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Abstract

Block rate pricing is often applied to income taxation, telecommunication services,

and brand marketing in addition to its best-known application in public utility services.

Under block rate pricing, consumers face piecewise-linear budget constraints. A dis-

crete/continuous choice approach is usually used to account for piecewise-linear budget

constraints for demand and price endogeneity. A recent study proposed a methodology

to incorporate a separability condition that previous studies ignore, by implementing a

Markov chain Monte Carlo simulation based on a hierarchical Bayesian approach. To

extend this approach to panel data, our study proposes a Bayesian hierarchical model

incorporating the random and fixed individual effects. In both models, the price and

income elasticities are estimated to be negative and positive, respectively. Further, the
∗Corresponding author: Tel:+81-3-5841-5516, E-mail:omori@e.u-tokyo.ac.jp
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number of members and the number of rooms per household have positive relation-

ship to the residential water demand when we apply the model with random individual

effects, while they do not in the model with fixed individual effects.

Key words: Block rate pricing, Bayesian analysis, Panel data, Residential water demand.

JEL classification: C11, C23, C24, Q25.

1 Introduction

Block rate pricing usually has been applied to services in public utility sectors such as water,

gas, and electricity.1 However, block rate pricing is becoming common in areas such as

local and wireless telephone services and brand marketing. Under block rate pricing, unit

price changes with quantity consumed. When unit price increases with quantity consumed

(Figure 9), such a price schedule is called the increasing block rate pricing. When unit price

decreases with quantity consumed, it is called the decreasing block rate pricing. Then, under

block pricing consumers maximize utility by selecting the unit price and the consumption

amount. This circumstance leads to a utility-maximization problem under a piecewise-linear

budget constraint.

As surveyed by Olmstead (2009), there are two types of estimation approaches that deal

with this problem: reduced-form approaches, such as instrumental variables, and struc-

tural approaches. The structural approach solves a consumer’s utility maximization prob-

lem in two steps. A consumer first decides appropriate consumption given each block’s

price, and then selects the block that maximizes consumer utility. This is also called a dis-

crete/continuous choice approach because the block selection is discrete while the amount

consumed is continuous. Its important feature is that the derived model explicitly addresses

the relationship between the block choice and the amount consumed under block rate pricing.

As discussed in Olmstead (2009), the reduced-form approaches can incorporate only

1The other example where the same rate structure is applied is a progressive tax rate in income tax systems.
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limited aspects of the piecewise-linear budget constraint, while the structural approaches ac-

count just for the particular implications of piecewise-linear budget constraints for demand

as well as price endogeneity. Thus the latter approaches have two main advantages over the

former ones: (1) the structural approaches can produce unbiased and consistent estimates of

parameters of the price and the income2and (2) they are consistent with utility theory. De-

spite these advantages, most previous studies employ reduced-form approaches. Structural

approaches are rare in demand analysis.3 This is because the discrete/continuous choice ap-

proach had been applied only to the simplified block rate price structure—for example, the

number of blocks is fixed at two.

While Pint (1999); Rietveld et al. (2000); Olmstead, Hanemann, and Stavins (2007);

Olmstead (2009); Szabó (2009) considered multiple-block pricing through the classical ap-

proach (the maximum likelihood or the moment-based approach), Miyawaki, Omori, and

Hibiki (2010) focused on the increasing block rate pricing and proposed a Bayesian ap-

proach. The latter has two following advantages over the former.

First, the Bayesian approach is a flexible estimation method to impose parameter con-

straints. As revealed by Miyawaki et al. (2010), the statistical model includes the so-called

separability condition that tightly restricts elasticity parameters. From microeconomic the-

ory point of view, the separability condition is a condition that guarantees the single-valued

demand function and is one of sufficient conditions for the underlying preference relation

to be strictly convex (see Hurwicz and Uzawa (1971) for the sufficient conditions). Despite

its importance, previous literature generally ignores the condition because the parameter re-

gion becomes tightly restrained, making numerical maximization of the likelihood function

difficult.

2Previous studies suggested that water demand is price inelastic. However, as is suggested in the meta-
analysis (Dalhuisen, Florax, de Groot, and Nijkamp, 2003), the choice of the approach may affect the estimates,
since the water demand is price inelastic in previous studies employing the reduced form approach, however,
are price elastic in the discrete/continuous choice approach.

3Olmstead (2009) reported that, between 1963 and 2004, there were only three studies on water de-
mand (Hewitt and Hanemann, 1995; Pint, 1999; Rietveld, Rouwendal, and Zwart, 2000) that adopted the
discrete/continuous choice approach.
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Second, when we analyze the panel data, the model often includes the individual effect

to control the effect that is time-invariant. Its typical parameterizations are the random and

the fixed individual effects (see, e.g., Chamberlain (1984)). Because our statistical model

includes corner solutions as a part of the demand function, the latter specification is diffi-

cult to estimate its model parameters by simply differencing or demeaning. In this case, the

Bayesian approach provides a straightforward estimation method, which is another advan-

tage.

Thus, to extend Miyawaki et al. (2010) for the panel data analysis, this study proposes

a Bayesian hierarchical model. It incorporates the random and fixed individual effects to

estimate the residential water demand function under the separability condition using panel

data of Japanese households. This is the first study that incorporates the individual effect in

the discrete/continuous choice approach.

We organize this article as follows. Section 2 describes the proposed statistical model

with the individual effect, which is an extension of Miyawaki et al. (2010) for panel data

analysis. Then, 3 explains the Bayesian approach and discusses two specifications of the

individual effect. Section 4 expresses the empirical data set, conducts the model comparison,

and analyzes the Japanese residential water demand. Section 5 concludes.

2 Multinomial type V Tobit model

Let subscript i and t denote the observation and the time, respectively. We observe the

residential water demand yit under Kit-block increasing block rate pricing for the i-th obser-

vation at time t. By using the unit prices {Pit,k}Kit
k=1, the upper quantity values {Ȳit,k}Kit

k=1, and

the fixed cost FCit, the virtual incomes {Qit,k}Kit
k=1 are constructed. Then, by introducing the

unobserved variables (w∗it, s∗it), which will be explained later, the statistical model is given as
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follows.4

yit = y∗it +uit, uit ∼ i.i.d. N(0,σ2
u), (1)

where

y∗it =


yit,k +w∗it = xxx′it,kβββ+w∗it, if s∗it = 2k−1 and k = 1, . . . ,Kit,

ȳit,k, if s∗it = 2k and k = 1, . . . ,Kit −1,
(2)

s∗it =


2k−1, if w∗it ∈ Rit,2k−1 and k = 1, . . . ,Kit,

2k, if w∗it ∈ Rit,2k and k = 1, . . . ,Kit −1,
(3)

w∗it = z′itδδδi+ vit, vit ∼ i.i.d. N
(
0,σ2

v

)
, (4)

yit,k = xxx′it,kβββ, xxxit,k =
(
pit,k,qit,k

)′ , βββ = (β1,β2)′, k = 1, . . . ,Kit, (5)

where Kit is the number of blocks, (yit,yit,k, ȳit,k, pit,k,qit,k) are the logarithm of demand, the

logarithm of demand conditional on the k-th block, the logarithm of the upper quantity of

the k-th block, the logarithm of the unit price for the k-th block, the logarithm of the virtual

income for the k-th block, for observation i at time t. The conditional demand yit,k is specified

below and the virtual income is defined in Appendix A.1 (see equation (A.26)).

This statistical model is based on the utility maximization behavior of a consumer. The

problem and its solution (the demand function) is briefly described in Appendix A.1. From a

statistical point of view, above statistical model is classified into a multinomial type V Tobit

model (see Chapter 10 of Amemiya (1985)).

There are three main features in this statistical model. First, we assume the functional

4The statistical model above includes two popular models in the panel data analysis. When zzzit includes yi,t−1
as an explanatory variable, the model becomes the dynamic panel data model. On the other hand, when w∗it has
the AR(1) serial correlation, this model is interpreted as the AR(1) error component model (see also footnote
10 for the brief empirical results on this model). The AR(1) process specification can be further extended with
a heteroskedastic variance structure, www∗i ∼ N(ZZZiδδδi,Σ), where www∗it = (w∗i1, . . . ,w

∗
iT )′ and ZZZi = (zzzi1, . . . ,zzziT )′.
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form of the conditional demand function to be log-linear, that is,

logYit,k = β1 log Pit,k +β2 log Qit,k⇐⇒ yit,k = β1 pit,k +β2qit,k. (6)

The log-linear demand function is one of the most popular functional forms in the water

demand analysis (see, e.g., Hewitt and Hanemann (1995); Olmstead et al. (2007); Miyawaki

et al. (2010)).

Second, the heterogeneity of preferences w∗it is introduced. This is a unobserved stochas-

tic term that models consumers’ characteristics and is assumed to be the sum of the linear

combination of d-dimensional vector zzzit and the error term vit that is independently and iden-

tically distributed with the normal distribution of mean 0 and variance σ2
v . To capture the

individual effect, we allow the coefficient of zzzit varying across observations. The δδδi can be

“fixed” or “random” depending on the choice of the prior distribution (see the next section).

Based on this w∗it, the consumer’s optimal block/kink s∗it is determined. The s∗it is a

unobserved discrete random variable that indicates which block or kink is potentially optimal

for the consumer based on the heterogeneity and augments the model parameter space so that

we exploit the data augmentation method to estimate parameters (see, e.g., Tanner and Wong

(1987) for the description of the data augmentation). More precisely, if w∗it is included in the

heterogeneity interval Rit,2k−1, the k-th conditional demand with the heterogeneity is optimal,

while it is in Rit,2k, the upper limit of the k-th block is optimal, where

Rit,2k−1 =
(
ȳit,k−1− xxx′it,kβββ, ȳit,k − xxx′it,kβββ

)
, Rit,2k =

(
ȳit,k − xxx′it,kβββ, ȳit,k − xxx′it,k+1βββ

)
. (7)

It is possible to allow the correlation between w∗it and {pit,k,qit,k}k=1,...,Kit (see e.g., Mund-

lak (1978); Chamberlain (1980, 1984)). However, because we only have two time points

(t = 1,2) and the variability of unit prices and virtual incomes are small in our empirical data

set, we do not pursue such a specification in this article.

Finally, the actual demand is observed with measurement error uit that is independently
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and identically distributed with the normal distribution of mean 0 and σ2
u. It represents the

measurement error as well as the optimization error and the model misspecification error

(see Hausman (1985)).

3 Bayesian analysis

There are two prior specifications: one that assumes δδδi to be “random” and the other that

assumes it to be “fixed” (see, e.g., Lindley and Smith (1972); Smith (1973)). Such a distinc-

tion (random or fixed) comes from the non-Bayesian approach and all model parameters are

random in the Bayesian context. However, for convenience, we use the term “random” and

“fixed” for δδδi to distinct its prior specifications.

First, we explain the prior specification for the model with the random individual effects.

The model parameters are (βββ, {δδδi}ni=1,σ
2
u,σ

2
v) and we assume the following proper hierarchical

prior distributions on them.

βββ|σ2
u ∼ N2

(
µµµβββ,0,σ

2
uΣΣΣβββ,0

)
, σ2

u ∼ IG
(
nu,0

2
,
S u,0

2

)
, σ2

v ∼ IG
(
nv,0

2
,
S v,0

2

)
, (8)

δδδi|σ2
v ,µµµδδδ,ΣΣΣδδδ ∼ i.i.d. Nd

(
µµµδδδ,σ

2
vΣΣΣδδδ

)
, for i = 1, . . . ,n, (9)

µµµδδδ ∼ Nd
(
µµµδ̄δδ,0,ΣΣΣδ̄δδ,0

)
, ΣΣΣδδδ ∼ IWd

(
nδ̄δδ,0,SSS δ̄δδ,0

)
, (10)

where µµµβββ,0 = (µβ1,0,µβ2,0)′ is a 2×1 known vector, ΣΣΣβββ,0 = diag(σ2
β1,0

,σ2
β2,0

) is a 2×2 known di-

agonal matrix with positive diagonal elements (σ2
β1,0

,σ2
β2,0

), (nu,0, S u,0, nv,0, S v,0) are known

positive constants, µµµδ̄δδ,0 is a d×1 known vector, ΣΣΣδ̄δδ,0 and SSS δ̄δδ,0 are known d×d positive definite

matrices, and nδ̄δδ,0 > d−1 is a known constant. The Nk(µµµ,ΣΣΣ), IG(a,b), and IWp(m,ΨΨΨ) repre-

sent the k-dimensional multivariate normal distribution of mean µµµ and variance ΣΣΣ, the inverse

gamma distribution with shape parameter a and scale parameter b,5 and the p-dimensional

5The mean and variance of IG(a,b) (a and b positive constants) are b/(a−1) for a> 1 and b2/{(a−1)2(a−2)}
for a > 2, respectively.
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inverse Wishart distribution with m degrees of freedom and parameter matrix Ψ,6 respec-

tively.

In this prior setting, we assume that {δδδi}ni=1 are independently and identically drawn from

the normal distributions (9), of which mean and variance are common across observations

and are distributed by the hyperprior distributions (10). The iid assumption implies the

exchangeability among {δδδi}ni=1, which is acceptable because we have no prior information

available to distinguish them.

Next, the prior specification for the model with the fixed individual effects is described.

Among the model parameters, we assume the same prior distributions on (βββ,σ2
u,σ

2
v) (see

equations (8)) and assume the following proper prior distributions on {δδδi}ni=1.

δδδi|σ2
v ∼ Nd

(
µµµδδδi,0,σ

2
vΣΣΣδδδi,0

)
, for i = 1, . . . ,n, (15)

where µµµδδδi,0 is a d × 1 known vector and ΣΣΣδδδi,0 is a d × d know positive definite matrix. No

hyperprior distributions are assumed. In this specification, {δδδi}ni=1 are treated in the same

way with other parameters, and their prior means and variances are allowed to differ among

observations.

However, we will assume the same prior mean and variance for all δδδi in the empirical

analysis because we have no prior information available to distinguish them (Subsection

4.3). Then, such a prior specification can be viewed as a special case of the one for the

6When VVV follows IWp(m,ΨΨΨ), its mean and variance are given by

E (VVV) =
ΨΨΨ

m−2p−2
, (m−2p−2 > 0), (11)

Var (vii) =
2ψ2

ii

(m−2p−2)2(m−2p−4)
, (m−2p−4 > 0), (12)

Var
(
vi j

)
=

ψiiψ j j+
m−2p

m−2p−2ψ
2
i j

(m−2p−1)(m−2p−2)(m−2p−4)
, (m−2p−4 > 0), (13)

Cov
(
vi j,vkl

)
=

2
m−2p−2ψi jψkl+ψikψ jl+ψilψk j

(m−2p−1)(m−2p−2)(m−2p−4)
, (m−2p−4 > 0), (14)

where vi j and ψi j are the (i, j) element of VVV and ΨΨΨ, respectively (see Gupta and Nagar (2000)).
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random individual effects. That is, the former specification is the same with the latter when

we exclude the hyperprior distributions (10). Section 4.2 will conduct the model comparison

by using the deviance information criteria (DIC) and determine which prior assumption is

favored in terms of the empirical data.

Let θi = (βββ,δδδi,σ
2
u,σ

2
v) and θ = (βββ, {δδδi}ni=1,σ

2
u,σ

2
v). Let πRE(θ,µµµδδδ,ΣΣΣδδδ) and πFE(θ) denote

the respective joint prior probability density functions of the model with random and fixed

individual effects. Then, the joint posterior probability density functions for these two prior

specifications are given by

πRE
(
θ,µµµδδδ,ΣΣΣδδδ, {www∗i , sss∗i }ni=1 |

{
yyyi
}n
i=1

)
∝πRE

(
θ,µµµδδδ,ΣΣΣδδδ

) n∏
i=1

T∏
t=1

f
(
yit, s∗it,w

∗
it | θi

)
, (16)

πFE
(
θ, {www∗i , sss∗i }ni=1 |

{
yyyi
}n
i=1

)
∝πFE (θ)

n∏
i=1

T∏
t=1

f
(
yit, s∗it,w

∗
it | θi

)
, (17)

where

f
(
yit, s∗it,w

∗
it | θi

)
∝σ−1

u σ−1
v exp

[
−1

2

{
σ−2

u

(
yit − y∗it

)2
+σ−2

v

(
w∗it − zzz′itδδδi

)2
}]

× I
(
w∗it ∈ Rit,s∗it

)Kit−1∏
k=1

I
(
xxx′it,k+1βββ ≤ xxx′it,kβββ

)
, (18)

πRE
(
θ,µµµδδδ,ΣΣΣδδδ, {www∗i , sss∗i }ni=1 |

{
yyyi
}n
i=1

)
and πFE

(
θ, {www∗i , sss∗i }ni=1 |

{
yyyi
}n
i=1

)
are the respective joint pos-

terior density functions of the model with random and fixed individual effects, I(A) is the

indicator function; I(A) = 1 if A is true and I(A) = 0 otherwise, yyyi = (yi1,yi2, . . . ,yiT )′, www∗i =

(w∗i1,w
∗
i2, . . . ,w

∗
iT )′, and sss∗i = (s∗i1, s

∗
i2, . . . , s

∗
iT )′. To obtain posterior samples from these pos-

terior density functions, we apply the simple Gibbs sampler. The algorithms are given in

Appendix A.2 and A.3.

The product of I(xxx′it,k+1βββ ≤ xxx′it,kβββ) over i = 1, . . . ,n, t = 1, . . . ,T , and k = 1, . . . ,Kit−1 is the

separability condition that guarantees disjoint heterogeneity intervals (see Rit,2k in equations

(7)). Because βββ is a two-dimensional vector in our statistical modeling, this condition reduces
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to two inequality constraints:

β2 ≤ rβ1 and β2 ≤ rβ1, (19)

where r = maxi,t,k−(pit,k+1 − pit,k)/(qit,k+1 − qit,k) and r = mini,t,k−(pit,k+1 − pit,k)/(qit,k+1 −

qit,k). Further discussions can be found in Miyawaki et al. (2010).

4 Empirical analysis

4.1 Data

We use the household-level dataset collected by internet surveys concerning household water

and energy consumption and garbage emissions, which we conducted twice (in June 2006

and June 2007) for individuals in the Tokyo and Chiba prefectures in collaboration with

INTAGE, Inc., a marketing research company (www.intage.co.jp/english), which has more

than 1.3 million monitors all over Japan. As respondents, 1,687 monitors were randomly

selected from all INTAGE monitors, 47,239, in this area who are between age 20 and 79.

The numbers of respondents in June 2006 and June 2007 were 1,276 and 760, respectively.

The number of respondents in both June 2006 and 2007 was 515. The individuals’ answers

concerned attributes of the household to which they belong, including the number of house-

hold members, household annual income, number of rooms and floor space of their house or

apartment, and the household’s monthly water and sewerage bills. Because water and sewer-

age are billed every second month in Japan, reported usage is considered to be a two-month

usage. In the survey, these attributes are collected only once yearly, and we used respondents

collected in June 2006 and April 2007. Since sewerage and water bills are also calculated

based on water consumption, the amount of water consumption was calculated from the wa-

ter and sewerage bills using the corresponding information on water charge schedules and

sewerage charge schedules in each city. Every household faces increasing block rate pricing;

the number of blocks varies from two to eleven, depending on cities where respondents live.
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The number of observations used for the empirical analysis in the next subsection was

reduced to 135 because of respondents’ missing or inappropriate answers or for technical

reasons as follows:

1. Consumption within the zero unit price block is observed.

2. Living in cities that have discontinuous parts in their price system.

3. Living in cities that changed rate tables in June 2006.7

4. Using a well for water use because of its special charge system.

The histograms of the amount of water consumption, the dependent variable for the empirical

analysis in the next subsection, are shown in Figure 1. Other variables used as explanatory

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

(a) June 2006.

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

(b) June 2007.

Figure 1: Histograms of the amount of water consumption (logm3).

variables for the empirical analysis are listed in Table 1. In Figure 2, we summarize the block

Table 1: Explanatory variables used in the water demand function

Variable Coefficient Description

price β1 water+sewer (log ¥103/m3)
virtual income β2 income augmented by price (log ¥103)

variables for w∗i δ0 the constant
δ1 the number of members in a household (person)
δ2 the number of rooms in a house/apartment (room)
δ3 the total floor space of a house/apartment (50m2)

rate price structure. Each column of Figure 2 shows the relative frequencies of the number
7In June 2007, no cities changed the rate tables.
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(b) Price (¥103/m3).

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1.0

(c) Fixed cost (¥103).
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(e) Price (¥103/m3).
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(f) Fixed cost (¥103).

Figure 2: Relative frequencies of the number of blocks, and the histograms of the price and
the fixed cost. Top row is for June 2006 and bottom row is for June 2007.

of blocks, and the histograms of the unit price where the consumption is actually made and

the minimum access charge for June 2006 and June 2007.

Regarding the income variable, it is a sensitive issue to ask households their exact annual

income level. Therefore, in our survey, instead of the actual values, the household is asked to

choose one of eight categories for the annual income in million yen; 0-2, 2-4, 4-6, 6-8, 8-10,

10-12, 12-15, over 15 million yen. The histograms for the income categories are shown in

Figure 3. For the empirical analysis, we use the median of the interval of each categories

15

(a) June 2006.
15

(b) April 2007.

Figure 3: Histograms for the income (¥106).

divided by six to estimate the two-month income for the households except of those who

choose “over 15 million yen.” Households whose annual incomes are over 15 million yen

12



are asked to answer the value of their annual income.

Basic statistics for heterogeneity are given in Table 2. We calculate the correlation coef-

Table 2: Basic statistics of explanatory variables for heterogeneity

Variable Unit Year Mean SD Min. Max.

the number of members in a household (δ1) person
2006 3.18 1.20 1 7
2007 3.21 1.23 1 8

the number of rooms in a house/apartment (δ2) room
2006 4.41 1.08 2 8
2007 4.39 1.07 2 8

the total floor space of a house/apartment (δ3) 50m2 2006 1.68 0.72 0.24 4.60
2007 1.68 0.72 0.24 4.60

ficients among explanatory variables for heterogeneity. All correlation coefficients are less

than .6, except for the correlation between the number of rooms and total floor space, which

is .68 in 2006 and .67 in 2007.

4.2 Model comparison

The model, equations (5-1), is based on the discrete/continuous choice approach, more pre-

cisely, on the consumer’s utility maximization problem. This section explains an alternative

model that is not based on the consumer theory, but on the random choice.

yit,k = xxx′it,kβββ, xxxit,k =
(
pit,k,qit,k

)′ , βββ = (β1,β2)′ , k = 1, . . . ,Kit, (20)

w∗it = zzz′itδδδi+ vit, vit ∼ i.i.d. N
(
0,σ2

v

)
, (21)

y∗it =


yit,k +w∗it = xxx′it,kβββ+w∗it, with probability πit,s and s = 1,3, . . . ,2Kit −1,

ȳit,k, with probability πit,s and s = 2,4, . . . ,2Kit −2,
(22)

yit = y∗it +uit, uit ∼ i.i.d. N(0,σ2
u), (23)

where πit,s is a known constant such that
∑2Kit−1

s=1 πit,s = 1. In this study, we assume πit,s =

(2Kit −1)−1 for all s.
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The difference between the model (5-1) and above model is the block-choice rule. The

former is based on the heterogeneity interval derived from the utility maximization problem,

while the latter is based on the predetermined probability. When πit,s = 1 for a specified s

such that ȳit,(s−1)/2 ≤ yit < ȳit,(s+1)/2, above model reduces to the linear model with two-error

components.

There are two prior specifications for this model, similar to the model based on the dis-

crete/continuous choice. More precisely, the random-individual-effects priors are distribu-

tions (8–10), and the fixed-individual-effects priors are distributions (8) with distributions

(15). Table 3 summarizes two models and two prior specifications.

Table 3: Two different models and two different prior specifications

Discrete/Continuous choice Random choice

Random individual effects M1 M3
Fixed individual effects M2 M4

These four models are compared on the basis of DIC (see Spiegelhalter, Best, Carlin,

and van der Linde (2002) for the discussion of DIC) by using the empirical data set. The

results are given in Table 4. First, all standard errors are small enough to distinguish all four

Table 4: Model comparison

Model D(θ) pD DIC (SE∗) Rank

M1 − 38.64 92.52 146.41 (2.76) 1
M2 111.70 94.17 300.03 (4.01) 2
M3 109.74 138.11 385.97 (1.32) 3
M4 281.08 104.29 489.66 ( .65) 4
∗ The standard errors are the sample standard devi-

ations of 20 DICs calculated from 20 independent
replications.

models. Next, when we compare the model based on the discrete/continuous choice with

the one based on the random choice, the former is better in terms of DIC under both prior

specifications. Further, the random-effects model is superior to the fixed-effects model under
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both model specifications. Finally, the DIC result suggests that the random-individual-effects

model based on the discrete/continuous choice approach (M1) is the most appropriate among

these four models.

4.3 Estimation results of panel data models

This subsection first conducts the empirical analysis of Japanese residential water demand

using M1, the random-effects model based on the discrete/continuous choice. It should be

noted that use of two-period panel data conducted in June 2006 and June 2007 data is useful

in removing the seasonality effect. The dependent variable is the amount of water consump-

tion calculated from water and sewerage bills using the corresponding charge schedules. The

explanatory variables are listed in Table 1. The separability condition on the parameter space

of βββ implies

β2 ≤ −0.16β1 and β2 ≤ −3263.83β1. (24)

Prior distributions are parameterized by setting µµµδ̄δδ,0 = 000, ΣΣΣδ̄δδ,0 = 10III4, nδ̄δδ,0 = 10, SSS δ̄δδ,0 =

10−1III4, µµµβββ,0 = 000, ΣΣΣβββ,0 = 10III2, and nu,0 = S u,0 = nv,0 = S v,0 = 0.1. These priors are fairly flat to

reflect that we do not have a sufficient prior information regarding parameters. We adopt the

Gibbs sampler described in Appendix A.2. For Bayesian inferences, we generate 15 million

samples after deleting the initial six million samples. The recorded values are reduced to

10,000 samples by picking up every 1500-th value. Results are shown in Figure 4 and given

in Table 5.

Each column of Table 5 represents the parameters, posterior means, posterior standard

deviations, posterior 95% credible intervals, inefficiency factors, and p-value of convergence

diagnostic statistics. The inefficiency factor is an indicator that measures the degree of au-

tocorrelation of the Markov chain and is defined as 1+ 2
∑∞

j=1 ρ( j), where ρ( j) is the lag j

sample autocorrelation. As pointed out in Chib (2001), this value is interpreted as the ratio

of the variance of the sample mean obtained by the Markov chain to that of the sample mean
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Figure 4: Estimated marginal posterior densities.

Table 5: Water demand function

Parameter Mean SD 95% interval INEF∗ CD∗

β1 (price) −1.61 .33 [−2.30 −1.02] 125 .593
β2 (income) .17 .079 [− .00 .30] 157 .787
µδ0 (constant) −2.30 1.06 [−4.42 − .34] 134 .705
µδ1 (num. of members) .38 .082 [ .23 .56] 20 .814
µδ2 (num. of rooms) .25 .13 [ .00 .52] 6 .870
µδ3 (floor space) .039 .19 [− .33 .42] 2 .387
σu (measurement error) .25 .019 [ .21 .29] 2 .636
σv (heterogeneity) .18 .027 [ .13 .24] 9 .853
∗ “INEF” and “CD” denote the inefficiency factor and the p-value of convergence

diagnostic statistic, respectively.

by uncorrelated draws. When it is close to one, the Markov chain would be as efficient as

uncorrelated draws. When, on the other hand, it is much greater than one, say 10, we need

to take a ten times longer Markov chain. The p-value is for the two-sided test of whether

the convergence of the Markov chain is reached, proposed by Geweke (1992). The first 10%

and last 50% MCMC samples are used to conduct this test as suggested by Geweke (1992).

Obtained MCMC samples for all parameters can be considered to be those from the

posterior distribution judging from the p-values of their convergence diagnostics. The in-

efficiency factors also suggest that we took a sufficiently long Markov chain to conduct

inferences.

16



Table 5 shows several aspects of the Japanese residential water demand function. First,

price and income elasticities are highly credible to be negative and positive, respectively, in

terms of their 95% credible intervals.8 These elasticities have theoretically correct signs.

The absolute value of price elasticity is much larger than that of income elasticity. Thus, the

water demand is less sensitive to the change in the individual income, while it is to the price

change. Because the separability condition strongly restricts the parameter space, this result

could be due to this condition (see also Miyawaki et al. (2010)).

Figure 5 shows the scatter plot of the posterior samples of elasticity parameters. The

-3-2.5-2-1.5-1-0.5 0

-0.1

0

0.1

0.2

0.3

0.4

b1

b 2

Figure 5: Scatter plot of the joint posterior density of (β1, β2).

diagonal and vertical lines represent β2 = −.16β1 and β2 = −3263.83β1, respectively, which

are the boundaries of the separability condition (24). Due to this separability condition, the

posterior samples are highly restricted to the north-east, which causes the slow convergence

of the Markov chain to the posterior distribution.

Second, the coefficients of the heterogeneity variables are examined. Among the means

of the heterogeneity coefficients, µµµδ, (µδ1 , µδ2) that correspond to the number of members in

a household and the number of rooms in a household/apartment, respectively, have positive

effects on water demand because their posterior probabilities P(µδ j > 0 |Data)> .95 ( j= 1,2).
8Precisely, the 95% credible interval for β2 includes zero, which means that β2 does not differ from zero in

terms of the credible interval. However, the posterior probability P(β2 > 0 | Data) = .97 implies that we have
credible evidence for the positive income elasticity with more than 95% posterior probability.
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In contrast, that for the total floor space in a household/apartment (µδ3) has no effect on

water demand in terms of its 95% credible interval. This result is partly influenced by the

correlation between the number of rooms and total floor space, as noted at the end of the

preceding subsection. Further, for most households, their posterior means of δi1 and δi2 are

positive (see Figure 6).
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Figure 6: Histograms and kernel density estimates of the posterior means of δδδi.

Next, we analyze M2, the fixed-effects model based on the discrete/continuous choice.

Prior distributions are parameterized by setting µµµδδδi,0 = 000 and ΣΣΣδδδi,0 = 10III4 for all i, µµµβββ,0 = 000,

ΣΣΣβββ,0 = 10III2, and nu,0 = S u,0 = nv,0 = S v,0 = 0.1. The Gibbs sampler described in Appendix

A.3 are conducted and obtain 32× 105 samples after generating 24× 105 burn-in samples.

Then, they are reduced to 104 samples by picking up every 320-th value to conduct Bayesian

inferences. The results are given in Table 6. Compared with the results of M1, the posterior

Table 6: Water demand function (M2)

Parameter Mean SD 95% interval INEF∗ CD∗

β1 (price) −1.42 .085 [−1.64 −1.31] 97 .058
β2 (income) .20 .015 [ .16 .22] 93 .106
σu (measurement error) .28 .034 [ .22 .34] 10 .013
σv (heterogeneity) .41 .041 [ .33 .48] 5 .606
∗ “INEF” and “CD” denote the inefficiency factor and the p-value of conver-

gence diagnostic statistic, respectively.

means are similar while the posterior standard deviations for variance parameters are larger.

The histograms of the posterior means of δδδi are shown in Figure 7. In contrast to those

of M1 (Figure 6), all coefficients are about zero in terms of their posterior means. There-
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Figure 7: Histograms and kernel density estimates of the posterior means of δδδi (M2).

fore, in M2, no heterogeneity variable would have positive or negative relations to water

demand, which suggests that the fitting of M2 to the dataset is not appropriate in terms of

the heterogeneity.

We compare our results with those obtained in previous studies,9 all of which applied

the maximum likelihood method to estimate the water demand function based on the dis-

crete/continuous choice approach. We note that their statistical models to be estimated do

not include the individual effect. Furthermore, the separability condition is also ignored in

these studies.

Olmstead et al. (2007) used data from households in the United States and Canada. The

household faces one of three kinds of price schedules: two-block increasing block rate pric-

ing, four-block increasing block rate pricing, and uniform pricing. The estimated price and

income elasticities (the coefficients of price and virtual income) are −.3407 and .1306, re-

spectively, and their standard errors are .0298 and .0118, respectively. While their income

elasticity is similar to ours, their price elasticity is smaller. They used 21 explanatory vari-

ables for heterogeneity, including number of residents per household, number of bathrooms,

approximate are of the home, approximate area of its lot, and the approximate age of the

home as household attributes. Coefficients of these variables are all significant at the 5%

level. In particular, the coefficients of the number of residents per household and the approx-

imate area of the home are .1960 and .1257, respectively.

9Pint (1999) estimated the water demand function during the California drought. Because Pint (1999) used
the level of unit price as an explanatory variable for the conditional demand, its estimation result cannot be
simply compared with ours.
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Hewitt and Hanemann (1995) also estimated the residential water demand function under

two-block increasing block rate pricing in Denton, Texas. The price and income elasticities

are estimated to be −1.8989 and .1782, respectively, (their asymptotic t statistics are −6.421

and 1.864, respectively), which are similar to ours. Among variables for heterogeneity, they

found that the number of bathrooms has a positive effect on water demand at the 5% signif-

icance level. They consider that the number of bathrooms would represent the number of

members in a household, which would better explain the variation in residential water use.

Rietveld et al. (2000) analyzed the water demand function under four-block increasing

block rate pricing in Indonesia. The price and income elasticities are estimated to be −1.280

and .501× 10−6, respectively, with standard errors .235 and .348× 10−6, respectively. The

tendency for demand to be elastic with regard to price and inelastic with regard to income is

coincident with the results of Hewitt and Hanemann (1995) and ours. Furthermore, the log

of the number of members in a household has a positive effect on water demand at the 5%

significance level.

At the end of this section, we briefly discuss the model based on the random choice

(M3) and show how the results are affected compared with the model based on the utility

maximization (M1).10 The prior distributions are parameterized in the same manner of M1.

We generate 4×106 samples after deleting 16×105 samples and reduce them to 104 samples

by picking up every 400-th value. Results are given in Table 7.

The price elasticity is much larger than that of M1 and its 95% credible interval includes

zero. This is partly because M3 is free of the separability condition. As we see in Figure

5, the separability condition highly restricts elasticity parameters’ space. In contrast to the

model based on the discrete/continuous choice, M3 does not include heterogeneity intervals,

and, hence, the separability condition. Figure 8 shows the contour plot of the joint posterior

10We further analyzed another panel data model, the AR(1) error component model. Because its results are
found to be very similar to those obtained in Figure 4 and Table 5, their details are omitted. The parameter
that represents the serial correlation is not credible to be positive or negative in the sense that its 95% credible
interval includes zero. No serial correlation is also observed when we use the four-consecutive-months data—
that is, the data from June 2006 to September 2006.
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Table 7: Water demand function (M3)

Parameter Mean SD 95% interval INEF∗ CD∗

β1 (price) −.022 .037 [−.096 .052] 1 .367
β2 (income) .24 .087 [ .072 .42 ] 15 .275
µδ0 (constant) .88 .58 [−.31 2.01 ] 21 .343
µδ1 (num. of members) .17 .042 [ .087 .25 ] 2 .426
µδ2 (num. of rooms) .079 .068 [−.054 .22 ] 3 .043
µδ3 (floor space) .027 .11 [−.18 .24 ] 1 .828
σu (measurement error) .17 .020 [ .13 .21 ] 2 .036
σv (heterogeneity) .11 .012 [ .088 .14 ] 1 .158
∗ “INEF” and “CD” denote the inefficiency factor and the p-value of conver-

gence diagnostic statistic, respectively.

density of (β1, β2) for M3. The horizontal and vertical lines represent β2 = −.16β1 and
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Figure 8: Contour plot of the joint posterior density of (β1, β2) (M3).

β2 = −3263.83β1, respectively, which are the boundaries of the separability condition. It

is clear that the joint density is not constrained by this condition. Therefore, this estimate

reveals how the separability condition affects parameter estimates.

The µδis are estimated to be smaller except for µδ0 in terms of the posterior mean. In

particular, µδ2 for the number of rooms in a household/apartment is smaller than that of M1

and has no positive relation on the residential water demand in terms of the 95% credible

interval.
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5 Conclusion

This paper proposed a Bayesian hierarchical model incorporating the random and fixed indi-

vidual effects and conducted a structural analysis of the Japanese residential water demand

using panel data. In both models, the price and income elasticities are estimated to be neg-

ative and positive, respectively. Further, the number of members and the number of rooms

per household have positive relationship to the residential water demand when we apply the

model with random individual effects, while they do not in the model with fixed individual

effects.

Finally, we note a possible application in the policy evaluation and a spatial extension for

our model, which are left for our future work. First, the proposed model is useful for making

policies that continue several periods. For example, the price and income elasticities play

an important role when the policy makers make decisions on efficient use and allocation of

water. This is especially important in developing countries and transition economies (see,

e.g., da Motta, Huber, and Ruitenbeek (1998)). Furthermore, our model is beneficial to

formulate the policy on population. The water and sewerage services are one of the factors

that determine the population growth (see, e.g., Robinson (1997)).

Second, our model can incorporate a spatial dependency through the consumer hetero-

geneity. When we analyze the interregional residential water demand, it is important to

control such a spatial dependency. The analysis of spatial dependency in the demand for

public utilities would be a subject for future research.

Appendices

A.1 Increasing block rate pricing and its demand function

Figure 9(a) shows an example of a three-tier increasing block rate pricing where Y is the

consumption of the good or service under increasing block rate pricing (such as water or
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Figure 9: Three-Tier increasing block price structure.

electricity), Pk is the unit price of Y in block k (k = 1,2,3) and Ȳk is the boundary quantity

between block k and k+1, i.e., the upper limit of block k (k = 1,2). Under this system, when

consumption of Y exceeds Ȳk, the unit price jumps from Pk to Pk+1.

More generally, we consider the K-block increasing block rate pricing. Let Pk (k =

1, . . . ,K) and Ȳk (k = 0, . . . ,K) be the unit price and the upper limit for the k-th block, noting

that Pk < Pk+1 and Ȳk < Ȳk+1. We set Ȳ0 = 0 and ȲK = ∞ without loss of generality. In

addition, the price schedule includes the fixed charge FC. A practical example of the fixed

charge is a minimum access charge for water and electricity services.

When the consumption amount Y is within the k-th block (Ȳk−1 ≤ Y < Ȳk), the total

payment for Y is given by

TCk ≡ FC+


k−1∑
j=1

P j
(
Ȳ j− Ȳ j−1

)+Pk
(
Y − Ȳk

)
. (A.25)

With the total payment, the budget constraint is given by

TCk +Ya ≤ I⇐⇒ PkY +Ya ≤ Qk ≡ I−FC−
k−1∑
j=1

(
P j−P j+1

)
Ȳ j, if Ȳk−1 ≤ Y < Ȳk, (A.26)

for k = 1, . . . ,K, where I and Ya are the total income and the demand for the numeraire,
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respectively. From this equation, it is clear that the budget line is piecewise-linear and Qk <

Qk+1 (see also Figure 9(b)). The Qk is called as the virtual income for the k-th block.

The demand function under increasing block rate pricing is derived by solving the utility

maximization problem subject to the piecewise-linear budget constraint (A.26) through the

discrete/continuous choice approach, and is given by

Y =


Yk, if Ȳk−1 < Yk < Ȳk and k = 1, . . . ,K,

Ȳk, if Yk+1 ≤ Ȳk ≤ Yk and k = 1, . . . ,K −1,
(A.27)

where Yk is called as the conditional demand function for the k-th block and is the solution

to the following utility maximization problem. Given Pk and Qk,

max
Yk,Ya

U (Yk,Ya) s.t. PkYk +Ya ≤ Qk, (A.28)

where U(Yk,Ya) is the well-defined utility function. For the details of the derivation, see

Moffitt (1986).

A.2 MCMC algorithm and its full conditional distributions for M1

The MCMC algorithm for the model with random individual effects is implemented in the

following nine steps:

Step 1. Initialize βββ, {δδδi, sss∗i ,www
∗
i }ni=1,σ

2
u, σ2

v , µµµδδδ, and ΣΣΣδδδ.

Step 2. Generate β1 given β2,
{
sss∗i ,www

∗
i

}n

i=1
,σ2

u.

Step 3. Generate β2 given β1,
{
sss∗i ,www

∗
i

}n

i=1
,σ2

u.

Step 4. Generate
(
σ2

v , {δδδi}ni=1

)
given

{
www∗i

}n

i=1
,µµµδδδ,ΣΣΣδδδ.

(a) Generate σ2
v given

{
www∗i

}n

i=1
,µµµδδδ,ΣΣΣδδδ.

(b) Generate δδδi given
{
www∗i

}n

i=1
,σ2

v ,µµµδδδ,ΣΣΣδδδ for i = 1, . . . ,n.

Step 5. Generate
(
s∗it,w

∗
it

)
given βββ, {δδδi}ni=1 ,σ

2
u,σ

2
v for i = 1, . . . ,n and t = 1, . . . ,T.
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(a) Generate s∗it given βββ,δδδi,σ
2
u,σ

2
v .

(b) Generate w∗it given βββ,δδδi, s∗it,σ
2
u,σ

2
v .

Step 6. Generate σ2
u given βββ,

{
sss∗i ,www

∗
i

}n

i=1
.

Step 7. Generate µµµδδδ given {δδδi}ni=1,ΣΣΣδδδ,σ
2
v .

Step 8. Generate ΣΣΣδδδ given {δδδi}ni=1,µµµδδδ,σ
2
v .

Step 9. Go to Step 2.

All full conditional distributions used in this algorithm are standard. Before describing

full conditional distributions, we assume pit,1 > 0, qit,1 > 0, and ȳit,1 > 0 to avoid tedious ex-

pressions depending on the sign of these variables without loss of generality. Let kit = ds∗it/2e

and A = {(i, t) | s∗it is odd and equal to 2kit −1 for t = 1, . . . ,T }, where dxe is the ceiling func-

tion returning the smallest integer that is larger than or equal to x. Then, the full conditional

distributions are given by following each step of the algorithm.

Step 2. Generate β1 given β2, {sss∗i ,www∗i }ni=1,σ
2
u. The full conditional distribution for β1 is the

truncated normal distribution with mean µ1, variance σ2
1, and truncation interval R1: β1 ∼

T NR1(µ1,σ
2
1), where

σ−2
1 = σ

−2
β1,0+

∑
(i,t)∈A

(
pit,kit

)2 , (A.29)

µ1 = σ
2
1

σ−2
β1,0µβ1,0+

∑
(i,t)∈A

pit,kit

(
yit −β2qit,kit −w∗it

) , (A.30)

R1 =

{
max

i,t

(
−∞,BL1

it

)
, min

i,t,k

(
BU1

it,−β2
qit,k+1−qit,k

pit,k+1− pit,k

)}
, (A.31)

(
BL1

it,BU1
it

)
=


(

ȳit,k−1−β2qit,k−w∗it
pit,k

,
ȳit,k−β2qit,k−w∗it

pit,k

)
, if (i, t) ∈ A,(

ȳit,k−β2qit,k−w∗it
pit,k

,
ȳit,k−β2qit,k+1−w∗it

pit,k+1

)
, otherwise.

(A.32)

These (BL1
it,BU1

it) are constructed from the intervals Rit,s∗it
defined by equations (7) of Sub-

section 2.
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Step 3. Generate β2 given β1, {sss∗i ,www∗i }ni=1,σ
2
u. The full conditional distribution for β2 is the

truncated normal distribution, β2 ∼ T NR2(µ2,σ
2
2), where

σ−2
2 = σ

−2
β2,0+

∑
(i,t)∈A

(
qit,kit

)2 , (A.33)

µ2 = σ
2
2

σ−2
β2,0µβ2,0+

∑
(i,t)∈A

qit,kit

(
yit −β1 pit,kit −w∗it

) , (A.34)

R2 =

{
max

i,t

(
−∞,BL2

it

)
, min

i,t,k

(
BU2

it,−β1
pit,k+1− pit,k

qit,k+1−qit,k

)}
, (A.35)

(
BL2

it,BU2
it

)
=


(

ȳit,k−1−β1 pit,k−w∗it
qit,k

,
ȳit,k−β1 pit,k−w∗it

qit,k

)
, if (i, t) ∈ A,(

ȳit,k−β1 pit,k−w∗it
qit,k

,
ȳit,k−β1 pit,k+1−w∗it

qit,k+1

)
, otherwise.

(A.36)

Step 4. Generate (σ2
v , {δδδi}ni=1) given {www∗i }ni=1,µµµδδδ,ΣΣΣδδδ. Integrating the joint full conditional prob-

ability density of (σ2
v , {δδδi}ni=1) with respect to {δδδi}ni=1, we have the full conditional distribution

of σ2
v as the inverse gamma distribution, σ2

v ∼ IG(nv,1/2,S v,1/2). Then, the full conditional

distribution of δδδi is the multivariate normal distribution, δδδi|σ2
v ∼ Nd(µµµδδδi,1,σ

2
vΣΣΣδδδi,1). Parame-

ters of these full conditionals are nv,1 = nv,0+nT ,

S v,1 = S v,0+nµµµ′δδδΣΣΣ
−1
δδδ µµµδδδ+

n∑
i=1

(
www∗′i www∗i −µµµ′δδδi,1Σ

ΣΣ−1
δδδi,1µµµδδδi,1

)
, (A.37)

µµµδδδi,1 = ΣΣΣδδδi,1
(
ΣΣΣ−1
δδδ µµµδδδ+ZZZ′iwww

∗
i

)
, ΣΣΣ−1

δδδi,1 = Σ
ΣΣ−1
δδδ +ZZZ′iZZZi. (A.38)

Step 5. Generate (s∗it,w
∗
it) given βββ, {δδδi}ni=1,σ

2
u,σ

2
v for i = 1, . . . ,n and t = 1, . . . ,T. The full

conditional distribution of s∗i is the multinomial distribution. Its probability mass function is

given by

π
(
s∗it = s | βββ, {δδδ}ni=1 ,σ

2
u,σ

2
v

)
∝ τs

[
Φ

{
τ−1

s
(
RUit,s− θit,s

)}−Φ {
τ−1

s
(
RLit,s− θit,s

)}]
exp

(
−mit,s

2

)
,

(A.39)
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for s = 1, . . . ,2Kit − 1, where Φ(·) is the cumulative distribution function of the standard

normal distribution, RUit,s and RLit,s denote the respective upper and lower limits of Rit,s

(see (7)), and

(
mit,s, θit,s, τ

2
s

)
=



σ
−2
u σ−2

v

(
yit − xxx′it,kβββ− zzz′itδδδi

)2

σ−2
u +σ

−2
v

,
σ−2

u

(
yit − xxx′it,kβββ

)
+σ−2

v zzz′itδδδi

σ−2
u +σ

−2
v

,
(
σ−2

v +σ
−2
u

)−1

 ,
if s = 2k−1 and k = 1, . . . ,Kit,(

σ−2
u

(
yit − ȳit,k

)2 , zzz′itδδδi, σ
2
v

)
, if s = 2k and k = 1, . . . ,Kit −1.

(A.40)

Given s∗it = s, we generate w∗it from the truncated normal distribution, w∗it|s∗it = s∼T NRit,s(θit,s, τ
2
s).

Step 6. Generate σ2
u given βββ, {sss∗i ,www∗i }ni=1. The full conditional distribution of σ2

u is the inverse

gamma distribution, σ2
u ∼ IG(nu,1/2,S u,1/2), where nu,1 = nu,0+2+nT and

S u,1 = S u,0+
(
βββ−µµµβββ,0

)′
ΣΣΣ−1
βββ,0

(
βββ−µµµβββ,0

)
+

n∑
i=1

(
yyyi− yyy∗i

)′ (
yyyi− yyy∗i

)
. (A.41)

Step 7. Generate µµµδδδ given {δδδi}ni=1,ΣΣΣδδδ,σ
2
v . The full conditional distribution of µµµδδδ is the multi-

variate normal distribution, µµµδδδ ∼ Nd(µµµδ̄δδ,1,ΣΣΣδ̄δδ,1), where

µµµδ̄δδ,1 = ΣΣΣδ̄δδ,1

ΣΣΣ−1
δ̄δδ,0µµµδ̄δδ,0+σ

−2
v ΣΣΣ

−1
δδδ

n∑
i=1

δδδi

 , ΣΣΣ−1
δ̄δδ,1 = Σ

ΣΣ−1
δ̄δδ,0+nσ−2

v ΣΣΣ
−1
δδδ . (A.42)

Step 8. Generate ΣΣΣδδδ given {δδδi}ni=1,µµµδδδ,σ
2
v . The full conditional distribution of ΣΣΣδδδ is the inverse

Wishart distribution, ΣΣΣδδδ ∼ IWd(nδ̄δδ,1,SSS δ̄δδ,1), where nδ̄δδ,1 = nδ̄δδ,0+n and

SSS −1
δ̄δδ,1 = SSS −1

δ̄δδ,0+σ
−2
v

n∑
i=1

(
δδδi−µµµδδδ

) (
δδδi−µµµδδδ

)′ . (A.43)
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A.3 MCMC algorithm and its full conditional distributions for M2

The MCMC algorithm for the model with fixed individual effects is almost similar with

the one with random individual effects given in the previous subsection. Step 1 and 4 are

modified and Step 7 and 8 are removed according to this prior specification.

Step 1. Initialize βββ,
{
δδδi, sss∗i ,www

∗
i

}n

i=1
,σ2

u, and σ2
v .

Step 4. Generate
(
σ2

v , {δδδi}ni=1

)
given

{
www∗i

}n

i=1
.

(a) Generate σ2
v given

{
www∗i

}n

i=1
.

(b) Generate δδδi given
{
www∗i

}n

i=1
,σ2

v for i = 1, . . . ,n.

The full conditional distributions for Step 4 are derived in a similar manner. The the full

conditional distributions ofσ2
v and δδδi are the inverse gamma distribution,σ2

v ∼ IG(nv,1/2,S v,1/2),

and the multivariate normal distribution, δδδi|σ2
v ∼ Nd(µµµδδδi,1,σ

2
vΣΣΣδδδi,1), where nv,1 = nv,0+nT ,

S v,1 = S v,0+nµµµ′δδδi,0Σ
ΣΣ−1
δδδi,0µµµδδδi,0+

n∑
i=1

(
www∗′i www∗i −µµµ′δδδi,1Σ

ΣΣ−1
δδδi,1µµµδδδi,1

)
, (A.44)

µµµδδδi,1 = ΣΣΣδδδi,1
(
ΣΣΣ−1
δδδi,0µµµδδδi,0+ZZZ′iwww

∗
i

)
, ΣΣΣ−1

δδδi,1 = Σ
ΣΣ−1
δδδi,0+ZZZ′iZZZi. (A.45)
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