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Abstract

Asymptotic expansions are made for the distributions of the Maximum Em-
pirical Likelihood (MEL) estimator and the Estimating Equation (EE) estimator
(or the Generalized Method of Moments (GMM) in econometrics) for the coeffi-
cients of a single structural equation in a system of linear simultaneous equations,
which corresponds to a reduced rank regression model. The expansions in terms
of the sample size, when the non-centrality parameters increase proportionally, are
carried out to O(n−1). Comparisons of the distributions of the MEL and GMM
estimators are made. Also we relate the asymptotic expansions of the distributions
of the MEL and GMM estimators to the corresponding expansions for the Lim-
ited Information Maximum Likelihood (LIML) and the Two-Stage Least Squares
(TSLS) estimators. We give useful information on the higher order properties of
alternative estimators including the semi-parametric inefficiency factor under the
homoscedasticity assumption.
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1. Introduction

The study of estimating a single structural equation in econometrics has led to de-
velop several estimation methods as alternatives to the least squares estimation method.
The classical examples are the limited information maximum likelihood (LIML) method
and the instrumental variables (IV) method including the two-stage least squares
(TSLS) method. See Anderson and Rubin (1949), Anderson, Kunitomo and Sawa
(1982), Phillips (1983), and Anderson, Kunitomo and Morimune (1986) for their finite
sample properties, for instance. The estimation problem of a single structural equation
is the same as the reduced rank regression model originally developed by Anderson
(1951). In addition to these methods the generalized method of moments (GMM) esti-
mation method, which was originally proposed by Hansen (1982) in econometrics and
is essentially the same as the estimating equation method (EEM) by Godambe (1960),
has been often used in the past two decades. (We use the term GMM for convenience
hereafter.) Also the maximum empirical likelihood (MEL) method has gotten attention
recently because it gives an asymptotically efficient estimator in the semi-parametric
sense and improves the serious bias problem known in the GMM method when the
number of instruments is large. See Owen (2001), Qin and Lawless (1994), Kitamura
and Stutzer (1997), and Kitamura, Tripathi and Ahn (2004) on the MEL method, for
instance. Since we have two semi-parametric estimation methods and they are asymp-
totically equivalent, it is important to compare the finite sample properties of these
estimation methods. There has been a growing interest on the related topics in econo-
metrics and some relevant literatures in recent years are Newey and Smith (2004),
Mittelhammer, Judge and Schoenberg (2005), Anderson, Kunitomo and Matsushita
(2005, 2007, 2008) and their references, for instance.

The main purpose of this study is to derive the asymptotic expansions of the dis-
tributions for a class of semi-parametric estimators on the coefficients of a single struc-
tural equation in a linear simultaneous equations system and a reduced rank regression
model. The estimation methods under the present study include both the MEL and
the GMM estimators as special cases. Since it is quite difficult to investigate the exact
distributions of these estimators in the general case, their asymptotic expansions give
useful information on their finite sample properties. The asymptotic expansions shall
be carried out in terms of the sample size which is proportional to the non-centrality
parameters and comparisons of the distributions of the MEL and GMM methods will
be made. We shall illustrate the merit of the asymptotic expansion method by giving
numerical information on the distribution functions of the MEL and GMM estimators.
Also we shall relate our results to the earlier studies on the limited information max-
imum likelihood (LIML) and the two-stage least squares (TSLS) estimators. It gives
new insights on the statistical properties of alternative estimation methods for a single
structural equation and the reduced rank regression model.

In order to compare estimators, it is much more easier to investigate the asymptotic
expansions of their mean and mean squared errors (MSE) than their exact distribution
functions. Since the exact distributions of estimators can be quite different from the
normal distribution, it should be certainly better to investigate the asymptotic expan-
sions of their exact distribution and density functions directly. Also it is important
to note that the asymptotic expansions of the mean and the MSE of estimators are
not necessarily the same as the mean and the MSE of the asymptotic expansions of
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the distributions of estimators. In fact it has been known that the LIML estimator,
for instance, does not possess any moments of positive integer order under a set of
reasonable assumptions while some of recent literatures in econometrics seem to ig-
nore this problem. This paper may be the first attempt to develop the asymptotic
expansions of the distribution functions of semi-parametric estimators and to find their
explicit form in the estimating equation or the simultaneous equation models. Because
of the semi-parametric features of our analysis, we develop the conditional expansion
approach which has new technical problems.

Our formulation and method are intentionally similar to the earlier studies on the
single equation estimation methods by Fujikoshi et al. (1982) and Anderson et al.
(1986). It is mainly because useful interpretation can be drawn in the light of past
studies on the finite sample properties of estimators in the classical parametric frame-
work as well as in the semi-parametric framework. The main results of our paper are
related to the studies of higher order asymptotic efficiency estimation by Pfanzagl and
Wefelmeyer (1978), Akahira and Takeuchi (1981, 1990), Pfanzagl (1990), Bickel et al.
(1993) in the statistical literature, and Takeuchi and Morimune (1985) and Newey and
Smith (2004) in the econometric literature.

In Section 2 we define the structural equation model and its estimation methods.
Then in Section 3 we give the asymptotic expansions of the distribution functions of
estimators in a simple case which illustrate the merit of our approach. In Section 4,
we give the results on the asymptotic expansions of the density functions of estimators
under a set of assumptions on the disturbances and compare the higher order properties
of alternative estimators in a more general case. Some discussion on the higher order
properties of estimators and concluding remarks are given in Section 5. The derivations
of the asymptotic expansions, the proofs of Lemmas and Theorems and useful formulas
will be given in Appendices.

2. Estimating a Single Structural Equation by the Maximum Empirical
Likelihood Method

Let a linear structural equation be given by

y1i = β
′
y2i + γ

′
z1i + ui (i = 1, · · · , n), (2.1)

where y1i and y2i are a scalar and a vector of G1 endogenous variables, z1i is a vector
of K1 exogenous variables, θ

′
= (β

′
,γ

′
) is a 1 × p (p = K1 + G1) vector of unknown

coefficients, and {ui} are mutually independent disturbance terms with E(ui) = 0 (i =
1, · · · , n). We assume that (2.1) is an equation in a system of simultaneous equations
relating the vector of G1+1 endogenous variables y

′
i = (y1i,y

′
2i) and the vector of K (=

K1 +K2) exogenous variables {zi} = (z
′
1i, z

′
2i)

′
including {z1i}. The set of exogenous

variables {zi} are often called the instrumental variables and we have the orthogonal
condition E(uizi) = 0 (i = 1, · · · , n;n > K,n > 3). Because we do not specify the
equations except (2.1), we consider the limited information estimation methods based
on the set of instrumental variables (or instruments).

The reduced form equations for y
′
i = (y1i,y

′
2i) are

yi = Πzi + vi (i = 1, · · · , n) , (2.2)

where v
′
i = (v1i,v

′
2i) is a 1× (1+G1) disturbance terms with E[vi] = 0, Π

′
= (π1,Π2)

is a K×(1+G1) partitioned matrix of the reduced form coefficients and Π2 is a K×G1
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matrix. By multiplying (1,−β
′
) to (2.2) from the left-hand side, (1,−β

′
)Π = (γ

′
,0

′
)

and ui = v1i − β
′
v2i (i = 1, · · · , n), that is, the rank of Π is reduced.

The maximum empirical likelihood (MEL) estimator for the vector of unknown
parameters θ in (2.1) is defined by maximizing the Lagrange form

L∗
n(λ,θ) =

n∑
i=1

log pi − ν

[
n∑

i=1

pi − 1

]
− nλ

′
n∑

i=1

pizi

[
y1i − (y

′
2i, z

′
1i)θ)

]
, (2.3)

where ν and λ (K×1) are Lagrange multipliers, and pi (i = 1, · · · , n) are the probability
functions. It has been known (see Qin and Lawless (1994) or Owen (2001)) that the
above maximization problem is the same as to maximize

Ln(λ,θ) = −
n∑

i=1

log
{
1 + λ

′
zi

[
y1i − (y

′
2i, z

′
1i)θ)

]}
, (2.4)

where ν̂ = n and [np̂i]−1 = 1 + λ
′
zi[y1i − (y

′
2i, z

′
1i)θ)]. By differentiating (2.4) with

respect to λ and combining the resulting equation with the restriction
∑n

i=1 pi = 1, we
have

∑n
i=1 p̂izi

[
y1i − (y

′
2i, z

′
1i)θ̂)

]
= 0 and

λ̂ =

[
n∑

i=1

p̂iu
2
i (θ̂)ziz

′
i

]−1 [
1
n

n∑
i=1

ui(θ̂)zi

]
, (2.5)

where ui(θ̂) = y1i − (y2i, z1i)
′
θ̂ and θ̂ is the maximum empirical likelihood (MEL)

estimator for θ. Then the MEL estimator of θ is the solution of[
n∑

i=1

p̂i

(
y2i

z1i

)
z
′
i

] [
n∑

i=1

p̂iui(θ̂)2ziz
′
i

]−1 [
1
n

n∑
i=1

zi y1i

]
(2.6)

=

[
n∑

i=1

p̂i

(
y2i

z1i

)
z
′
i

] [
n∑

i=1

p̂iui(θ̂)2ziz
′
i

]−1 [
1
n

n∑
i=1

zi

(
y

′
2i, z

′
1i

)]( β̂
γ̂

)
.

If we substitute 1/n for p̂i (i = 1, · · · , n) in (2.6) and use an (efficient) initial estimator
θ̃ of θ satisfying θ̃ − θ̂ = op(1/

√
n) to replace ui(θ̂) in (2.6), we have a representation

of the (optimal) generalized method of moments (GMM) estimator for θ
′

= (β
′
,γ

′
).

In this paper we forcus on the convergent (many-step) GMM estimator, which is a
limit of iteration of θ and ui(θ̂) because it agrees with the original idea of the GMM
estimation. Although the GMM estimator here could be different from some of two-
step GMM estimators, it is certainly possible, with some complications, to extend our
analysis to the GMM with any consistent initial estimator. (See Hayashi (2000) on the
standard GMM approach in econometrics for instance.) By generalizing the weights
pi (i = 1, · · · , n) in (2.6), we introduce a class of estimators. Let

np̂∗i =
[
1 + a λ

′
ziui(θ̂)

]−1
, (2.7)

where a is a non-negative constant (0 ≤ a ≤ 1) and θ̂ is the MEL estimator of θ . Then
we define the modification of the MEL estimator (MMEL) by substituting p̂∗i (i =
1, · · · , n) into (2.5)-(2.6).

If we assume the homoscedasticity of disturbances and replace u2
i (θ̂) by σ̂2 in (2.6),

we can regard that the MEL estimator and the GMM estimator correspond to the
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LIML estimator and the TSLS estimator, respectively. (See Section 2 of Anderson et
al. (2008).) The latter methods were originally developed as the parametric estimation
methods by Anderson and Rubin (1949).

In the rest of this paper, we shall consider the standardized estimator as

ê =
√
n

[
β̂ − β
γ̂ − γ

]
, (2.8)

where θ̂
′
= (β̂

′
, γ̂

′
). We sometimes denote ê for the MEL estimator and its modification

when it causes no confusion. Under a set of regularity conditions, the asymptotic
covariance matrix of any asymptotically (semi-parametric) efficient estimator is

Q =
[
D

′
MC−1MD

]−1
, (2.9)

where Mn and Cn (n > K,n > 3) and their (constant) probability limits are defined
by

Mn =
1
n

n∑
i=1

ziz
′
i

p−→ M , Cn =
1
n

n∑
i=1

ziz
′
iu

2
i

p−→ C , (2.10)

and

D =

[
Π2 ,

(
IK1

O

)]
.

We assume that M and C are positive definite and rank [D] = p (= G1 +K1). These
conditions assure that the limiting covariance matrix Q is non-degenerate. The rank
condition implies that the order condition L = K − p ≥ 0 holds, which is the degree of
over-identification. When the disturbance terms are (conditionally or unconditionally)
homoscedastic random variables, then C = σ2M, E(u2

i ) = σ2 and Q = σ2[D
′
MD]−1.

In order to compare alternative efficient estimation methods in the finite sample
sense, we shall derive the asymptotic expansions of the density functions of the stan-
dardized estimators (2.8) in the form of

f(ξ) = φQ(ξ)
[

1 +
1√
n
H1(ξ) +

1
n
H2(ξ)

]
+ o(n−1) , (2.11)

where ξ = (ξ1, · · · , ξp)′ , φQ(ξ) is the multivariate normal density function with mean
0 and the covariance matrix Q, and Hi(ξ) (i = 1, 2) are some polynomial functions
of elements of ξ. Then we shall use the mean operator AMn(ê), which is defined by
the mean of ê with respect to the asymptotic expansion of its density function of the
standardized estimator up to O(n−1) in the form of (2.11). We write the asymptotic bias
and the asymptotic MSE by ABIASn(ê) = AMn(ê) and AMSEn(ê) = AMn(êê

′
) .

These quantities are useful because the asymptotic expansion of the distribution of
estimators are quite complicated in the general case.

It should be noted, however, that they are not necessarily the same as the asymptotic
expansions of the exact moments and some care should be taken. One important case
is that the LIML estimator and its related statistics do not have any positive integer
moments in our setting. This does not mean that the LIML estimator should be ruled
out, but that we should use other criteria different from the exact bias, the exact
MSE, and their analogues in Monte Carlo experiments. An illustrative example is
the estimation problem of reciprocal of (non-zero) normal mean. Hence the results of
previous Monte Carlo experiments without this consideration may have drawbacks and
careful interpretation should be needed.
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3 Asymptotic Expansions of Distributions of Estimators

and Their Approximations in a Simple Case

The exact density functions of alternative estimators and their asymptotic expansions
are quite complicated in the general case. For an illustration we present the asymptotic
expansions of the distribution functions of estimators in the simple case when G1 = 1
and the homoscedastic disturbances {ui} are normally distributed. In this case we
partition a [1 +K1] × [1 +K1] matrix as

Q =

(
Q11 Q12

Q21 Q22

)
= σ2

[(
Π

′
2

(IK1,O)

)
M

(
Π2, (

IK1

O
)

)]−1

.

Then the upper-left corner of Q is given by Q11 = σ2(Π
′
22M22.1Π22)−1, where Π22 is

a K2 × 1 vector of the lower corner of Π2 (a K × 1 vector). We take the coefficient of
an endogenous variable β in the right-hand side of (2.1) and consider

P

⎛
⎝
√
nΠ′

22M22.1Π22

σ
(β̂ − β) ≤ x

⎞
⎠ , (3.1)

provided that M22.1 = plimn−1[
∑n

i=1 z2iz
′
2i −

∑n
i=1 z2iz

′
1i(
∑n

i=1 z1iz
′
1i)

−1∑n
i=1 z1iz

′
2i]

is a positive definite matrix and Q11 > 0.
From (2.8) and (2.9) in the standard large sample theory, the limiting distribution of
(3.1) is the standard normal. In this form it is relatively easy to make comparison of
alternative estimators and some useful information can be drawn.

When G1 = 1, we can obtain simple formulas of the asymptotic expansion of
the distribution function of estimators if we use the key parameters and the nota-
tions of Anderson, Kunitomo and Sawa (1982). From this reason, we define the
2 × 2 covariance matrix Ω(= (ωij)) = E[viv

′
i], the standardized coefficient (the de-

gree of endogeneity) α = [ω22/|Ω|1/2] [β − ω12/ω22] and the noncentrality (or concen-
tration) parameter μ2 = [(1 + α2)/ω22]Π

′
22A22.1Π22, where A22.1 =

∑n
i=1 z2iz

′
2i −∑n

i=1 z2iz
′
1i(
∑n

i=1 z1iz
′
1i)

−1∑n
i=1 z1iz

′
2i] corresponds to nM22.1. Define an additional

(semi-parametric) factor by

τ = 2σ2 (1 + α2)
ω22

Q−1
11

[
QD

′
FDQ

]
11
Q−1

11 , (3.2)

where [ · ]11 is the (1,1) element of matrix,

F = plim
n→∞

1
n

n∑
i=1

zi(z
′
iAzi)z

′
i , (3.3)

and A = C−1 − C−1MDQD
′
MC−1. In the large sample theory we assume that the

noncentrality parameter μ2 is proportional to the sample size n (see the conditions of
(2.9), (2.10) and (3.3). However, alternative asymptotic theories can be developed.
(See Anderson et al. (2005, 2007, 2008), for instance.) To be precise we first make a
set of simple conditions.

Assumption I : (i) Suppose that G1 = 1 and the sequences {vi} (i = 1, · · · , n) (hence
{ui}) are independently and normally distributed with E[vi] = 0, E[viv

′
i] = Ω (> 0)
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and E[u2
i ] = σ2. (ii) The instrumental variables zi are non-stochastic, the limits of

(2.10) and (3.3) exist and there exists a (positive) constant c such that μ2

n = c +
o(n−1/2).

By using the asymptotic expansion of the density function of the MEL estimator in
Theorem 4.2 in Section 4 and setting a = 1, we obtain the result for the normalized
form of distribution function when G1 = 1 and the disturbances are homoscedastic and
normally distributed. The derivation will be given in Appendix B.

Theorem 3.1 : Under Assumption I, an asymptotic expansion of the distribution
function of the normalized MEL estimator as μ2 → ∞ (and n→ ∞) is

P

⎛
⎝
√
nΠ′

22M22.1Π22

σ
(β̂MEL − β) ≤ x

⎞
⎠ (3.4)

= Φ(x) +
{
−α
μ
x2 − 1

2μ2

[
(τ + L)x+ (1 − 2α2)x3 + α2x5

]}
φ(x)

+o(μ−2),

where Φ(·) and φ(·) are the cdf and the density function of the standard normal distri-
bution, respectively.

Also by setting a = 0 for the GMM estimator, we have an asymptotic expansion of its
distribution function.

Theorem 3.2 : Under Assumption I, an asymptotic expansion of the distribution
function of the normalized GMM estimator as μ2 → ∞ (and n→ ∞) is

P

⎛
⎝
√
nΠ′

22M22.1Π22

σ
(β̂GMM − β) ≤ x

⎞
⎠ (3.5)

= Φ(x) +
{
−α
μ

[
x2 − L

]
− 1

2μ2

[
(τ + L2α2 − L)x+ (1 − 2(L+ 1)α2)x3 + α2x5

]}
φ(x)

+o(μ−2) ,

where Φ(·) and φ(·) are defined as Theorem 3.1.

There is an interesting observation that if we set τ = 0 in the above expressions, the
resulting formulas in (3.4) and (3.5) are identical to those for the limited information
maximum likelihood (LIML) estimator and the two stage least squares (TSLS) estima-
tor obtained by Anderson (1974), and Anderson and Sawa (1973), respectively. Hence
τ could be interpreted as the semi-parametric (3rd order) inefficiency factor under the
homoscedasticity assumption of disturbances. (See Section 4 and Appendix A for the
detail.)

A Numerical Illustration
For an illustration on the use of the asymptotic expansion formulas, we give some figures
and tables as Figures 1-3 and Tables 1-2 in Appendix E as typical cases. We computed
the distribution functions of the MEL estimator and the GMM estimator of the coef-
ficient β in the normalized terms (3.1) based on large number of simulations. When
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G1 = 1, we can easily generate the normalized probability (3.1), which depends on the
key parameters and other factors as discussed by Anderson et al. (1982, 2005). We
first generate the vectors of the normal disturbance terms and the exogenous variables
(vi, zi) (i = 1, · · · , n) and then generate the endogenous variables by utilizing (2.1) and
(2.2). Then we can simulate the probability of (3.1) by iterating the calculations of
(2.5) and (2.6) until we have stable convergences numerically. We denote the resulting
values as Exact in Tables since they are very accurate in two decimal digits at least.
(The number of replications in all simulations are basically 5,000 and we have confirmed
their accuracy by comparing the exact distributions of the TSLS and LIML estimators.
Our method of evaluating the distribution functions of estimators in numerical analy-
sis is essentially the same as Anderson, Kunitomo and Matsushita (2005, 2008) which
explain the details of our evaluation procedure and the accuracy of our computations.)
In tables we have given the 5% and 95% percentiles, Lower (L.QT), Median (MEDN)
and Upper (U.QT) quantiles, and the interquantile range (IQR). Also we have given
the approximations based on the asymptotic expansions of the distribution functions
of estimators in the forms of (3.4) and (3.5), which are denoted as Approx in tables and
figures. Difference is defined by Approx minus Exact except the rounding errors. We
did a large number of numerical calculations, but we have chosen only a small number
of results.

First, we find that in most cases the approximations based on the asymptotic ex-
pansions of the distribution functions given by (3.4) and (3.5) are quite accurate in its
middle range areas. There can be some discrepancy in the tail quantiles when K2 is
relatively large in particular. As we have expected from our discussions on the exact
moments of estimators, we have confirmed that the exact bias and the exact MSE of
the LIML estimator calculated from the simulations are sometimes not stable. Second,
the distribution functions of the MEL and the LIML estimators are very similar while
the distribution functions of the GMM and the TSLS estimators are also very simi-
lar. This finding is quite consistent with the asymptotic expansions of the distribution
functions in (3.4) and (3.5) under the homoscedasticity and normality of disturbances.
Thus we could interpret that the MEL estimator is a semi-parametric extension of the
LIML estimator while the GMM estimator is a semi-parametric extension of the TSLS
estimator.

However, we find that the distribution functions of the MEL and GMM estimators
have some differences. As an illustration on this issue we show one typical case with
K2 = 10 (Figures 2 and 3 in Appendix E) which have been taken from Anderson et
al. (2005, 2008). The most important finding is that the distribution function of the
MEL estimator is almost median unbiased while the distribution function of the GMM
estimator is biased significantly. It makes some doubts on the standard use of the GMM
estimation when K2 is nor very small. This issue has been investigated by Anderson
et al. (2007) in more details.

A Heteroscedastic Case
When the disturbances are not conditionally homoscedastic, the above results still hold
essentially. For instance, Theorem 4.1 of Section 4 implies that for the MMEL estimator
with arbitrary a (0 ≤ a ≤ 1),

P
( √

n(β̂ − β) ≤ y
)

(3.6)
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= ΦQ11(y) +

{
(1 − a)

[
plim
n→∞

1
n

n∑
i=1

tr(ziz
′
iσ

2
i A)[

|Ω|1/2

σ2
]iαi

]

−
[
plim
n→∞

1
n

n∑
i=1

[QD
′
MC−1ziz

′
iσ

2
i C

−1MD]11[
|Ω|1/2

σ2
]iαiQ

−1
11 y

2

]}
Q11√
n
φQ11(y)

+o(n−1/2)

provided that there exist limits in the right-hand side of (3.6), where tr(·) is the trace
of a matrix, [·]11 is the (1,1)-element of a matrix, σ2

i = E(u2
i |zi), [|Ω|1/2/σ2]i and αi are

defined (as [|Ω|1/2/σ2] and α) for E(viv
′
i|zi) = Ωi = (ω(i)

jk ) (i = 1, · · · , n), and ΦQ11(·)
and φQ11(·) are the cdf and the density function of N(0,Q11), respectively.

When σ2
i , [|Ω|1/2/σ2]i and αi are independent of i, (3.6) with a = 1 and a = 0 are

the same as (3.4) and (3.5) up to O(n−1/2), respectively, and tr(CA) = L(= K − p).
As we shall see further terms of O(n−1) become substantially complicated.

To summarize our findings in this section, the results of asymptotic expansions of
distributions give useful information on the finite sample properties of alternative esti-
mators beyond their biases and MSEs when G1 = 1 and the disturbances are normally
distributed. In Section 4 we shall show that these observations on the finite sample
properties are generally true even when G1 ≥ 1 and the distribution of disturbances
are not necessarily normal in a more general setting.

4. Asymptotic Expansions of Densities and Higher Order Properties of
Alternative Estimators

4.1 The method of Asymptotic Expansions and Assumptions

In order to derive the asymptotic expansions of the densities of estimators when the
disturbances are not necessarily normally distributed, we need regularity conditions.

Assumption II : (i) The sequence (z
′
i,v

′
i), i = 1, · · · , n, are mutually independent ran-

dom vectors and vi have the strictly positive density with respect to Lebesgue measure;
E(vi|zi) = 0, E(viv

′
i|zi) = Ωi (a.s.), E(u2

i |zi) = σ2
i , E(u3

i |zi) = κ3i, E(u4
i |zi) = κ4i

and E[‖vi‖6] < ∞. (ii) The (constant) matrices M and C are positive definite,
rank(D) = p, n−1∑n

i=1 ziz
′
iσ

2
i = C + op(n−1/2) and n−1∑n

i=1 ziz
′
i = M + op(n−1/2).

(iii) The sequence of vectors zi = (zij) (i = 1, · · · , n; j = 1, · · · ,K) are bounded or
n−1 max1≤i≤n ‖zi‖2 p→ 0 and E[‖zi‖6] <∞ when they are stochastic. There exist finite
M3(j1, j2, j3) such that n−1∑n

i=1 κ3izij1zij2zij3 = M3(j1, j2, j3) + op(n−1/2).

We need some moment conditions on disturbance terms to derive higher order stochas-
tic expansions of the associated random variables up to O(n−1). Conditions (ii) and
(iii) of Assumption II could be weakened, but then the resulting formulas and their
derivations become more complicated than those reported while the essential method
of derivations will not to be changed. We can treat both cases when {zi} are stochastic
and deterministic, and also it is possible to replace the independence assumption with
{ui} by using a martingale assumption on

∑n
i=1 ziui. In order to avoid cumbersome

arguments, however, we mostly treat {zi} as if they were deterministic.
In our analysis we first use the consistency of the MEL estimator (Owen (1990) and

Qin and Lawless (1994)). Since np̂i
p→ 1, θ̂EL

p→ θ0, (θ0 is the true value of θ) and

9



√
nλ̂ converges to a random vector as n→ ∞, we represent ê as

[
n∑

i=1

p̂i

(
y2i

z1i

)
z
′
i

] [
n∑

i=1

p̂iui(θ̂)2ziz
′
i

]−1 [
1√
n

n∑
i=1

ziui

]
(4.1)

=

[
n∑

i=1

p̂i

(
y2i

z1i

)
z
′
i

] [
n∑

i=1

p̂iui(θ̂)2ziz
′
i

]−1 [
1
n

n∑
i=1

zi

(
y

′
2i, z

′
1i

)]
ê ,

where θ̂ for θ̂MMEL. As n→ ∞, we write the first order term of ê as ẽ0, which is

ẽ0 =
[
D

′
MC−1MD

]−1
D

′
MC−1

[
1√
n

n∑
i=1

ziui

]
. (4.2)

In the following derivation it is convenient to use the fact that Qn =
[
D

′
MnC−1

n MnD
]−1

,

ẽ0 − e0 = op(1) and

e0 =
[
D

′
MnC−1

n MnD
]−1

D
′
MnC−1

n

[
1√
n

n∑
i=1

ziui

]
. (4.3)

By applying a central limit theorem (CLT) to the last term of (4.2), we have a weak
convergence Xn = n−1/2∑n

i=1 ziui
w−→ Np(0,C) . Then ẽ0

w−→ Np(0,Q), where Q is
given by (2.9) and w−→ means the weak convergence as n→ ∞. By using

1√
n

n∑
i=1

ziui(θ̂) = Xn +
1
n

[
−

n∑
i=1

zi(y
′
2i, z

′
1i)ê

]
= Xn − MnDê +Op(n−1/2) , (4.4)

we find that
√
nλ̂ − λ0

p−→ 0 (λ̂ is λ with θ̂) and

λ0 = C−1/2
n

[
IK −C−1/2

n MnDQnD
′
MnC−1/2

n

] [
C−1/2

n Xn

]
. (4.5)

Because the limiting distribution of Bn = C−1/2Xn is NK(0, IK), C1/2
n

√
nλ̂

w−→
NK(0, P̄D∗) and P̄D∗ = IK − D∗(D∗′D∗)−1D∗′ is constructed by a K × p matrix
D∗ = C−1/2MD, where D∗

n = C−1/2
n MnD

p−→ D∗ as n −→ +∞. Then the covariance
matrix of the limiting distribution λ0 is given by A = C−1 − C−1MDQD

′
MC−1,

which plays important roles in our analysis.
We shall derive the asymptotic expansions of the density functions of estimators.

Our method is the conditional expansion approach which is similar to the one in Fu-
jikoshi et al. (1982) and Anderson et al. (1986). Because the early works could
utilize aspects of the multivariate normal distributions directly which we cannot use,
the derivations of asymptotic expansions become more complicated as explained in Ap-
pendix A. In our conditional expansion approach, first we expand ê by the perturbation
method in each components of Xn = (X(n)

j ),Yn = (y(n)
jk ),Zn = (z(n)

jk ) and Un = (U (n)
jk ),

which are defined by

Yn =
1√
n

n∑
i=1

[
ziz

′
iu

2
i − E(ziz

′
iu

2
i )
]
,Zn =

1√
n

n∑
i=1

zi(v
′
2i,0

′
),Un =

1√
n

n∑
i=1

wiz
′
i ,

(4.6)
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where wi = (v
′
2i,0

′
)
′ − qiui and q

′
i = (1/σ2

i )E[(v
′
2i,0

′
)ui|zi] for v

′
i = (v1i,v

′
2i) (i =

1, · · · , n). Then if E[‖vi‖s] < ∞ for s ≥ 3, we can take a positive (bounded) constant
cn(1, s) depending on n which satisfies

P(‖Xn‖ > [Λn logn]1/2) ≤ cn(1, s)
(1/

√
n)s−2

(log n)s/2
, (4.7)

where Λn as the maximum of the characteristic roots of E(Cn). Also for Yn,Zn and
Un we can also take positive (bounded) constants cn(i, s) (i = 2, 3, 4) and similar
inequalities for s ≥ 3 under Assumption II. The basic arguments on the validity have
been given by Bhattacharya and Ghosh (1978) (see Bhattacharya and Rao (1976) also)
for the i.i.d. random vector sequences. They can be extended to our case while the
derivations and resulting explanations become quite lengthy.

We shall derive the stochastic expansions of the estimators up to Op(n−1/2) under
Assumption II and write e = e0 + n−1/2e1 + op(n−1/2) (see Theorem 4.1 in the next
subsection). The resulting expressions of Op(n−1), however, become complicated in the
expression as e = e0 + n−1/2e1 + n−1e2 + op(n−1). It is partly because the conditional
expectations of some random variables of Op(1) with e0 and Op(n−1/2) with e1 lead
to the terms of Op(n−1/2) as well as some further terms of Op(n−1). (See [A5] of Ap-
pendix A.) When we ignore the effects of the third order moments of the disturbances
and they are homoscedastic, the asymptotic expansions of estimators with an arbitrary
a (0 ≤ a ≤ 1) can be simplified greatly. For Theorem 4.2 in the next subsection we
impose further conditions.

Assumption III : (i) The sequence of (v
′
i, z

′
i), i = 1, · · · , n, satisfy Condition (i) of

Assumption II; E[‖vi‖8] < ∞, E(vi) = 0, E(viv
′
i) = Ω, E(u2

i ) = σ2, E(u4
i ) = κ4,

C∗
2 = E(wiw

′
i), qi = q and κ = E(u4

i )/σ
4 − 3. (ii) Conditions (ii) and (iii) of Assump-

tion II with n−1∑n
i=1 ziz

′
i = M + op(n−1) and E[‖zi‖8] < ∞ when zi are stochastic.

(iii) E[u3
i ] = κ3 = 0 and E[u2

i wi] = 0 (i = 1, · · · , n).

It is immediate that Condition (ii) can be relaxed as (1/n)
∑n

i=1 z
(j)
i z

(k)
i z

(l)
i u3

i = op(n−1/2)
and the similar conditions on the third order moments on {u2

i wi} in Assumption III.

4.2 Asymptotic Expansions of Density Functions

Although there are many terms appeared in the stochastic expansion of ê in Appendix
A, it is possible to obtain the explicit forms of the asymptotic expansions of the density
functions of semi-parametric estimators. In order to derive the asymptotic expansions
of their density functions, we consider a stochastic expansion ê = e0+n−1/2e1+n−1e2+
op(n−1) with e0 as the leading term. Because we use e∗0 = ẽ0 as the leading term, we
rewrite e0 = ẽ0 + n−1/2e(1)

0 + n−1e(2)
0 + op(n−1). We apply the same arguments to e1

and e2 recursively. From the terms of the order Op(n−1/2), we define e∗1(x) as the sum
of constant order terms of the conditional expectation E[e(0)

1 + e(1)
0 |ẽ0 = x], where the

explicit forms of e(0)
1 and e(1)

0 are given in Appendix A. From the terms of the order
Op(n−1), we define e∗2(x) as the sum of Op(n−1/2) terms of the conditional expectation
E[e(0)

1 + e(1)
0 |ẽ0 = x] plus the conditional expectation E[e(2)

0 + e(1)
1 + e2|ẽ0 = x]. As

the cross-product terms, we define e∗11(x) as the sum of the conditional expectation
E[(e(0)

1 + e(1)
0 )(e(0)

1 + e(1)
0 )

′ |ẽ0 = x], where the explicit expressions of e(2)
0 , e(1)

1 and e2

are also given in Appendix A.
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Then we consider the characteristic function of the standardized estimator ê in
order to derive the asymptotic expansion of its distribution function and we calculate

C(t) = E[exp(it
′
x)] +

1√
n
E[it

′
e∗1(x) exp(it

′
x)] (4.8)

+
1
2n

E{2it′
e∗2(x) exp(it

′
x) + i2t

′
e∗11(x)t exp(it

′
x)} + o(n−1) ,

where x = ẽ0, t = (ti) is a p × 1 vector of real variables and i2 = −1. By using the
Fourier inversion formulas in Appendix D, we invert the characteristic function (4.8).
Although the intermediate computations are quite tedious but they are straightfor-
ward. First we consider the asymptotic expansion of the density function of ẽ0 and its
limiting distribution is normal as n → +∞. By expanding its characteristic function
E[exp(it

′
ẽ0)] and inverting it under Assumption II, we have

φ∗Q(ξ) = φQ(ξ)
{
1 +

1
6
√
n

p∑
l1,l2,l3=1

βl1l2l3h3(ξl1 , ξl2 , ξl3) (4.9)

+
1

24n

⎡
⎣ p∑

l1,l2,l3,l4=1

βl1l2l3l4h4(ξl1 , ξl2 , ξl3 , ξl4) − 3
p∑

l1,l2,m1,m2=1

βl1l2βm1m2h2(ξl1 , ξl2)h2(ξm1 , ξm2)

⎤
⎦

+
1

72n

p∑
l1,l2,l3,m1,m2,m3=1

βl1l2l3βm1m2m3h6(ξl1 , ξl2 , ξl3 , ξm1 , ξm2 , ξm3)
}

+ o(n−1),

where φQ(ξ) is the p-dimensional normal density function with means 0 and the co-
variance matrix Q. The coefficients in (4.9) are given by
βl1l2 = plimn→∞(1/n)

∑n
i=1 σ

2
i z

∗
il1
z∗il2 , βl1l2l3 = plimn→∞(1/n)

∑n
i=1 κ3iz

∗
il1
z∗il2z

∗
il3
,

and βl1l2l3l4 = plimn→∞(1/n)
∑n

i=1 κ4iz
∗
il1
z∗il2z

∗
il3
z∗il4 ,

where z∗i = (z∗il) = QD
′
MC−1zi (i = 1, · · · , n), and

∑
l1,l2,l3,l4 means the combinations

of two pairs such as (l1, l2) and (l3, l4) (i.e., it is 3 when l1 = l2 = l3 = l4, for instance).
We define hk(xl1,···,lk) (k = 2, · · · , 6) by hk(xl1,···,lk)φQ(x) = (−1)k ∂kφQ(x)

∂xl1
···∂xlk

.
It is important to find that (4.9) is common for all asymptotically efficient estimators
and then it does not make any effects on the comparisons of (asymptotically) efficient
estimators.

Next by using the results of Appendix A, the conditional expectations of the second
order terms ((A.10) and (A.26)) are summarized as

e∗1(x) = (1 − a)Q

[
plim
n→∞

1
n

n∑
i=1

qi(z
′
iAzi)σ2

i − m3

]
(4.10)

−QD
′
MC−1

[
plim
n→∞

1
n

n∑
i=1

ziz
′
iσ

2
i q

′
ix

]
C−1MDx ,

where

m3 = D
′
MC−1

[
plim
n→∞

1
n

n∑
i=1

κ3izi(z
′
iAzi)

]
. (4.11)

It is important to note that the semi-parametric estimation has the effects through the
terms associated with Q and m3, which disappear only when a = 1 (i.e. the MEL
estimator). By using the inversion formulas (i) and (ii) given in Appendix D, we have
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the next result.

Theorem 4.1 : Suppose the limit of (4.11) exists. Under Assumption II, an asymptotic
expansion of the joint density function of ê for the class of modified MEL estimators
as n→ ∞ is given by

f(ξ) = φ∗Q(ξ) +
1√
n
φQ(ξ)

{
(1 − a)

[
plim
n→∞

1
n

n∑
i=1

tr(ziz
′
iσ

2
i A)q

′
iξ − m

′
3ξ

]
(4.12)

+

[
plim
n→∞

1
n

n∑
i=1

[tr(QD
′
MC−1ziz

′
iσ

2
i q

′
iξC

−1MD) + q
′
iD

′
MC−1ziz

′
iσ

2
i C

−1MDQξ]

]

−
[
plim
n→∞

1
n

n∑
i=1

ξ
′
D

′
MC−1ziz

′
iσ

2
i q

′
iξC

−1MDξ

]}
+ o(n−1/2)

provided that the limits in the right-hand side of (4.12) exist, where
q

′
i = (1/σ2

i )E[(v
′
2i,0

′
)ui|zi] (i = 1, · · · , n), ξ is a p × 1 (p = G1 +K1) vector, φ∗Q(ξ) is

given by (4.9) and φQ(ξ) is the density function of Np(0,Q).

It is possible to extend Theorem 4.1 to the terms of Op(n−1) in principle, but the
resulting expressions become quite complicated. When the third order moments of
disturbances are zeros, however, it is manageable to evaluate many terms of Op(n−1)
and then we have useful representations. Also in this situation some terms of (4.9)
vanish (i.e. βl1l2l3 = 0) and we only have some extra terms of n−1. When qi = q, i =
1, · · · , n, (4.10) becomes

e∗1(x) = (1 − a)Q [Lq − m3] − xq
′
x . (4.13)

By collecting the conditional expectation formulas in Appendix A ((A.30), (A.31);
(A.14), (A.15), (A.16); (A.18), (A.19), (A.20) and (A.21)) under Assumption III,

e∗2(x) = −(2 + κ)QD
′
FDx + [2 + a(2 + κ)]QD

′
FDx + xx

′
C∗

1x (4.14)
+QQ∗QC∗

2x − (1 − a)L[x tr(C∗
1Q) + 2QC∗

1x] − (1 − a)QC∗
2x tr(MA)

+[−3a+ a]QD′FDx

= (a− 1)κQD
′
FDx + xx

′
C∗

1x + QQ∗QC∗
2x

−(1 − a)L[x tr(C∗
1Q) + 2QC∗

1x] − (1 − a)QC∗
2x tr(MA),

where C∗
1 = qq

′
, C∗

2 = E(wiw
′
i) and Q∗ = D

′
MC−1MC−1MD. Also the second

order conditional moments of e∗11(x) under Assumption III can be summarized ((A.33),
(A.34) and (A.13)) as

e∗11(x) = (2 + κ)QD
′
FDQ + x

′
C∗

1xxx
′
+ QQ∗Qx

′
C∗

2x + QC∗
2Qtr(MA)(4.15)

+(1 − a)2L(L+ 2)QC∗
1Q − (1 − a)L[QC∗

1xx
′
+ xx

′
C∗

1Q)].

Although there are many terms it is important to note that the semi-parametric esti-
mation has the effects only through the additional terms associated with QD

′
FD as ex-

plained in Appendix A. When the disturbance terms satisfy Assumption III, C = σ2M,
Q = σ2(D

′
MD)−1, Q∗ = σ−2Q−1 and tr(MA) = σ−2L. Also the characteristic func-

tion of ẽ0 = x is asymptotically equivalent to E[exp(it
′
x∗)](1 + o(n−1/2)), where x∗ is

the limiting vector of x. By using the inversion formulas in Appendix D we obtain the
main result after lengthy but straightforward computations.
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Theorem 4.2 : Suppose that the limits of (3.3) and (4.11) exist. Then under As-
sumption III, an asymptotic expansion of the joint density function of ê for a class of
the MMEL estimator as n→ ∞ is given by

f(ξ) = φ∗Q(ξ) (4.16)

+
1√
n
φQ(ξ)(q

′
ξ)
[
p+ 1 + (1 − a)L− ξ

′
Q−1ξ

]

+
1
2n
φQ(ξ)

(
ξ
′
C1ξ

{
[p+ 1 + (1 − a)L− ξ

′
Q−1ξ]2 + p+ 1 − 3ξ

′
Q−1ξ + 2(1 − a)2L

}
+tr(C1Q)[(1 − a)L][2 − (1 − a)(L+ 2)]
+ξ

′
C2ξ{L[1 − 2(1 − a)] − p− 2 + ξ

′
Q−1ξ} + tr(C2Q){L[2(1 − a) − 1]}

+[2 + (2a− 1)κ][ξ
′
D

′
FDξ − tr(D

′
FDQ)]

)
+ o(n−1) ,

where ξ is a p × 1 (p = G1 + K1) vector, φ∗Q(ξ) and F are given by (4.8) and
(3.3), respectively, φQ(ξ) is the density function of Np(0,Q), C1 = C∗

1 (= qq
′
),

C2 = σ−2C∗
2 (= σ−2E(wiw

′
i)), σ

2 = E(u2
i ) and κ = [E(u4

i ) − 3σ4]/σ4 .

The leading term φ∗Q(ξ) are common among all asymptotically efficient estimators and
we need to make comparison on the terms of the second term of O(n−1/2) and the
third term of O(n−1). When the disturbance terms are normally distributed all terms
except the leading term vanish in (4.9) and φ∗Q(x) = φQ(x). There is an interesting
observation in Theorem 4.2 that if we further drop the last term

[2 + (2a− 1)κ]
[
ξ
′
D

′
FDξ − tr(D

′
FDQ)

]
(4.17)

and the disturbance terms are normally distributed, the resulting formulas are identical
to those for the limited information maximum likelihood (LIML) estimator and the
two stage least squares (TSLS) estimator, which have been reported by Fujikoshi et
al. (1982). Hence this term could be interpreted as the effect of semi-parametric
factor in the linear simultaneous equations as we have observed in Theorem 3.1 and
Theorem 3.2. This term comes from many terms associated with the semi-parametric
covariance estimation, (See the detail in Appendix A), which gives the MEL estimation
a more variability in the order O(n−1) depending on the kurtosis of the underlying
distribution. In the first and second orders there is no distinctive different features
between the density functions of the standardized MEL estimator and LIML estimator
as in Theorem 4.1, which implies the same asymptotic bias up to Op(n−1/2). In that
sense we may call the term (4.17) as the semi-parametric (3rd order) inefficiency factor
under the homoscedasticity assumption for disturbances.

By using the asymptotic expansion of the density function, we can evaluate the
asymptotic mean and the asymptotic mean squared errors of the MMEL estimator.

Corollary 4.3 : Under the assumptions of Theorem 4.2, the asymptotic bias and the
asymptotic mean squared errors of ê with the MMEL estimator (based on the asymp-
totic expansion) as n → ∞ are ABIASn(ê) = n−1/2 [(1 − a)L− 1]Qq + o(n−1/2)
and

AMSEn(ê) = Q +
1
n

{
QC1Q[6 − 6(1 − a)L+ (1 − a)2L(L+ 2)] (4.18)

+Qtr(C1Q)[3 − 2(1 − δ)L] + Qtr(C2Q) + [L+ 2 − 2L(1 − a)]QC2Q

+[2 + (2a− 1)κ]QD
′
FDQ

}
+ o(n−1) ,
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respectively.

4.3 Discussions on Higher Order Properties of Estimators

Under Assumption II it is straightforward to obtain the asymptotic expansion of the
density function of the MEL and GMM estimators up to O(n−1/2). In Theorem 4.1
when qi = q (i = 1, · · · , n), for instance, the factor φQ(ξ)(q

′
ξ)[p+ 1 − ξ

′
Q−1ξ] in the

term O(1/
√
n) is symmetric around zeros when a = 1. Let êi.MEL (i = 1, · · · , p) be the

i-th component of ê for the MEL estimator. Then

P(êi ≥ 0) =
1
2

+ o(n−1/2) (4.19)

when κ3i = 0 (i.e. βl1l2l3 = 0 (l1, l2, l3 = 1, · · · , p) in (4.9)). Hence it is still near
to 1/2 (almost median-unbiased) for the MEL estimator when κ3 is small in many
applications.

On the other hand, the asymptotic expansion of the density function of the GMM
estimator has an additional term and the term of O(n−1/2) is proportional to L(1/

√
n),

where L = K2−G1. Hence when K2 (the number of excluded instruments) is large, the
probability bias of the GMM (or the TSLS) estimator becomes substantial while the
MEL (or the LIML) estimator concentrates its probability around the true parameter
values. (See Tables 2 and 3 in Appendix E. By taking the expectation of (4.13) when
qi = q (i = 1, · · · , n), the asymptotic (unconditional) bias of the MMEL estimator with
respect to the approximate distribution based on the asymptotic expansions is given
by

ABIASn(ê) =
1√
n

{
[(1 − a)L− 1]Qq − (1 − a)Qm3

}
+ o(n−1/2). (4.20)

The result on the asymptotic bias may agree with the observation by Newey and Smith
(2004), which have derived the asymptotic bias of the MEL and GMM estimators in
the more general nonlinear setting for the estimating equation models.

Although it is straightforward to proceed our step to the mean-squared errors of
alternative estimators, it is quite tedious to obtain the explicit formula of AM(êê

′
)

for the asymptotic MSE of the MMEL estimator in the general linear case. There are
many terms for an arbitrary a (0 ≤ a ≤ 1) when we cannot ignore the effects of third
order moments of disturbance terms. For the MEL estimator case, however, there are
only a few additional terms. Although it is straightforward to write down those terms,
we have omitted to report the details since they are complicated and may not be useful
at the present stage of our investigation.

The issue of comparing the finite sample distributions of alternative estimators
based on their asymptotic expansions in the order O(n−1) for the normalized estimators
are closely related to the problem of higher order asymptotic efficiency and deficiency of
in the statistical asymptotic theory. On the one hand, Takeuchi and Morimune (1985)
gave the classic result on the simultaneous equations system in the parametric frame-
work and shown that the LIML estimator is third order asymptotically efficient after
bias adjustments when the disturbances are normally distributed. Recently, Newey
and Smith (2004) utilized the multinomial distribution case and concluded (in their
Theorem 6.1) that the MEL estimator is third order asymptotically efficient after bias
adjustments by using the arguments by Pfanzagl and Wefelmeyer (1978) in the more
general nonlinear estimating equation framework. It could be interpreted as an applica-
tion of the higher order efficiency of estimation developed by Pfanzagl and Wefelmeyer
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(1978) and Akahira and Takeuchi (1981) for the statistical framework of parametric
models. On the other hand, Akahira and Takeuchi (1990) have given several examples
and suggested that the asymptotic (higher order) deficiency in semi-parametric models
often become infinite, which is quite different from the estimation problem of standard
parametric models. There is a subtle statistical problem remained on the meaning of
the asymptotic bound, the (higher order) asymptotic efficiency and deficiency of esti-
mation in semi-parametric models (see Pfanzagl (1990) and Bickel et al. (1993)). The
related analysis should be important, but it is beyond of the scope of this paper.

5. Concluding Remarks

In this paper we have developed the asymptotic expansions of the density functions
for a class of semi-parametric estimators including the MEL and the GMM estimators.
Although the general forms of the asymptotic expansions look quite complicated, it is
possible to obtain some explicit formulas which make possible to compare alternative
estimation methods.

On the other hand, Anderson et al. (2005, 2008), for instance, have investigated the
finite sample properties of the distribution functions of the MEL and GMM estimators
and have given extensive tables when G1 = 1, 2 in a systematic way. In the more
general case, however, it would not be possible to investigate the finite sample properties
directly and hence the asymptotic expansion method should be useful for comparing
different estimators. The explicit formulas in Section 4 give some useful information on
the exact distributions of alternative estimators in more general cases. They should be
the basis of comparing higher order terms of the distribution functions of alternative
estimators beyond their asymptotic biases and MSEs.

It is important to note that the finite sample differences between the distributions of
the LIML and MEL estimators (and also those between the GMM and TSLS estimators)
are often very small as we have discussed in Sections 3 and 4 when the disturbances
are i.i.d. non-lattice random variables with zero third moments. It may be interesting
to see if these differences would be substantial for practical purposes.

Finally, it is obvious that the results reported in this paper have implications on the
general reduced rank regression models. This problem is currently under investigation.

Appendices

In Appendix A and Appendix B, we give the derivations of stochastic expansions of al-
ternative estimators. In Appendix C we give the proofs of two lemmas and in Appendix
D we gather some useful inversion formulas. We give tables and figures in Appendix
E.

Appendix A : Derivations of asymptotic expansions

[A1] Conditional Stochastic Expansions
We derive the asymptotic expansions of estimators under Assumption II and then we
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shall show how Assumption III simplifies the resulting expressions. By expanding (4.1)
with respect to e0, formally we write

ê = ẽ0 + [e0 − ẽ0] +
1√
n
e1 +

1
n
e2 + op(n−1) (A.1)

and √
nλ̂ = λ0 +

1√
n

λ1 +
1
n

λ2 + op(n−1) . (A.2)

By substituting these expansions and ui(θ̂) = ui − (1/
√
n)(y

′
2i, z

′
1i)ê into pi (i =

1, · · · , n), we also write

n p̂i = 1 +
1√
n
p
(1)
i +

1
n
p
(2)
i + op(n−1) , (A.3)

where p(1)
i = −λ

′
0ziui, p

(2)
i = −λ

′
1ziui + λ

′
0zi(y

′
2i, z

′
1i)e0 + (λ

′
0zi)2u2

i and (y
′
2i, z

′
1i) =

z
′
iD + w

′
i + q

′
iui.

Then it is possible to show that max1≤i≤n |p̂i−1/n| = op(1/n) since (np̂i)−1 = 1+λ
′
ziui

(see Owen (1990)), and max1≤i≤n |p̂i − 1/n − p
(1)
i /(n

√
n) − p

(2)
i /n2| = op(1/n2). By

using the recursive substitution, we expand

Ĉn =
n∑

i=1

p̂iu
2
i (θ̂)ziz

′
i = Cn +

1√
n
C(1)

n +
1
n
C(2)

n + op(n−1) , (A.4)

Ên =
n∑

i=1

p̂i(
y2i

z1i
)z

′
i = D

′
Mn +

1√
n
E(1)

n +
1
n
E(2)

n + op(n−1) , (A.5)

where we define

C(1)
n =

1
n

n∑
i=1

ziz
′
i

[
p
(1)
i u2

i − 2ui(y
′
2i, z

′
1i)e0

]
,

C(2)
n =

1
n

n∑
i=1

ziz
′
i

[
{(y′

2i, z
′
1i)e0}2 − 2ui(y

′
2i, z

′
1i)e1 − 2uip

(1)
i (y

′
2i, z

′
1i)e0 + u2

i p
(2)
i

]
,

E(1)
n = Z

′
n + D

′ 1
n

n∑
i=1

p
(1)
i ziz

′
i +

1
n

n∑
i=1

p
(1)
i (

v2i

0
)z

′
i ,

E(2)
n = D

′ 1
n

n∑
i=1

p
(2)
i ziz

′
i +

1
n

n∑
i=1

p
(2)
i (

v2i

0
)z

′
i .

By using (2.6) we write ÊnĈ−1
n Xn = ÊnĈ−1

n [n−1∑n
i=1 zi(y

′
2i, z

′
1i)]ê. Then by substitut-

ing ê, λ̂, p̂i (i = 1, · · · , n) and Zn, we determine each terms of the stochastic expansions
of ê in the recursive way. By using the relation Ĉ−1

n = C−1
n + n−1/2[−C−1

n C(1)
n C−1

n ] +
n−1[−C−1

n C(2)
n C−1

n + C−1
n C(1)

n C−1
n C(1)

n C−1
n ] + op(n−1), the leading two terms of ê are

e1 = −QnD
′
MnC−1

n Zne0 + Qn[A1n][Xn − MnDe0], (A.6)

e2 = Qn[A2n][Xn − MnDe0] −Qn[A1n][MnDe1 + Zne0] (A.7)

−QnD
′
MnC−1

n Zne1,
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where Q−1
n = D

′
MnC−1

n MnD, ÊnĈ−1
n = D

′
MnC−1

n + n−1/2A1n + n−1A2n + op(n−1),

A1n = −D
′
MnC−1

n C(1)
n C−1

n + E(1)
n C−1

n ,

A2n = D
′
Mn[−C−1

n C(2)
n C−1

n + C−1
n C(1)

n C−1
n C(1)

n C−1
n ] − E(1)

n C−1
n C(1)

n C−1
n + E(2)

n C−1
n .

[A2] Effects of Cn (Covariance Estimation)

We need to investigate the effects of estimating C by Ĉn in the semi-parametric esti-
mation methods. Each components of Yn have the asymptotic normality as n → ∞.
The covariance of the (j, k)-th elements of Yn and the l-th element of Xn is

Cov(
1√
n

n∑
i=1

z
(j)
i z

(k)
i u2

i ,
1√
n

n∑
i=1

z
(l)
i ui|zi) =

1
n

n∑
i=1

κ3iz
(j)
i z

(k)
i z

(l)
i .

Thus Xn and Yn are asymptotically independent when κ3i = E(u3
i ) = 0 and in that

case our analyses can be simplified considerably as we shall see in [A6] in particular.
Because C−1

n = C−1 + [−C−1YnC−1] + [C−1YnC−1YnC−1] + op(n−1) and
Q−1

n = D
′
Mn[C−1 + C−1

n (C − Cn)C−1]MnD, which is
Q−1

n = Q−1−n1/2[D
′
MC−1YnC−1MD]+n−1[D

′
MC−1YnC−1YnC−1MD]+Op(n−3/2)

and D
′
MnC−1

n = D
′
MC−1−n−1/2[D

′
MC−1YnC−1]+n−1[D

′
MC−1YnC−1YnC−1]+

Op(n−3/2).
Then Qn = Q+Qn(Q−1−Q−1

n )Q is expanded as Q+n−1/2[QD
′
MC−1YnC−1MDQ]+

n−1[−QD
′
MC−1YnC−1YnAMDQ] + Op(n−3/2) and QnD

′
MnC−1

n is expanded as
QD

′
MC−1+n−1/2[−QD

′
MC−1YnA]+n−1[QD

′
MC−1YnAYnA]+Op(n−3/2), where

ACA = A. Then we can express e0 = ẽ0 + n−1/2e(1)
0 + n−1e(2)

0 + Op(n−3/2), where
ẽ0 = QD

′
MC−1Xn, e

(1)
0 = −QD

′
MC−1YnAXn and e(2)

0 = QD
′
MC−1YnAYnAXn.

By using the expansions of Cn and Qn, we find a representation for (4.5) as

λ0 = AXn +
1√
n

[−AYnAXn] +Op(n−1) . (A.8)

[A3] Conditional Expectations involving e1

We investigate the effects of e1 and decompose e1 as e1 = e1.1 + e1.2 + e1.3, where
e1.1 = Qn[A1n][Xn − MDe0], e1.2 = −QnD

′
MC−1

n n−1/2∑n
i=1 ziuiq

′
ie0 and e1.3 =

−QnD
′
MC−1

n U
′
ne0. The last two terms are evaluated easily and we treat them first.

Rewrite e1.2 = e(0)
1.2 +n−1/2e(1)

1.2 +Op(n−1), e(0)
1.2 = −QD

′
MC−1n−1/2∑n

i=1 ziuiq
′
iẽ0 and

e(1)
1.2 = −QD

′
MC−1Yn(n−1/2∑n

i=1 ziuiq
′
i)ẽ0+QD

′
MC−1Yn(n−1/2∑n

i=1 ziuiq
′
i)ẽ0AXn.

Also we have e1.3 = e(0)
1.3 + n−1/2e(1)

1.3 + Op(n−1), where e(0)
1.3 = −QD

′
MC−1U

′
nẽ0 and

e(1)
1.3 = QD

′
MC−1U

′
nQD

′
MC−1YnAXn + QD

′
MC−1YnAU

′
nẽ0.

The analysis of e1.1 becomes more complicated because there are some terms with C(1)
n

and E(1)
n . We rewrite C(1)

n = C(1.0)
n +n−1/2C(1.1)

n and C(1,0)
n = −2(n−1∑n

i=1 ziz
′
iu

2
i q

′
i)ẽ0−

Θλ0
3n by defining Θλ0

3n = n−1∑n
i=1 κ3iziz

′
i(z

′
iλ0). Also we have E(1)

n = E(1.0)
n +n−1/2E(1.1)

n ,

where E(1.0)
n = Un + n−1/2∑n

i=1 qiz
′
iui + n−1/2∑n

i=1 qi(−λ
′
0ziz

′
iu

2
i ).

Then e1.1 = [−QnD
′
MnC−1

n C(1)
n C−1

n + QnE
(1)
n C−1

n ]CnAXn becomes

e1.1 = 2QD
′
MC−1CAXn + QD

′
MC−1Θλ0

3nC
−1AXn (A.9)

+QUnAXn + Q

[
1√
n

n∑
i=1

qiuiz
′
i −

1√
n

n∑
i=1

qi(λ
′
0zi)z

′
iu

2
i

]
AXn +Op(n−1/2) .
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By collecting each terms of e1, we summarize e1 = e(0)
1 + n−1/2e(1)

1 + op(n−1/2),
e(0)

1 = e(0)
1.1 + e(0)

1.2 + e(0)
1.3 and e(1)

1 = e(1)
1.1 + e(1)

1.2 + e(1)
1.3.

In order to derive the asymptotic expansions of the distributions of the MMEL esti-
mator, we use p̂∗i instead of p̂i (i = 1, 2). For an arbitrary (fixed) a (0 ≤ a ≤ 1), we
substitute aλ0 (and aλ1) into λ0 (and λ1). Since ẽ0 is asymptotically uncorrelated
with AXn, E[e(0)

1.3|x] = op(1) and Lemma A.3 in [A5], the conditional expectation of
e(0)

1 , given ẽ0 = x, is

E[e(0)
1 |x] (A.10)

= aQm3 + (1 − a)Q

[
1
n

n∑
i=1

qi(z
′
iAzi)σ2

i

]
− QD

′
MC−1

[
1
n

n∑
i=1

ziz
′
iσ

2
i q

′
ix

]
C−1MDx,

with the remainder terms of op(1),where n−1/2∑n
i=1 ziE[ui|x]q

′
i = n−1∑n

i=1 ziz
′
iσ

2
i q

′
ix+

op(1) and m3 is given by (4.11).
Now we explicitly use the assumption qi = q (i = 1, · · · , n) and Assumption III

in order to evaluate many terms in the order of Op(n−1). We write C(1)
n = C(1.0∗)

n +
n−1/2C(1.1∗)

n , C(1,0∗)
n = 2q

′
ẽ0C−1 − Θλ0

3n, Ξ
λ0
3n = n−1/2∑n

i=1(u
3
i − κ3i)ziz

′
i(z

′
iλ0) and

C(1.1∗)
n = −2(q

′
ẽ0)Yn − 2n−1/2∑n

i=1 ziz′iui(z
′
iD+w

′
i)ẽ0 +2Cnq

′
QD

′
MC−1YnAXn −

aΞλ0
3n. Then we write −QnD

′
MnC−1

n C(1)
n C−1

n = B
(1)
1 + n−1/2B

(2)
1 + op(n−1/2),

B
(1)
1 = 2(q

′
ẽ0)QD

′
MC−1 + QD

′
MC−1aΘλ0

3nC
−1 and

B
(2)
1 = −2(q

′
ẽ0)QD

′
MC−1YnA− QD

′
MC−1[aΘλ0

3nC
−1Yn + YnAaΞ

λ0
3n]C−1

− QD
′
MC−1[−aΞλ0

3n − 2
1√
n

n∑
i=1

ziz′iui(z
′
iD + w

′
i)ẽ0 + 2Cq

′
QD

′
MC−1YnAXn]C−1.

We also write E(1)
n = E(1.0∗)

n +n−1/2E(1.1∗)
n , E(1.0∗)

n = Un+q(X
′
n−aλ

′
0Cn) and E(1.1∗)

n =
−D′n−1/2∑n

i=1 ziz
′
i(az

′
iλ0)ui − n−1/2∑n

i=1 wiz
′
i(az

′
iλ0)ui. Then QnE

(1)
n C−1

n = B
(1)
2 +

n−1/2B
(2)
2 + op(n−1/2), B(1)

2 = QUnC−1 + Qq(X
′
n − aλ

′
0C)C−1 and

B
(2)
2 = QD

′
MC−1YnC−1MDQ[Un + q(X

′
n − aλ

′
0Cn)]C−1

−Q[Un + q(X
′
n − aλ

′
0Cn)]C−1YnC−1

+Q[−D′ 1√
n

n∑
i=1

ziz
′
i(az

′
iλ0)ui − 1√

n

n∑
i=1

wiz
′
i(az

′
iλ0)ui]C−1 − Qqaλ

′
0YnC−1 .

By using Xn − MnDe0 = CAXn + n−1/2[MDQD
′
MC−1YnAXn] + Op(n−1) and

C−1MDQD
′
MC−1 = C−1−A, for an arbitrary a, e1.1 = e(0)

1.1 +n−1/2e(1)
1.1 + op(n−1/2),

e(0)
1.1 =

[
QD

′
MC−1 + QD

′
MC−1aΘλ0

3nC
−1 + QUnC−1 + Qq(X

′
n − aλ

′
0C)C−1

]
CAXn

and e(1)
1.1 = (B(2)

1 +B
(2)
2 )AXn + (B(1)

1 +B
(1)
2 )MDQD

′
MC−1YnAXn, which is

e(1)
1.1 =

(
aQD

′
MC−1Θλ0

3n(C−1 − A)YnAXn (A.11)

+QUn(C−1 − A)YnAXn + Qqẽ
′
0D

′
MC−1YnAXn

)

−aQD
′
MC−1[Θλ0

3nCnYnAXn + YnAΞλ0
3nAXn]
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−QD
′
MC−1[−2

1√
n

n∑
i=1

ziz
′
iAXnui(z

′
iD + w

′
i)ẽ0 − aΞλ0

3n]

+QD
′
MC−1YnC−1MDQ[Un + q(X

′
n − aλ

′
0Cn)]AXn

−Q[Un + q(X
′
n − aλ

′
0Cn)]C−1YnAXn

+Q[−aD′ 1√
n

n∑
i=1

zi(z
′
iAXn)2ui − a

1√
n

n∑
i=1

wi(z
′
iAXn)2ui]

+
(
−2QD

′
Mq

′
QD

′
MC−1YnAXnAXn − aQqX

′
nAYnAXn

)
.

We note that some terms are cancelled out and (A.11) will be needed in [A6] (two
terms of e(1)

1.1 have important roles). Since the first term of e1.1 (i.e. 2QD
′
MAXn]) is

op(1) when qi = q and e(0)
1 = e(0)

1.1 + e(0)
1.2 + e(0)

1.3, then

e(0)
1 =

[
aQD

′
C−1Θλ0

3n + QUn + (1 − a)QqX
′
n

]
AXn − (q

′
ẽ0)ẽ0 −QD

′
MC−1U

′
nẽ0.

(A.12)
Then the conditional second moments of e(0)

1 , given ẽ0 = x, are calculated as

E[e(0)
1 e(0)

1

′
|x] (A.13)

= a2
{
Qm3 ·m′

3Q + 2QD
′
MC−1(

1
n

)2
∑
i,j

κ3iκ3jziz
′
j(z

′
iAzj)2C−1MDQ

}

+a
{
Qm3[(1 − a)(L+ 2)Qq− xx

′
q]

′
+ [(1 − a)(L+ 2)Qq − xx

′
q]m

′
3Q
}

+
{
(x

′
C∗

1x
′
xx

′
+ QQ∗Qx

′
(
1
n

n∑
i=1

E(wiw
′
i))x + Q

′
(
1
n

n∑
i=1

E(wiw
′
i))Qtr(AM)

+(1 − a)2L(L+ 2)QC∗
1Q − (1 − a)L[QC∗

1xx
′
+ xx

′
C∗

1Q]
}

+ op(1),

where C∗
1 = qq

′
and and Q∗ = D

′
MC−1MC−1MD. In the above calculations we have

used the relations (by applying Lemma A.2 in [A5]) as E[(X
′
nAXn)2] = L(L + 2) +

O(n−1/2) and E[(z
′
iAXn)2(X

′
nAXn)] = (L+2)z

′
iAzi+O(n−1/2). It is a consequence of

the fact that ẽ0 and AXn are asymptotically uncorrelated, AXnX
′
nA = ACA+op(1),

X
′
nAXn is approximately χ2(tr(CA)) and tr(CA) = L.

[A4] Conditional Expectations of e2

We shall evaluate the terms of e2 and decompose e2 = e2.1 + e2.2 + e2.3, where
e2.i (i = 1, 2, 3) correspond to each terms of (A.7). Because we can estimate Q and C
consistently by using Qn and Cn, their estimations do not affect many terms involving
e2 asymptotically. We consider e2.3 = −QD

′
MC−1[U

′
n + Xnq

′
]e(0)

1 + op(1). Be-
cause ẽ0 and AXn are asymptotically orthogonal, the conditional expectation, e2.3.1 =
−QD

′
MC−1U

′
ne

(0)
1 , given ẽ0 = x, is QD

′
MC−1MnC−1MDQE(wiw

′
i)x + op(1). Be-

cause ẽ0 = QD
′
MC−1Xn, the conditional expectation of the second term of e2.3 is

E[e2.3.2|x] = E
[
−(ẽ0q

′
)[QUnAXn + (1 − a)QqX

′
nAXn
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+aQD
′
MC−1 1

n

n∑
i=1

κ3izi(X
′
nAXn)2 − ẽ0(q

′
ẽ0) − QD

′
MC−1Unẽ0]|x

]

= −(1 − a)Lq
′
Qqx + x(q

′
x)2 − axq

′
Qm3 + op(1) ,

and then

E[e2.3|x] = QQ∗QC∗
2x − (1 − a)Ltr(C∗

1Q)x + xx
′
C∗

1x− axq
′
Qm3 + op(1) . (A.14)

Secondly, we evaluate e2.2, where e2.2.1 = −Q[A1n]MDe(0)
1 , and e2.2.2 = −Q[A1n][U

′
n+

Xnq
′
]ẽ0 and e2.2 − e2.2.1 − e2.2.2 = op(1). The second term is rewritten as

e2.2.2 = −
{
2(q

′
ẽ0)QD

′
MC−1 + QD

′
MC−1aΘλ0

3nC
−1

+QnUnC−1 + Qq(X
′
n − aλ

′
0Cn)C−1

}
[U

′
n + Xnq

′
]ẽ0 + op(1)

and its conditional expectation is

E[e2.2.2|x] = −2(q
′
x)x(q

′
x) −Q[

1
n

n∑
i=1

C∗
2z

′
iC

−1zi]x − QqE[X
′
nC

−1Xn|x]q
′
ẽ0

−aQD
′
MC−1[

1
n

n∑
i=1

κ3izi(z
′
iAzi)](q

′
x) + aQqE[X

′
nAXn|x]q

′
ẽ0 + op(1) .

By decomposing X
′
nC

−1Xn = X
′
nAXn + ẽ

′
0Q

−1ẽ0 and using E[Θλ0
3nC

−1Xn|x] =
an−1∑n

i=1 κ3izi(z
′
iAzi) + op(1), it is rewritten as

E[e2.2.2|x] = −2xx
′
C∗

1x− Q[
1
n

n∑
i=1

C∗
2z

′
iC

−1zi]x (A.15)

−QC∗
1x[LIK + x

′
Q−1x] + aLQC∗

1x− aQm3(q
′
x) + op(1) .

On the other hand, the first term of e2.2 is expressed as

e2.2.1 = −
{
2(q

′
ẽ0)QD

′
MC−1 + QD

′
MC−1aΘλ0

3nC
−1

+QnUnC−1 + Qq(X
′
n − aλ

′
0Cn)C−1

}
MD

×
{
QUnAXn + (1 − a)QqX

′
nAXn + aQD

′
MC−1 1

n

n∑
i=1

κ3izi(z
′
iAXn)2

−ẽ0(q
′
ẽ0) −QD

′
MC−1U

′
nẽ0

}
+ op(1) .

We use the relations that ACMD = O and E[X
′
nAẽ0|x] = Op(n−1/2),

E[
1
n

n∑
i=1

ziz
′
i(az

′
iλ0)C−1MDQ|x] = aE

[
1
n

n∑
i=1

ziz
′
iC

−1MDQX
′
nAzi|x

]
= op(1),

E[X
′
nC

−1MDẽ0|x] = E
[
X

′
nAMDẽ0 + X

′
nC

−1MDQD
′
MC−1MDẽ0|x

]
= ẽ

′
0Q

−1ẽ0.
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Then, given ẽ0 = x, the conditional expectation E[e2.2.1|x] is evaluated as[
−2(1 − a)L(q

′
x)QD

′
MC−1MDQq − 2a(q

′
x)QD

′
MC−1MDQm3

+2(q
′
x)2QD

′
MC−1MDx

]

−aQD
′
MC−1E[Θλ0

3nC
−1MD|x][(1 − a)LQq + aQD

′
MC−1 1

n

n∑
i=1

κ3izi(z
′
iAzi)]

+Q
1
n

n∑
i=1

C∗
2z

′
iC

−1MDQD
′
MC−1zix

−Qq E
{
X

′
nC

−1MD[(1 − a)QqL+ aQD
′
m3] − (q

′
e0)X

′
nC

−1MDẽ0|x
}

= 2(q
′
x)2x + Q

1
n

n∑
i=1

C∗
2z

′
iC

−1MDQD
′
MC−1zix (A.16)

+Qqq
′
xx

′
Q−1x− 3(1 − a)LQC∗

1x − 2a(q
′
x)Qm3 − aQqx

′
Qm3 + op(1).

Hence we have obtained the explicit form of the conditional expectation E[e2.2|ẽ0 =
x] = E[e2.2.1|x] + E[e2.2.2|x] up to op(1). Next, we evaluate the terms involving e2.1,
which is the first term of (A.7), and we need more complicated computations. We write
e∗2.1 = e2.1(A) + e2.1(B) + e2.1(C) + e2.1(D), where e2.1(A) = −QD

′
MC−1C(2)

n AXn,

e2.1(B) = QD
′
MC−1C(1)

n C−1C(1)
n AXn, e2.1(C) = −QE(1)

n C−1C(1)
n AXn and e2.1(D) =

QE(2)
n AXn. Because these terms depend on p

(2)
i (i = 1, · · · , n) and ui(θ̂) = ui −

(1/
√
n)[z

′
iD + (v

′
2i,0

′
)]ê, we need to use λ1 given by

λ0 +
1√
n

λ1 + op(n−1/2)

= {C−1
n +

1√
n

[−C−1
n C(1)

n C−1
n ]}

{
[Xn − MnDe0] +

1√
n

[−MnDe1 − 1√
n

n∑
i=1

zi(v
′
2i,0)e0]

}
.

Then by using C−1Xn = AXn+C−1MDQD
′
MC−1Xn and 2AXn−C−1Xn = AXn−

C−1MDẽ0, we find

λ1 = −C−1MDe(0)
1 − C−1 1√

n

n∑
i=1

zi(v
′
2i,0

′
)e0 − C−1C(1)

n AXn + op(1)

= −C−1MD
[
aQD

′
MC−1Θλ0

3nAXn + QUnAXn + (1 − a)QqX
′
nAXn − (q

′
x)x

−QD
′
MC−1U

′
nx
]
− C−1

[
U

′
nx + Xnq

′]

−C−1
[
−2Cnq

′
xAXn + Θλ0

3nAXn

]
+ op(1)

= −AU
′
nẽ0 − C−1MDQUnAXn + (q

′
ẽ0)AXn

−(1 − a)C−1MDQqX
′
nAXn + aAΘλ0

3nAXn + op(1) . (A.17)

Although we could have used λ1 with a = 1, we used (A.17) in order to make no
confusion. For the GMM estimator we could have set λ1 = 0 and p

(j)
i = 0 (j = 1, 2),

22



but then we need different notations. Then we can evaluate each terms by using e1

and λ1. By using the stochastic expansion of p(1)
i (i = 1, · · · , n),

e2.1(A) = −QD
′
MC−1

{ 1
n

n∑
i=1

ziz
′
i

[
(z

′
iDẽ0 + w

′
iẽ0 + uiq

′
ẽ0)2

−2(uiz
′
iDe1 + uiw

′
ie1 + u2

i q
′
e1) + 2u2

i (az
′
iλ0)(z

′
iDẽ0 + w

′
iẽ0 + uiq

′
ẽ0) + u2

i p
(2)
i

] }
AXn.

Since AXn is asymptotically uncorrelated with ẽ0, 2QD
′
MC−1CnAXn(q

′
e1)

p→ O
and E

{
n−1∑n

i=1 ziz
′
i[(z

′
iDẽ0)2+(w

′
iẽ0)2+u2

i (q
′
ẽ0)2]AXn|x

}
= op(1). Hence for e2.1(A)

with an arbitrary a, we only need to evaluate the conditional expectation of the last
four terms as
−QD

′
MC−1

{
1
n

∑n
i=1 ziz

′
i[2a(z

′
iAXn)(u2

i z
′
iDẽ0 + u2

i w
′
iẽ0 + u3

i q
′
ẽ0) + u2

i p
(2)
i ]
}
AXn

up to op(1). For the last term involving p
(2)
i with a, we use λ1 and it becomes

−QD
′
MC−1 times
{ 1
n

n∑
i=1

zi(z
′
iAXn)u2

i [az
′
iλ0(z

′
iDẽ0 + w

′
iẽ0 + uiq

′
ẽ0) − az

′
iuiλ1 + u2

i (az
′
iλ0)2]

}

= a
1
n

n∑
i=1

zi(z
′
iAXn)u2

i (z
′
iλ0)(z

′
iDẽ0 + w

′
iẽ0 + uiq

′
ẽ0)

−a[ 1
n

n∑
i=1

ziz
′
i(z

′
iAXn)u3

i ][−AU
′
ne0 − C−1MDQUnAXn

+q
′
e0AXn − (1 − a)C−1MDQqX

′
nAXn + aAΘλ0

3nAXn]

+a2 1
n

n∑
i=1

zi(z
′
iAXn)3u4

i .

Here we illustrate our arguments and for the last term, we write

1
n

n∑
i=1

zi(z
′
iAXn)3u4

i =
1
n

n∑
i=1

κ4izi(z
′
iAXn)3 +

1
n

n∑
i=1

[u4
i − κ4i]zi(z

′
iAXn)3 ,

whose each terms are of Op(n−1/2). By taking the conditional expectations applying
Lemma A.3 in [A5], the first term in the above equation is of Op(n−1/2). Also

E[
1
n

n∑
i=1

ziu
2
i (z

′
iDẽ0)(z

′
iAXn)2|x] = E{ 1

n

n∑
i=1

zi[σ2
i + (u2

i − σ2
i )](z

′
iDẽ0)(z

′
iAXn)2|x}

= E[
1
n

n∑
i=1

σ2
i ziz

′
iAzi(z

′
iDx)] + op(1) .

Then by ignoring the terms of op(1),

E[QD
′
MC−1n−1

n∑
i=1

ziu
2
i w

′
iẽ0(z

′
iAXn)2|x] = n−1

n∑
i=1

ziE[u2
i w

′
i]z

′
iAzix + op(1) ,

E[n−1
n∑

i=1

ziu
3
i q

′
ẽ0(z

′
iAXn)2|x] = n−1

n∑
i=1

κ3iziq
′
xz

′
iAzi + op(1) .
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Then for the conditional expectations with an arbitrary a we find

E[
1
n

n∑
i=1

ziz
′
iAziu

2
i p

(2)
i |x] = a

1
n

n∑
i=1

ziz
′
iAzi[E(u2

i w
′
i)x + σ2

i z
′
iDx] + op(1) .

When κ3i = 0 and E(u2
i wi) = 0, by gathering the conditional expectations of other

terms, we have

E[e2.1(A)|x] = −3aQD
′
MC−1[

1
n

n∑
i=1

ziσ
2
i (z

′
iAzi)z

′
i]Dx + op(1) . (A.18)

Similarly, the second term e2.1(B) is e2.1(B) = QD
′
MC−1C(1,0)

n C−1C(1,0)
n AXn+op(1).

Since AXn and ẽ0 are asymptotically uncorrelated, the conditional expectation is re-
duced to

E[e2.1(B)|x] = 4a(q
′
ẽ0)Qm3 + op(1) , (A.19)

which is op(1). For the third term, we write e2.1(C) = −QE(1)
n C−1C(1)

n AXn.
By using QE(1)

n C−1 = [QUn+Qq(X
′
n−aλ

′
0Cn)]C−1+op(1),C(1)

n AXn = [−2(q
′
ẽ0)Cn−

an−1∑n
i=1 κ3iziz

′
i(z

′
iAXn)]AXn +op(1) and X

′
n−aλ

′
C = ẽ

′
0D

′
M+(1−a)X′

nAC, the
conditional expectation of e2.1(C) is

E[e2.1(C)|x] = 2Qq(q
′
x)(1 − a)E[X

′
nAXn|x] + Qq(X

′
n − aλ

′
0C)aΘλ0

3nAXn + op(1)

= 2(1 − a)LQqq
′
x + Qqe

′
0m3 + op(1) . (A.20)

The fourth term e2.1(D) with an arbitrary a is
e2.1(D) = aQ

{
D

′
n−1∑n

i=1 p
(2)
i ziz

′
i + n−1∑n

i=1 p
(2)
i (v

′
2i,0

′
)
′
z
′
i

}
AXn. Since the first

term of e2.1(D) is similar to the last term of e2.1(A), its conditional expectation with
an arbitrary a is

E

[
QD

′ 1
n

n∑
i=1

p
(2)
i ziz

′
iAXn|x

]

= QD
′
E

{
1
n

n∑
i=1

zi(z
′
iAXn)(az

′
iλ0)(z

′
iDe0 + w

′
ie0 + uiq

′
e0)

−a 1
n

n∑
i=1

zi(z
′
iAXn)λ

′
1ziui +

1
n

n∑
i=1

zi(z
′
iAXn)(az

′
iλ0)2u2

i |x
}

= E
{
aQD

′
[
1
n

n∑
i=1

zi(z
′
iAzi)z

′
i]Dx + aQD

′
[
1
n

n∑
i=1

ziz
′
i(z

′
iAXn)2AXn|x

}
+ op(1)

= aQD
′
[
1
n

n∑
i=1

zi(z
′
iAzi)z

′
i]Dx + op(1) .

For the second term of e2.1(D), we rewrite

Q
1
n

n∑
i=1

p
(2)
i (

v2i

0
)z

′
iAXn
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= Q
1
n

n∑
i=1

(wi + qui)(z
′
iD + w

′
i + q

′
ui)ẽ0(az

′
iλ0)(z

′
iAXn)

−Q
1
n

n∑
i=1

(wi + qui)(az
′
iui)aλ1(z

′
iAXn) + Q

1
n

n∑
i=1

(wi + qui)(az
′
iλ0)2u2

i (z
′
iAXn).

For the sake of exposition, we denote each term of the above expression with an arbi-
trary a as e2.1.1(D), e2.1.2(D), e2.1.3(D), respectively. Then

E[e2.1.1(D)|x] = aE

[
Q

1
n

n∑
i=1

(wiw
′
i + qq

′
u2

i )ẽ0(z
′
iAXn)2|x

]

= aQ[
1
n

n∑
i=1

C∗
2z

′
iAzi]x + aLQC∗

1x + op(1)

by using that aE[λ
′
0n

−1∑n
i=1 u

2
i ziz

′
iAXn|x] ∼= aE[X

′
nACAXn] = aL+ op(1). Also

E[e2.1.3(D)|x] = a2E

[
Q

1
n

n∑
i=1

qu3
i (z

′
iλ0)2z

′
iAXn|x

]

= a2QqE[
1
n

n∑
i=1

κ3i(z
′
iAXn)3|x] + op(1) .

But since AXn is asymptotically normal and uncorrelated with ẽ0, E[e2.1.3(D)|x] =
op(1). For the conditional expectation of e2.1.2(D), we use that the pairs of vectors
(w

′
i, ui) are uncorrelated and n−1∑n

i=1 wiuiz
(j)
i z

(k)
i

p→ 0. As for the remaining condi-
tional expectation terms, by using λ1 we find

E[e2.1.2(D)|x] = −aQqE[λ
′
1(

1
n

n∑
i=1

ziz
′
iu

2
i )AXn|x] + op(1) = −aLQqq

′
x + op(1) .

Hence we summarize

E[e2.1(D)|x] = aQD
′
[
1
n

n∑
i=1

zi(z
′
iAzi)z

′
i]Dx (A.21)

+aQ[
1
n

n∑
i=1

C∗
2z

′
iAzi]x + aLQC∗

1x− aLQqq
′
x + op(1) .

Finally, we obtain E[e2.1|ẽ0 = x] by collecting E[e2.1(A)|x], E[e2.1(B)|x], E[e2.1(C)|x]
and E[e2.1(D)|x]. The resulting formulas become relatively simple since we can ignore
the third order moments and then many terms disappear in the formulas eventually.

[A5] Conditional Expectation Formulas

We prepare useful formulas on the conditional expectations and the proofs will be given
in Appendix C. They are used repeatedly in our evaluations by setting Z = ẽ0.

Lemma A.1 : Let the vectors ẽ0,Xn = (x(n)
l ), and Yn = (y(n)

kl ) be defined as in Section
4. Then E[y(n)

jk |x(n)
l , zi] = n−1∑n

i=1 zikzikκ3iz
(n)
il x

(n)
l /var(x(n)

l ) + op(n−1/2) and

E[YnAXn|ẽ0 = x] = plim
n→∞

1
n

n∑
i=1

κ3izi(z
′
iAzi) +Op(n−1/2) . (A.22)
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Lemma A.2 : Let a set of vectors X = (Xi) and T = (ti) be normally distributed.
Then

E[XiXjXk|T] − E(Xi|T)E(Xj |T)E(Xk|T) (A.23)

= Cov(Xi,Xj |T)E(Xk|T) + Cov(Xj ,Xk|T)E(Xi|T)

+Cov(Xk,Xi|T)E(Xj |T)

and

E[XiXjXkXl|T] − E(Xi|T)E(Xj |T)E(Xk|T)E(Xl|T) (A.24)

= Cov(Xi,Xj |T)Cov(Xk,Xl|T) +Cov(Xi,Xk|T)Cov(Xj ,Xl|T)

+Cov(Xi,Xl|T)Cov(Xj ,Xk|T)

+ Cov(Xi,Xj |T)E(Xk|T)E(Xl|T) + Cov(Xi,Xk|T)E(Xj |T)E(Xl|T)

+Cov(Xi,Xl|T)E(Xj |T)E(Xk|T) + Cov(Xj ,Xk|T)E(Xi|T)E(Xl|T)

+Cov(Xj ,Xl|T)E(Xi|T)E(Xk|T) + Cov(Xk,Xl|T)E(Xi|T)E(Xj |T) .

Lemma A.3 : Let un = (ui) and vn be p × 1 vector and a scalor with E(ui) =
0,E(vn) = 0,E(uiuj) = δ(i, j),E(v2

n) = 1 and they have finite fourth order moments.
Assume that they are sums of i.i.d. (non-lattice) vectors and asymptotically normally
distributed and admit the asymptotic expansion of their distribution function up to
Op(n−1) . Then

E[vn|un] = ρ
′
un (A.25)

+
1

6
√
n

⎧⎨
⎩3

p∑
l1,l2=1

βl1l2vh2(ul1 , ul2) − 3
p∑

l2,l3=1

[
p∑

l1=1

βl1l2l3ρl1]h2(ul2 , ul3)

⎫⎬
⎭+Op(n−1) ,

where βl1l2v = E(ul1ul2vn), βl1l2l3 = E(ul1ul2ul3), h2(ul1 , ul2) = ul1ul2 − δ(l1, l2)
(δ(l1, l2) = 1 if l1 = l2 and δ(l1, l2) = 0 if l1 
= l2), and ρ = Cov(v,un).
In particular, if E(uiujuk) = 0 (i 
= j 
= k), then βl1l2l3 = 0.

[A6] Higher Order Effects of e0 and e1

We need to evaluate the higher order effects of additional terms from e(1)
0 , e(2)

0 and e(1)
1

up toOp(n−1). By applying a version of Lemma A.3 to e(1)
0 and use E[y(n)

jk XnC−1Xn|Xn] =

n−1∑n
i=1 κ3iz

(j)
i z

(k)
i z

′
iC

−1Xn with Yn = (y(n)
jk ). By conditioning with respect to Xn

and using C−1 = A + C−1MDQD
′
MC−1, the conditional expectation of e(1)

0 is

E[e(1)
0 |Xn] = −QD

′
MC−1[

1
n

n∑
i=1

κ3iziz
′
iAXnX

′
nC

−1zi]

+
1

6
√
n
{−3QD

′
MC−1[

1
n

n∑
i=1

(E(u4
i − (σ2

i )
2)
∑
l1,l2

zil1zil2h2(xl1 , xl2)]AXn
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+3QD
′
MC−1[

1
n

n∑
i=1

(κ3i)2ziz
′
i

∑
l1,l2

zil1zil2h2(xl1 , xl2)]AXn} + op(n−1/2).

Hence under Assumption III

∑
l1,l2

E[y(n)
jk tl1tl2h2(l1, l2)|Xn] = (

1√
n

)3
n∑

i=1

E(u4
i − σ4

i )z
(j)
i z

(k)
i z

′
i(C

−1XnX
′
n − C−1]zi,

and

E
[
z
′
i(C

−1XnX
′
n − C−1)ziAXn|ẽ0

]

= E
[
(z

′
iAXn + z

′
iC

−1MDẽ0)(X
′
nAzi + ẽ

′
0D

′
MC−1zi)AXn − z

′
iC

−1ziAXn|ẽ0

]

= 2ẽ
′
0D

′
MC−1ziE[AXnX

′
nAzi] .

Then given ẽ0 = x

E[e(1)
0 |x] = −Qm3 +

1
6
√
n

{
− 3QD

′
MC−1[

1
n

n∑
i=1

(κ4i − σ4
i )2zizi

′C−1MDẽ0z
′
iAzi]

+3QD
′
MC−1[

1
n

n∑
i=1

ziκ
2
3i(2z

′
iC

−1MDẽ0z
′
iAzi)]

}
+ op(n−1/2) .

Hence we summarize

E[e(0)
1 + e(1)

0 |x] = (1 − a)Q

[
1
n

n∑
i=1

qi(z
′
iAzi)σ2

i − m3

]
− QD

′
MC−1Cnq

′
xC−1MDx ,

(A.26)
Next we evaluate the conditional expectation of e(1)

1 = e(1)
1.1 + e(1)

1.2 + e(1)
1.3. This term

plays an important role in Op(n−1). The conditional expectations of e(1)
1.2 and e(1)

1.3, given
ẽ0 = x, can be evaluated by using Lemma A.1 and Lemma A.3,

E[e(1)
1.2|x] = E[QD

′
MC−1Y

′
nAXn(q

′
ẽ0) + ẽ0q

′
QD

′
MC−1Y

′
nAXn|x]

= (q
′
x)Qm3 + xq

′
Qm3 + op(1)

and

E[e(1)
1.3|x] = QD

′
MC−1E[U

′
n|x]Qm3 + QD

′
MC−1 1

n

n∑
i=1

ziz
′
iAziE(u2

i w
′
i)x , (A.27)

which are both of op(1). Then we evaluate the conditional expectation of e(1)
1.1 associated

with C(1)
n and E(1)

n have been cancelled out. We also evaluate remaining terms of
Op(n−1/2) and the conditional expectation of the first two lines of (A.11) are

E

{
aQD

′
MC−1 1

n

n∑
i=1

κ3iziz
′
iAXnz

′
i(C

−1 − A)E(Yn|Xn)AXn|x
}

+ E
{
QUn(C−1 −A)E(Yn|Xn)AXn + Qqẽ

′
0D

′
MC−1E(Yn|Xn)AXn|x

}
,
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which are of op(1) under Assumption III. Similarly, the terms in the third line of (A.11)
leads to

E

{
−aQD

′
MC−1 1

n

n∑
i=1

κ3iziz
′
iAXnz

′
iC

−1E(Yn|Xn)AXn|ẽ0 = x

}

+ E

{
−aQD

′
MC−1E(Yn|Xn)

1
n

n∑
i=1

κ3izi(z
′
iAzi)|x

}
,

which are of op(1). The important terms of Op(n−1/2) are two terms appeared in the
4th and 7th lines of (A.11), which are dependent on the fourth order moments of {ui},
which are

2QD
′
MC−1

[
1√
n

n∑
i=1

ziz
′
iui(z

′
iD + w

′
i)ẽ0

]
AXn

+aQD
′
MC−1

[
1√
n

n∑
i=1

ziz
′
i(z

′
iAXn)(u3

i − κ3i − uiσ
2
i )

]
AXn

up to Op(n−1/2). It is straightforward to obtain the conditional expectation of the first
term as

2QD
′
MC−1{ 1√

n

n∑
i=1

ziuiz
′
i(z

′
iDx)Azi} +Op(n−1/2) , (A.28)

but some careful evaluation is needed for the second term. (Under Assumption III the
fourth order cumulant is κ = [E(u4

i ) − 3σ4)]/σ4.) We use two steps and as the first
step we take the conditional expectation, given Xn = r, E[n−1/2∑n

i=1 ri(u
3
i − κ3i −

uiσ
2
i )|r] = n−1∑n

i=1 riE(u4
i − u2

i σ
2
i )zi(E(XnXn))−1r + op(1) (ri are functions of zi).

Then as the second step we take the conditional expectation given ẽ0 = x by using the
decomposition C−1 = A + C−1MDQD

′
MC−1 and the asymptotic normality of the

corresponding random variables. Then the conditional expectation of the second term
can be evaluated as

aQD
′
MC−1E[

1√
n

n∑
i=1

zi(z
′
iAXn)2(u3

i − κ3i − σ2
i ui)|x]

= aQD
′
MC−1 1

n

n∑
i=1

ziz
′
i(z

′
iAzi)E[u4

i − σ2
i u

2
i ]C

−1MDx +Op(n−1/2)

= a(2 + κ)QD
′
[
1
n

n∑
i=1

ziz
′
i(z

′
iAzi)]Dx +Op(n−1/2) . (A.29)

For the last four lines of e(1)
1.1, there are many remaining terms given by

E{−Q[UnC−1 + q(X
′
nC

−1 − aX
′
nA)]E(Yn|Xn)AXn|x}

+ E{QD
′
MC−1YnC−1MDQ[UnAXn + (1 − a)qX

′
nAXn|x}

+ E{−2QD
′
Mq

′
QD

′
MC−1YnAXnAXn − aQqX

′
nAYnAXn|x},
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which are of op(1).
Since we can ignore the effects of the third order moments of disturbances under As-
sumption III, many terms with third order moments disappear and we only have the
above two terms involving e(1)

1 . Thus the conditional expectation of e(1)
1 is rewritten as

E[e(1)
1 |x] = [2 + a(2 + κ)]QD

′
FDx + op(1), (A.30)

where F = plimn→∞n−1∑n
i=1 zi(z

′
iAzi)z

′
i. Similarly, under Assumption III, the condi-

tional expectation of e(1)
0 is in Op(n−1/2)

E[e(1)
0 |x] =

1√
n
{−(2 + κ)QD

′
[
1
n

n∑
i=1

zi(z
′
iAzi)z

′
i]Dx} + op(n−1/2) . (A.31)

Also in order to evaluate E[e(2)
0 |ẽ0 = x], we need that for a constant matrix A (= (Ajk))

E[YnAYn|Xn] = E[(u2
i − σ2

i )
2][

1
n

n∑
i=1

zi(z
′
iAzi)z

′
i]

+
p∑

j,k=1

Ajk(
1
n

)
n∑

i=1

κ2
3iziz

′
iz

(j)
i C−1(XnX

′
n − C)C−1(

1
n

n∑
i=1

z
(k)
i z

′
i)

= E[(u2
i − σ2

i )
2][

1
n

n∑
i=1

zi(z
′
iAzi)z

′
i] +Op(n−1/2) ,

which has been simplified under Assumption III. Then

E[e(2)
0 |x] = QD

′
MC−1E[YnAYnAXn|x] = Op(n−1/2) (A.32)

because each components of Yn and Xn are asymptotically normally distributed, the
vector AXn is asymptotically uncorrelated with ẽ0. We also

E[e(1)
0 e(1)′

0 |x] = QD
′
MC−1E

{
E[YnAXnX

′
nAYn|Xn]|x

}
C−1MDQ

= (2 + κ)QD
′
FDQ +Op(n−1/2) (A.33)

because AXnX
′
nA = ACnA + op(1) = A + op(1). For Un = (ujk) = n−1/2∑n

i=1 wiz
′
i,

we apply Lemma A.1 and Lemma A.3 and use the fact that Cov(ujk, ẽ0) = 0,

E[ujk|Xn] =
1

2
√
n

K∑
l,l

′
=1

{ 1
n

n∑
i=1

(C−1/2zi)l(C−1/2zi)
′
lz

(k)
i E(uiw

(j)
i )

×[(C−1/2Xn)l(C−1/2Xn)l′ − δ(l, l
′
)]} + op(n−1/2)

=
1

2
√
n

1
n

n∑
i=1

E(u2
iw

(j)
i )z(k)

i [z
′
iC

−1XnX
′
nC

−1zi] + op(n−1/2) .

Because e(0)
1 = −QD

′
MC−1YnAXn, we find

E[e(1)
0 e(0)′

1 |x] = op(1) (A.34)

after lengthy, but straightforward calculations of each terms in the left hand side under
Assumption III.
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Appendix B : Derivations of Theorem 3.1 and Theorem 3.2

In the univariate and homoscedastic case (G1 = 1, p = 1 + K1) we use the notation
Q−1 = σ−2D

′
MD and Q11 = σ2(Π

′
22M22.1Π22)−1 as the (1, 1)−element of Q. The

right-hand side of φ∗(x) for the standardized estimator in (4.9) can be simplified and
it is given by

φ(x){1+
1√
n

[β3(x3−3x)]+
1
n

[
β4

24
(x4−6x2+3)+

β2
3

72
(x6−15x4+45x2−15)]}, (A.35)

where β3 = β111 and β4 = β1111−3β2
11 are the third and fourth order cumulants in (4.9)

by replacing z∗∗i (= Q
−1/2
11 z

(1)∗
i ) for z∗i (i = 1, · · · , n) and φ(x) is the density function of

the standard normal distribution. Under the normal disturbances β3 = β4 = 0.
We partition the p−dimensional (p = 1 + K1) normal vector x = (x1,x

′
2)

′ ∼
Np(0,Q) and

x =

(
x1

x2

)
= Q

(
1
0

)
Q−1

11 x1 +

(
0

x2 − Q21Q
−1
11 x1

)
, (A.36)

where two vectors on the right-hand side are independent under the normality. By
using the notation of Section 3, we find the relations 1 + α2 = σ2ω22/|Ω|, (1,0

′
)q =

[ω21 − ω22β]/σ2 = [−|Ω|1/2/σ2]α , Q
−1/2
11 (1/

√
n)(−1)

[
−α|Ω|1/2/σ2

]
= (1/μ) [αQ11]

and μ2/n = [(1 + α2)/ω22]Π
′
22A22.1Π22/n = [σ2/|Ω|][Π′

22A22.1Π22]/n .
Now we set e1(z) = E [[e∗1(x)]1|z] , e2(z) = E [[e∗2(x)]1|z] , e11(z) = E [[e∗11(x)]11|z]
and z = Q

−1/2
11 x1. Then since m3 = 0 under the normality,

Q
−1/2
11

1√
n

[e1(z)] =
1
μ

{
−(1 − a)Lα+ α(Q−1/2

11 x1)2
}

by ignoring the terms op(μ−2). Similarly, since κ = 0 under the normality,

Q
−1/2
11

1
n

[e2(z)] =
1
μ2

{
α2[Q−1/2

11 x1]3 + [Q−1/2
11 x1] − (1 − a)L[3α2](Q−1/2

11 x1)

−(1 − a)L(Q−1/2
11 x1)

}
,

Q−1
11

1
2n

[e11(z)] =
1

2μ2

{
2[QD

′
FDQ]11Q

−2
11

σ4

|Ω|

+α2[Q−1/2
11 x1]4 + [Q−1/2

11 x1]2 + L+ (1 − a)2L(L+ 2)α2 − 2(1 − a)Lα2(Q−1/2
11 x1)2

}
by ignoring the terms of op(μ−2). We notice that under the normal disturbances we have
z = Q

−1/2
11 x1 ∼ N(0, 1), and then by using the inversion formula (for the distribution

function) we only need to evaluate

Φ(z)+
1√
n

{
−Q−1/2

11 e1(z)
}
φ(z)+

1
2n

{
−2Q−1/2

11 e2(z) +Q−1
11

[
d

dz
[e11(z)] − ze11(z)

]}
φ(z)

(A.37)
up to the orders of O(n−1) or O(μ−2). Then by setting a = 1 for the MEL estimator
and a = 0 for the GMM estimator, we have the results in Theorem 3.1 and Theorem
3.2.
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Appendix C : Proof of Lemmas

[C1] Proof of Lemma A.1 : Let X1 = (Yn)ij , X2 = (AXn)k and X3 = (ẽ0)l. Since
the limiting distribution of random vector (X1,X2,X3)

′
is normal, we have the first

part. Also the conditional distribution of (X1,X2)
′

given X3 is also asymptotically
normal. Then

E[X1X2|X3] ∼= E[X1|X3]E[X2|X3] +
[
Cov(X1,X2) − Cov(X1,X3)Cov(X2,X3)

V ar(X3)

]
.

Because X2 and X3 are asymptotically orthogonal, E[X2|X3] ∼= 0 and Cov(X2,X3) ∼=
0 . Also by using the notation zαj and given zα

Cov(X1,X2) ∼= 1
n

n∑
α=1

zαizαj(Azαk)E[u3
α], (A.38)

we have the result. (Q.E.D)

[C2] Proof of Lemma A.3 : Let zn = (u
′
n, vn)

′
be a (p + 1) × 1 random vector

which is a sum of i.i.d. random vectors z(n)
j (j = 1, · · · , n) : zn = n−1/2∑n

j=1 z(n)
j and

E[z(n)
j ] = 0, E[z(n)

j z(n)′
j ] = Σ (> 0). Then under a set of regularity conditions (see

Bhattacharya and Rao (1976), for instance) the characteristic function of zn can be
expressed as

ϕ(t) =
n∏

j=1

E[ei
∑p+1

k=1
tjz

(n)
jk ] = e−

1
2
t
′
Σt

⎧⎨
⎩1 +

1
6
√
n

p+1∑
l1,l2,l3=1

βl1l2l3(itl1)(itl2)(itl3)

⎫⎬
⎭+O(n−1) ,

where βl1,l2,l3 are the third order moments of z(n)
j . Then the density function of zn has

a representation

fn(z) = φΣ(z)
{
1 +

1
6
√
n

p+1∑
l1,l2,l3=1

βl1l2l3h3(zl1 , zl2 , zl3)
}

+O(n−1) , (A.39)

where h3(zl, zl′ , zl′′ ) are the third-order Hermitian polynomials and we set a (p+ 1) ×
(p+ 1) variance-covariance matrix of zn as

Σ =

(
Ip ρ

ρ
′

1

)

for the mathematical convenience. Let fn(un) be the marginal density and fn(vn|un)
be the conditional density, which is represented as

fn(vn|un) = φ(v|ρ′
un, 1 − ρ

′
ρ)

×
{
1 +

1
6
√
n

[
p∑

l1,l2,l3=1

βl1,l2,l3h3,·(ul1 , ul2 , ul3) + 3
p∑

l1,l2

βl1,l2,p+1h3,·(ul1 , ul2 , vn)

+3
p∑

l=1

βl,p+1,p+1h3,·(ul, vn, vn) + βp+1,p+1,p+1h3,·(vn, vn, vn)

−
p∑

l1,l2,l3=1

βl1,l2,l3h3(ul1 , ul2 , ul3)]
}

+Op(n−1) ,
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where φ(v|ρ′
un, 1 − ρ

′
ρ) is the conditional density function, and h3,·(·) are the third

order Hermitian polynomials for (un, v) and h3(·) are the third order Hermitian poly-
nomials for the p−dimensional random vector un. Then the conditional expectation
is

E[vn|un]

= ρ
′
un +

1
6
√
n

{ p∑
l1,l2,l3=1

βl1,l2,l3

∫
v(−1)3

∂3fn(un, v)
∂ul1∂ul2∂ul3

1
fn(un)

dv

+3
p∑

l1,l2=1

βl1,l2,p+1(−1)3
∂2

∂ul1∂ul2

∫
v
∂fn(un, v)

∂v

1
fn(un)

dv

+3
p∑

l1=1

βl1,p+1,p+1(−1)3
∂

∂ul

∫
v
∂2fn(un, v)

∂v2

1
fn(un)

dv

+βp+1,p+1,p+1(−1)3
∫
v
∂3fn(un, v)

∂v3

1
fn(un)

dv

−(ρ
′
un)

p∑
l1,l2,l3=1

βl1,l2,l3h3(ul1 , ul2 , ul3)
}

+Op(n−1) .

By using the integral-by-parts calculations, the third term and the fourth term of the
right-hand side of Op(n−1/2) are zeros. Hence

E[vn|un]

= ρ
′
un +

1
6
√
n

{
(−1)

p∑
l1,l2,l3=1

βl1,l2,l3[
∂3

∂ul1∂ul2∂ul3

(ρ
′
unfn(un))]/fn(un)

+3
p∑

l1,l2=1

βl1,l2,p+1

[
∂2

∂ul1∂ul2

fn(un)

]
/fn(un) − ρ

′
un

p∑
l1,l2,l3=1

βl1,l2,l3h3(ul1 , ul2 , ul3)
}

+Op(n−1) .

= ρ
′
un +

1
6
√
n

{
3

p∑
l1,l2=1

βl1,l2,ph2(ul1 , ul2) −
p∑

l1,l2,l3=1

βl1,l2,l3

[
ρ

′
unh3(ul1 , ul2 , ul3)

]

+
p∑

l1,l2,l3=1

βl1,l2,l3

[
ρ
′
unh3(ul1 , ul2 , ul3) − ρl1h2(ul2 , ul3) − ρl2h2(ul1 , ul3) − ρl3h2(ul1 , ul2)

] }

+Op(n−1) ,

where h2(ul1 , ul2) are the second order Hermite polynomials of p−dimensional vector
un. Since two terms in the above expressions on the right-hand side are cancelled out,
we have the desired result. (Q.E.D.)
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Appendix D : Useful Inversion Formulas

This appendix gives the useful formulas, which correspond to the inversion of the char-
acteristic function from the conditional expectations given x∗ and x∗ follows the p-
dimensional normal distribution Np(0,Q). Let ψ(t) = E[eit

′
x∗

] be the characteristic
function of x∗. Then by using the integration-in-parts formula for t = (tj) and ξ = (ξk),

(iξj)φQ(ξ) = (
1
2π

)p
∫
Rp
e−it

′ξ
[
∂ψ(t)
∂tj

]
dt , (A.40)

for instance. By using integration-in-parts repeatedly with respect to t = (tj) and
differentiating with respect to ξ = (ξk), we have the Fourier inversion formulas

F−1{h(−it)E[g(x) exp(it
′
x∗)]} = h(

∂

∂ξ
)g(ξ)φQ(ξ) (A.41)

for any polynomials h( · ) and g( · ), where i2 = −1 and the differentiation vector
∂

∂ξ
′ = ( ∂

∂ξ1
, · · · , ∂

∂ξp
). The method adopted here was originally developed by Fujikoshi

et al. (1982) and Anderson et al. (1986). We present useful results including new
formulas.

Lemma A.4 : Let η
′

= (η1, · · · , ηp) be a 1 × p constant vector, B be a symmetric
constant matrix and tr ∂2

∂ξ∂ξ
′ [ · ] stands for

∑
i

∑
j ∂

2/∂ξi∂ξj [ · ]ij. Then

(i) ∂

∂ξ
′ [ηφQ(ξ)] = [−η

′
Q−1ξ]φQ(ξ),

(ii) ∂

∂ξ
′ [Bξ(η

′
ξ)φQ(ξ)] =

[
(η

′
ξ)(tr(B) − ξ

′
B

′
Q−1ξ) + ξ

′
Bη
]
φQ(ξ),

(iii) ∂

∂ξ
′ [QBξφQ(ξ)] =

[
tr(BQ) − ξ

′
Bξ
]
φQ(ξ),

(iv) ∂

∂ξ
′ [ξξ

′
BξφQ(ξ)] = (ξ

′
Bξ)

[
p+ 2 − ξ

′
Q−1ξ

]
φQ(ξ),

(v) tr ∂2

∂ξ∂ξ
′ [QBQφQ(ξ)] =

[
ξ
′
Bξ − tr(BQ)

]
φQ(ξ),

(vi) tr ∂2

∂ξ∂ξ
′ [Qξ

′
BξφQ(ξ)] =

[
2 tr(BQ) − (p+ 4 − ξ

′
Q−1ξ)ξ

′
Bξ
]
φQ(ξ),

(vii) tr ∂2

∂ξ∂ξ
′ [QBξξ

′
φQ(ξ)] =

[
(p+ 1 − ξ

′
Q−1ξ)(tr(BQ) − ξ

′
Bξ) − 2ξ

′
Bξ
]
φQ(ξ),

(viii) tr ∂2

∂ξ∂ξ
′ [ξξ

′
ξ
′
BξφQ(ξ)] = (ξ

′
Bξ)

[
(p+ 1 − ξ

′
Q−1ξ)2 + 3(p+ 1) + 2 − 5ξ

′
Q−1ξ)

]
φQ(ξ).

Appendix E: Tables and Figures

In Tables 1-3 and Figures 1-2 the exact and approximate distributions based on the asymptotic expan-
sions are presented in the standardized terms, that is, of (3.1). The basic procedure of simulations is to
generate the vectors of the normal disturbance terms and the exogenous variables vi, zi (i = 1, · · · , n)
and generate the endogenous variables. Then we simulate the probability of (3.1) by utilizing (2.5) and
(2.6) and do iterations until we have numerical convergence stably. We denote the resulting values as
Exact in Tables 1 and 2 because they are very accurate in two decimal digits at least. Our method
of evaluating the distribution functions of estimators in numerical analysis is essentially the same as
Anderson et al. (2005, 2008) which explain its details and the accuracy of our computations.
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The tables include three quartiles, the 5 and 95 percentiles and the interquartile range of the

distribution for each case. Since the limiting distributions of (3.1) for the MEL and GMM estimators

in the standard large sample theory are N(0, 1) as n → ∞, we add the standard normal case as the

bench mark. Figures 2 and 3 are taken from a case study of Anderson et al. (2005, 2008).
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