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1. Introduction 

A surge of interest has been observed in the measurement of polarization in the 

last decade because of its role in analyzing the evolution of the distribution of income, 

economic growth and social conflicts. Loosely speaking, polarization refers to clustering 

of incomes around local poles or subgroups in a distribution, where the individuals 

belonging to the same subgroup possess a feeling of identification among them and share 

a feeling of alienation against individuals in a different subgroup (see Esteban and Ray, 

1994). That is, individuals belonging to the same subgroup identify themselves with the 

members of the subgroup in terms of income but in terms of the same characteristic they 

feel themselves as non-identical from members of the other subgroups. Since an increase 

in the „identification‟ component increases homogeneity (equality) within a subgroup and 

higher „alienation‟ leads to a greater heterogeneity (inequality) between subgroups, both 

„identification‟ and „alienation‟ are increasingly related to polarization. Thus, polarization 

involves an equity-like component (identification) and an inequity-like component 

(alienation). Evidently, a high level of polarization, as characterized by the presence of 

conflicting subgroups, may generate social conflicts, rebellions and tensions (see 

Pressman, 2001). Esteban and Ray (1994) developed an axiomatic characterization of an 

index of polarization in a quasi-additive framework by directly taking into account the 

above aspects
1,2

 . 

Zhang and Kanbur (2001) proposed an index of polarization, which incorporates 

the intuition behind the „identification‟ and „alienation‟ factors. Their index is given by 

the ratio between the between-group and within-group components of inequality, where 

for any partitioning of the population into disjoint subgroups, such as subgroups by age, 

sex, race, region, etc., between-group inequality is given by the level of inequality that 

arises due to variations in average levels of income among these subgroups. On the other 

hand, within-group inequality arises due to variations in incomes within each of the 

                                                 
1
 See also Esteban and Ray (1999), D‟Ambrosio(2001), Gradin (2002), Duclos et al.(2004), Lasso de la 

Vega and Urrutia(2006) and Esteban et al. (2007). 
2

The Esteban - Ray (1994) notion of polarization contrasts with the concept of bi-polarization, which is 

measured by the dispersion of the distribution from the median towards the extreme points (see Foster and 

Wolfson, 1992, Wolfson ,1994,1997, Wang and Tsui, 2000 ,Chakravarty and Majumder, 2001,Chakravarty 

and D‟Ambrosio,2009 and Lasso de la Vega et al. ,2009). For a recent discussion on alternative notions of 

polarization , see Chakravarty (2009). 
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subgroups. Thus, the between-group term can be taken as an indicator of alienation and 

the within-group component is inversely related to identification. A similar approach 

adopted by Rodriguez and Salas (2003) considered bi-partitioning of the population using 

the median and defined a bi-polarization index as the difference between the between-

group and within-group terms of the Donaldson-Weymark (1980) S-Gini index of 

inequality (see also Silber et al., 2007). Such indices are „reduced-form‟ or „abbreviated‟ 

indices that can be used to characterize the trade-off between the alienation and 

identification components of polarization. 

As Esteban and Ray (2005, p.27) noted the Zhang-Kanbur formulation is a „direct 

translation of the intuition behind‟ the postulates that polarization is increasing in 

between-group inequality and decreasing in within-group inequality. Since the Zhang-

Kanbur -Rodriguez-Salas approach enables us to understand the two main components of 

polarization, identification and alienation, in an intuitive way, our paper makes some 

analytical and rigorous investigation using the idea that polarization is related to between-

group inequality and within-group inequality in increasing and decreasing ways 

respectively. 

Now, polarization indices can give quite different results. Evidently, a particular 

index will rank income distributions in a complete manner. However, two different 

indices may rank two alternative income distributions in opposite directions. In view of 

this, it becomes worthwhile to develop necessary and sufficient conditions that make one 

distribution more or less polarized than another unambiguously. This is one objective of 

this paper. We can then say whether one income distribution has higher or lower 

polarization than another by all abbreviated polarization indices that satisfy certain 

conditions. In such a case it does not become necessary to calculate the values of the 

polarization indices to check polarization ranking of distributions. If the population is bi-

partitioned using the median, then this notion of polarization ordering becomes close to 

the Wolfson (1994, 1997) concept of bi-polarization ordering.  

Next, given the diversity of numerical indices it will be a worthwhile exercise to 

characterize alternative indices axiomatically for understanding which index becomes 

more appropriate in which situation. An axiomatic characterization gives us insight of the 

underlying index in a specific way through the axioms employed in the characterization 
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exercise. This is the second objective of our paper. We characterize several polarization 

indices, including a generalization of the Rodriguez-Salas form.  The structure of a 

normalized ratio form index parallels that of the Zhang-Kanbur index. We then show that 

the different sets of intuitively reasonable axioms considered in the characterization 

exercises are independent, that is, each set is minimal in the sense that none of its proper 

subset can characterize the index. 

Finally, we show that it is also possible to start with a functional form of a 

polarization index and determine the inequality index which would generate the given 

polarization index. Specifically, we wish to determine a set of sufficient conditions on the 

form of a polarization index to guarantee that there exists an inequality index, which 

would produce the polarization index. This may be regarded as the dual of   the 

characterization results for polarization indices.  

Since subgroup decomposable inequality indices form the basis of our analysis, in 

the next section of the paper we make a discussion on such indices. The polarization 

ordering is discussed and analyzed in Section 3. The characterization theorems and a 

duality theorem are presented in Section 4. Finally, Section 5 concludes the paper. 

.    

2. Background 

For a population of size n, the vector  nxxxx ,..,, 21  represents the distribution 

of income, where each ix  is assumed to be drawn from the non-degenerate interval  ,  

in the positive part 1
R of the real line 1R .  Here ix  stands for the income of person i  of 

the population. For any ix  , ,  nnDx  , , the n-fold Cartesian product 

of  , .  The set of all possible income distributions is 
Nn

nDD


 , where N is the set of 

natural numbers. For all Nn , for all n
n Dxxxx  ),....,,( 21 ,  



n

i
i nx

1

, the mean of x , 

is denoted by  x (or simply by ). For all Nn , n1  denotes the n-coordinated vector 

of ones. The non-negative orthant of the n-dimensional Euclidean space nR is denoted by 

nR .An inequality index is a function 1:  RDI .  
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An inequality index is said to be population subgroup decomposable if it satisfies 

the following axiom: 

Subgroup Decomposability (SUD): For all 2k  and for all Dxxx k ,....,, 21 , 

     1 2

1 2

1

( ) , 1 , 1 ,....., 1 k

k
nn ni

i k

i

I x n I x I    


  ,                    (1)                                                      

where in  is the population size associated with the distribution ix , 


k

i
inn

1

, 

)( i
i x  =mean of the distribution ix ,  k ,.....,, 21 , knnnn ,......,,( 21 ), 

),(  ni  is the positive weight attached to inequality in ix , assumed to depend on the 

vectors n  and  , and  kxxxx ,.....,, 21 . SUD shows that for any partitioning of the 

population, total inequality can be broken down into its within-group and between-group 

components. The between-group term gives the level of inequality that would arise if 

each income in a subgroup were replaced by the mean income of the subgroup and the 

within- group term is the weighted sum of inequalities in different subgroups (see Foster, 

1985 and Chakravarty, 2009). Since for inequality and SUD to be well defined, we need 

,n k and in  for all ki 1 , we assume throughout the paper that 4n , 

where 1\N .   

Shorrocks (1980) has shown that a twice continuously differentiable inequality 

index 1: RDI   satisfying scale invariance (homogeneity of degree zero), subgroup 

decomposability, the Population Principle (invariance under replications of the 

population), symmetry (invariance under reordering of incomes), continuity and non-

negativity (the non-negative index takes on the value zero if only if all the incomes are 

equal) must be of the following form: 

 

 

















 

 

 

































n

i

ii

n

i i

n

i

c

i

c

c
xx

n

c
xn

c
x

cnc

xI

1

1

1

.1,log
1

,0,log
1

,1,0,1
1

1







                                       (2)                                                                                                                          
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The family cI , which is popularly known as the generalized entropy family satisfies the 

Pigou-Dalton transfers principle, a postulate, which requires inequality to reduce under a 

transfer of income from a person to anyone who has a lower income such that the transfer 

does not change the relative positions of the donor and the recipient. The transfer 

decreases cI  by a larger amount the lower is the value of c . If ,0c cI  coincides with 

the Theil (1972) mean logarithmic deviation MLI . For 1c , cI  becomes the Theil (1967) 

entropy index of inequality. For 2c , cI  becomes half the squared coefficient of 

variation. The well-known Gini index of inequality becomes subgroup decomposable if 

subgroup income distributions are non-overlapping. Since our formulation of SUD does 

not depend on such a restriction, cI  does not contain the Gini index as a special case. 

The absolute sister of the family cI , that is, the class of subgroup decomposable 

indices that remains invariant under equal translation of all incomes is given by: 

                                     



n

i

xie
n

xI
1

)(
1

1
)(


 , 0 ,                                                    

                                   2

1

21
)( 



n

i
iV x

n
xI .                                                                      (3) 

The variance VI  and the exponential index I , for all real non-zero values of , satisfy 

the Pigou-Dalton transfers principle (see Chakravarty and Tyagarupananda, 2009).  

The weight attached to the inequality of subgroup i in the decomposition of the 

family cI is given by      ,
c

i i in n n    . The corresponding weights in the 

decomposition of I  and VI  are given by    ( , ) i

i in n e ne
     and  nni  

respectively. Evidently, the sum of these weights across subgroups becomes unity only 

for the two Theil indices and the variance.  

If there is a progressive transfer of income between two persons in a subgroup 

then inequality within the subgroup decreases without affecting between-group inequality. 

But polarization increases because of higher homogeneity/identification of individuals 

within a subgroup. Of two subgroups, a proportionate (an absolute) reduction in all 

incomes of the one with lower mean keeps the subgroup relative (absolute) inequality 

unchanged but reduces its mean income further. Likewise, a proportionate (an absolute) 



 7 

increase in the incomes of the other subgroup increases its mean but keeps relative 

(absolute) inequality unaltered. This in turn implies that BI increases. In other words, a 

greater distancing between subgroup means, keeping within-group inequality unchanged, 

increases between-group inequality making the subgroups more heterogeneous. A 

sufficient condition that ensures fulfillment of this requirement is that the decomposition 

coefficient ),(  ni is independent of the subgroup means. The only subgroup 

decomposable indices for which this condition holds are the Theil mean logarithmic 

deviation index MLI , which corresponds to 0c  in (2)
2
, and the variance. We denote the 

set  VML II ,  of these two indices by SD . For further analysis, we restrict our attention to 

the set SD . Note that the members of SD  are onto functions so that they vary 

continuously over the entire non-negative part of the real line. (It may be mentioned here 

that the Esteban – Ray (2005) discussion on the Kanbur-Zhang index is based on the 

functional form MLI .) 

 

3. The Polarization Ordering 

Following our discussion in Section 1, we define a polarization index P as a real 

valued function of income distributions of arbitrary number of subgroups of a population, 

partitioned with respect to some homogeneous characteristic.  Formally,  

Definition 1: By a polarization index we mean a continuous function 1: RP  , 

where 
 














 

k kin

n

i

iD
1,

.  

 For any    kxxxx ,...,, 21 , k , the real number  xP indicates the level of 

polarization associated with x . 

Often economic indicators abbreviate the entire income distribution in terms of 

two or more characteristics of the distribution. For instance, a „reduced-form‟ welfare 

function expresses social welfare as an increasing function of efficiency (mean income) 

and a decreasing function of inequality (see Ebert, 1987; Amiel and Cowell, 2003 and 

Chakravarty, 2009, 2009a).  Likewise, we have   

                                                 
2
  Buourguignon (1979) developed a characterization of MLI  using ( , )i in n n   . 
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 Definition 2: A polarization index P is called abbreviated or reduced-form if for 

all    kxxxx ,...,, 21 , k ,  P x  can be expressed as       xWIxBIfxP , , where 

SDI   is arbitrary and the real valued function f  defined on 2
R  is continuous. 

We refer to the function f  considered above as a characteristic function. Clearly, the 

polarization index defined above will be a relative or an absolute index according as we 

choose MLI  or VI  as the inequality index. 

 Since the characteristics „identification‟ and „alienation‟ are regarded as being 

intrinsic to the concept of polarization, in order to take them into account correctly we 

assume that the function f is monotonic, that is, it is increasing in BI  and decreasing in 

.WI An abbreviated polarization index with a monotonic characteristic function will be 

called feasible.  

In order to develop a polarization ordering of the income distributions, consider 

the distributions    kk yyyyxxxx ,...,,,,...,, 2121  


k

i

niD
1

, 

where 2k , 2in , ki 1 , are arbitrary. Then we say that x  is more polarized than y , 

what we write yx P , if    yPxP   for all feasible polarization indices 1

1

: RDP
k

i

ni 


. 

Our definition of P  is general in the sense that we do not assume equality of the total 

income of the distributions.  

As we have noted in the previous section, given  kyyyy ,...,, 21 


k

i

niD
1

, we 

can generate  kxxxx ,...,, 21 


k

i

niD
1

, which is more polarized than y , by one of the 

following three polarization increasing transformations: (i) decreasing WI (keeping 

BI unchanged), (ii) increasing BI (keeping WI unchanged), and (iii) decreasing WI  and  

increasing BI .We can write these three conditions more compactly as    yBIxBI   and 

   yWIxWI   with strict inequality in at least one case. The following theorem 

demonstrates equivalence of this with yx P . 
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Theorem 1: Let    kk yyyyxxxx ,...,,,,...,, 2121  


k

i

niD
1

, where 2k , 2in , 

ki 1 , are arbitrary. Then the following conditions are equivalent: 

(i) yx P . 

(ii)    yBIxBI   and    yWIxWI   for any inequality index I  in SD , with strict 

inequality in at least one case. 

What Theorem 1 says is the following: if condition (ii) holds then we can unambiguously 

say that distribution x is regarded as more polarized than distribution y by all reduced-

form polarization indices that are increasing in BI and decreasing in .WI Note that we do 

not require equality of the mean incomes of the distributions for this result to hold.  

Proof of Theorem 1: Suppose yx P  holds. Consider the polarization 

index      xWIxBIxP   , where 0 is arbitrary. By definition  xP  is a feasible 

index. Now,    yPxP    implies that     yBIxBI     yWIxWI  . Since 0 is 

arbitrary, letting 0 , we get    yBIxBI  . 

 Next, consider the feasible index      xWIxBIxP   , where 0 is arbitrary. 

Then    xP  yP  implies that    yWIxWI      yBIxBI   . Again because of 

arbitrariness of 0 , we let 0  and find that    yWIxWI  . 

 Now, at least one of the inequalities    yBIxBI  and    yWIxWI   has to be 

strict. This is because if    yBIxBI   and    yWIxWI  , then       xWIxBIfxP , = 

    yWIyBIf , , that is,    yPxP  , which contradicts the assumption yx P . 

 The proof of the converse follows from the defining condition of the feasible 

polarization index, that is, increasingness in the first argument and decreasingness in the 

second argument.  

The polarization ordering defined in the theorem is a quasi-ordering-it is transitive 

but not complete. To see this, consider the bi-partitioned distributions     6,2,5,3,1x  

and     4,2,5,3,1y . Let us choose VI as the index of inequality and denote its between 

and within-group components by VBI and VWI respectively. Then 

      .0,256  yBIxBI VV  Also    516xWIV ,  yWIV =2. Thus, we have 
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   yBIxBI VV   and    yWIxWI VV  . This shows that the distributions x and y are not 

comparable with respect to P  and hence P  is not a complete ordering. Next, suppose 

that for three distributions yx,  and z, partitioned with respect to the same characteristic 

into equal number of subgroups, we have yx P  and zy P . Then it is easy to check 

that zx P  holds, which demonstrates transitivity of P . 

Now, to see that inequality ordering of income distributions is different from 

polarization ordering, consider the bi-partitioned distributions     dbcay ,,,  

and     dbcax ,,,   , where dcba  and   20 bc   . Then it is easy to 

see that    xBIyBI VV   but    xWIyWI VV  . Hence for all feasible polarization 

indices ,P we have    xPyP  . But by the Pigou-Dalton transfers principle,   

   .xIyI VV   Next, let us consider the income distribution  

 1 2, ,..., kx x x x 


k

i

niD
1

and generate the distribution  1 2, ,..., ky y y y from x  by the 

following transformation: ii xy   for all ji  and jy  is obtained from jx  by a 

progressive transfer of income between two persons in subgroup .j  By construction, 

   yBIxBI   and    ,xWIyWI   where .SDI  This in turn implies that for any 

feasible polarization index P,    .xPyP   But the inequality ordering here 

is    .yIxI  Thus, in these two cases  polarization and inequality rank the distributions 

in completely opposite ways. The intuitive reasoning behind this is that while each of the 

two components BI  and WI is related to inequality in an increasing manner, for 

polarization the former has an increasing relationship but for the latter the relationship is 

a decreasing one.    

Now, to relate P  with the bi-polarization ordering, which relies on the increased 

spread and increased bipolarity axioms, suppose that the distributions are partitioned into 

two subgroups with incomes below and above the median. The increased spread axiom 

says that polarization should go up under increments (reductions) in incomes above 

(below) the median. The increased bipolarity axiom, which requires bi-polarization to 

increase under a progressive transfer of income on the either side of the median, is a 

bunching or clustering principle. It is shown that an unambiguous ranking of two income 
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distributions by all relative, symmetric, population replication invariant bi-polarization 

indices that satisfy the increased spread and increased bipolarity axioms can be achieved 

through comparison of their relative bipolarization curves. A relative bi-polarization 

curve shows the deviations of the total incomes of different population proportions from 

the corresponding totals that they would enjoy under the hypothetical distribution where 

everybody has the median income. (See Foster and Wolfson, 1992, Wolfson, 1997, 1999, 

Chakravarty et al., 2007 and Chakravarty, 2009.) Note that here alienation refers to 

increase in the distance between the groups below and above the median and hence is 

similar in spirit to the increased spread axiom. Likewise, the increased bipolarity axiom 

possesses the same flavor as the identification criterion. Thus, the two notions of 

polarization ordering are essentially the same when the two population subgroups are 

formed using the median
3
. 

 

4. The Characterization Theorems 

A characterization result requires specification of a set of axioms which seem to 

be appropriate for a polarization index in a particular framework. These axioms become 

helpful in understanding the underlying polarization index in an intuitive way. 

 We begin by specifying the following axioms. 

 1A For all    kxxxx ,...,, 21 , k and for any non-negative 

 ,      xWIxBIf ,     xWIxBIf , =        gxWIxBI ,  for some continuous 

functions : 12
  RR  and 11:   RRg , where g is increasing,   00 g  and SDI  .  

 2A  For all    kxxxx ,...,, 21 , k  and for any non-negative  , 

          xWIxBIfxWIxBIf ,,         hxWIxBI ,  for some continuous 

functions : 12
  RR  and 11:   RRh , where h is increasing,   00 h  and SDI  .   

Axiom  1A  says that increment in polarization resulting from an increase in BI by the 

amount  can be decomposed into two continuous factors, one a non-negative function 

of   alone and the other a positive valued function of BI and WI. Increasingness of the 

                                                 
3
 In a recent contribution, Bossert and Schworm (2008) showed that the two-group approach can be 

interpreted in terms of treating polarization as an  aggregate of inverse welfare measures of the two groups 

under consideration.See also Chakravarty et al. (2007) for a  related discussion. 
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function g  reflects the view that polarization is increasing in BI. The assumption 

  0g 0 ensures that if there is no change in BI, there will be no change in the value of 

the polarization index (assuming that WI remains unaltered). Many economic indicators 

satisfy this type of axiom. For instance, for the two-person welfare function 

 21, xxW = 211
xx

e


 , the change    2121 ,, xxWxcxW  , where 0c , can be 

expressed as the product   cxx
ee 

121 , so that here we have     0, 21

21 
 xx

exx  

and  cecg  1)( . Observe that both   and g are continuous, g is increasing 

and 0)0( g . Axiom  2A  can be interpreted similarly. 

 Often we may need to assume that a polarization index is normalized, that is, for a 

perfectly equal distribution the value of the polarization index is zero. Formally, 

 3A  For arbitrary k , if  kxxxx ,...,, 21   is of the form ini cx 1 , where in  

for all ki 1  and 0c  is a scalar, then for any SDI  ,      0, xWIxBIf . 

Since for a perfectly equal distribution x ,     0 xWIxBI , we may restate axiom  3A  

as   00,0 f . 

  The following theorem can now be stated. 

Theorem 2: Assume that the characteristic function is continuously differentiable. 

Assume also that the right partial derivative of the characteristic function at zero with 

respect to each argument exists and is positive for the first argument and negative for the 

second argument. Then a feasible polarization index 1: RP  with such a 

characteristic function satisfies axioms  1A ,  2A  and  3A  if and only if it is of one of 

the following forms for some arbitrary positive constants 1c  and 2c : 

       xWIcxBIcxPi 211  ,  

        ,1
log

2
1

2 xWIca
a

c
xPii xBI  1a , 

           ,0,10,
log

1 22
1

3 







  caxWIcxWI

a

c
axPiii xBI  

         ,1,1
log

2
14  bb

b

c
xBIcxPiv xWI  
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           ,0,10,
log

1 1
2

15 







  cbxBI

b

c
bxBIcxPv xWI  

         1
log

1
log

21
6  xWIxBI b

b

c
a

a

c
xPvi , 1,1  ba , 

         1
log

1
log

21
7  xWIxBI b

b

c
a

a

c
xPvii +      11  xWIxBI ba , 10,1  ba ,

1log0 ca  , 

         1
log

1
log

21
8  xWIxBI b

b

c
a

a

c
xPviii +      11  xWIxBI ba , 1,10  ba , 

0log2  bc  , 

 ix        1
log

1
log

21
9  xWIxBI b

b

c
a

a

c
xP +      11  xWIxBI ba , ,1,0  ba

b

c

a

c

loglog

21  , 

where    kxxxx ,...,, 21 , k and SDI   are arbitrary. 

Here the only assumptions we make about f are its continuous differentiability and 

existence of partial derivatives at the end point 0. Many economic indicators satisfy these 

assumptions. It is known that if the partial derivatives exist at the end point 0, then they 

are right partial derivatives (Rudin, 1987, p.104). 

Proof of Theorem 2: Since the components of the two inequality indices considered are 

onto functions, we can restate axioms  1A  and  2A  as follows: 

     tsf ,       gtstsf ,,  ,                                                 (4) 

           htstsftsf ,,,  ,                                                  (5)   

where 0,,, ts are arbitrary.  Putting 0s  in (4) and assuming positivity of  we get   

           gttftf ,0,0,  .                                                      (6)                                              

By assumption   0,0 t  and     00  gg  . From (4) and (6) it then follows that  

   
   
   

 
 t

ts

tftf

tsftsf

,0

,

,0,

,,













 ,                                                       (7) 

for all 0, ts .                           
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  For a fixed 1
Rt , define 11: RRf t  by    tsfsf t , , where .0s  Then 

continuous differentiability of f  implies that tf  is also continuously differentiable. We 

rewrite (7) in terms of tf  as follows: 

                                           
   
   

 
 t

ts

ff

sfsf

tt

tt

,0

,

0 











.                                                  (8)     

Note that the right hand side of (8) is independent of  . So we can divide the 

denominator and numerator of the left hand side of (8) by  and take the limit of the 

resulting expressions as 0 . Then (8) becomes  

            
 
 

 
 t

ts

f

sf

t

t

,0

,

0 







,                                                                  (9) 

where tf   stands for the derivative of tf . By assumption the right hand side of (9) is 

positive. This along with positivity of  0tf  (by assumption) implies that   0 sf t  for 

all 0s . From this it follows that 
 

0
,






s

tsf
 for all .0, ts  

 Because of independence of the right hand side of (8) of , the derivative of the 

left hand side of (8) with respect to   is zero. This 

gives               tttttt fsfsfsfff  0 , from which it follows that 

    
   
   






0tt

tt

ff

sfsf



  
 


t

t

f

sf




.                                         (10) 

Equations (8), (9) and (10) jointly imply that 
 
 


t

t

f

sf




=

 
 0t

t

f

sf




, which 

gives    sf t       0ttt ffsf   . Define the function 

11: RRt  by  st    0tt fsf  . Then the previous equation becomes  

      ttt ss                                                    (11) 

for all 0, s . Since f is continuously differentiable, t  is continuous. The general 

nontrivial solution to the functional equation (11) is given by     st tas  for some 

continuous function 11:   RRa , where 0s  is arbitrary (Aczel, 1966, p.41). 
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Letting    twf t  0 , we can now write tf  as    sf t     twta
s

for some continuously 

differentiable maps .:, 11
  RRwa Integrating tf   we get 

 
    

 
   

     












,1,

,1,
log

1

1

tatwtsw

tatw
ta

twta

sf

s

t                                           (12) 

where 0s  is arbitrary and 11
1 : RRw   is continuously differentiable. We rewrite (12) 

more explicitly as 

 
    

 
   

     












.1,

,1,
log,

1

1

tatwtsw

tatw
ta

twta

tsf

s

                                         (13) 

where 0, ts  are arbitrary.  

We now show that  ta  is a constant for all .0t  First, note that there is nothing 

to prove if   1ta  for all .0t If   1ta  for some ,0t then consider the 

set   1:0  tatB , which is assumed to be non-empty. Now, (4) along with the first 

equation in (13) implies that for all Bt  and for all ,0s  

    
 

    
 ta

twta

ta

twta
ss

loglog




=     gts, .                                    (14) 

Putting 0s  in (14) we get
     

 




ta

twta

log

1


     gt,0 , which gives  

   1


ta     gt ,                                                               (15) 

where   t       twtat log,0  and Bt  is arbitrary. Since by assumption   1ta  for 

all Bt , the right hand side of (15) is non-zero for all .0 Substituting 1  and 2  in 

(15) we get    1ta    1gt  and    1
2

ta    2gt  respectively. Dividing the 

right (left) hand side of the second equation by the corresponding side of the first 

equation, we get        121 ggta  , which implies that for 

all ,Bt   ta     cgg  121 , a positive constant. But   1ta  for all 

nonnegative cBt , the complement of .B  Since  ta is a continuous map on its domain 

and B  is a non-empty set, cB  must be empty. Thus,   ,cta   a positive constant not 
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equal to one, for all .0t  Hence in either case  ta is a constant. In the sequel we will 

write a in place of  ta . 

Therefore, equation (13) now can be written as  

 
 

 

   












,1,

,10,
log,

1

1

atwtsw

atw
a

twa

tsf

s

                                              (16) 

where 0, ts  are arbitrary, 1, ww  are continuously differentiable and w  is positive 

valued. 

Proceeding in a similar manner and making use of axiom  2A we get  

 
 

 

   












,1,

,10,
log,

1

1

bsst

bs
b

sb

tsf

t






                                              (17) 

for some continuously differentiable maps ,:, 1
1 RR   being negative valued. We 

can also show that 
 

0
,






t

tsf
 for all .0, ts  

 Now, for comparing (16) and (17) we need to consider various cases. 

Case I:       twtswtsf 1,    sst 1  .                                                                 (18) 

By axiom  3A ,   01w  01 =0. Putting 0s in (18), we get   tw1  .0t Likewise, 

for 0t , we have   0sw  .1 s  Substituting these expressions for 1w and 1 in (18), we 

get     0ttsw    0swst  , from which it follows that      0wtws      0 st . 

Since this holds for all 0, ts , there exists a constant   such that     twtw  0  

and     ss   0 . Hence      twstsf 0,  0t . Differentiating this form of f  

partially with respect to s  and t , we get
 
s

tsf



 ,
=    00  tw   and 

 
t

tsf



 ,
=    00  s . Now, if 0 , then negativity of 

 
t

tsf



 ,
cannot hold for 

all 0s . On the other hand, if 0 , then positivity of 
 
s

tsf



 ,
cannot hold for all 

sufficiently large positive t . Hence the only possibility is that 0 . 
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Consequently,       tcsctswtsf 2100,   , where   001  wc and   002  c  

(by positivity and negativity of partial derivatives of f with respect to s  and t  

respectively, as shown earlier). 

Case II:  
 

 tw
a

twa
tsf

s

1
log

,  =     10,1  asst  .                                             (19) 

By axiom  3A ,  

 
 0

log

0
1w

a

w
 =  01 =0.                                                              (20) 

Putting 0s in (19) and using the information  01 =0 from (20) in the resulting 

expression we get  
 

   tw
a

tw
tf 1

log
,0   0t . Substituting the expression for 

 tw1 obtained from this equation into (19) we have  

 
   

a

twa
tsf

s

log

1
,


 +  0t .                                          (21) 

Similarly, putting 0t  in (19) we find
 

 0
log

0
1w

a

wa s

 =  s1 , which, in view of 

    aww log001  (obtained from (20)) gives  
   

a

wa
s

s

log

01
1


 . Substituting this 

value of  s1  into (19) we get 

 
   

 st
a

wa
tsf

s





log

01
, .                                                       (22)                                                       

Equating the functional forms of f given by (21) and (22) we then 

have
      

    0
log

01
 


st

a

wtwa s

, from which it follows that for all 

,0, ts
   

 




















aa

s
s log1

0     
t

wtw 0
=constant=  (say). This gives     0 s  

 
a

a s

log

1
  for all ,0, ts and     twtw  0 . Substitution of the functional form of  s  

into (22) yields 
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 
    

 0
log

01
, 


t

a

twa
tsf

s




  .                                            (23)    

Now, 
 
s

tsf



 ,
=    00  twa s  for all 0, ts . For 0s this implies that  

   00  tw                                                                   (24) 

holds for all 0t . Hence 0 , otherwise for a sufficiently high value of t ,   tw 0  

will be negative.  

Also 

 






t

tsf ,  
  00

log

1





a

a s

                                                     (25) 

 for all .0, ts   

Sub-case I: .1a  Then 
 

a

a s

log

1
 is increasing and unbounded in .0s  So 

if 0 , then choosing 0s sufficiently large, we can make the left hand side of the 

inequality in (25) positive, which is a contradiction. So the only possibility is that 0 . 

Plugging 0  into (23) we get  
   

 0
log

10
, t

a

aw
tsf

s




 , which, in view of our 

earlier notation, can be rewritten as  
 

tc
a

ac
tsf

s

2
1

log

1
, 


  with 

  001  wc and   002  c . 

Sub-case II: .10  a In this case also (24) holds so that 0 . We rewrite the 

inequality in (25) as 
 
 sa

a




1

log0
  for all 0s , which implies that   alog0  . Using 

our earlier notation, we have     tct
a

c
atsf s

2
1

log
1, 








  , where, 

  001  wc ,   002  c and alog  . Also   20log0 ca   .  

Case III:       twtswtsf 1,
 

 s
b

sb t

1
log




 , .10  b  

Solution in this case is similar to that of Case II and (by symmetry) is given by 
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 

 

 





























,10,
log

1

,1,
log

1

,

2
1

21

bt
b

c
bsc

b
b

b
csc

tsf
t

t



 

where 0, 21 cc  are same as before and  01   c  is a constant. 

Case IV:  
 

   tw
a

twa
tsf

s

1
log

,
 

 s
b

sb t

1
log




 , ,1,0  ba                                     (26)                                      

for all .0, ts                        

 Applying axiom  3A  to (26) we get  

 
 0

log

0
1w

a

w
 =0 and

 
  00

log

0
1  



b
.                                                              (27) 

Putting 0s in (26) we get
 

   tw
a

tw
1

log

 
 0

log

0
1




b

b t

, which in view of the second 

equation in (27) can be rewritten as
 

   tw
a

tw
1

log

   
b

b t

log

01 
.  Substituting the value of 

 tw1  obtained from this equation into the first expression for  tsf , in (26) we have 

 
   





a

twa
tsf

s

log

1
,

   
b

b t

log

01 
.                                             (28)           

 Next, put 0t in (26) to get
 

   0
log

0
1w

a

wa s  
 s

b

s
1

log



 . We solve these two 

equations to get   s1
 

  0
log

0
1w

a

wa s  
b

s

log


, which in view of  

 
a

w
w

log

0
01  (from 

the first equation in (27)) gives   s1
   




a

wa s

log

01  
b

s

log


. Substitution of this form of  

 s1  into the second expression for  tsf , in (26) yields 

 
   





a

wa
tsf

s

log

01
,

   
b

sb t

log

1 
.                                            (29) 

Equating (28) and (29) and simplifying we get 

                         
      

a

wtwa s

log

01 
 =
      

b

sbt

log

01  
,                                          (30)       
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for all .0, ts  As in the earlier cases    
 

a

a
s

s

log

1
0


   and   tw  0w  

 
b

b t

log

1
  

for some constant . Substituting this form of  s into (29) we get 

 
   





a

wa
tsf

s

log

01
,

 
 



























 




a

a

b

b st

log

1
0

log

1
 .                    (31) 

 Now, 
 

0
,






s

tsf
 implies that  

 
 

  00
log

1



w

b

bt
                                                        (32) 

for all .0t  On the other hand, 
 

0
,






t

tsf
 implies that 

 
  00

log

1







a

a s

,                                                       (33)  

for all .0s   

Again various sub-cases come under consideration. 

Sub-case I: .1,1  ba Applying the same logic as in the case II, we get 0 . 

So the general solution in this case is      1
log

1
log

, 21  ts b
b

c
a

a

c
tsf , where 

    00,0 21  cwc are same as in Case I. 

Sub-case II: .10,1  ba Considering (33) and noting that 
 

a

a s

log

1
 is positive 

and unbounded above we conclude that 0 . From (32) we get 
 
 tb

bw




1

log0
  for all 

,0t  which implies that   bw log0 . Thus, the general solution given by (31) 

becomes      1
log

1
log

, 21  ts b
b

c
a

a

c
tsf    11  ts ba , 

where   001  wc ,  02 c  0  and
ba loglog


  , with 1log0 ca   . 
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Sub-case III: .1,10  ba Here using (32) we conclude that 0 . Moreover, 

from (33),
 
 sa

a




1

log0
  for all ,0s which implies that   alog0  . Thus, 

  .log00 a  Consequently,      1
log

1
log

, 21  ts b
b

c
a

a

c
tsf    ,11  ts ba  

where  01 wc   and  02 c  are positive and 0log2  bc  with
ba loglog


  . 

Sub-case IV: .10,10  ba  Applying the same logic as before we get 

     1
log

1
log

, 21  ts b
b

c
a

a

c
tsf    ,11  ts ba  where     abw log0log0   , 

which implies that
b

c

a

c

loglog

21  , with
ba loglog


  . This completes the necessity 

part of the proof. The sufficiency is easy to check.  

The constants 1c  and 2c  reflect importance of alienation and identification in the 

aggregation. They can be interpreted as scale parameters in the sense that, given other 

things, an increase in 1c increases polarization. Likewise, ceteris paribus, if 2c  decreases 

then polarization increases. The other parameters can be interpreted similarly. For 

121  cc , 1P becomes the Rodriguez-Salas index of polarization, if we subdivide the 

population into two non-overlapping groups using the median and use the Donaldson-

Weymark S-Gini index  ˆI x    ˆˆ ˆ

1

ˆ1 1
n

i

i

i i x n
 



   as the index of inequality , 

where ˆ 1   is an inequality sensitivity parameter and   nxxxx ˆ,...,ˆ,ˆˆ 21 is that 

permutation of x such that nxxx ˆ....ˆˆ 21   . For ˆ 2,   ˆI   becomes the Gini index. In 

the Rodriguez-Salas case for 1P  to increase under a progressive transfer on the same side 

of the median, it is necessary that ˆ2 3  . 

 However, Rodriguez-Salas index regards all income distributions that 

have equal between-group and within-group components of inequality as equally 

polarized. Thus, a distribution x  with     3. xWIxBI  becomes equally polarized as 

the equal distribution y  with     .0 yWIyBI  Therefore, in situations of the type 

where WIBI  , 1P  can avoid this problem if we make different choices of 1c  and 2c . The 
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same remark applies to the choices of 1a  and 2a in the normalized ratio form index 

 
 

 1 2

1
,

2

1
BI x

a a WI x

a
P x

a

 
   
 

 , which is obtained as a particular case of 7P  as follows. If in 7P  

we set 
b

c

a

c

loglog

21 1 , then on simplification we get       17  xWIxBI baxP , 

which we can rewrite as  
 

  












 1

2

1
7 xWI

xBI

a

a
xP , where 11  aa  and 

.11 2  ab Therefore for suitable choices of the parameters we get the normalized ratio 

form index 

 

  












1

2

1

xWI

xBI

a

a
as a special case of 7P . 

 In order to demonstrate independence of the three axioms, we need to construct 

indicators of polarization that will fulfill any two of the three axioms but not the 

remaining one. The feasible characteristic function    2

1 ,f s t s t   satisfies axioms 

 1A and  3A  but not axiom  2A . Likewise, the feasible characteristic 

function    2

2 ,f s t s t   fulfills axioms  2A and  3A  but not axiom  1A . Finally, the 

feasible characteristic function    3 , 1f s t s t    is a violator of axiom  3A  but not of 

axioms  1A and  2A . We can therefore state the following: 

 Remark 1:  Axioms  1A ,  2A  and  3A  are independent. 

For the index given by (i) the ratio 12 cc is the marginal rate of substitution of 

alienation for identification along an iso-polarization contour. This ratio shows how WI  

can be traded off for BI  along the contour. In fact, we can take this trade-off into account 

in a more general way. If BI is increased by , then for keeping the level of polarization 

unaltered it becomes necessary to increase WI  by some amount  1g , say. By a similar 

argument, if WI is increased by   then a corresponding positive change in BI by  2g , 

say, will be necessary to keep level of polarization constant (see also Chakravarty et al., 

2009). Formally, 
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 4A  For all    kxxxx ,...,, 21 , k and for any non-negative  , 

    xWIxBIf , =        1, gxWIxBIf   =         xWIgxBIf ,2  for some 

continuous functions 11
21 :,   RRgg . 

 Using axiom  4A  we can develop a joint characterization of the normalized ratio 

form index 
1 2,a aP  and the difference form index 1P . This is shown below.  

Theorem 3: Assume that the characteristic function is continuously differentiable. 

Assume also that the right partial derivative of the characteristic function at zero with 

respect to the first argument exists and is positive. Then a feasible polarization index 

1: RP  with such a characteristic function satisfies axioms  1A ,  3A  and  4A   if 

and only if it is of one of the following forms: 

        xWIcxBIcxPi cc 21, 21
  for some arbitrary constants 0, 21 cc , 

   
 

  












 1

2

1
, 21 xWI

xBI

aa
a

a
cxPii   for some arbitrary constants 0c , 1, 21 aa , 

where    kxxxx ,...,, 21 , k and SDI   are arbitrary.  

Proof:  From the proof of Theorem 2 we know that axioms  1A  and  3A  force f to 

take one of the two forms given by (16). Now, suppose f  is given by the second form in 

(16). Applying axiom  4A  to this case we have  

      twtsw 1 =         twtwgs 12 ,                            (34) 

for all 0,, ts . Putting 0s  in (34) we get     twtw 11  =     twg2 , which 

when subtracted from (34), on simplification, gives     twtws  = 0 , from which we 

get    twtw   for all .0, t Thus,  tw = a constant= 1c , say. Substituting this value 

of  tw in the equation     twtw 11  =     twg2 , we get     twtw 11  =  3g  

for all 0, t , where     213 gcg  . Note that by axiom  3A ,   001 w . 

So,     13 wg  , which implies that       111 wtwtw   for all .0, t The only 

continuous solution to this functional equation is   tqtw 1 for some 1Rq  (see Aczel, 

1966, p.34). Hence in this case f is given by   tqsctsf  1, . By increasingness of f  
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in s , .01 c  Note also that     00,01,0  ffq (by axiom  3A ). So we rewrite the 

general solution as   tcsctsf 21,  , where 0, 21 cc . 

 Next, we take up the first form in (16). By axiom  4A , 

   
 

 
   

 








tw
a

twa
tw

a

twa
gss

11
loglog

2

                             (35) 

for all 0,, ts . Putting 0s in both sides of (35) we have 

   
 

 
   

 





 tw
a

twa
tw

a

tw
g

11
loglog

2

.                                   (36) 

Subtracting the left (right) hand side of (36) from the corresponding side of (35) and then 

rearranging the resulting expression we get 

         0
log

1
2 


twtwa

a

a g
s


.                                               (37) 

  But 
 

0
log

1




a

a s

 for all .0s  This shows that  

       02  twtwa
g                                                              (38)         

for all .0, t  

Now, recall from (16) that   0tw  for all .0t Therefore, from (38) we get  

 
 

 
2g

a
tw

tw 



                                                                        (39) 

for all .0, t Putting 0t  in (39) we have  

 
 

 
2

0

g
a

w

w 
 .                                            `      (40) 

From (39) and (40) it follows that  

     
 
 




tw

tw   
 0w

w 
                                                                     (41)               

for all .0, t As we have noted in the proof of Theorem 2, the general solution to this 

equation is given by   tctw   for some constants .0,  c  A comparison of (36) and 

(38) gives     twtw 11  for all ,0, t so that   tw1  constant= , say. Hence the 
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complete solution in this case is   .
log

, 






a

ca
tsf

ts

 By axiom  3A , 

.
log a

c
 Consequently,    .1

log
, 


 tsa

a

c
tsf  Increasingness and decreasingness of 

f in its first and second arguments respectively require that 1a  and .1 So the 

solution can be written as  













 1,

2

1

t

s

a

a
ctsf , where 0c and 1, 21 aa  are constants. 

This completes the necessity part of the proof. The sufficiency is easy to check.  

 Since the constants 1c  and 2c  in the above theorem are arbitrary, we can choose 

them to be equal to the corresponding constants in Theorem 2 and therefore use the same 

notation. The same remark applies for the constants 1a  and 2a . 

To check independence of axioms  1A ,  3A  and  4A , consider the 

characteristic functions 1 3,f f (as defined earlier) and    4 , 2 1s tf s t s t    . Then  1f  

satisfies axioms  1A  and  3A   but not axiom  4A , 3f  is a violator of axiom  3A  but 

not of the other two, while 4f  fulfills all the axioms except  1A . We therefore have 

Remark 2: Axioms  1A ,  3A  and  4A  are independent. 

We can also prove the following theorem. 

Theorem 4: Assume that the characteristic function is continuously differentiable. 

Assume also that the right partial derivative of the characteristic function at zero with 

respect to the second argument exists and is negative. Then a feasible polarization index 

1: RP  with such a characteristic function satisfies axioms  2A ,  3A  and  4A   if 

and only if it is of one of the following forms: 

        xWIcxBIcxPi cc 21, 21
  for some constants 0, 21 cc , 

   
 

  












 1

2

1
, 21 xWI

xBI

aa
a

a
cxPii , for some constants 0c , 1, 21 aa , 

where    kxxxx ,...,, 21 , k and SDI   are arbitrary. 
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 The characteristic function 
2f  meets axioms  2A  and  3A  but not  4A . On the 

other hand 3f  violates axiom  3A  but not the remaining two. Finally, 4f  fulfills all the 

axioms except  2A . This enables us to state the following: 

Remark 3: Axioms  2A ,  3A  and  4A  are independent.  

 The transformed ratio form index  
1 2,1 a aP  has a structure similar to the Zhang-

Kanbur index      ZKP x BI x WI x . However, one minor problem with ZKP is its 

discontinuity if   0WI x  .The transformed index and hence
1 2,a aP  do not suffer from this 

shortcoming. However, the alienation and identification components of polarization are 

incorporated correctly in the formulation of ZKP . 

 We now consider the dual problem of generating an inequality index from a 

specific polarization index. For this purpose we assume at the outset that for fixed 

k and   k
knnn ,....,, 21 , the polarization index 1

1

: RDP
k

i

ni 


satisfies the 

following axiom: 

 5A : For all   


k

i

nk iDxxxx
1

21 ,...,, ,        i
i xgnvxPyP , , where 

 kyyyy ,...,, 21  with   inii xy 1  and jj xy   for ij  ; iv  is a positive real number, 

assumed to depend on the vector  ,n  and g  is a non-negative valued function defined 

on 
k

i

niD
1

. 

 The transformation that takes us from x  to y  makes the distribution iy  in 

subgroup i  perfectly equal and leaves distributions in all other subgroups unchanged. 

Given positivity of iv , axiom  5A  states that the resulting change in polarization, as 

indicated by    xPyP  , is non-negative (since g is non-negative). This is quite sensible. 

Assuming that ix  is unequal, a movement towards perfect equality makes the subgroup 

more homogeneous and because of closer identification of the individuals in the subgroup, 

polarization should not reduce. Since the transformation does not affect the distributions 

in all subgroups other than subgroup i , we are assuming that the change does not depend 
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on unaffected subgroups‟ distributions. However, it is assumed to depend on ix , the 

original distribution in subgroup i , and the vectors of population sizes of the subgroups 

and their mean incomes.  

Theorem 5: If the continuous polarization index 1

1

: RDP
k

i

ni 


satisfies axiom  5A , 

then there exists a corresponding subgroup decomposable continuous inequality 

index 1

11

: RDDI
k

i

n
k

i

n ii 



















  , which takes on the value zero for the perfectly equal 

distribution on 
k

i

niD
1

.  

Proof: Given   


k

i

nk iDxxxx
1

21 ,...,,  and  i
i x  , define a sequence   iy  as 

follows: 

   ,0 xy   

   kn
xxy ,...,11 2

1
1 , 

   12 jj yy   for 2j ,   212 2
2 n

y  , 

   23 jj yy   for 3j ,   313 3
3 n

y  , and so on. Finally, 

   1 kyky jj for kj   and   kn
k

k ky 1 . 

Thus, for any ,1, kii  we have    kin

i

nn
xxiy i ,....,,1,.....,1,1 1

21
21   . Note that for all 

i  and j ,     jj xiy   ,     xiy    and    .1,.......,1,1 21

21
kn

k
nn

ky   

It is given that for any ,1, kii           .,1 i
i xgnviyPiyP   Summing over all i , 

we get      0yPkyP  =    


k

i

i
i xgnv

1

, . That is,       

    xPP kn

k

nn
1,....,1,1 21

21   =    .,
1




k

i

i
i xgnv                     (42)                                                       

Now define 1

11

: RDDI
k

i

n
k

i

n ii 



















   by the following relation: 
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      
     

 






























,

,,..,,
1

1,...,1,1
11

1

1

21

2

21

21

21


k

i

n

k

i

nkn
k

nn

i

ik

Dxifxg

DxxxxforxP
c

P
cc

xI



       

where 0, 21 cc  are arbitrary constants. Clearly, there is no ambiguity in the definition 

of .I  By continuity of IP,  is continuous. From the above definition it follows that 

   .1,.......,1,11,.......,1,1 2121

21121
kk n

k
nnn

k
nn

IcP    and    ii xIxg  , .1 ki   

Substituting this into (42) we get 

  xP  kn
k

nn
Ic 1,.......,1,1 21

211     ,,
1

2 


k

i

i
i xgnc                                                (43) 

where     2,, cnvn ii   . This in turn gives: 

  xI       xPP
c

P
c

kk n
k

nnn
k

nn
 1,.......,1,1

1
1,.......,1,1

1
2121

21

2

21

1

 = 

 kn
k

nn
I 1,.......,1,1 21

21  +    


k

i

i
i xIn

1

, . Thus, I  is subgroup decomposable. To 

show that I  takes on the value zero for the perfectly equal distribution on 
k

i

niD
1

; observe 

that         ,nvxPyPxI i
i  , which implies that   01 in

cI  for all kii 1,  and for 

all .0c    

Remark 4: From (43) we observe that P  can be expressed as  WIcBIc 21   for 

some subgroup decomposable inequality index I  that becomes zero for the perfectly 

equal distribution on 
k

i

niD
1

, where 0, 21 cc  are arbitrary constants. 

Remark 5:  Since   



















k

i

n
k

i

n ii DD
11

 is a closed subset of D  and I is continuous, I can 

be continuously extended to D (Rudin, 1987, p.99). (Here we assume that D can be 

identified with
1,1 , 1

j j

j

ll
m m

jm j l j

l

D D
   



  
  

   
 .) 
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4. Conclusion 

Polarization is concerned with clustering of incomes in subgroups of a population, 

where the partitioning of the population into subgroups is done in an unambiguous way. 

A reduced-form polarization index is one which abbreviates an income distribution in 

terms of   „alienation‟ and identification‟ components of polarization. The between-group 

term of a subgroup decomposable inequality index is taken as an indicator of alienation, 

whereas within –group inequality is regarded as an inverse indicator of identification. A 

criterion for ranking different income distributions by all reduced-form indices is 

developed under certain mild conditions. Some polarization indices have been 

characterized using alternative sets of independent axioms. Finally, the dual problem of 

generating an index of inequality from a given form of polarization index is investigated.  
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