

i (v))) is a d × 1 vector of the standard Brownian motion
with respect to the probability measure Q, which is equivalent to P . It has been
known that under a set of assumptions on r(·, ·) and σ(·, ·) the solution {S(ε)(t)}
for (2.2) given ε is a well-behaved functional of the Brownian motions {B∗(t)} .
Then the Small Disturbance Asymptotic Theory under the no-arbitrage theory can
be constructed by considering the situation 4 when ε → 0 and we can develop

2 We use the standard augumentation of the original probability spaces and the standard
conditions on filteration in this paper without any explicit expositions.

3 We have omitted the detailed discussions of the standard argument on the measure change
problem in mathematical finance. See Section 3 of this paper or Karatzas and Shereve (1998),
for instance.

4 The limit of stochastic process S(ε) is the solution of an ordinary differential equation when
ε → 0 in this formulation. There can be an alternative formulation such that the limit is the
solution of a stochastic differential equation. See Kim and Kunitomo (1999), and Kunitomo
and Kim (2001) on this formulation and some applications in financial problems.
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the valuation method of contingent claims based on {S(ε)(t)}.
For the term structure model of interest rates in the HJM framework (Heath,

Jarrow, and Morton (1992)), let P (s, t) denote the price of the government dis-
count bond at s with maturity date t (0 ≤ s ≤ t ≤ T < +∞). When it is
continuously differentiable with respect to t and P (s, t) > 0 for 0 ≤ s ≤ t ≤ T,
the instantaneous forward rate at s for future date t (0 ≤ s ≤ t ≤ T ) is given by

(2.3) f(s, t) = −∂ log P (s, t)

∂t
.

Let ΓT = {(s, t) | 0 ≤ s ≤ t ≤ T} be a compact set in R2 and (Ω,F , {Ft}t∈[0,T ], Q)
be a filtered probability space with T < +∞ . The no-arbitrage condition in
mathematical finance requires the drift restrictions on a family of forward rates
processes {f(s, t)} for 0 ≤ s ≤ t ≤ T to follow the stochastic integral equation:

(2.4)

f(s, t) = f(0, t) +
∫ s

0

m∑
i=1

[
σ∗

i (f(v, t), v, t)
∫ t

v
σ∗

i (f(v, y), v, y)dy
]
dv

+
m∑

i=1

∫ s

0
σ∗

i (f(v, t), v, t)dB∗
i (v) ,

where f(0, t) are non-random initial forward rates, {σ∗
i (f(v, t), v, t); i = 1, · · · , m}

are the volatility functions, and {B∗
i (v) ; i = 1, · · · , m} are Brownian motions

with respect to the probability measure Q, which is equivalent 5 to the observed
probability measure P . When f(s, t) is continuous at s = t for 0 ≤ s ≤ t ≤ T, the
instantaneous spot interest rate process can be defined by r(t) = limt→s f(s, t) .

In this framework of stochastic interest rate economy, Kunitomo and Taka-
hashi (1995, 2001) have investigated the valuation of contingent claims when a
family of forward rate processes obey :
(2.5)

f (ε)(s, t) = f(0, t) + ε2
∫ s

0

m∑
i=1

[
σi(f

(ε)(v, t), v, t)
∫ t

v
σi(f

(ε)(v, y), v, y)dy
]
dv

+ ε
m∑

i=1

∫ s

0
σi(f

(ε)(v, t), v, t)dB∗
i (v) ,

where 0 < ε ≤ 1 and we have used the notation f(0, t) = f (0)(0, t) . The volatility
functions {σi(f

(ε)(s, t), s, t); i = 1, · · · , m} depend not only on s and t, but also
on f (ε)(s, t) in the general case. The instantaneous spot interest rate process can
be defined by

(2.6) r(ε)(t) = lim
t→s

f (ε)(s, t) .

It has been known that under a set of assumptions on {σi(·, ·)} the solution
{f (ε)(s, t)} for (2.5) given ε is a well-behaved functional of the Brownian motions

5 The problem of measure change for this problem has been investigated by Heath, Jarrow,
and Morton (1992) and we use another measure change in Section 5.
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{B∗
i (t)} . Then the Small Disturbance Asymptotic Theory can be constructed by

considering the situation when ε → 0 and we can develop the valuation method
of contingent claims based on {f (ε)(s, t)} and the discount bond prices

(2.7) P (ε)(t, T ) = exp[−
∫ T

t
f (ε)(t, u)du] .

For the rigorous aspects of the asymptotic expansion approach, Kunitomo
and Takahashi (2003a) have already discussed the validity of the asymptotic ex-
pansion approach along the line developed by Yoshida (1992a, 1992b) on the
Malliavin-Watanabe Calculus in stochastic analysis. We have applied the asymp-
totic expansion method based on Malliavin Calculus on continuous-time stochas-
tic processes to the valuation problem of financial contingent claims along the line
developed by Watanabe (1987) in Malliavin Calculus and subsequently refined
by Yoshida (1992a, 1992b) for statistical applications. However, we should note
that the continuous-time stochastic processes appeared in financial economics
are not necessarily Markovian in the usual sense and there can be some problems
to be solved in stochastic analysis. Also the mathematical devices used in the
Watanabe-Yoshida theory have not been standard for finance as well as in many
applied fields due to the recent mathematical developments involved. In fact it
was one of the main motivations for the studies by Kunitomo and Takahashi
(2001,2003a). For the original expositions of the Malliavin-Watanabe Calculus or
the Watanabe-Yoshida theory, see Watanabe (1984, 1987), Chapter V of Ikeda
and Watanabe (1989), Yoshida (1992a, 1992b) and Shigekawa (1998).

3. Optimal Portfolio Insurance Problem

In this section we apply the asymptotic expansion method to the evaluation prob-
lem of dynamic optimal portfolio insurance. In particular, we shall investigate the
problem of constructing the dynamic portfolio insurance. In the standard litera-
ture of finance it has been known that the explicit solution of the dynamic optimal
portfolio cannot be obtained except for very special class of utility functions or the
case when the stochastic processes of prices are the log-normal diffusion. How-
ever, we shall show that it is possible to derive the solutions of dynamic portfolio
insurance problem under the more general situations, which are approximately
exact in the Malliavin-Watanabe sense and their numerical values are accurate
for practical purposes in finance.

3.1 Formulation of Optimal Portfolio Problem

Let T (T > 0)be a finite investment horizon and (Ω,F , {Ft}0≤t≤T , P ) be a com-
plete filtered probability space. Let 6 also B(t) = (B1(t), · · · , Bd(t))

′
(0 ≤ t ≤ T )

be Rd−valued Brownian motion with respect to {Ft} , Si(t) (i = 1, · · · , n) be the
i−th risky asset at t ∈ [0, T ] and S0(t) be the price of safe asset at t ∈ [0, T ] . We

6 In this paper we use the notation A
′
as the transpose of any matrix (or vector) A .
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assume that the asset price processes follow

(3.1)
dSi = Si(t)[bi(t)dt +

d∑
j=1

σij(t)dBj(t)] (i = 1, · · · , n)

dS0 = r(t)S0(t)dt ,

where the initial conditions are given by Si(0) = si and S0(0) = 1 with n ≥ d .
We assume that r(t), b(t) = (bi(t)), and σij(t) (1 ≤ i ≤ n, 1 ≤ j ≤ d) are bounded
and progressively measurable with respect to the filtration {Ft} , and an n × d
matrix σ(t) = (σij(t)) is non-degenerate (in the sense of Lebesgue-almost-every
t ∈ [0, T ], almost surely). We shall consider the complete standard market in the
sense of Chapter 3 of Karatzas and Shreve (1998) and consider the case when
n = d in this section without loss of generality.

The stochastic movement of the total asset value W (t) for an investor can be
written as

(3.2) dW (t) = [r(t)W (t) − c(t)]dt + π(t)
′
[(b(t) − r(t)1)dt + σ(t)dB(t)] ,

where 1 is an Rd− vector of 1’s in its all components, c(t) is the (nonnegative)
consumption level at t, π(t) = {πi(t)}i=1,···,d is the portfolio for an investor. In or-
der to exclude the explosive solutions for the problem, we impose the integrability
condition on the strategy for an investor that c(t) and π(t) satisfy

(3.3)
∫ T

0
{|π(t)|2 + c(t)}dt < ∞ (a.s.) .

Let A(W0) be the set of stochastic processes (π, c) such that W (t) ≥ 0 (t ∈
[0, T ]) given the initial condition W (0) = W0 . Then the solution for the utility
maximization problem at T (the terminal period) can be written as

(3.4) sup
(π,c)∈A(W )

E[U(W (T ))] ,

where E[ · ] denotes the expectation with respect to P and U( · ) denotes the
utility function.

This problem is a typical one as the dynamic optimization problem in math-
ematical finance. We should note that other dynamic optimization problems can
be handled in similar ways. In the dynamic optimal portfolio problem it has been
usually assumed to have a set of conditions on the von-Neumann-Morgenstern
utility U : (0,∞) −→ R, which 7 is a C2−class, strictly increasing, and strictly
concave function with the terminal conditions U(0+) = limc↓0 U(c) ∈ [−∞,∞) ,
U (′)(0+) = limc↓0 U (′)(c) = ∞ , U (′)(∞) = limc→∞ U (′)(c) = 0 .

Let define the Rd-valued market price of risk (progressively measurable and
bounded stochastic process) θ(t) (t ∈ [0, T ]) by

(3.5) θ(t) = σ(t)−1[b(t) − r(t)1] .

7 We use the notation that (′) is differentiation in order to distinguish it from the transpose
notation.

6



We can also define the probability measure Q, which is equivalent to P, by

(3.6) Q(A) = E[1AZ(T )] A ∈ FT ,

where the stochastic process {Z(t)} is given by

(3.7) Z(t) = exp
(
−
∫ t

0
θ(s)

′
dB(s) − 1

2

∫ t

0
|θ(s)|2ds

)
(0 ≤ t ≤ T ) .

Then we nitice that under the Novikov condition E[exp
(∫ t

0 |θ(s)|2ds
)
] < ∞ , the

stochastic process {Z(t)} is an exponential martingale and

(3.8) B∗(t) = B(t) +
∫ t

0
θ(u)du

is the standard Brownian motion under the transformed measure Q .
It has been known (Chapter 3 of Karatzas and Shreve (1998)) that the solution of
the optimal asset value for this problem can be written as W (T ) = I(Y(W0)H(T ))
and the value function

(3.9) V (W0) = sup
(π,c)∈A(W )

E[U(W (T ))]

can be derived as the solutions of V (W0) = G(Y(W0)) and G(y) = E[U(I(yH(T )))]
(0 < y < ∞) with c(t) = 0 (0 ≤ t ≤ T ), where I ∈ C1((0,∞); (0,∞)) is the
inverse function of marginal utility function U (′)(·). The function Y(·) is contin-
uously decreasing and it is the inverse function of

(3.10) X (y) = EQ[β(T )I(yH(T ))] = E[H(T )I(yH(T ))] (0 < y < ∞) ,

provided that X (y) is a one-to one mapping from (0,∞) into (0,∞), and also we
have used the notations such as β(t) = 1/S0(t) for the discount factor, H(t) =
β(t)Z(t) for the state price density at t, and EQ[·] for the expectation operator
with respect to the measure Q . In addition to the standard conditions on the
utility function U( · ) we also need to impose the restriction that for some positive
constants γ1, γ2 and K we have

(3.11) I(y) + |I (′)(y)| ≤ K(yγ1 + y−γ2), 0 < y < ∞ .

By using this formulation of the optimal portfolio problem, Ocone and Karatzas
(1991) have obtained the representation of dynamic optimal portfolio as
(3.12)

π
′
(t)σ(t)

= − 1
β(t)

{
θ
′
(t)EQ[β(T )Y(W0)H(T )I (′)(Y(W0)H(T ))|Ft]

+ EQ

[
β(T )φ(′)(Y(W0)H(T ))

(∫ T
t Dtr(u)du +

d∑
α=1

∫ T

t
{Dtθα(u)}dB∗

α(u)

)
|Ft

]}
,

where φ(y) = yI(y) (0 < y < ∞) , and Dtr(u) and Dtθα(u) (α = 1, 2, · · · , d)
are the Malliavin derivatives of r(u) and θα(u) (both are functionals of {B(t)}),
respectively.
For the mathematical rigor in the derivation of (3.12), we need to assume a set
of regularity conditions on θ(·) and r(·) such that
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1. an R−valued bounded stochastic process r(·) is progressively measurable
and r(s, ·) ∈ D1

1 (a.e. s ∈ [0, T ]) , where D1
1 is a Banach space (the notation

Ds
p ((p, s) = (1, 1)) was taken from Chapter V of Ikeda and Watanabe

(1989)). Also (s, ω) → Dr(s, ω) ∈ (L2([0, T ]))d is progressively measurable
with

(3.13) ‖r‖a
1,1 = E


(∫ T

0
|r(s)|2ds

) 1
2

+

(∫ T

0
‖Dr(s)‖2ds

) 1
2


 < ∞ ,

where ‖ · ‖a denotes the L2([0, T ]) norm, ‖Dr(s)‖2 ≡ ∑d
i=1 ‖Dir(s)‖2, Di

t is
the Malliavin derivative with respect to the i−th (i = 1, · · · , d) component,
and ‖Dir(s)‖ = [

∫ T
0 |Di

tr(s)|2dt]1/2 .

2. an Rd−valued bounded stochastic process θ is progressively measurable and
θ(s, ·) ∈ (D1

1)
d (a.e. s ∈ [0, T ]) and (s, ω) → Dθ(s, ω) ∈ (L2([0, T ]))d2

is
progressively measurable with

(3.14) ‖θ‖a
1,1 = E



(∫ T

0
|θ(s)|2ds

) 1
2

+

(∫ T

0
‖Dθ(s)‖2ds

) 1
2


 < ∞ ,

where ‖Dθ(s)‖2 =
∑d

i,j=1 ‖Diθj(s)‖2 .

3. For some p > 1 we assume

(3.15) E


(∫ T

0
‖Dr(s)‖2ds

) p
2


 < ∞, E


(∫ T

0
‖Dθ(s)‖2ds

) p
2


 < ∞ .

We notice that under the above technical conditions any Brownian functional F
in D1

1 can be written as 8

(3.16)
F = E[F ] +

∫ T
0 E[DtF |Ft]

′
dB(t)

= EQ[F ] +
∫ T
0 EQ[DtF − F

∫ T
t Dtθ(s, ω)dB∗(s)|Ft]

′
dB∗(t) ,

where E[ · |Ft] denote the conditional expectation operator, and the Brownian
motions {B∗(t)} are given by (3.8).
Then by using (3.6) and (3.7) the state price density (3.16) can be explicitly
rewritten as

F = E[FZ(T )] +
∫ T
0

1
Z(t)

E[Z(T )DtF |Ft]
′
dB∗(t)

−
∫ T

0

1

Z(t)
E

[
Z(T )F

{∫ T

t

d∑
α=1

Dtθα(u)dBα(u) +
∫ T

t

d∑
α=1

θα(u)Dtθα(u)du

}
|Ft

]′

dB∗(t).

8 In mathematical finance the next result has been known as the Ocone-Clark formula ob-
tained by Ocone and Karatzas (1991).
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By setting the optimal asset value and its discounted optimal asset value be
W (T ) = I(Y(W0)H(T )) and F = I(Y(W0)H(T ))/S0(T ) , we have the expression
of the optimal portfolio as
(3.17)

π(t)
′
σ(t) = −1

H(t)
E[H2(T )Y(W0)I

(′)(Y(W0)H(T ))|Ft]θ
′
(t)

− 1
H(t)

E
[
H(T )φ(′)(Y(W0)H(T ))

{∫ T
t Dtr(u)du

+
d∑

α=1

∫ T

t
Dtθα(u)dBα(u) +

d∑
α=1

∫ T

t
{Dtθα(u)}θα(u)du

}
|Ft

]
.

Since the optimal asset value at period t can be expressed as

(3.18) W (t) =
1

H(t)
E[H(T )I(Y(W0)H(T ))|Ft] ,

we have the relation

−1
H(t)

E[H2(T )Y(W0)I
(′)(Y(W0)H(T ))|Ft]θ

′
(t)

= W (t)θ
′
(t) − 1

H(t)
E[H(T )φ(′)(Y(W0)H(T ))|Ft]θ

′
(t) .

Then we have the representation for the dynamic optimal portfolio under the
probability measure P as
(3.19)

π(t)
′
σ(t)

= W (t)θ
′
(t) − E

[
H(T )
H(t)

φ(′)(Y(W0)H(T ))|Ft

]
θ
′
(t)

−E
[

H(T )
H(t)

φ(′)(Y(W0)H(T ))×(∫ T
t Dtr(u)du +

d∑
α=1

{∫ T

t
{Dtθα(u)}dBα(u) +

∫ T

t
{Dtθα(u)}θα(u)du

})
|Ft

]
,

where W (t) is the optimal asset value at t which can be determined by (3.18).
Hence the dynamic optimal portfolio strategy have a mathematical representation
with the Malliavin derivatives. It has been known, however, that the dynamic
optimal portfolio π(t) can be solved explicitly only for special cases when the
utility function is of the log-form or the case when the asset price process is of
the log-normal form.

In order to investigate this problem further, we consider the situation that the
return rate of the safe asset r(u) and the risky asset prices Si(t) (i = 1, · · · , d), and
the market price of risk θ(u) are function of the state variables X(ε)

u . We denote
r(u) = r(X(ε)

u ) and θ(u) = θ(X(ε)
u ) with the conditions r ∈ C∞

b (Rd;R+) and
θ ∈ C∞

b (Rd;Rd) . Also we assume that X(ε)
u is bounded and the d-dimensional

process X(ε)
u follows the stochastic differential equation

(3.20) dX(ε)
u = V0(X

(ε)
u , ε)du + V (X(ε)

u , ε)dB(u) (u ∈ [t, T ]) ,

9



where the initial condition is given by X
(ε)
t = x and the drift and diffusion terms

satisfy the conditions V0 ∈ C∞
b (Rd × (0, 1];Rd) , and V = (Vβ)d

β=1 ∈ C∞
b (Rd ×

(0, 1];Rd⊗Rd) with ε ∈ (0, 1] . Here we use the notation that C∞
b (Rd× (0, 1]; E)

is the class of smooth functions such that all derivatives ∂n
x ∂m

ε f(x, ε) n ∈ Zd
+,

|n| ≥ 1, m ∈ Z+ are bounded. We note that if the drift terms and the diffusion
terms depend on t, we can treat that situation by adding the time as one of the
state variables and derive the corresponding representation in the form of (3.20).

Let a d× d matrix valued process Y
(ε)
t,u be the solution of the stochastic differ-

ential equation satisfying

(3.21) dY
(ε)
t,u =

d∑
α=0

∂xVα(X(ε)
u , ε)Y

(ε)
t,u dBα(u) ,

where the initial condition is given by Y
(ε)
t,t = Id and ∂xVα(·, ·) denotes the usual

derivatives with respect to the first elements.
We write the Malliavin derivative of X(ε)

u as DtX
(ε)
u (u ≥ t) , which is given by

(3.22) DtX
(ε)
u = Y

(ε)
t,u V (X

(ε)
t , ε) = Y

(ε)
t,u V (xt, ε) .

Also for any f ∈ C∞
b (Rd;R) we have

(3.23) Dtf(X(ε)
u ) = ∂f(Xε

u)[DtX
(ε)
u ] = ∂f(X(ε)

u )Y
(ε)
t,u V (xt, ε) (u ≥ t) ,

where ∂f(·) means the standard differentiation. Then by using these relations in
the Markovian setting we have another representation of π(t) as

(3.24)

π
′
(t)σ(x) = W (t)θ

′
(x) −E

[
Ht,T φ(′)(YHt,T )

]
θ
′
(x)

− E
[
Ht,Tφ(′)(YHt,T )

(∫ T
t ∂r(X(ε)

u )Y
(ε)
t,u V (x, ε)du

+
d∑

α=1

∫ T

t
∂θα(X(ε)

u )Y
(ε)
t,u V (x, ε)dBα(u)

+
d∑

α=1

∫ T

t
θα(X(ε)

u )∂θα(X(ε)
u )Y

(ε)
t,u V (x, ε)du

)]
,

where we have used the notations Y = Y(W0)Ht , W (t) is the asset value at t ,
Ht,T is given by
(3.25)

Ht,T = H(T )
H(t)

= exp
(
− ∫ T

t θ(X(ε)
u )

′
dB(u) − 1

2

∫ T
t |θ(X(ε)

u )|2du − ∫ T
t r(X(ε)

u )du
)

,

and Y is implicitly determined by W (t) = E[Ht,T I(YHt,T )] .
For the ease of our analysis in this subsection, we further consider the situation
when the diffusion function V (·, ·) satisfies

[Assumption 3.1] V (·, 0) = 0 .

This is the deterministic limit condition in the sense that the limit of the state
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vector as ε → 0 is non-stochastic. It can be relaxed at a certain cost of com-
plications, but we shall not discuss the analyses of the resulting stochastic limit
case in this paper. Under Assumption 3.1, the limit of X(ε)

u , which is denoted by
X(0)

u (u ∈ [t, T ]) follows the ordinary differential equation

(3.26) X(0)
u = x +

∫ u

t
V0(X

(0)
s , 0)ds .

Also we set Yt,s = Y
(0)
t,s as the limit matrix-valued process and then we find that

Yt,s follows the ordinary differential equation

(3.27) dYt,s = ∂xV0(X
(0)
s , 0)Yt,sds s ∈ [t, T ] ,

where the initial condition is given by Yt,t = Id .
By using the more general formulation of dynamic optimal portfolio problem,
Takahashi and Yoshida (2001a) have presented the details of applications of op-
timal dynamic porfolios as well as the related numerical analyses.

3.2 Dynamic Portfolio Insurance

The main purpose of this section is to apply our general formulation of the dy-
namic optimal portfolio problem to the dynamic optimal ”portfolio insurance”.
In particular, we consider the situation when the utility function U(x) satisfies
the condition that for some constant x̄ > 0 U : R → (−∞,∞) (x > x̄) is a
C2-class, strictly monotonically increasing, and strictly concave function. In this
case we can interpret the floor value x̄ as the minimum asset value insured, the
problem becomes the dynamic optimal portfolio with the insured portfolio (or
portfolio insurance), which has been important in the dynamic asset allocation
problem. Although it has been known to be difficult to obtain the explicit solu-
tion for this problem, we shall derive some useful formulae for dynamic optimal
portfolio insurance.

We first consider the case when the utility function U(x) (x ≥ 0) is given by

(3.28) U(x) = log (x − x̄) (x > x̄ ≥ 0) .

It is possible to interpret that x̄ is the minimum level insured and the maxi-
mization problem is to maximize the expected growth rate of asset value above
certain level. This target criterion given the floor level of wealth has been often
reasonable in practical applications. Then the problem is to maximize

(3.29) maxE

[
1

T
log

(
W (T )− W̄

W (0)

)]
.

For the present utility function we have I(y) = x̄+1/y, φ(y) = yx̄+1, φ(′)(y) = x̄
and then the optimal portfolio can be given by

(3.30)

π
′
(t) = (W (t) − x̄E[Ht,T ])θ

′
(x)σ−1(x)

− x̄E

[
Ht,T

(∫ T
t ∂r(X(ε)

u )Y
(ε)
t,u du +

d∑
α=1

∫ T

t
∂θα(X(ε)

u )Y
(ε)
t,u dBα(u)

+
d∑

α=1

∫ T

t
θα(X(ε)

u )∂θα(X(ε)
u )Y

(ε)
t,u du

)]
V (x, ε)σ−1(x) .
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Under the present Markovian formulation it is possible to apply the asymptotic
expansion method to each terms on the right-hand side of (3.30). We first expand
the random variable Ht,T and other terms under the probability measure P . Then
by using the exponential martingale

(3.31) M
(1)
t,T = exp[−

∫ T

t
θ(X(0)

u )
′
dB(u) − 1

2

∫ T

t
|θ(X(0)

u )|2du] ,

we change the probability measure from P to another one (say Q
(0)
t ) given Ft at

t and evaluate the conditional expectation of each terms. For instance, we have

(3.32) E[Ht,T ] = e−
∫ T

t
r(0)(u)du

(
1 − ε

∫ T

t
∂r(0)(u)D̂(t, u)du

)
+ o(ε) ,

where r(0)(u) = r(X(0)
u ) and

D̂(t, u) = Yt,u

∫ u

t
Y −1

t,s [∂εV
(0)
0 (s)ds −

d∑
α=1

∂εV
(0)
α (s)θ(0)

α (s)ds] .

Also by using the asymptotic expansion method we can obtain
(3.33)

E
[
Ht,T

(∫ T
t ∂r(X(ε)

u )Y
(ε)
t,u du

+
d∑

α=1

∫ T

t
∂θα(X

(ε)
u )Y

(ε)
t,u dBα(u) +

d∑
α=1

∫ T

t
θα(X(ε)

u )∂θα(Xε
u)Y

(ε)
t,u du

)]
V (x, ε)

= ε
[
e−
∫ T

t
r(0)(u)du ∫ T

t ∂r(0)(u)Yt,udu
]
∂εV (x, 0) + o(ε) .

Therefore, we have the asymptotic expansion of the dynamic optimal portfolio as
π(t) = π(0)(t) + επ(1)(t) + o(ε) , where

(3.34) π(0)(t) = σ(x)−1′θ(x)[W (t) − x̄ e−
∫ T

t
r(0)(s)ds] .

In particular, when r(·) and θ(·, ·) are deterministic, we have π(t) = π(0)(t) and
this result corresponds to the one reported in Page 116 of Karatzas and Shreve
(1998). When they are not deterministic in the more general cases, however, we
need some extra terms. Furthermore, if we do not have any floor on the asset
(i.e. x̄ = 0) in the deterministic case, it corresponds to the well-known result in
the finance literatures.

As the second example we consider the power-type utility function which is
given by

(3.35) U(x) =
(x − x̄)δ

δ
(x > x̄) ,

where we impose the terminal condition that limξ↓0 ξδ/δ = 0 with δ < 1(δ 
= 0) .

In this case we have I(y) = x̄ + y( −1
1−δ), φ(y) = yx̄ + y( −δ

1−δ), φ(′)(y) = x̄ −

12



(
δ

1−δ

)
y( −1

1−δ) by using our notations in this section. Then, after some computation,

the optimal portfolio (3.24) can be alternatively represented as
(3.36)
π

′
(t) = 1

(1−δ)
(W (t) − x̄E[Ht,T ])θ

′
(x)σ−1(x)

− E

[
Ht,Tφ(′)(YHt,T )

(∫ T
t ∂r(X(ε)

u )Y
(ε)
t,u du +

d∑
α=1

∫ T

t
∂θα(X(ε)

u )Y
(ε)
t,u dBα(u)

+
d∑

α=1

∫ T

t
θα(X(ε)

u )∂θα(X(ε)
u )Y

(ε)
t,u du

)]
V (x, ε)σ−1(x) .

In order to express the resulting solution in a more concrete form for the present
application, we define J by

J =

(∫ T
t ∂r(X(ε)

u )Y
(ε)
t,u du +

d∑
α=1

∫ T

t
∂θα(X(ε)

u )Y
(ε)
t,u dBα(u)

+
d∑

α=1

∫ T

t
θα(X(ε)

u )∂θα(X(ε)
u )Y

(ε)
t,u du

)
,

and then the second term of (3.36) is given by

(3.37) E
[
Ht,Tφ(′)(YHt,T )J

]
= x̄E[Ht,TJ ] −

(
δ

1 − δ

)
Y( −1

1−δ)E
[
H

( −δ
1−δ)

t,T J
]

,

and Y( −1
1−δ) can be re-expressed as

(3.38) Y( −1
1−δ ) =

W (t) − x̄E[Ht,T ]

E
[
H

( −δ
1−δ )

t,T

] .

In order to evaluate the first term of (3.37), we need to change the measure from

P to Q
(0)
t given Ft at t as in the first example. For the present case we also need

to use the measure change by using the exponential martingale

(3.39) M
(2)
t,T = exp[

δ

1 − δ

∫ T

t
θ(X(0)

u )
′
dB(u) − 1

2
(

δ

1 − δ
)2
∫ T

t
|θ(X(0)

u )|2du] .

Then by expanding the first and second terms of (3.37) stochastically with respect
to ε under the transformed measures, we have the relations

(3.40) x̄E[Ht,TJ ]V (x, ε) = εx̄

[
e−
∫ T

t
r(0)(u)du

∫ T

t
∂r(0)(u)Yt,udu

]
∂εV (x, 0) + o(ε) ,

and
(3.41) (

δ
1−δ

)
Y( −1

1−δ)E
[
H

( −δ
1−δ)

t,T J
]
V (x, ε)

= ε
(

δ
1−δ

)(
W (t) − x̄e−

∫ T

t
r(0)(u)du

)

×
(∫ T

t ∂r(0)(u)Yt,udu + 1
(1−δ)

d∑
α=1

∫ T

t
θ(0)

α (u)∂θ(0)
α (u)Yt,udu

)
∂εV (x, 0) + o(ε) .

13



Hence in this example we have the asymptotic expansion of the dynamic optimal
portfolio as π(t) = π(0)(t) + επ(1)(t) + o(ε) , where

(3.42) π(0)(t) =
1

1 − δ
σ(x)−1′θ(x)[W (t) − x̄ e−

∫ T

t
r(0)(s)ds] .

In particular, when r(·) and θ(·, ·) are deterministic, we have π(t) = π(0)(t) and
this result corresponds to the one reported in Page 106 of Karatzas and Shreve
(1998). When they are not deterministic in the more general cases, however, we
need some extra terms. Furthermore, if we do not have any floor on the asset (i.e.
x̄ = 0) in the deterministic case, then our result corresponds to the well-known
result in finance literatures. The parameter 1 − δ in (3.42) corresponds to the
measure of relative risk aversion which has important meanings for economics
and finance.

4. Application to Monte Carlo Method

The Monte Carlo method has been extensively used in financial applications.
The main reason has been in the fact that the probabilistic models in real fi-
nancial applications have become complicated except the simple Black-Scholes
model and then we tend to rely on numerical computations in their analyses.
Also the computational ability in modern computer technology has been dramat-
ically improved and the analyses of many unsolved problems have become feasible
computationally. Some may think that the Monte Carlo method is quite different
from the asymptotic expansion approach because we have pursued to obtain the
solutions of problem in the explicit form. In this section we shall show that in
fact this is not the case and we can use the asymptotic expansion approach to
improve the standard Monte Carlo method substantially.

4.1 Improving the Monte Carlo Method

We first explain the formulation and our method of improving the standard Monte
Carlo method. Let the filtered probability space (Ω,F , {Ft}t∈[0,T ], Q) be the stan-
dard Wiener-Poisson space equipped with the d-dimensional Brownian motion B
and the stationary Poisson random measure on [0, T ] × E , which are mutually
independent. Let also (E, E) be a measurable space and the Poisson random
measure µ equipped with the intensity measure λ̂(dt, dx) and we write

(4.1) λ̂(dt, dx) = dt × ν(dx) ,

where ν is a σ−finite measure on (E, E) and

(4.2) µ̃(dt, dx) = µ(dt, dx) − λ̂(dt, dx)

denotes the the compensated Poisson measure.
Let the underlying stochastic price process X(ε)

u (t, y) (t ≤ u ≤ T, y ∈ Rn) satisfy
the stochastic differential equation

(4.3)
X(ε)

u (t, y) = y +
∫ u
t V0(X

(ε)
s−(t, y), ε)ds +

∫ u
t V (X

(ε)
s−(t, y), ε)dB(s)

+
∫ u
t

∫
E C(X

(ε)
s−(t, y), x, ε)µ̃(ds, dx) .
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In order to have the unique solution for (4.3) we need a set of conditions on
V0(x) (n × 1) , V (X) (n × d) , and C(y, x) (n × 1) such that there exist positive
constants K1 and K2 with

(4.4) ‖V (x)‖2 + ‖V0(x)‖2 +
∫
Rn

‖C(x, u)‖2ν(du) ≤ K1[1 + ‖x‖2] ,

(4.5)

‖V (x)−V (y)‖2+‖V0(x)−V0(y)‖2+
∫
Rn

‖C(x, u)−C(y, u)‖2ν(du) ≤ K2‖x−y‖2

for x, y ∈ Rn with the initial condition X
(ε)
t (t, y) = x . For the standard arguments

and proofs on the existence and uniqueness of solutions, see Chapter IV of Ikeda
and Watanabe (1989). In this section, however, we use two examples when n =
d = 1 for the resulting simplicity.

When the price process follow (4.3), we consider the evaluation problem of

V = E[f(X
(ε)
T (0, y))] for a Borel-measurable function f( · ) . When it is difficult to

evaluate V analytically, the approximations based on the Monte Carlo simulations
have been often used in financial applications. In the typical discretization called
the Euler-Maruyama method we divide the time interval (between the initial
period and the expiration period) into n equal intervals and denote the Monte
Carlo approximation V(n, N) based on the independent N replications. Then
the Monte Carlo estimate of V can be given by

(4.6) V(n, N) =
1

N

N∑
j=1

[
f(X̄

(ε)
T )

]
j

,

where [Z ]j (j = 1, ..., N) are the realized values of the ith independent trial for a

random variable Z and X̄
(ε)
T is the discretization of X

(ε)
T . The discretized approx-

imation of X(ε)
u (0, y), which is denoted as X̄(ε)

u , based on the Euler-Maruyama
method is given by

(4.7)
X̄(ε)

u = y +
∫ u
0 V0(X̄

(ε)
η(s), ε)ds +

∫ u
0 V (X̄

(ε)
η(s), ε)dBs

+
∫ u
0

∫
E C(X̄

(ε)
η(s), x, ε)µ̃(ds, dx) ,

where we use the notations Bs = B(s) and η(s) = [ns/T ]T/n in this section.
From the mathematical point of view, we should note that it is not a trivial

thing to justify this type of approximation based on the Monte Carlo method,
which has been often used in financial practices. In particular when f( · ) is not
a smooth function such as the cash flow function for the plain vanilla options
contract, we need a careful discussion on its mathematical foundation. Since
Takahashi and Yoshida (2001b) have investigated this problem in some details,
however, we shall focus on the practical usefulness of our method for financial
applications in this section.
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As a new estimate of V based on the asymptotic expansion approach, we are
proposing to use V ∗(ε, n, N) by

(4.8) V ∗(ε, n, N) = E[f(X
(0)
T (0, y))] +

1

N

N∑
j=1

[
f(X̄

(ε)
T ) − f(X̄

(0)
T )

]
j

,

where we have implicitly assumed that E[f(X
(0)
T (0, y))] can be evaluated analyt-

ically.
This method of estimate can be explained intuitively and it is likely to improve
the standard estimate V (n, N) . When the difference between

[
f(X̄

(ε)
T )

]
j
−V (the

independent j-th trial
[
f(X̄

(ε)
T )

]
j

minus V) and [f(X̄
(0)
T )]j −E[f(X

(0)
T (0, y))] (the

independent j-th trial [f(X̄
(0)
T )]j minus its true value E[f(X̄

(0)
T (0, y))]) is small,

then we can expect that the error of V ∗(ε, n, N) minus the true value V can be

small because two errors of
[
f(X̄

(ε)
T )

]
j

and [f(X̄
(0)
T )]j can be cancelled out. Then

we rewrite
(4.9)

V ∗(ε, n, N)−V =
1

N

N∑
j=1

[
{f(X̄

(ε)
T ) − E[f(X

(ε)
T (0, y))]} − {f(X̄

(0)
T ) −E[f(X

(0)
T (0, y))]}

]
j
,

and we have denoted X̄
(0)
t as X̄

(ε)
t with ε = 0 .

From this representation we expect that the correlation between X̄
(0)
T and X̄

(ε)
T

are positively high and hence the correlation between
[
f(X̄

(ε)
T )

]
j

and [f(X̄
(0)
T )]j

become positively high. This type of estimate in (4.8) is similar to the Control
Variate technique, which has been known in the Monte Carlo method. In the
standard control variate method, however, it is often not easy to find the key
quantity which is correlated with the target variable and whose expectation can
be evaluated analytically, ( in our case E[f(X

(0)
T (0, y))] for f(X

(0)
T (0, y)) ), and in

that situation it cannot be used in the general cases. On the contrary, our esti-
mate based on the asymptotic expansion can be applied easily to such situations.
We shall illustrate this argument by using two examples.

4.2 Average Options

In this subsection we shall explain our method for the evaluation problem of av-
erage options prices when the underlying asset price follows the diffusion process.
Let T be the (finite) exercise period and under the probability measure Q one

dimensional asset price S
(ε)
t (0 ≤ t ≤ T ) follows

(4.10) dS
(ε)
t = rS

(ε)
t dt + εσ(S

(ε)
t , t)dBt ,

where the initial condition is given by S
(ε)
0 = S0 , Bt is one dimensional Brownian

motion, ε(∈ (0, 1]) is the parameter for asymptotic expansions, and the stochas-
tic volatility (diffusion function) σ(x, t) satisfies the condition σ ∈ C∞

b (R+ ×
[0, T ]; R+) . In this section we consider only the case when r is a positive con-
stant as the safe asset because of the resulting simplicity. (See Section 5 for one
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formulation on interest rates, for instance.)
As for the average call options contract when we have the arithmetic average of
the underlying asset price from the contract period to the maturity period ( from
0 to T ), the payoff function with the exercise price K(> 0) is given by

(4.11)
V (T ) =

(
1
T
Z

(ε)
T − K

)
+

,

Z
(ε)
T =

∫ T
0 S

(ε)
t dt ,

where we use the notation (g)+ = max{g, 0} .
In order to evaluate the price of average call options, we need to evaluate the
expected value

(4.12) V = e−rTE

[(
1

T
Z

(ε)
T − K

)
+

]
,

where
dS

(ε)
t = rS

(ε)
t dt + εσ(S

(ε)
t , t)dBt ,

dZ
(ε)
t = S

(ε)
t dt ,

with the initial conditions S
(ε)
0 = S0(> 0) and Z

(ε)
0 = 0 . This pricing problem

has been discussed by Kunitomo and Takahashi (1992), Takahashi (1999), and
He and Takahashi (2000), for instance.

We now to explain our estimate by using the asymptotic expansion method
to improve the standard Monte Carlo method. For this purpose, let random
variables X

(ε)
it (i = 1, 2) be

X
(ε)
1t =

S
(ε)
t − S

(0)
t

ε
, X

(ε)
2t =

Z
(ε)
t − Z

(0)
t

ε
,

where S
(0)
t and Z

(0)
t are given by S

(0)
t = ertS0 , and Z

(0)
t = S0(e

rt − 1)/r ,
respectively. The theoretical price of the average call options at the contract
period (t = 0) can be expressed as

(4.13) V = e−rT εE

[(
1

T
X

(ε)
2T + y

)
+

]
,

where we set y as y = ( 1
T
Z

(0)
T − K)/ε . Then it is straightforward to show that

the stochastic processes Xε
1t and Xε

2t follow the stochastic differential equation

(4.14)
dX

(ε)
1t = rX

(ε)
1t dt + σ(εX

(ε)
1t + S

(0)
t , t)dBt ,

dX
(ε)
2t = X

(ε)
1t dt ,

with the initial conditions X
(ε)
10 = X

(ε)
20 = 0 . By using the stochastic expansion of

X
(ε)
2T , the asymptotic expansion of the average call options price up to the order

ε (see Takahashi (1999)) can be derived as

(4.15) V = e−rT ε

(
yΦ

(
y√
ΣT

)
+ ΣT

1√
2πΣT

exp

(−y2

2ΣT

))
+ o(ε) ,
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where ΣT can be evaluated as

ΣT =
∫ T

0

1

T 2

[
e(T−u) − 1

r

]2

σ(S(0)
u , u)du

and Φ(x) is the distribution function of the standard normal random variable.
Then we use this quantity as a control variate and an estimate of the quantity

E
[(

1
T
X

(ε)
2T + y

)
+

]
can be given by

(4.16) E

[(
1

T
X

(0)
2T + y

)
+

]
+

1

N

N∑
j=1

{
[
(

1

T
X̄

(ε)
2T + y

)
+
−
(

1

T
X̄

(0)
2T + y

)
+
]j

}
,

where we can use the relation

(4.17) E

[(
1

T
X

(0)
2T + y

)
+

]
= yΦ

(
y√
ΣT

)
+ ΣT

1√
2πΣT

exp

(−y2

2ΣT

)
.

The Monte Carlo simulation value for X̄
(0)
2t can be calculated by using the Euler-

Maruyama approximation and the resulting discretized process

(4.18)
dX

(0)
1t = rX

(0)
1t dt + σ(S

(0)
t , t)dBt ,

dX
(0)
2t = X

(0)
1t dt ,

with the initial condition X
(0)
10 = X

(0)
20 = 0 .

We shall show some numerical results of our method and its usefulness for prac-
tical applications in a more convincing way. For this purpose we consider the
case when the underlying asset price follows the square-root process, that is, we
assume that the price process and its integral value Z

(ε)
t satisfy

(4.19)
dS

(ε)
t = rS

(ε)
t dt + ε

√
S

(ε)
t dBt ,

dZ
(ε)
t = S

(ε)
t dt ,

where S
(ε)
0 = S0 and Z

(ε)
0 = 0 . Then the standardized stochastic processes

X
(ε)
it (i = 1, 2) follow

(4.20)
dX

(ε)
1t = rX

(ε)
1t dt +

√
εX

(ε)
1t + ertS0dBt ,

dX
(ε)
2t = X

(ε)
1t dt ,

where the initial conditions X
(ε)
10 = X

(ε)
20 = 0 and ΣT is given by

ΣT =
S0

r3T 2
(e2rT − 2rerT − 1) .

Also we can find that the stochastic processes X
(0)
it (i = 1, 2) can be written as

(4.21)
dX

(0)
1t = rX

(0)
1t dt + e

rt
2

√
S0dBt ,

dX
(0)
2t = X

(0)
1t dt

18



with the initial conditions X
(0)
10 = X

(0)
20 = 0 .

By using the present setting for the stochastic processes, we have done numerical
computations on the average call options values. Table 4.1 shows the parameter
values in the simulations, the simulation results of the Monte Carlo method, and
the results of the asymptotic expansion method.

(Table 4.1)

In our experiments we take the situation that the initial asset price is 5.00(S(0) =
5.00), the maturity is one year(T = 1.0), the exercise price is 5.65(K = 5.65),
that is, it is the out-of-the money options. Also as the parameters of the un-
derlying stochastic processes we take that the safe asset rate is 5%(r = 0.05),
the volatility parameter ε = 0.671 . It corresponds to the volatility level 30% of
the log-normal process at the initial period, that is, given S(0) and σ we have

obtained ε by ε
√

S(0) = σS(0) and σ = 0.3 .
In our example we regard the simulation result of 10,000,000 replications as the
true value V . We denote V (0) as the results by using the asymptotic expansion up
to the order of ε and its error for V was −5.2%. In the first numerical experiment
we did evaluation of 30 cases by replicating 1000 times independently. Our ap-
proximations for V are denoted as (hybrid), and we compare their value with the
Monte Carlo result for V (0)(mcasymp). In each case the error percentages of mc
and mcasymp are quite similar, and the simulation errors have been cancelled out
so that the error rate of hybrid becomes quite small. Table 4.2 shows the mean of
error rates, the root mean-squared errors (rmse), the maximum (max), and the
minimum (min) in 30 cases. From this table it is evident that the method we are
proposing is effective and satisfactory for practical applications. We have found
that the numerical values of mc and mcasymp are quite similar and it reflects that
we had a strong correlation between mc and mcasymp .

(Table 4.2)

Figure 4.1 shows the speed of convergence for three methods we have compared
in our experiments. It is evident that the speed of convergence of our method
hybrid is far faster than those of other methods.

(Figure 4.1)

4.3 Option Valuation for Jump-Diffusion Processes

In this subsection we shall explain our method for the evaluation problem of call
options price when the underlying asset price follows Jump-diffusion processes
and propose an improvement of the standard Monte Carlo method.

We assume that the underlying asset price process S
(ε)
t (t ∈ [0, T ]) under the

martingale measure Q follows

(4.22) dS
(ε)
t = αS

(ε)
t dt + εσ(S

(ε)
t , t)dBt +

∫
R

S
(ε)
t− (eεx − 1)µ̃(dtdx) ,
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where the initial value S
(ε)
0 = S0 > 0 and the coefficent parameter α is a real

constant, ε ∈ (0, 1] , and Bt denotes the one-dimentional Brownian motion. In
the last term µ([0, t] × A) can be represented as

(4.23) µ([0, t] × A) =
Nt∑
j=1

IA(ξ
(ε)
j ) ,

where A ∈ B(R) and Nt is the Poisson Process with constant intensity function

λ(> 0) . The random variable for the jump size ξ
(ε)
j in the above expression is

defined by

(4.24) ξ
(ε)
j = eεηj − 1

and we are considering the case when (ηj)j≥1 are independently identically dis-
tributed (i.i.d.) random variables with the probability measure ν . In this for-

mulation we set the functional form of ξ
(ε)
j such that the underlying asset price

cannot be negative by jumps. In this case the compensated Poisson measure
µ̃(dt, dx) can be represented as

µ̃(dt, dx) = µ(dt, dx) − λdt × ν(dx) .

In a more intuitive way we could rewrite the above equation as

(4.25) S
(ε)
t = S0 +

∫ t

0
(α − λE[ξ

(ε)
1 ])S(ε)

s ds +
∫ t

0
εσ(S(ε)

s , s)dBs +
Nt∑
j=1

S
(ε)
τj−ξ

(ε)
j ,

where (τj)j≥1 denote the jump times of the Poisson process. The number of jumps
up to the period t in the jump term is determined by the Poisson process Nt with
the constant intensity λ and at each jump time τj we have jumps of size Sε

τj−ξ
(ε)
j

in our formulation.
There can be another formulation for the underlying asset price process, which

has the jump-diffusion representation

(4.26) dS
(ε)
t = αS

(ε)
t dt + εσ(S

(ε)
t , t)dB(t) + ε

∫
R

S
(ε)
t−xµ̃(dtdx) .

The stochastic process in this case has an intuitive representation as

(4.27) S
(ε)
t = S0 +

∫ t

0
(α − ελE[ξ

(ε)
1 ])S(ε)

s ds +
∫ t

0
εσ(S(ε)

s , s)dB(s) +
Nt∑
j=1

εS
(ε)
τj−ξj .

It should be noted that the underlying price process can have negative values for
some distributions of jump sizes, which is different from the first formulation. We
denote the first one as Model 1 and the second one as Model 2. These models
include many possible stochastic processes and the log-normal Poisson model
studied by Merton (1976) is a special case of Model 1.
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In each case the price of a call option’s contract with the exercise price K(> 0)
at the contract period (t = 0) V is given by

V = e−rTE[(S
(ε)
T − K)+] .

In order to use the asymptotic expansion method we have discussed we in-
troduce the standardized process for X

(ε)
t by X

(ε)
t = (S

(ε)
t − S

(0)
t )/ε , where the

deterministic process S
(0)
t is given by S

(0)
t = S0e

αt . Then we have two different

representations of X
(ε)
t for Model 1 and Model 2, respectively. In the first case it

can be represented as

(4.28)
dX

(ε)
t = αX

(ε)
t dt + σ(εX

(ε)
t + S

(0)
t , t)dBt

+
∫
R(εX

(ε)
t− + S

(0)
t− )

(
eε x−1

ε

)
µ̃(dt, dx) ,

with the initial condition X
(ε)
0 = 0 . In Model 2, on the other hand, it is given by

(4.29)
dX

(ε)
t = αX

(ε)
t dt + σ(εX

(ε)
t + S

(0)
t , t)dBt

+
∫
R(εX

(ε)
t− + S

(0)
t− )xµ̃(dt, dx);

with the initial condition X
(ε)
0 = 0 . By using the standardized stochastic process

X
(ε)
t , the price of a call option’s contract can be represented as

(4.30) V = e−rT εE[(X
(ε)
T + k)+] ,

where the constant k is determined by k = (S
(0)
T −K)/ε . By utilizing the above

formulation we have the asymptotic expansion of V up to the order of ε as

V = e−rT εE[X
(0)
T + k]+ + o(ε) ,

where in both Model 1 and Model 2 the stochastic process X
(0)
t follows the

stochastic differential equation

(4.31) dX
(0)
t = αX

(0)
t dt + σ(S

(0)
t , t)dB(t) +

∫
R

S
(0)
t− xµ̃(dt, dx)

with the initial condition X
(0)
0 = 0 . By evaluating the asymptotic expansion of

V up to the order of ε explicitly, it becomes

(4.32)

E[(X
(0)
T + k)+]

=
∞∑

j=0

E


ΣT n


k2 + S0e

αT
j∑

i=1

ηi; 0,ΣT




+ (k2 + S0e
αT

j∑
i=1

ηi)Φ


 k2√

ΣT

+
S0e

αT

√
ΣT

j∑
i=1

ηi




 e−λT (λT )j

j!
,
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where we use the notations as k2 = k − S0(λT )eαTµ , µ = E[η1] , the normal
density n(x; 0,ΣT ) = 1/

√
2πΣT exp (−x2/[2ΣT ]) , and

ΣT =
∫ T

0
e2α(T−s)|σ(S(0)

s , s)|2ds .

In order to complete our formulation we need to determine the distribution of
jump size. Since the purpose of our discussions in this subsection is to examine the
Monte Carlo method in a typical example, we assume that the random variables
ηi follow the normal distribution as a practical example.

[Assumption 4.1] : ηi ∼ N(µ, σ2) .

Under this condition we can further evaluate the asymptotic expansion of the
option price V up to the order of ε, which is given by

(4.33)

E[(X
(0)
T + k)+]

=
∞∑

j=0



√√√√ ΣT

2π(c2
4j + 1)

　 exp

( −c2
3j

2(c2
4j + 1)

)
+ c1jΦ


 c3j√

c2
4j + 1




+
c2jc4j√
2π(c24j+1)

exp
(

−c23j

2(c24j+1)

)]
e−αT (λT )j

j!
,

where real constants c1j , c2j , c3j and c4j are given by c1j = k2 + S0e
αT (mj) ,

c2j = S0e
αT (σT

√
j) c3j = c1j/

√
ΣT , and c4j = c2j/

√
ΣT , respectively.

We have done some simulations when the underlying process follows the jump-
diffusion process. As the volatility function σ(z, t) we have used the class of
functions

(4.34) σ(z, t) = h1 × (z ∨ 0)γ , γ ∈ [0.5, 1) ,

where h1 is a constant. In the following we only report some numerical results

when we set γ = 0.5 and σ(z, t) = h1 ×
√

(z ∨ 0) . Hence in our numerical
examples we set the stochastic differential equation in Model 1 as

(4.35) dS
(ε)
t = αS

(ε)
t dt + εh1σ̂(S

(ε)
t , t)dBt +

∫
R

S
(ε)
t−
(
eεh2x − 1

)
µ̃(dt, dx)

and in Model 2

(4.36) dS
(ε)
t = αS

(ε)
t dt + εh1σ̂(S

(ε)
t , t)dBt + εh2

∫
R

S
(ε)
t−xµ̃(dt, dx) ,

respectively. In this setting h1 and h2 are constants, and σ̂(z, t) is set as σ̂(z, t) =√
(z ∨ 0) .
In Table 4.3 we summarize the parameter values, the option prices, and their

approximation values obtained by the asymptotic expansion method.

(Table 4.3)

We have set that the initial value of asset price 40(S0 = 40), 7 month as the
maturity period (T = 0.05833), the exercise price 45(K = 45), and the resulting
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example is the out-of-the money call options contract. As the parameters of the
underlying stochastic process we set the drift coefficient α as 4.88%(α = 0.0488),
and the volatility parameter with the Brownian motion ε was determined by the
volatility level which corresponds to the log-normal process with 20% volatility
and the same initial value. Thus given h1, S0, γ, σ, we have determined ε such
that

(4.37) εh1S
γ
0 = σS0 ,

and σ = 0.2 , h1 = 10 . As the parameters associated with jump terms we set the
intensity λ(λ = 1.0), the mean and variance of jump sizes of m and σ are set as
m = 0.05 and σ = 0.1 , and h2 was taken 1/ε (h2 = 7.91) . The option values
with 4,000,000 replications were regarded as the true values and we measured the
error of the asymptotic expansion method. For the case of the 7 month maturity
period (T = 0.05833), the Monte Carlo value in Model 1 was 1.41, and the value
by the asymptotic expansion up to the order of ε was 1.316075 and its error rate
was −6.8% . In Model 2 the Monte Carlo value was 1.36 and its error rate was
−3.4% . Because the results in our experiments for Model 2 are quite similar to
those for Model 1, we only report the results for the former case in this subsection.

Table 4.4 corresponds to the results with Model 1 when we set K = 45(OTM),
K = 40(ATM),K = 35(ITM), and m = 5%, m = 0%, m = −5% , and it compares
the call options prices for 9 cases.

(Table 4.4)

The error rate in the standard Monte Carlo method becomes large for the
OTM case (K = 45) and it becomes relatively small for the ATM case (K = 40).
Then we take the largest case of error rate when K = 45 and m = 5% in order
to examine the numerical validity of the method we are proposing.
Figure 4.2 shows the error rates of three methods based on independent 1000
replications for 50 cases, that is, the standard Monte Carlo method ( the error
rate of V (ε, n, N), the error rate of the approximated terms by the asymptotic

expansion (the error rate of (1/N)
∑N

j=1

[
f(X̄

(0)
T )

]
j
), and the error rate of the

asymptotic expansion method (the error rate of V ∗(ε, n, N)). In each case we
calculate different estimates by using the same sample paths, but the error rates of
V (ε, n, N) and V ∗(ε, n, N) have been calculated by assuming that the Monte Carlo
results with 4,000,000 replications as the true values V (ε, n, N)(N = 4 × 106),

and the analytical evaluation by the asymptotic expansion E[f(X
(ε)
T (0, y))] for

the values of the error terms. It has been evident that in each case the error rates
due to the term V (ε, n, N) behave quite similarly as the asymptotic expansion
term, and they are cancelled out. This effect makes the error rates of V ∗(ε, n, N)
extremly small.

Table 4.5 shows statistics of error rates for 50 cases, the mean, the root mean
squared error (rmse), the maximum value (max) and the minimum value (min).
The terms hybrid corresponds to our method, mc denotes the standard Monte
Carlo method, and mcasymp denotes the Monte Carlo result on the term for the
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asymptotic expansion part. In all cases our method dominates the Monte Carlo
results and it improves the standard method considerably. Also we can notice
that the results of mc and mcasymp are quite similar and we confirm the intuitive
argument that the results by mc and mcasymp are highly correlated.

(Table 4.5)

(Figure 4.2)

5. Valuation Problem of Contingent Claims with Term Structure of
Interest Rates

Let (Ω,F , {Ft}t∈[0,T ], Q) be a complete filtered probability space with T < +∞
and {B∗

i (t) ; i = 1, · · · , m} are Brownian motions with respect to the σ−fields
{Ft} and Q. Let P (ε)(s, t) denote the price of the discount bond at s with maturity
date t (0 ≤ s ≤ t ≤ T < +∞) and let also ΓT = {(s, t) | 0 ≤ s ≤ t ≤ T} be
a compact set in R2 . When P (ε)(s, t) is continuously differentiable with respect
to t and P (ε)(s, t) > 0 for 0 ≤ s ≤ t ≤ T , it can be represented as (2.7) and the
instantaneous forward rate process at s for the future date t (0 ≤ s ≤ t ≤ T )
is denoted as f (ε)(s, t) . In the HJM framework we consider the situation when
a class of random fields {f (ε)(s, t) : ΓT → R} are adapted with respect to the
σ−field {Fs} and satisfy the stochastic integral equation given by (2.5). From
(2.7) we have

(5.1) f (ε)(s, t) = −∂ log P (ε)(s, t)

∂t

and the spot interest rate at s has been defined by (2.6).
In this section we use the valuation problem of contingent claims based on

the term structure of interest rates. There have been many interest rate based
contingent claims developed and traded in financial markets including bond op-
tions, swaptions, and other financial derivatives. Most of those contingent claims
can be regarded as functionals of bond prices with different maturities. Let
{cj; j = 1, · · · , n} be a sequence of positive payments and {Tj; j = 1, · · · , n} be a
sequence of payment periods satisfying the condition 0 ≤ T̄ ≤ T1 ≤ · · · ≤ Tn ≤ T .
Then the price of the coupon-bearing bond with payments {cj; j = 1, · · · , n}
promised at s should be given by

(5.2) P
(ε)
n,{Tj},{cj}(s) =

n∑
j=1

cjP
(ε)(s, Tj),

where {P (ε)(s, Tj); j = 1, · · · , n} are the prices of zero-coupon bonds with different
maturities. As a typical example of interest rate based contingent claims, which
is important for practice in finance, we use the European coupon Bond options
which includes swaptions as a special case. The payoff function of call options
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contract on the coupon-bearing bond with payments {cj; j = 1, · · · , n} at {Tj; j =
1, · · · , n} can be written as

(5.3) V (1)(T̄ ) =
[
P

(ε)
n,{Tj},{cj}(T̄ ) −K

]
+

.

where K is a fixed strike price and T̄ is the expiry period of options contract on
the copupon bond. The swaption contract expiring on date T̄ (0 < T̄ ≤ T ) also
can be written in the form of (5.3), for instance.

The valuation problem of an interest bearing contingent claim in the complete
market can be simply defined as the determination of its “fair” value at financial
markets. Let V (T̄ ) be the payoff of a contingent claim at the terminal period T̄ .
Then the standard martingale theory in financial economics predicts that the fair
price of V (T̄ ) at time t (0 ≤ t < T̄ ) should be given by

(5.4) Vt(T̄ ) = EQ
[
e−
∫ T̄

t
r(ε)(s)dsV (T̄ )|Ft

]
,

where EQ [ · |Ft] stands for the conditional expectation operator given the infor-
mation available at t with respect to the probability measure Q, which is equvalent
to the observed probability measure P . The asymptotic expansion method for
this problem has been developed by Kunitomo and Takahashi (2001, 2003a) in
some details. As a feature of their results, however, the explicit expressions be-
come very complicated for the coupon bond options pricing. In this subsection,
we shall use the equivalent forward measure which is defined by the coupon bond
price divided by the zero coupon bond price at the maturity date T̄ as the defla-
tor, that is, we use the probability measure such that P (ε)(t, T )/P (ε)(t, T̄ ) is an
exponential martingale. By using this forward measure, then (5.4) at t = 0 can
be rewritten as

(5.5)
V0(T̄ ) = P (0, T̄ )EF

[
V (T̄ )

P (ε)(T̄ ,T̄ )

]
= P (0, T̄ )EF

[
V (T̄ )

]
,

where EF [ · ] denotes the expectation operation with respect to the forward mea-
sure QF , which is equivalent to Q, and we use the notation P (0, T̄ ) = P (0)(0, T̄ ) .
Under the new measure QF , it is possible to re-express the instantaneous forward
rate processes as
(5.6)

f (ε)(t, T ) = f(0, T ) + ε2
m∑

i=1

∫ t

0
σi(f

(ε)(v, T ), v, T )
∫ T

T̄
σi(f

(ε)(v, z), v, z)dzdv

+ ε
m∑

i=1

∫ t

0
σi(f

(ε)(v, T ), v, T )dBF
i (v)

where BF
i (t) (i = 1, · · · , m; 0 ≤ t ≤ T ) are the m-dimensional Brownian motion

with respect to the forward measure QF . In order to deal with the coupon bonds,
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we first consider the price of zero coupon bond. The price of zero coupon bond
with the maturity T (> T̄ ) discounted by the zero coupon bond with the maturity
date T̄ is given by

(5.7) P̂ (ε)(t, T ) =
P (ε)(t, T )

P (ε)(t, T̄ )
.

Then the price of coupon bond at t discounted by the zero coupon bond with the
maturity T̄ can be written as

(5.8) P̂
(ε)
n,{Tj},{cj}(t) =

P
(ε)
n,{Tj},{cj}(t)

P (ε)(t, T̄ )
=

n∑
j=1

cjP̂
(ε)(t, Tj) .

In the following analysis we set m = 1 in order to avoid some complicated
notations although it is straightforward to deal with the more general case. (See
Takahashi (2003).) We use the notations σ1(f

(ε)(s, t), s, t) = σ(f (ε)(s, t), s, t),
BF

1 (t) = BF
t and σ1(f

(0)(s, t), s, t) = σ(0)(s, t) in this section.
By expanding the forward rate processes with respect to ε and substitute them
into (5.8). After straightforward calculations as outlined in Section 3 of Kunitomo
and Takahashi (2001), we have the asymptotic expansion of the coupon bond price

P̂
(ε)
n,{Tj},{cj}(t) as

(5.9) P̂
(ε)
m,{Tj},{cj}(t) = g0 + εg1(t) + ε2g2(t) + o(ε2) ,

where

g0 = P̂n,{Tj},{cj}(0) =
n∑

j=1

cj
P (0, Tj)

P (0, T̄ )
,

g1(t) =
∫ t

0
σ∗

g1
(v)dBF

v ,

g2(t) =
1

2

n∑
j=1

cj
P (0, Tj)

P (0, T̄ )

(∫ t

0

{∫ Tj

T̄
σ(0)(v, u)du

}
dBF

v

)2

−
n∑

j=1

cj
P (0, Tj)

P (0, T̄ )

(∫ Tj

T̄
C(t, u)du

)

and

σ∗
g1

(v) = −
n∑

j=1

cj
P (0, Tj)

P (0, T̄ )

∫ Tj

T̄
σ(0)(v, u)du ,

C(t, u) =
∫ t

0
σ(0)(v, u)

∫ u

T̄
σ(0)(v, z)dzdv +

∫ t

0

(∫ v

0
σ(0)(τ, u)dBF

τ

)
∂σ(0)(v, u)dBF

v .

As we have done before, we define the standardized stochastic process for the
coupon bond price and expand it with respect to ε as

(5.10) X(ε)(t) =
P̂

(ε)
m,{Tj},{cj}(t) − g0

ε
= g1(t) + εg2(t) + o(ε) .
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Then the valuation problem of European call options contract of coupon bonds
can be expressed as

(5.11)
V0(T̄ )

P (0, T̄ )
= EF

[(
P̂

(ε)
m,{Tj},{cj}(T̄ ) − K

)
+

]
= εEF

[(
X(ε)(T̄ ) + y

)
+

]

where we have set y = (g0 − K)/ε .
After lengthy but straightforward derivations, we can summarize our result as
the next proposition. It is a direct modification of Theorem 3.2 of Kunitomo
and Takahashi (2001) under a set of assumptions on the forward rate processes.
Since the intermediate calculations are lengthy, but they are quite similar to those
in Section 3 of Kunitomo and Takahashi (2001) by using their Lemma A.1 and
Lemma A.2, we have omitted the details.

[Assumption 5.1] : Given ε (0 < ε ≤ 1), the volatility function σ(f (ε)(s, t), s, t)
is a continuous real-valued function defined in ΓT , which is non-negative, bounded,
and smooth in its first argument and all derivatives are bounded uniformly in ε .

Proposition 5.1 : Let the asymptotic variance be defined by

(5.12) ΣT̄ =
∫ T̄

0
σ∗2

g1
(t)dt

and we assume that ΣT̄ > 0 . Then under Assumption 5.1 the asymptotic expan-
sion of the price of European bond options contract up to the order of ε is given
by

(5.13)
V (0)

P (0, T̄ )
=
∫ ∞

−y
ε{x + y + ε(cx2 + f)}n[x; 0,ΣT̄ ]dx + o(ε2) ,

where n[x; 0,ΣT̄ ] is the normal density function with the mean 0 and the variance
ΣT̄ . The coefficients c and f in (5.13) are defined by

c =
1

2

1

Σ2
T̄

n∑
j=1

cj
P (0, Tj)

P (0, T̄ )

[∫ T̄

0

(∫ Tj

T̄
σ(0)(v, u)du

)
σ∗

g1
(v)dv

]2

− 1

Σ2
T̄

n∑
j=1

cj
P (0, Tj)

P (0, T̄ )

[∫ Tj

T̄

{∫ T̄

0
σ∗

g1
(s)∂σ(0)(s, u)

(∫ s

0
σ(0)(v, u)σ∗

g1
(v)dv

)
ds

}
du

]
,

f = −
n∑

j=1

cj
P (0, Tj)

P (0, T̄ )

(∫ T̄

0

∫ Tj

T̄
σ(0)(v, u)

∫ u

T̄
σ(0)(v, z)dzdudv

)

−1

2

1

ΣT̄

n∑
j=1

cj
P (0, Tj)

P (0, T̄ )

[∫ T̄

0

(∫ Tj

T̄
σ(0)(v, u)du

)
σ∗

g1
(v)dv

]2

+
1

2

n∑
j=1

cj
P (0, Tj)

P (0, T̄ )


∫ T̄

0

(∫ Tj

T̄
σ(0)(v, u)du

)2

dv




+
1

ΣT̄

n∑
j=1

cj
P (0, Tj)

P (0, T̄ )

[∫ Tj

T̄

{∫ T̄

0
σ∗

g1
(s)∂σ(0)(s, u)

(∫ s

0
σ(0)(v, u)σ∗

g1
(v)dv

)
ds

}
dsdu

]
.
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For the practical implementation of the above result, we can utilize the simple
formulae associated with the normal density function as

∫ +∞

−y
xn[x; 0,ΣT̄ ]dx = ΣT̄n[y; 0,ΣT̄ ] ,

∫ +∞

−y
x2n[x; 0,ΣT̄ ]dx = ΣT̄Φ

(
y√
ΣT̄

)
− yΣT̄n[y; 0,ΣT̄ ] ,

where Φ(·) and n[x; 0,ΣT̄ ] denote the standard normal distribution function and
the normal density function of N(0,ΣT̄ ) , respectively.

Also from the above result we can use the improved Monte Carlo method we
have discussed in Section 4. By utilizing the asymptotic expansion of the price of
coupon bonds, an estimate by the asymptotic expansion approach can be written
as

(5.14) EF [F̂ (X(0)(T̄ ))] +
1

N

N∑
j=1

[
F (X̄(ε)(T̄ )) − F̂ (X̄(0)(T̄ ))

]
j

,

where F (x) = (x + y)1{x≥−y} , F̂ (x) = {x + y + ε(cx2 + f)}1{x≥−y} , and
(5.15)

EF [F̂(X(0)(T̄ ))] =
∫∞
−y ε{x + y + ε(cx2 + f)}n[x; 0,ΣT̄ ]dx

= ε
{
yΦ

(
y√
ΣT̄

)
+ ΣT̄ n[y; 0,ΣT̄ ]

}

+ε2c
{
ΣT̄ Φ

(
y√
ΣT̄

)
− yΣT̄n[y; 0,ΣT̄ ]

}
+ ε2fΦ

(
y√
ΣT̄

)
.

For the illustrative purpose, we modify the volatility function of the forward pro-
cess in Heath, Jarrow, and Morton (1992) as σ(f (ε)(t, T ), t, T ) = min(f (ε)(t, T ), M)
by

(5.17) σ(f (ε)(t, T ), t, T ) = f (ε)(t, T )h1(f
(ε)(t, T ), M)+(M+1)h2(f

(ε)(t, T ), M) ,

and h1(ξ,M) = h(M + 1 − ξ)/[h(ξ − M) + h(M + 1 − ξ)], h2(ξ,M) = h(ξ −
M)/[h(ξ − M) + h(M + 1 − ξ)], where the function h(·) is given by

h(ξ) =

{
e−

1
ξ (ξ > 0)

0 (ξ ≤ 0)
,

for M being a sufficiently large constant.

We consider the valuation problem of the swaption ([5 into 5]) as the typical
numerical example. We set ε = 0.2 (20%) , and the number of replications is
M = 100,000 in each simulation. Also we set T̄ = 5 , n = 5 , and T1 =
T̄ + 1, · · · , T5 = T̄ + 5 . As the initial forward rates at t = 0 is assumed to be flat
and it is 5% (f(0, T ) = 0.05 , T ∈ [0, T5]) and the coupon payments are set as
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cj = S (j = 1, · · · , n − 1), cn = 1 + S, with K = 1.
As the OTM case (out-of-the money), we take S = (5.1271% × 0.9), (5.1271% ×
0.8), (5.1271% × 0.6) ; as the ATM case (at-the-money), we take S = 5.1271% ;
and as the ITM case (in-the-money) we take S = (5.1271%×1.1), (5.1271%×1.2),
(5.1271%×1.4) . We finally set the initial swap rates based on the initial forward
rates as

(5.17)
P (0, T̄ ) − P (0, T5)

τ
∑5

j=1 P (0, Tj)
= 0.051271 .

Table 5.1 and Figure 5.1 show the numerical results of our investigations. Our
figure suggests that the price valuations of swaptions based on the equivalent
forward measure QF give satisfactory numerical answers for practical purposes.
Hence the corresponding analysis of the example in Kunitomo and Takahashi
(2001) has been simplified considerably.

(Table 5.1)

(Figure 5.1)

6. Concluding Remarks

In this paper we have explained the asymptotic expansion method based on
Malliavin-Watanabe Calculus which have been developed by Kunitomo and Taka-
hashi (1995, 1998, 2001, 2003a) for applications in finance. We have applied this
method to solve three important problems in financial applications which had
been known to be difficult in the existing finance literatures. Our method does
give many useful analytic expressions on important unsolved problems and of-
ten gives satisfactory numerical results. Also the asymptotic expansion approach
has a solid mathematical basis from the Malliavin-Watanabe Calculus or the
Watanabe-Yoshida theory on Malliavin Calculus in stochastic analysis and in this
sense it is quite different from many ad-hoc approximation methods sometimes
used in financial problems.

Although we have discussed only three examples which are important for prac-
tical purposes in financial industries, they are not exhaustive list of possible ap-
plications. For instance, American type derivatives and credit derivatives should
be in the list of further applications. In this respect, Kunitomo and Takahashi
(2003b), Muroi (2003), and Takahashi and Saito (2003) have discussed several
other applications and possible extensions already, which shall be important for
practical purposes.
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(Figure 4.1) Average Call Options(square-root process)
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[Average Call Option(square-root process)]
(Table 4.1) 
S_0 5
ε 0.671 (volatility is 30%.)
γ 0.05
T 1
K 5.65
V^[0] 0.145 (error is -5.2%.)
V 0.153 (value by 10,000,000 trials)

(Table 4.2)
%error (1000 trials, 100 cases)
hybrid mc mc_asymp

avg -0.1% -0.9% -0.9%
rmse 0.8% 6.7% 6.7%
max 1.6% 16.2% 16.2%
min -1.6% -14.3% -14.3%



(Figure 4.2) 1000replications, 50cases
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(Table 4.3)
[Model 1] [Model 2]
S_0 40 S_0 40
ε 0.0000 ε 0.1265
α 0.0488 α 0.0488
T 0.5833 T 0.5833
K 45 K 45
γ 0.5 γ 0.5
m 0.05 m 0.05
σ 0.1 σ 0.1
λ 1 λ 1
h_1 0 h_1 0
h_2 0.00 h_2 0.00

approximation 1.32 [error：-6.8%] approximation 1.32 [error：-3.4%]
call price 1.41 call price 1.36



(Table 4.4)
K m m.c. a.e. error(%)
45 0.05 1.41 1.32 -6.8%
45 0 1.30 1.23 -5.4%
45 -0.05 1.30 1.25 -4.2%
40 0.05 3.33 3.34 0.1%
40 0 3.26 3.29 0.7%
40 -0.05 3.31 3.36 1.4%
35 0.05 6.61 6.68 1.2%
35 0 6.60 6.68 1.3%
35 -0.05 6.66 6.77 1.7%

(Table 4.5)
%error (1000replications, 50cases)
hybrid mc mc_asymp

mean -0.4% -1.1% -0.8%
rmse 1.3% 8.0% 7.4%
max 2.5% 16.8% 16.0%
min -3.5% -17.5% -15.6%



(Table 5.1)
[HJM receiver's swaption, 5year into 5year]
strike rate(%)k value(bp)mation (bp) error(bp) error(%)

40%OTM 3.08 39.5 41.2 1.7 4.3%
20%OTM 4.10 140.5 143.2 2.7 1.9%
10%OTM 4.61 217.9 220.7 2.8 1.3%
ATMFWD 5.13 312.5 315.1 2.6 0.8%
10%ITM 5.64 420.7 424.5 3.7 0.9%
20%ITM 6.15 542.8 546.4 3.6 0.7%
40%ITM 7.18 814.4 818.3 3.9 0.5%



(Figure 5.1) 40%OTM,  error(%),100cases,1000replications
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