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1. Introduction

The study of estimating a single structural equation in econometric models has
led to develop several estimation methods as the alternatives to the least squares esti-
mation method. The classical examples in the econometric literatures are the limited
information maximum likelihood (LIML) method and the instrumental variables (IV)
method including the two-stage least squares (TSLS) method. See Anderson, Kunit-
omo, and Sawa (1982) and Anderson, Kunitomo, and Morimune (1986) for their finite
sample properties, for instance. In addition to these classical methods the maximum
empirical likelihood (MEL) method has been proposed and has gotten some attention
recently in the statistical and econometric literatures. It is probably because the MEL
method gives asymptotically efficient estimator in the semi-parametric sense and also
improves the serious bias problem known in the estimating equation method or the
generalized method of moments (GMM) method when the number of instruments is
large in econometric models. See Owen (2001), Qin and Lawless (1994), and Kitamura,
Tripathi, and Ahn (2001) on the details of the MEL method.

The main purpose of this study is to propose a modification of the MEL estimation
method for estimating a single structural equation and show that it improves the small
sample properties of the MEL estimator. Our modification method is simple and it has
an intuitive interpretation. Thus it is quite appealing from the views of theory as well as
practice. We shall show that the modified MEL estimator (which is abbreviated as the
MMEL estimator) we are proposing in this paper has not only the smaller asymptotic
bias in the order of O(n−1) but also the smaller asymptotic mean squared errors in
the order of O(n−2) than the original MEL estimator at the same time where n is
the sample size. Thus the MMEL estimation method we are proposing dominates the
MEL estimation method in the asymptotic higher order sense. Also by investigating a
set of simulations systematically we have found that the modified MEL estimator has
better small sample properties in the sense of the bias, the mean squared error, and
the probability concentration than the MEL estimator in all cases.

In the econometric literatures the generalized method of moments (GMM) esti-
mation method has been quite popular in the past decade. The GMM method was
originally proposed by Hansen (1982) in the econometric literature and it is essentially
the same as the estimating equation (EE) method proposed by Godambe (1960) which
has been used in statistical applications. This approach has an attractive feature that
it has rather broad applicability and it is easily implemented in statistical analyses.
However, it has been known that there is a serious bias problem in the GMM estima-
tion when there are many instruments in econometric models. In this respect we should
notice that the MMEL estimator we are proposing is quite similar to the MEL estima-
tor when there are many instruments. Hence the MMEL estimation method improves
the MEL estimation while it retains the good small sample properties of the MEL es-
timation method. In our limited simulations the MMEL estimator has better small
sample properties in the sense of the bias, the mean squared error, and the probability
concentration than the GMM estimator in all cases when the number of instruments
is large. Therefore our new method is quite attractive for the problem of estimating
econometric models in the semi-parametric sense.

In Section 2 we state the estimation problem and the maximum empirical likelihood
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(MEL) estimation method. In Section 3 we shall give a modified MEL estimation
method for the problem of estimating a linear structural equation when there are in-
strumental variables and the disturbances are homoscedastic. Then in Sections 4 and
5 we shall discuss the modified MEL estimation method for the heteroscedastic distur-
bance case and the nonlinear structural equation case, respectively. In Section 6 we
give some numerical examples and some conclusions are given in Section 7. The more
detailed derivations of our results are given in the Appendix.

2. Estimating a Single Structural Equation by the Maximum Empirir-
cal Likelihood Method

Let a single equation in the econometric model be given by

y1i = h(y2i, z1i, θ) + ui (i = 1, · · · , n) ,(2.1)

where h(·, ·, ·) is a function, y1i and y2i are 1 × 1 and G1 × 1 (vector of) endogenous
variables, z1i is a K1 × 1 vector of exogenous variables, θ is an r× 1 vector of unknown
parameters, and {ui} are mutually independent disturbance terms with E(ui) = 0 (i =
1, · · · , n).
We assume that (2.1) is the first equation in a system of (G1 +1) structural equations
relating the vector of G1 + 1 endogenous variables y

′
i = (y1i, y

′
2i) and the vector of

K (= K1 +K2) exogenous variables {zi} which includes {z1i} . The set of exogenous
variables {zi} are often called the instrumental variables and we have the orthogonality
condition

E(ui zi) = 0 (i = 1, · · · , n) .(2.2)

Because we do not specify the equations except (2.1) and we only have the limited
information on the set of instrumental variables or instruments, we only consider the
limited information estimation methods. When the function h(·, ·, ·) is of the linear
form, (2.1) can be written as

y1i = (y
′
2i, z

′
1i)(

β
γ

) + ui (i = 1, · · · , n),(2.3)

where θ
′
= (β

′
, γ

′
) is a 1× p (p = K1 +G1) vector of unknown coefficients.

Furthermore, when all structural equations in the econometric model are linear, the
reduced form equations of y

′
i = (y1i, y

′
2i) can be defined by

yi = Π
′
zi + vi (i = 1, · · · , n) ,(2.4)

where v
′
i = (v1i, v

′
2i) is a 1× (1 +G1) disturbance terms with E[vi] = 0

′
and

Π
′
= (

π
′
1

Π
′
2

)(2.5)

is a (1 +G1)×K partitioned matrix of the linear reduced form coefficients. By multi-
plying (1,−β

′
) from the left-hand side, we have the restriction

(1,−β
′
)Π

′
= (γ

′
, 0

′
) .(2.6)
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The maximum empirical likelihood (MEL) estimator for the vector of unknown
parameters θ in (2.1) is defined by maximizing the Langrangian form

L∗
n(λ, θ) =

n∑
i=1

log pi − µ(
n∑

i=1

pi − 1)− nλ
′

n∑
i=1

pi zi[y1i − h(y2i, z1i, θ)] ,(2.7)

where µ and λ are a scalor and a K × 1 vector of Lagrangian multipliers, and pi (i =
1, · · · , n) are the weighted probability functions to be chosen. It has been known (see
Qin and Lawles (1994) or Owen (2001)) that the above maximization problem is the
same as to maximize

Ln(λ, θ) = −
n∑

i=1

log{1 + λ
′
zi [y1i − h(y2i, z1i, θ)]} ,(2.8)

where we have the conditions µ̂ = n , and

[np̂i]−1 = 1 + λ
′
zi[y1i − h(y2i, z1i, θ)] .(2.9)

By differentiating (2.7) with respect to λ and combining the resulting equation with
(2.9), we have the relation

n∑
i=1

p̂izi [y1i − h(y2i, z1i, θ)] = 0(2.10)

and

λ̂ = [
n∑

i=1

p̂iu
2
i (θ̂)ziz

′
i]
−1[

1
n

n∑
i=1

ui(θ̂)zi] ,(2.11)

where ui(θ̂) = y1i − h(y2i, z1i, θ̂) and θ̂ is the maximum empirical likelihood (MEL)
estimator for the vector of unknown parameters θ . From (2.7) the MEL estimator of
{θ} is the solution of the set of p equations

λ̂
′

n∑
i=1

p̂izi[−∂h(y2i, z1i, θ̂)
∂θj

] = 0 (j = 1, · · · , p) .(2.12)

When the structural equation of (2.1) is linear, the MEL estimator of the vector of
coefficient parameters θ

′
= (β

′
, γ

′
) can be simplified as the solution of

[
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.13)

= [
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)](

β̂

γ̂
) .

If we substitute 1/n for p̂i (i = 1, · · · , n) in (2.13), then we have the generalized method
of moments (GMM) estimator for the vector of coefficient parameters θ

′
= (β

′
, γ

′
),

which is the solution of

[
1
n

n∑
i=1

(
y2i

z1i
)z

′
i][
1
n

n∑
i=1

ui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.14)

= [
1
n

n∑
i=1

(
y2i

z1i
)z

′
i][
1
n

n∑
i=1

ui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)](

β̂
γ̂

) ,
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where θ̂ is an initial (consistent) estimator of θ . ( See Hayashi (2000) on the details of
the GMM method in econometrics, for instance. )

3. A Modified MEL Estimation in the Linear Homoscedastic Case

The most important feature of the MEL estimation is the use of the estimated weight
functions p̂i (i = 1, · · · , n) . We notice that if we substitute (1/n) for p̂i (i = 1, · · · , n),
the resulting estimation method is identical to the estimating equations method or
the generalized method of moments (GMM) in the econometric literatures. This is a
simple fact which lead us to consider a simple modification of the MEL method we are
proposing in this paper.

Let
p̂∗i =

1
n[1 + δ λ

′ziui(θ̂)]
,(3.1)

where δ is a positive constant (0 ≤ δ ≤ 1) and θ̂ is the MEL estimator of θ . Then
we can define a modification of the MEL estimation by substituting p̂i (i = 1, · · · , n)
into (2.9)-(2.11). We shall denote the resulting Lagrangian multiplier and the modified
estimator as λ̂∗ and θ̂∗ .

In the rest of the present paper we shall consider the standardized error of estimators
as

ê =
√
n( β̂ − β

γ̂ − γ
) ,(3.2)

where θ̂
′
= (β̂

′
, γ̂

′
) . We denote ê for the MEL estimator and its modification as êEL

and ê∗, respectively.

In this section we consider the situation that the disturbances are homoscedas-
tic random variables. Under a set of regularity conditions, the asymptotic variance-
covariance matrix of the asymptotically efficient estimators in the semi-parametric
framework is given by

Q−1 = D
′
MC−1MD ,(3.3)

where C = σ2M and

D = [Π2 , (
IK1

O
)] ,(3.4)

M = plimn→∞
1
n

n∑
i=1

ziz
′
i .(3.5)

Here we have implicitly assumed that E(u2
i ) = σ2 (> 0), the (constant) matrix M is

positive definite, and the rank condition

rank(D) = p (= G1 +K1) .(3.6)

These conditions assure that the limiting variance-covariance matrix Q is non-degenerate.
The rank condition implies the order condition

L = K − p ≥ 0 ,(3.7)

which has been called the degree of overidentification in the econometric literatures.
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In order to compare alternative efficient estimation methods in the asymptotic sense, we
need to derive the asymptotic expansions of the density functions of the standardized
estimators (3.2) in the form of

f(ξ) = φQ(ξ)[ 1 +
1√
n
H1(ξ) +

1
n
H2(ξ) ] + o(

1
n
) ,(3.8)

where ξ = (ξ1, · · · , ξp)
′
, φQ(ξ) is the multivariate normal density function with mean

0 and the variance-covariance matrix Q , and Hi(ξ) (i = 1, 2) are some polynomial
functions of elements of ξ. For the rest of our arguments we need a set of regularity
conditions.

Assumption I :
(i) The sequence of random vectors {ui , v

′
i} are independently and identically dis-

tributed, and their sixth order moments are bounded.
(ii) We have the rank condition given by (3.6).
(iii) The sequence of exogenous variables {zi} are random vectors or non-random (i.e.
deterministic) vectors, but they are i.i.d. random variables being independent of {ui},
and their sixth order moments are bounded in the first case. They satisfy (iii-a)

1
n

max
1≤i≤n

|zi|2 p−→ 0(3.9)

as n −→ ∞ , (iii-b) there exists (constant) positive definite matrix M such that

1
n

n∑
i=1

ziz
′
i (= Mn) = M+ Op(

1√
n
) ,(3.10)

and (iii-c) we have the condition

1
n

n∑
i=1

E[z(j)
i z

(k)
i z

(l)
i u3

i ] = O(
1√
n
) ,(3.11)

where we denote the K × 1 vector zi = (z(j)
i ) .

When {zi} are a sequence of i.i.d. random vectors, we have the notation C =
E[u2

iziz
′
i] = σ2E(ziz

′
i) (i = 1, · · · , n).

We notice that the conditions in Assumption I are rather strong, but the conditions
lead to some simplifications in the derivations and the resulting expressions of the
asymptotic bias (ABIAS) and the asymptotic meas suared errors (MSE). Nonetheless,
these conditions can be relaxed considerably at the cost of complicated derivations and
notations. Some possible directions will be given in the next two sections. We expect
that the most of the results we are reporting in this paper are essentially true under a
set of the weaker conditions.

We shall use the mean operator AMn(ê), which is defined as the mean of ê with
respect to the asymptotic expansion of its density function of the standardized estima-
tors up to O(n−1) . Then we write the asymptotic bias and the asymptotic MSE of the
standardized estimator by ABIASn(ê) = AMn(ê) , and

AMSEn(ê) = AMn(ê ê
′
) .
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Furthermore, as an important criterion we shall use the asymptotic probability of con-
centration (APC)

APCn = P ( ê ∈ S ) ,

where the integrand is taken with respect to the asymptotic expansion of the density
function of estimators up to O(n−1) in the form of (3.8) and S is any star-shaped set.
( Here we define that for any real number α ∈ [0, 1] αS ∈ S if S is a star-shaped. )
This criterion is important in the present case because there are important cases when
the estimators do not posses moments. For instance, it has been known that the LIML
estimator does not have any integer order moments. (see Anderson et. al. (1982)).
For the asymptotic bias of the modified MEL estimator, we have the following result
and its derivation is given in the Appendix.

Theorem 3.1 : Under Assumption I, the asymptotic bias (ABISAS) of ê∗ as n →
+∞ is given by

AMn(ê∗) =
1√
n

Q q[L − 1− δL] ,(3.12)

where q is the p× 1 vector given by

q =
1
σ2

Cov((
v2i

0
)ui) (i = 1, · · · , n).(3.13)

By using this result we immediately observe that the asymptotic bias of the MEL
estimator and the GMM estimator are (−1)Q q/

√
n and (L− 1)Q q/

√
n, respectively.

Then it is possible to remove the asymptotic bias of the MEL estimator by setting

δ∗ =
L− 1
L

provided that L > 0 . One interpretation of this modification is that δ∗ is a kind of
shrinkage factor to the estimated Lagrangian multiplier λ and hence the estimators of
probability parameters {pi}. We now state the main result whose proof is given in the
Appendix.

Theorem 3.2 : Suppose we choose δ∗L = L−1 (L ≥ 1) in the class of modified MEL
estimators. Then under Assumption I,

lim
n→∞n[AMSEn(ê∗)−AMSEn(êEL)] ≤ 0(3.14)

and
lim

n→∞n[APCn(ê∗)−APCn(êEL)] ≥ 0(3.15)

as n → ∞ . The strict inequalities in (3.14) and (3.15) hold when q �= 0 in the positive
definite sense, where q is given by (3.13).

4. The Linear Heteroscedastic Case

The results reported in Section 3 can be extended to the case when the disturbances
are heteroscedastically distributed under a set of additional assumptions. The limiting
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variance-covariance matrix of the standardized errors for the estimator ê in this case
shoud be modified as

Q−1 = D
′
MC−1MD ,(4.1)

where

C = lim
1
n

n∑
i=1

E[u2
i ziz

′
i] ,(4.2)

provided that the (constant) matrix M is positive definite, the probability limit (con-
stant) matrix C is positive definite, and sup1≤i≤n E(u2

i ) < +∞ . For deriving the
asymptotic bias (ABIAS) and the asymptotic mean squared errors (AMSE), we need
stronger regularity conditions.

Assumption II :
(i) The sequence of random vectors {ui, v

′
i} are a sequence of martingale differences

with E[(ui, v
′
i)|Fi−1] = 0

′
(i = 1, · · · , n) and their sixth order moments are bounded,

where Fi−1 is the σ−field generalted by (uj, v
′
j) (j ≤ i − 1) and zj (j ≤ i) . ( We use

the convention that F0 contains only the null set. ) Also there exists a p× 1 constant
vector q such that w

′
i = (v

′
2i, 0

′
)− q

′
ui and

q =
1
σ2

i

Cov((
v2i

0
) ui) + o(

1√
n
) ,(4.3)

where E(u2
i ) = σ2

i (i = 1, · · · , n).
(ii) We have the rank condition given by (3.6).
(iii) The sequence of exogenous variables {zi} are random vectors or non-random (i.e.
deterministic) vectors, but they are stationary, ergodic and their sixth order moments
are bounded in the former case. Also they satisfy the conditions (3.9)-(3.11) in As-
sumption I and there exists a (constant) positive definite matrix C such that

1
n

n∑
i=1

u2
i ziz

′
i = C +Op(

1√
n
) .(4.4)

We notice that while some conditions are automatically satisfied for the heteroscedas-
tic normal disturbances, they can be restrictive. In order to remove the asymptotic bias
of the MEL estimator in the more general case, however, we need to have more compli-
cated modifications. In this paper we restrict our discussions to the simple modification
method which can be practical for real applications. If we have the situation

plim
1
n

n∑
i=1

E(u2
i ) = σ2 (> 0)(4.5)

and the variables {zi} are a sequence of i.i.d. random vectors, and ziz
′
i are asymp-

totically uncorrelated with u2
i , then we have C = σ2M and the asymptotic variance-

covariance matrix reduces to (3.3). For the asymptotic bias of the modified MEL
estimator, we have the following result.

Theorem 4.1 : Under Assumption II, the asymptotic mean function of ê∗ as n →
+∞ is given by

AMn(ê∗) =
1√
n

Q q[L− 1− δL] .(4.6)

8



By using this result on the asymptotic bias of the general modified MEL estimator,
we have the next result on the asymptotic MSE and the asymptotic PC as Theorem
3.2.

Theorem 4.2 : Suppose we choose δ∗L = L−1 (L ≥ 1) in the class of modified MEL
estimators. Then under Assumption II,

lim
n→∞n[AMSEn(ê∗)−AMSEn(êEL)] ≤ 0(4.7)

and
lim

n→∞n[APCn(ê∗)−APCn(êEL)] ≥ 0(4.8)

as n → ∞ . The strict inequalities in (4.7) and (4.8) hold if q �= 0 in the sense of
positive definiteness and q is defined by (4.3).

5. The Nonlinear Case

When the structural equation in (2.1) is nonlinear, we have similar arguments and
our modification of the MEL estimation method can be still useful. However, we
need complicated notations and a set of additional regularity conditions including the
differentiabilities of the function h(·, ·, ·) . For the nonlinear function h(·, ·, ·), we use
the notation

gi(θ) = zi [y1i − h(y2i, z1i, θ)] (i = 1, · · · , n)(5.1)

and let

C = plim[
1
n

n∑
i=1

gi(θ0)g
′
i(θ0)] ,(5.2)

D(M) = plim
1
n
[−

n∑
i=1

∂gi(θ0)] ,(5.3)

where θ0 = (θ(i)
0 ) is a p × 1 vector of true value of the unknown parameters θ and

∂gi(θ) = (∂gi(θ)
∂θi

) .
We assume a K ×K matrix C is positive definite and a K × p matrix D(M) is of full
rank ( p ≤ K ). Then the asymptotic variance-covariance matrix of asymptotically
efficient estimators in the semi-parametric sense can be given by

Q = [D(M )
′
C−1D(M)]−1 ,(5.4)

provided that it is non-singular.
In order to derive the asymptotic bias of the MEL estimator, we consider the situation
when we have the nonlinear relations

y2i = Π2(zi, v2i, π2) ,(5.5)
∂hi

∂θ
= q ui +m(wi, zi, θ) ,(5.6)

where π2 = (π2ij) is a vector of unknown parameters, v2i is a vector of random terms,

wi = m(wi, zi, θ)−E[m(wi, zi, θ)] (i = 1, · · · , n),(5.7)
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p× 1 random vectors which are uncorrelated with ui and E[wi] = 0 .

Assumption III :
(i) The same conditions as (i) in Assumption II.
(ii) The K × p matrix D(M) is of full rank and it is p.
(iii) We assume the same conditions on {zi} as (iii) of Assumption II. Also the functions
gi(θ) are twice continuously differentiable and their sixth order moments are bounded.
There exist constant matricess C and D(M) such that

1
n

n∑
i=1

gi(θ)g
′
i(θ) = C +Op(

1√
n
) ,(5.8)

(−1) 1
n

n∑
i=1

∂gi(θ) = D(M) +Op(
1√
n
) .(5.9)

(iv) The true value θ0 of unknown parameters is an interior point of the compact
parameter space Θ .

We note that the conditions in Assumption III are pararell to those in Assumption
I and Assumption II in the linear case. In the simplest linear homoscedastic case when
{zi} are a sequence of i.i.d. random vectors, then D(M) = MD and C = σ2M .
For the asymptotic bias of the modified MEL estimator, we have the following result
and its proof is given in the Appendix.

Theorem 5.1 : Under Assumption III, the asymptotic bias of the standardized esti-
mator ê∗ as n → +∞ is given by

AMn(ê∗) =
1√
n

Q q[L− 1− δL]− 1√
n
[(
1
2
)Q D(M)

′
C−1tr(FQ)] ,(5.10)

where F = (fjk) and

fjk = plim
1
n

n∑
i=1

zi
∂2hi

∂θj∂θk
.

By using this result we immediately observe that the asymptotic bias of the MEL
estimator and the GMM estimator have the corresponding terms as in the linear case
and there is a common extra term due to the nonlinear relation in (2.1). Then it
is possible to reduce the asymptotic bias of the MEL estimator by using the same
modification of the MEL estimation method given that the second bias term in (5.10)
is not very large. This is the case when the degrees of overidentification L is large.

The asymptotic expansions of the density functions of the modified MEL estima-
tor and its asymptotic mean squared error have many terms in the general nonlinear
case. However, we expect that the similar results as Theorem 3.2 would hold in many
situations under a set of additional regularity conditions.

6. Some Simulations

In order to investigate the finite sample properties of the MEL estimation method
and our modified MEL estimation method, we have done a set of numerical simulations.
For this purpose we set a simple linear structural model

y1i = β1 + β2y2i + γ1z1i + ui ,(6.1)

10



where yki (k = 1, 2) are the endogenous variables, z1i is an exogenous variable, and
βi (i = 1, 2) and γ1 are constant coefficients. We have investigated the situation when
the endogenous variable y2i can be solved as

y2i = π20 + π21z1i + π
′
22z2i + v2i ,(6.2)

where π2j (j = 0, 1) are scalor coefficients, π22 is a K2×1 vector of coefficients, and z2i

is a vector of instrumental variables. Because G1 = 1, the degrees of overidentification
L = K2 − 1 in the present case. We first set L = 3, 5, 10, 20; n = 50, 100, and then we
simulated the normal random numbers for the exogenous variables z

′
i = (z1i, z

′
2i) , the

disturbance terms ui , and the endogenous variables (y1i, y2i) (i = 1, · · · , n) by using
the Gaussian number generators. The number of replications in each case is 5,000.

We have summarized our simulation results in Table 6. For the sake of comparison
we have given the mean squared error (MSE), the mean absolute error (MAE), and the
probability of concentration (PC) for the GMM estimator, the MEL estimator, and the
Modified MEL (MMEL) estimator. The PC has been calculated as

PC = P ( |√nQ
−1/2
11 (β̂ − β)| ≤ c ) ,(6.3)

where β̂ is the estimator of β and Q11 is the (1, 1) element of Q which is the asymptotic
variance-covariance matrix of the standardized estimator ê . We have used the normal-
ization or standardization because it is often easy to make comparisons of alternative
estimation methods and we set c = 1 for our numerical analysis.

Table 6.1 :Finite Sample Properties of Estimators
(L=5, n=50)

Bias MSE MAE PC
GMM -0.0567 0.8367 0.7479 0.6018
MEL 0.0180 1.0930 0.7700 0.6418
MMEL 0.0005 0.9107 0.7345 0.6422

Table 6.2 :Finite Sample Properties of Estimators
(L=10, n=50)

Bias MSE MAE PC
GMM -0.0671 0.6146 0.6526 0.5100
MEL 0.0093 0.6911 0.6373 0.5672
MMEL 0.0003 0.6361 0.6189 0.5734
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Table 6.3 :Finite Sample Properties of Estimators
(L=3, n=100)

Bias MSE MAE PC
GMM -0.0207 0.5475 0.5905 0.6552
MEL 0.0115 0.6164 0.6068 0.6662
MMEL -0.0002 0.5684 0.5898 0.6724

Table 6.4 :Finite Sample Properties of Estimators
(L=10, n=100)

Bias MSE MAE PC
GMM -0.0337 0.4996 0.5769 0.5766
MEL 0.0044 0.4804 0.5451 0.6278
MMEL -0.0003 0.4614 0.5377 0.6310

Table 6.5 :Finite Sample Properties of Estimators
(L=15, n=100)

Bias MSE MAE PC
GMM -0.0358 0.3369 0.4759 0.5118
MEL 0.0037 0.3148 0.4392 0.5810
MMEL 0.0013 0.3046 0.4337 0.5892

There are several interesting findings on the small sample properties of the alterna-
tive estimation methods from the set of our experiments.

First, in terms of the MSE and MAE criteria the GMM estimator often performs
well when L is small. In such cases the MEL estimator perform well in term of the
probability of concentration. Thus we should be careful on the choice of loss functions
when we want to compare alternative estimation methods in order to make a fair
comparison of alternative estimation methods. ( See Anderson et. al. (1982) on
the related issues. ) Second, the good performance of the GMM estimator becomes
deteriolated quickly as the number of instruments L becomes large. This is the case
regardless of the choice of criteria for comparison. On the other hand, the MEL method
outperforms the GMM estimator in this situation by using any criteria.

Most importantly, in all cases the modifoed MEL (MMEL) estimator outperforms
the MEL estimator in the sense of the Bias, the MSE, the MAE, and the PC. When
L is large, the MMEL estimator is better than the MEL estimator, but the differences
are not large.

On the whole these findings agree with our investigations on the finite sample prop-
erties based on the asymptotic expansions of the density functions of estimators up to
O(n−2) in the previous sections. It is consistent with the study on the small sample
properties of the MEL estimator and the GMM estimator by Kunitomo and Matsushita
(2002). They have given extensive tables of the distribution functions of two estimators
in the linear homoscedastic case.
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7. Conclusions

We have proposed a new estimation method of a structural equation by modifying
the maximum empirical likelihood (MEL) method. Our estimator (MMEL) has not
only the smaller asymptotic bias than the MEL estimator but also has the smaller
asymptotic mean squared error when the sample size is large. Also we have given the
numerical examples which suggest that the new estimation method has better small
sample properties than the original MEL estimation method. Therefore we should use
the modified MEL estimation method whenever we want to use the MEL estimation
method for practical purposes. Also our modified estimator has good small sample
properties when the degree of overidentification is large. It has been known that the
GMM estimator has large bias in such situations and our method gives an alternative
estimation method in this respect.

We should mention that the empirical likelihood (EL) method has been originally
developped as the non-parametric testing and constructing confidence interval prob-
lems. (See Owen (2001) in the details.) In this respect there would be some useful
ways to incorporate the modified MEL estimation method proposed in this paper for
the related problems. It is currently under investigation.
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Mathematical Appendix

In this appendix, we give the mathematical details of derivations omitted in the previous
sections. There are two cases depending on whether the sequence of exogenous variables
{zi} are random vectors or non-random (i.e. deterministic) vectors. In order to simplify
our proofs and to avoid tedious derivations, we shall discuss the non-random case under
the additional conditon Mn = M+O( 1

n) . Nonetheless, other cases can be handled in
the similar ways as we shall discuss in this Appendix.

Appendix A : Derivations of Asymptotic Expansions

[A-1] : First we apply the similar arguments used in Owen (1990) and Qin and Lawless
(1994) on the probability limits and the consistency of the MEL estimator. Then we
have np̂i

p→ 1, θ̂EL
p→ θ0, (θ0 is the true value of θ) and

√
nλ̂ converges to a random

vector as n → ∞ .

In the linear case we substitute (2.1) into (2.13) and we have the corresponding
representation of the standardized estimator ê as

[
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1√
n

n∑
i=1

ziui](A.1)

= [
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)]ê ,

where we use the notation θ̂ for θ̂EL without any subscript whenever we do not have
any confusion. As n → ∞, we write the first order term of ê as ẽ0, which is given by

ẽ0 = [D
′
(plim

1
n

n∑
i=1

ziz
′
i)(plim

1
n

n∑
i=1

ziz
′
iu

2
i (θ̂))

−1(plim
1
n

n∑
i=1

ziz
′
i)D]−1(A.2)

×[D′
(plim

1
n

n∑
i=1

ziz
′
i)(plim

1
n

n∑
i=1

ziz
′
iu

2
i (θ̂))

−1(
1√
n

n∑
i=1

ziui) .

The probability limits and the random variable on the right hand side of (A.1) have
been defined properly because the matrices M and C are non-singular and D is of full
rank by our assumptions. By using the central limit theorem (CLT) to the last term,
we have the weak convergence

ẽ0
d−→ Np(0,Q) ,(A.3)

where a p × p matrix Q has been defined by (3.3) and d−→ means the convergence of
distribution as n → ∞ . Also as n → ∞ we notice that

1√
n

n∑
i=1

ziui(θ̂) =
1√
n

n∑
i=1

ziui +
1
n
[−

n∑
i=1

zi(y
′
2i, z

′
1i)ê](A.4)

=
1√
n

n∑
i=1

ziui − (
1
n

n∑
i=1

zizi)Dê +Op(
1√
n
) .
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Then by utilizing the representation of (2.11) for λ̂ , we have

√
nλ− λ0

p−→ 0 ,(A.5)

where

λ0 = C−1/2
n [IK − C−1/2

n MnD(D
′
MnC−1

n MnD)−1D
′
MnC−1/2

n ][C−1/2
n

1√
n

n∑
i=1

ziui] ,

and we have denoted K×K matrices Mn = 1
n

∑n
i=1 ziz

′
i and Cn = 1

n

∑n
i=1 u

2
i ziz

′
i . The

random variable

Bn = C−1/2 1√
n

n∑
i=1

ziui(A.6)

converges to NK(0, IK) by CLT, and Mn
p−→ M, Cn

p−→ C as n −→ +∞ under
Assumption I, where C is defined by (4.2). Hence we also have the convergence

C1/2
n

√
nλ̂

d−→ NK(0, P̄E) ,(A.7)

and the projection matrix on E is defined by

P̄E = IK − E(E
′
E)−1E

′
,(A.8)

which is constructed by a K × p matrix E = C−1/2MD and En = C−1/2
n MnD p−→ E

as n −→ +∞ .

[A-2]: The method we shall use to derive the asymptotic expansion of the density
function of the standardized estimator ê is similar to the one used in Fujikoshi et. al.
(1982) and Anderson et. al. (1986). The validity of the asymptotic expansions can be
given by lengthy arguments which are similar to Appendix C of Fujikoshi et. at. (1982).
We first derive the asymptotic expansion of the density function of the standardized
estimator when the disturbance terms are normally distributed. Then we shall consider
the same problem for more general disturbances.

By expanding (3.2) and (2.13) with respect to ẽ0, formally we can write

ê = ẽ0 + [e0 − ẽ0] +
1√
n

e1 +
1
n

e2 + op(
1
n
) ,(A.9)

and √
nλ̂ = λ0 +

1√
n
λ1 +

1
n
λ2 + op(

1
n
) ,(A.10)

where we denote

e0 = [D
′
MnC−1

n MnD]−1[D
′
MnC−1

n

1√
n

n∑
i=1

ziui] .(A.11)

By substituting these expansions into (2.9), we can also expand the estimated proba-
bility function as

n p̂i = 1 +
1√
n
p
(1)
i +

1
n
p
(2)
i + op(

1
n
) ,(A.12)
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where

p
(1)
i = −λ

′
0zi[ui − 1√

n
z
′
iDe0]

p
(2)
i = −λ

′
1zi[ui − 1√

n
(y

′
2i, z

′
1i)e0]

+λ
′
0zi[

1√
n
(y

′
2i, z

′
1i)e1 + (v

′
2i, 0

′
)e0] + (λ

′
0zi)2[ui − 1√

n
(y

′
2i, z

′
1i)]

2 .

By using the relation
(y

′
2i, z

′
1i) = z

′
iD + w

′
i + q

′
ui ,(A.13)

we shall expand

Ĉn =
n∑

i=1

p̂iu
2
i (θ̂)ziz

′
i(A.14)

= Cn +
1√
n

Ĉ(1)
n +

1
n

Ĉ(2)
n + op(

1
n
)

= Cn +
1√
n

C(1)
n +

1
n

C(2)
n + op(

1
n
) ,

and
n∑

i=1

p̂i(
y2i

z1i
)z

′
i = [D

′
Mn] +

1√
n

E(1)
n +

1
n

E(2)
n + op(

1
n
) ,(A.15)

where we denote the random matrices as

Ĉ(j)
n =

1
n

n∑
i=1

p
(j)
i ziz

′
iu

2
i (θ̂) (j = 1, 2) ,(A.16)

E(1)
n =

1√
n

n∑
i=1

(
v2i

0
)z

′
i + D

′ 1
n

n∑
i=1

p
(1)
i ziz

′
i +

1
n

n∑
i=1

p
(1)
i (

v2i

0
)z

′
i ,(A.17)

E(2)
n = D

′ 1
n

n∑
i=1

p
(2)
i ziz

′
i +

1
n

n∑
i=1

p
(2)
i (

v2i

0
)z

′
i .(A.18)

By using (A.12)-(A.14), we notice that C(1)
n can be rewritten as

C(1)
n

=
1
n

n∑
i=1

ziz
′
i[p

(1)
i u2

i + 2ui(−1)(y′
2i, z

′
1i)e0]

=
1
n

n∑
i=1

ziz
′
i[−2(q

′
e0)u2

i − 2ui(w
′
i + z

′
iD)e0 − λ

′
ziu

3
i ] + Op(

1√
n
)

= (−2)(q′
e0)Cn + [−2 1

n

n∑
i=1

ziz
′
iui(w

′
i + z

′
iD)e0 − 1

n

n∑
i=1

ziz
′
iu

3
i λ0] +Op(

1√
n
) .
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By substituting the above expressions into (A.1) for ê , λ̂, and p̂i (i = 1, · · · , n), we can
determine each terms of the stochastic expansions in the recursive way as

e1 = −QnD
′
MnC−1

n [
1√
n

n∑
i=1

zi(v
′
2i, 0)]e0(A.19)

+Qn[A1][
1√
n

n∑
i=1

ziui − MnD
′
e0] ,

e2 = Qn[A2][
1√
n

n∑
i=1

ziui − MnD
′
e0](A.20)

−Qn[A1][MnDe1 +
1√
n

n∑
i=1

zi(v
′
2i, 0

′
)e0]

−QnD
′
MnC−1

n

1√
n

n∑
i=1

(v
′
2i, 0

′
)e1 ,

where we have used the corresponding notations

Q−1
n = D

′
MnC−1

n MnD ,

A1 = −D
′
MnC−1

n C(1)
n C−1

n + E(1)
n C−1

n ,

A2 = D
′
Mn[−C−1

n C(2)
n C−1

n + C−1
n C(1)

n C−1
n C(1)

n C−1
n ]− E(1)

n C−1
n C(1)

n C−1
n

+ E(2)
n C−1

n .

We also define two random vectors ẽ1 and ẽ2 by substituting C for Cn in (A.19) and
(A.20), respectively. Our next strategy is to derive the asymptotic expansion of the
density function of the random vector

ẽ = ẽ0 +
1√
n

ẽ1 +
1
n

ẽ2 + op(
1
n
)(A.21)

and then we shall evaluate the effects of the differences in the form

[ê− ẽ] = [e0 − ẽ0] +
1√
n
[e1 − ẽ1] +

1
n
[e2 − ẽ2] + op(

1
n
) .(A.22)

Although there are many terms in the above stochastic expansion of ẽ , many of them
can be ignored for order calculations. This consideration leads to some simplifications
of its stochastic expansions.
Because

(
1
n
)

n∑
i=1

p̂
(1)
i ziz

′
i = (−1) 1

n

n∑
i=1

ziz
′
iλ

′
ziui = Op(

1√
n
) ,

and we have the relation that

E(1)
n

∼= 1√
n

n∑
i=1

wiz
′
i + q[

1√
n

n∑
i=1

uiz
′
i − δλ

′
0Cn] + Op(

1√
n
) ,(A.23)
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we have the effect of our modification of the MEL estmation only in the last term for
the asymptotic bias. By using the relation

−QD
′
MC−1[

1√
n

n∑
i=1

ziui](q
′
e0) ∼= −ẽ0(q

′
ẽ0) +Op(

1√
n
) ,

we can calculate the conditional expectation of each terms in e1 given x, which is the
limiting random vector of e0, under the assumption of normal disturbances. Since the
random vectors ê and

√
nλ converge to the normal random variables, the effects of

nonnormality occur in higher orders which should be evaluated later. The conditional
asymptotic bias is given as

E[ẽ1|x] = −(q′
x)x + Q q[L− δL] + Op(

1√
n
) ,(A.24)

where we have used the relation on the projection operators such as PEP̄E = O (
PE = E(E

′
E)−1E

′
is a K ×K projection matrix ) and

λ
′
0C

1/2
n P̄EBn = B

′
nP̄EBn

d−→ χ2(L)(A.25)

as n → ∞ . We notice that e0 and B
′
nP̄EBn are independent under the assumption

of normal disturbances. ( In fact they are asymptotically independent in the general
case. ) We also have

e0 e
′
0 = QnD

′
MnC−1

n (
1√
n

n∑
i=1

uizi
1√
n

n∑
i=1

uiz
′
i)C

−1
n MnDQn

p−→ Q

as n → ∞ and Q is non-singular. Then we have the results on the asymptotic bias
for the class of modified MEL estimators in Theorem 3.1 and Theorem 4.1. It is easily
seen that the formula for the asymptotic bias does not depend on the distribution of
disturbances.

[A-3]: Since there are many terms in the expression of e2 and ẽ2, at first it looks
formidable to evaluate the stochastic orders of these terms. Fortunately, we can show
that we can ignore many terms because their stochastic orders do not affect the asymp-
totic bias and the asymptotic mean squared error.
We use the notation x be the random limit vector of ẽ0 as n → ∞ . After straightfor-
ward but quite tedious calculations as illustrated in Appendix B, we have the conditional
expectation of ẽ2 given x under the normal disturbances as

E[ẽ2|x] = x
′
C∗

1x · x + QQ∗QC∗
2x − (1− δ)QC∗

2x tr[P̄EM∗](A.26)

−(1− δ)[2LQC∗
1x + x tr{C∗

1Q]}+Op(
1√
n
) ,

where we have used the matrix notations C∗
1 = qq

′
, C∗

2 = E[wiw
′
i]/σ

2, M∗ = C−1/2MC−1/2,
and Q∗ = D

′
MC−1MC−1MD . The trace notation has been used as tr(A) =

∑
i aii

for any conformable matrix A = (aij) .
Also by utilizing the expression of ẽ1 and by using lengthy calculations, we can derive
the conditional expectation of ẽ1ẽ

′
1 as

E[ẽ1 ẽ
′
1|x](A.27)
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= x
′
C∗

1x xx
′
+ QQ∗Qx

′
C∗

2x + QC∗
2Q tr[P̄EM∗]

+(1− δ)2L(L+ 2)QC∗
1Q − (1− δ)L[QC∗

1xx + xx
′
C∗

1Q] + Op(
1√
n
) .

Next we consider the characteristic function of the standardized estimator ẽ which can
be written as

C(t) = E[exp(it
′
x)](A.28)

+
1√
n
E[it

′
E(ẽ1|x) exp(it′

x)]

+
1
2n

E{2it′
E(ẽ2|x) exp(it′

x) + i2t
′
E(ẽ1ẽ

′
1|x)t exp(it

′
x)}+O(

1
n
√
n
) ,

where t = (ti) is a p × 1 vector of real variables and i2 = −1 . By using the Fourier
Inversion Formulae developed by Appendix B of Fujikoshi et. al. (1982), we can invert
the characteristic function in (A.28). The intermediate computations are quite tedious
but straightforward and they are similar to those reported in Appendix of Anderson
et. al. (1986). By arranging each terms in the Fourier Inversions we finally have the
next result.

Theorem A.1 : Suppose that the conditions in Assumption II hold and the distur-
bances are normally distributed. Then the asymptotic expansion of the joint density
function of ẽ∗ for the class of modified (MEL) estimators as n → ∞ is given by

f(ξ) = φQ(ξ)
(
1 +

1√
n
(q

′
ξ)[p + 1 + (1− δ)L− ξ

′
Q−1ξ]

+
1
2n

(
ξ
′
C∗

1ξ{[p + 1 + (1− δ)L− ξ
′
Q−1ξ]2 + p+ 1− 3ξ

′
Q−1ξ + 2(1− δ)2L}

+tr(C∗
1Q)[(1− δ)L][2− (1− δ)(L+ 2)]

+ξ
′
C∗

2ξ{tr[P̄EM∗][1− 2(1 − δ)]− p− 4 + ξ
′
Q−1ξ}

+tr(C∗
2Q){tr[P̄EM∗][2(1− δ)− 1]}+ 2ξ

′
Q∗QC∗

2ξ
))

+o(
1
n
) ,

where ξ is a p× 1 (p = G1 +K1) vector and φQ(ξ) is the multivariate normal density
function with mean 0 and the variance-covariance matrix Q .

By using the asymptotic expansion of the density function, we can evaluate the
asymptotic mean squared errors of the modified MEL estimator. We summarize the
resulting formulae.

Theorem A.2 : Suppose that the conditions in Assumption II hold and the distur-
bances are normally distributed. Then the asymptotic mean squared errors of ẽ∗ for the
modified (MEL) estimators based on the asymptotic expansion of the density function
as n → ∞ up to O(n−1) is given by

AMn(ẽ ẽ
′
)
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= Q +
1
n

{
QC∗

1Q[6− 6(1 − δ)L+ (1− δ)2L(L+ 2)]

+Qtr(C∗
1Q)[3− 2(1− δ)L] + QQ∗Qtr(C∗

2Q) + QC∗
2Q tr[P̄EM∗][1− 2(1− δ)]

+2QQ∗QC∗
2Q} .

Remark A.1: When the disturbance terms are homoscedastic as in Assumption I and
normaly distributed random vectors, we can show the relations

Q∗ = σ−2Q−1(A.29)

tr[P̄EM∗] = σ−2L ,(A.30)

because tr[IK − E(E
′
E)−1E

′
] = L (= K − p) and σ2 = E(u2

i ) (i = 1, · · · , n) . Then
the formulae given in Theorem A.1 and Theorem A.2 are identical to the corresponding
formulae for the limited information maximum likelihood (LIML) estimator when δ = 1
except some differences in the parametrizations. Also the the formulae given in Theorem
A.1 and Theorem A.2 are identical to the corresponding formulae for the two satge
least squares (TSLS) estimator when δ = 0 (the GMM case). They have been already
derived by Fujikoshi et. al. (1982) and extensively used by Anderson et. al. (1986)
for the comparison of alternative single equation parametric estimation methods. Thus
we have extended their results to the non-parametric or the semi-parametric single
equation estimation methods in this Appendix.

[A-4] Proof of Theorem 3.2 and Theorem 4.2 :
Our method of proof consists of two steps and also we use one Lemma.
[i] We take two standardized estimators êEL and ẽ∗ with an arbitrary δ (0 ≤ δ ≤ 1)
and apply Theorem A.2. We first compare the MSE of ẽEL and ẽ∗, which are the
corresponding main parts of êEL and ẽ∗ . Then we have

n[AMn(ẽ∗ ẽ∗
′
)− AMn(ẽEL ẽ

′
EL)](A.31)

= QC∗
1Q[(1− δ)2L(L+ 2)− 6(1− δ)L] + Qtr(C∗

1Q)[−2(1− δ)L]

+QC∗
2Q tr[P̄EM∗][−2(1− δ)] .

We notice that the fourth order term x
′
C1x·xx

′
in the conditional stochastic expansion

of ẽEL and ẽ∗ has disappeared in the above expression. Hence the differences of the
asymptotic MSE (AMSE) of two main parts of estimators do not depend on the fourth
order moments of {ui} . That is, it does not depend on the normality of disturbance
terms.
[ii] Next we consider the effects of the differences between ê and ẽ on the AMSE’s
for the modified MEL estimators. By ignoring some higher order terms o(n−1), we can
write

AMn(ê ê
′
)−AMn(ẽ ẽ

′
)(A.32)

= E

[
(ẽ0 +

1√
n

ẽ1)
′
)(e0 − ẽ0)

′
+ (e0 − ẽ0)

′
(ẽ0 +

1√
n

ẽ1)
′
+ (e0 − ẽ0)(e0 − ẽ0)

′
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+
1√
n

ẽ0(e1 − ẽ1) +
1√
n
(e1 − ẽ1)ẽ0)

′
]
.

Then we need to evaluate each terms up to Op( 1
n) . Because of Assumption I or As-

sumption II on the third order moments, it is straightforward to show that

E[(e1 − ẽ1)ẽ
′
0] = o(

1√
n
) .(A.33)

Also

E[(e0 − ẽ0)ẽ
′
0](A.34)

= E[(QnD
′
MnC−1

n − QD
′
MC−1)(

1√
n

n∑
i=1

ziui)(
1√
n

n∑
i=1

ziui)
′
C−1

n MDQ] .

We notice that under our assumptions we can use the order relations Cn − C =
Op(1/

√
n) and also

[(
1√
n
)

n∑
i=1

ziui][(
1√
n
)

n∑
i=1

ziui]
′ − C = Op(

1√
n
) ,

this term is asymptotically the same as

−QD
′
MC−1E[CnA(Cn − C)C−1

n MnDQn](A.35)

= (−κ4

n
)QD

′
MC−1[

1
n

n∑
i=1

ziz
′
i tr(Aziz

′
i)]C

−1MDQ + O(
1

n
√
n
) ,

where κ4 is the fourth cumulant given by κ4 = E(u4
i )−3(E(u2

i ))
2 and A = C−1/2P̄EC−1/2 .

Similarly we can evaluate

E[(e0 − ẽ0) (e0 − ẽ0)
′
](A.36)

= QD
′
MC−1E[(Cn − C)ACnA(Cn − C)]C−1MDQ

=
κ4

n
QD

′
MC−1[

1
n

n∑
i=1

ziz
′
i tr(Aziz

′
i)]C

−1MDQ +O(
1

n
√
n
) .

By using the calculations illustrated in Appendix B, it is possible to show that other
terms are asymptotically negligible. Hence we have shown that the above terms depend
on the nonnormality, but they are common in the class of estimators we are comparing.
Then by using the following lemma, which is Lemma 1 of Anderson et. al. (1986), we
can immediately obtain the second parts on the APC’s of estimators in Theorem 3.2
and Theorem 4.2. (Q.E.D.)

Lemma A.3 : Let S be a star-shaped set in Rp . Then for any arbitrary p×p positive
semidefinite matrix C∗, ∫

S
[ξ

′
C∗ξ − tr(C∗Q)]φQ(ξ)dξ ≤ 0 .(A.37)

Furthermore, for any arbitrary vector b,∫
S
(b

′
ξ)2[p+ 2− ξ

′
Qξ]φQ(ξ)dξ ≥ 0 ,(A.38)
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where ξ is a p × 1 vector and φQ(ξ) is the multivariate normal density function with
mean 0 and the variance-covariance matrix Q .

Appendix B : Derivations of (A.26) and (A.27)

In this subsection we give some details of our calculations on E(e2|x) we have omitted
in Appendix A, where x is the limiting random vector of e0 . Since there are three
terms in (A.20), we write e2 = e(1)

2 + e(2)
2 + e(3)

2 as their corresponding orders. All
terms involving the differences between ẽ2 and e2 are of order Op(n−1/2) , which can
be ignored for the present purpose. First by using the stochastic expansion of e2, we
notice that

e(3)
2 = −QnD

′
MnC−1

n [(
1√
n

n∑
i=1

(ziw
′
i) + (

1√
n

n∑
i=1

(ziui)q
′
]

×{Q(
1√
n

n∑
i=1

(wiz
′
i)C

−1P̄EBn − QD
′
MC−1(

1√
n

n∑
i=1

ziw
′
i)e0 − e0(q

′
e0)

+(1− δ)QqB
′
nP̄EBn}

= −QnD
′
MnC−1

n (
1√
n

n∑
i=1

ziw
′
i)[−QnD

′
MnC−1

n (
1√
n

n∑
i=1

ziw
′
i]e0]

−QnD
′
MnC−1

n (
1√
n

n∑
i=1

ziui)q
′
[−e0(q

′
e0) + (1− δ)QqB

′
nP̄EBn + e(3∗)

2 ,

where the last term e(3∗)
2 denotes other terms in e(3)

1 which cab be ignored. Then by us-
ing the relations that E(e(3∗)

2 |x) = O(n−1/2) and e0 = QnD
′
MnC−1

n [(1/
√
n)

∑n
i=1 ziui] ,

we have the expression

E[e(3)
2 |x] = QD

′
MC−1MDQC∗

2x + x(q
′
x)2 − (1− δ)Lq

′
Qqx(A.39)

= QQ∗QC∗
2x + x

′
C∗

1x − (1− δ)L tr(C∗
1Q) +Op(

1√
n
) .

For the second term we rewrite

e(2)
2 = −Qn[A1]{MD[−QnD

′
MnC−1

n (
1√
n

n∑
i=1

zi(v
′
2i, 0))e0 + Qn[A1]C1/2

n P̄EBn]

+(
1√
n

n∑
i=1

zi(v
′
2i, 0))e0}

= −Qn[A1]MDQn[A1]C1/2
n P̄EBn − Qn[A1]C1/2

n P̄EC−1/2
n [(

1√
n

n∑
i=1

zi(v
′
2i, 0))e0]

+Op(
1√
n
) .
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As the convenient notations we denote the leading two terms as e(2.1)
2 and e(2.2)

2 , re-
spectively. By using (A.17) for E(1)

n and noting that P̄E is a projection operator, we
have

E[e(2.1)
2 |x] = −QnE[(

1√
n

n∑
i=1

wiz
′
i)C

−1
n MnDQn(

1√
n

n∑
i=1

wiz
′
i)C

−1/2
n P̄EBn|x]

−QqE

{
[(

1√
n

n∑
i=1

uiz
′
i)− δB

′
nP̄EC1/2

n ]C−1
n MnDQnq

×[( 1
n

n∑
i=1

uiz
′
i)− δB

′
nP̄EC1/2

n ]C−1/2
n P̄EBn|x

}

= −Qq(e
′
0q)(1− δ)L+ Op(

1√
n
) ,

where we have used the relations P̄EnC−1/2
n MD = P̄EnEn = O , and E[B

′
P̄EB] = L

for the random vector B, which is the limiting normal random vector of Bn, and we
already know that

P̄En

p−→ P̄E

as n → ∞ . Also we can calculate

E[e(2.2)
2 |x](A.40)

= −QnE

{
[(

1√
n

n∑
i=1

wiz
′
i) + q(

1√
n

n∑
i=1

uiz
′
i − δB

′
nP̄EC1/2

n )]

×C−1/2
n P̄EC−1/2

n [(
1√
n

n∑
i=1

ziw
′
i) + (

1√
n

n∑
i=1

ziuiq
′
)]e0|x

}

= −QE{( 1√
n

n∑
i=1

wiz
′
i)C

−1/2
n P̄EC−1/2

n (
1√
n

n∑
i=1

wiz
′
i)e0|x}

−QqE{B′
nP̄EBnq

′ − (1− δ)B
′
nP̄EP̄EBnq

′
e0|x}

∼= −QC∗
2e0 tr[C−1/2P̄EC−1/2M]− (1− δ)LQC∗

1e0 .

We now turn to the term of e(1)
2 which has many terms involved. Because we can show

C(1)
n = Op(1/

√
n) , we rewrite

e(1)
2 = Qn[−D

′
MnC−1

n C(2)
n C−1

n + E(2)
n C−1

n ]C1/2
n P̄EBn +Op(

1√
n
)(A.41)

=

{
−QD

′
MC−1(

1
n

n∑
i=1

p
(2)
i û2

i ziz
′
i) + QD

′
(
1
n

n∑
i=1

p
(2)
i û2

i ziz
′
i)

+Q(
1
n

n∑
i=1

p
(2)
i (v

′
2i, 0

′
)z

′
i)C

−1/2
n P̄EBn

}
+Op(

1√
n
) .

As the convenient notations we denote the leading three terms as e(1.1)
2 , e(1.2)

2 and e(1.3)
2 ,

respectively. For the second term, we need to use the explicit expression for λ1 , which
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is the solution of the equation

λ0 +
1√
n
λ1 +Op(

1
n
) = {C−1

n +
1√
n
[−C−1

n C(1)
n C−1

n ]}

×{[ 1√
n

n∑
i=1

ziui − MnDe0] +
1√
n
[−MnDe1 − 1√

n

n∑
i=1

zi(v
′
2i, 0

′
)e0]} .

Then we have the representation as

λ1

= −C−1
n MnDe1 − C−1

n (
1√
n
)

n∑
i=1

zi(v
′
2i, 0

′
)e0 − C−1

n C(1)
n C−1

n P̄EnBn

= −C−1
n MnD[−QnD

′
MnC−1

n (
1√
n

n∑
i=1

ziw
′
i)e0 − (q

′
e0)e0 + Qn(

1√
n

n∑
i=1

ziw
′
i)C

−1/2
n P̄EBn]

+
n∑

i=1

zi(v
′
2i, 0

′
)e0 +Op(

1√
n
)

= −C−1
n [

1√
n

n∑
i=1

ziui(q
′
e0) + (

1√
n

n∑
i=1

ziw
′
i)e0

−C−1
n [−2 1√

n

n∑
i=1

ziz
′
iu

2
i + (q

′
e0)C−1/2

n P̄EBn] + Op(
1√
n
)

= −C−1/2
n P̄EC−1/2

n (
1√
n

n∑
i=1

ziw
′
i)e0 + C−1

n MnD
′
e0(q

′
e0)

−C−1
n MnD

′
Q(

1√
n

n∑
i=1

wiz
′
i)C

−1/2
n P̄EBn − C−1

n (
1√
n

n∑
i=1

ziui)(q
′
e0)

+2(q
′
e0)C−1/2

n P̄EBn + Op(
1√
n
) .

Then we summarize the second term of e(1)
2 as

e(1.2)
2 = QD

′
Mn[λ

′
0zi(v

′
2i,O)e0 − λ

′
1ziui + (λ

′
0ziui)2]C−1/2

n P̄EBn +Op(
1√
n
) .

Hence we have
E[e(1.2)

2 |x] = Op(n−1/2) .(A.42)

In order to deal with the terms in e(1.1)
2 , we notice that

C(2)
n C−1/2

n P̄EBn

= Mn{(z′
iDe0)2 + [v

′
2i,O)e0 − 2p(1)

i (z
′
iDe0 + (v

′
2i,O)e0 − 2uiz

′
iDe1] + p

(2)
i u2

i }

+C−1/2
n P̄EBn +Op(

1√
n
) .
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Then we can evaluate the conditional expectations of each term and it is possible to
show that

E[e(1.1)
2 |x] = Op(

1√
n
) .(A.43)

Hence the only remaining contribution on the order of E[e(1)
2 |x] comes from the terms

in E[e(1.3)
2 |x] . Then we write

e(1.3)
2(A.44)

= δQn[(
1
n

n∑
i=1

wi z
′
i) + q(

1
n

n∑
i=1

ui z
′
i)]

×[λ′
0zi(w

′
i + q

′
ui)e0 − λ

′
1ziui + (λ

′
0ziui)2]C−1/2

n P̄EBn +Op(
1√
n
)

= δQn[
1
n

n∑
i=1

(wi + qui)(w
′
i + q

′
ui)e0λ

′
0ziz

′
i]C

−1/2
n P̄EBn

−δQn[
1
n

n∑
i=1

(wi + qui)z
′
iλ

′
1ziui]C−1/2

n P̄EBn

+δQn[
1
n

n∑
i=1

(wi + qui)z
′
i(λ

′
0zi)2u2

i ]C
−1/2
n P̄EBn +O(

1√
n
) .

Hence the conditional expectation is given by

E[e(1.3)
2 |x](A.45)

= δQC2e0 tr(C−1/2MC−1/2P̄E) + δ L QC∗
1e0

−δQE[(
1
n

n∑
i=1

(wi + qui)z
′
iλ

′
1ziuiC−1/2

n P̄EBn|x] + Op(
1√
n
) .

By substituting λ1 into the last term in the above expression, the thrid part of (A.45)
can be rewritten as

−δQE

{
(
1
n

n∑
i=1

wiz
′
i)[−C−1/2

n P̄EC−1/2
n − (

1
n

n∑
i=1

ziw
′
i)e0

−δQq(
1
n

n∑
i=1

uiz
′
i)[C

−1
n MDe0(q

′
e0 − Cn(

1
n

n∑
i=1

ziui(q
′
e0)]

′
uizi)C−1/2

n P̄EBn|x
}

−2Qq(q
′
e0)E[B

′
nP̄EBn] + Op(

1√
n
)

= −δ L Qqq
′
e0 +Op(

1√
n
)

Then we evaluate each term and we can find that the second term and the third term
of (A.45) are cancelled out. Hence we have

E[e(1.3)
2 |x] = δ QC∗

2e0 tr(M∗P̄E) +O(
1√
n
) .(A.46)
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Appendix C : Nonlinear Case

In the nonlinear case we use the notation

g(yi, zi, θ) = zi [y1i − h(y2i, z1i, θ)](A.47)

and θ̂EL be the MEL estimator for the structural parameters satisfying (2.10)-(2.12).
Then we have the representation

[−
n∑

i=1

p̂i (∂gi(θ̂)]
′
[

n∑
i=1

p̂igi(θ̂)gi(θ̂)
′
]−1[

1√
n

n∑
i=1

gi(θ0)](A.48)

= [−
n∑

i=1

p̂i (∂gi(θ̂)]
′
[

n∑
i=1

p̂igi(θ̂)gi(θ̂)
′
]−1

×
{
[− 1

n

n∑
i=1

gi(θ0)]ê +
1√
n
[− 1

n

n∑
i=1

(
1
2
)∂(j,k)gi(θ0)ê(j)ê(k)]

+
1
n
[− 1

n

n∑
i=1

(
1
6
)∂(j,k,l)gi(θ0)ê(j)ê(k)]ê(l) + Op(

1√
n
)]

}

where we have used the notations as ∂(j,k)gi =
∑

j,k
∂2

∂θj∂θk
gi and ê(i) is the i-th compo-

nent of ê . for instance. We use the convergence in probability as n → ∞ that

−
n∑

i=1

p̂i (∂gi(θ̂) ∼= (− 1
n
)

n∑
i=1

∂gi(θ0)
p−→ D(M) ,(A.49)

n∑
i=1

p̂igi(θ̂)gi(θ̂)
′ p−→ C = plim

1
n

n∑
i=1

gi(θ0)gi(θ0)
′
.(A.50)

Then we have

[D(M )
′
C−1 D(M)] e0 = D(M)

′
C−1 [

1√
n

n∑
i=1

gi(θ0)] ,(A.51)

where we note that gi(θ0) = ziui(θ0) and e0 is the first order term of ê . Then by using
the CLT and using the notation Q = D(M)

′
C−1 D(M) , we have

e0 = Q D(M)
′
C−1 [

1√
n

n∑
i=1

ziui]
w−→ N [0,Q] .(A.52)

In the nonlinear case we also denote x as the limiting random vector of e0 . We expand
the random variable

√
nλ̂ at the true value θ̂ = θ0 which can be formally written as

√
nλ̂(A.53)

= [Cn +
1√
n

C(1)
n +

1
n

C(2)
n ]−1[

1√
n

n∑
i=1

gi(θ̂)]
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= [C−1
n

1
n

n∑
i=1

gi(θ0) + C−1
n

1
n

n∑
i=1

∂jgi(θ0)e
(j)
0 ]

× 1√
n
{[C−1

n

1
n

n∑
i=1

∂jgi(θ0)e
(j)
1 ] + [C−1

n

1
n

n∑
i=1

(
1
2
)∂j,kgi(θ0)e

(j)
0 e(k)

0 ]

−C−1
n C(1)

n C−1
n [

1√
n

n∑
i=1

gi(θ0) +
1
n

n∑
i=1

∂jgi(θ0)]}+Op(
1
n
) .

Hence we have the first order term as

λ0 = C−1
n [

1√
n

n∑
i=1

gi(θ0) +
1
n

n∑
i=1

∂jgi(θ0)e
(j)
0 ](A.54)

∼= C−1
n [

1√
n

n∑
i=1

gi(θ0)− D(M)e0]

∼= C−1/2
n P̄EBn .

As for the linear case we write

−
n∑

i=1

p̂i (∂gi(θ̂) = D(M) +
1√
n

E(1)
n +Op(

1
n
) ,(A.55)

where we denote

E(1)
n =

√
n[−1

n

n∑
i=1

∂gi(θ0)−D(M)]+(−1) 1
n

n∑
i=1

p
(1)
i ∂gi(θ0)+(−1) 1

n

n∑
i=1

p
(1)
i ∂j,kgi(θ0)e

(k)
0 ,

Then we can rewrite

[−
n∑

i=1

p̂i∂gi(θ̂0)][e0 +
1√
n

e1 +
1
n

e2]

= D(M)e0 +
1√
n

{
D(M)e1 +

√
n[−1

n

n∑
i=1

∂gi(θ0)− D(M)]e0 +
1
n
(−1)

n∑
i=1

1
2
∂j,kgi(θ0)e

(j)
0 e(k)

0

}

+Op(
1
n
) .

Hence we have

(D(M )
′
C−1

n D(M))e1

= [A1][− 1
n

n∑
i=1

∂gi(θ0)− D(M)] − D(M)
′
C−1

n

{√
n[−1

n

n∑
i=1

∂gi(θ0)− D(M)]e0

+
1
n
(−1)

n∑
i=1

1
2
∂j,kgi(θ0)e

(j)
0 e(k)

0

}
.

We notice that in the nonlinear case there is an extra term due to the nonlinearity in
the above expression. By using the similar arguments as in the linear case, we have

E[C(1)
n C−1

n C1/2
n P̄EBn|x] = Op(

1√
n
) ,(A.56)
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and

[A1] = E(1)′
n C−1

n

=

{√
n[−1

n

n∑
i=1

∂gi(θ0)− E(− 1
n

n∑
i=1

∂gi(θ0))]− λ
′
0

1
n

n∑
i=1

uiziz
′
i∂hi(θ0))

−1
n

n∑
i=1

∂j,kgi(θ0)e
(j)
0 e(k)

0

}
C−1

n ,

where E(·) on the righ thand side is the expectation operator and we have used the
notation that x is the limiting random vector of e0 as n −→ +∞ . Then we take the
conditional expectation of e1 given x . It is easily seen that the first two terms are of
the same form which are given by

−q
′
xx

′
+ (1− δ)L Q q

as in the linear case. The expectation of the extra last term becomes

E{1
2
QD(M)

′
C−1

n

1
n
(−1)

n∑
i=1

(∂(j,k)hi(θ0))(−zi)e
(j)
0 e(k)

0 }(A.57)

= (−1
2
)QD(M)

′
C−1

n tr[
1
n

n∑
i=1

zi(∂(j,k)hi(θ0))e
(j)
0 e(k)

0 ] .

Hence by summarizing each terms we have the formula in Theorem 5.1.
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