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Abstract 

The problem in estimating a social accounting matrix (SAM) for a recent year is to find an 

efficient and cost-effective way to incorporate and reconcile information from a variety of 

sources, including data from prior years. Based on information theory, the paper presents a 

flexible “cross entropy” (CE) approach to estimating a consistent SAM starting from inconsistent 

data estimated with error, a common experience in many countries. The method represents an 

efficient information processing rule—using only and all information available. It allows 

incorporating errors in variables, inequality constraints, and prior knowledge about any part of 

the SAM. An example is presented applying the CE approach to data from Mozambique, using a 

Monte Carlo approach to compare the CE approach to the standard RAS method and to evaluate 

the gains in precision from utilizing additional information.  

 

KEYWORDS: Entropy, cross entropy, social accounting matrices, SAM, input- output, RAS, 

Monte Carlo simulations  
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1. Introduction 

There is a continuing need to use recent and consistent multisectoral economic data to 

support policy analysis and the development of economywide models. A Social Accounting 

Matrix (SAM) provides the underlying data framework for this type of model and analysis. A 

SAM includes both input-output and national income and product accounts in a consistent 

framework. Estimating a SAM for a recent year is a difficult and challenging problem. Input-

output data are usually prepared only every five years or so, while national income and product 

data are produced annually, but with a lag. To produce a more disaggregated SAM for detailed 

policy analysis, these data are often supplemented by other information from a variety of 

sources; e.g., censuses of manufacturing, labor surveys, agricultural data, government accounts, 

international trade accounts, and household surveys. The problem in estimating a disaggregated 

SAM for a recent year is to find an efficient (and cost-effective) way to incorporate and reconcile 

information from a variety of sources, including data from prior years.  

 A standard approach is to start with a consistent SAM for a particular prior period and 

“update” it for a later period, given new information on row and column totals, but no 

information on the flows within the SAM. The traditional RAS approach, discussed below, 

addresses this case. However, in practice, one often starts from an inconsistent SAM, with 

incomplete knowledge about both row and column sums and flows within the SAM. 

Inconsistencies can arise from measurement errors, incompatible data sources, or lack of data. 

What is needed is an approach to estimating a consistent set of accounts that not only uses the 

existing information efficiently, but also is flexible enough to incorporate information about 

various parts of the SAM.  

 In this paper, we propose a flexible “cross entropy” (CE) approach to estimating a 

consistent SAM starting from inconsistent data estimated with error. The method is very flexible, 

incorporating errors in variables, inequality constraints, and prior knowledge about any part of 

the SAM (not just row and column sums). The next section presents the structure of a SAM and 

a mathematical description of the estimation problem. The following section describes the RAS 
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procedure, followed by a discussion of the cross entropy approach. Next we present an 

application to Mozambique demonstrating gains from using increasing amounts of information.2  

 

2. Structure of a Social Accounting Matrix (SAM) 

 

 A SAM is a square matrix whose corresponding columns and rows present the 

expenditure and receipt accounts of economic actors. Each cell represents a payment from a 

column account to a row account. Define T as the matrix of SAM transactions, where ,i jt  is a 

payment from column account j to row account i. Following the conventions of double-entry 

bookkeeping, total receipts (income) and expenditure of each actor must balance. That is, for a 

SAM, every row sum must equal the corresponding column sum:  

 , ,i i j j i
j j

y t t= =∑ ∑  (1) 

Where yi is total receipts and expenditures of account i. 

 A SAM coefficient matrix, A, is constructed from T  by dividing the cells in each column 

of T by the column sums: 

 ,
,

i j
i j

j

t
a

y
=  (2) 

By definition, all the column sums of A must equal one, so the matrix is singular. Since column 

sums must equal row sums, it also follows that (in matrix notation): 

 =y Ay  (3) 

 A typical national SAM includes accounts for production (activities), commodities, 

factors of production, and various actors (“institutions”), which receive income and demand 

goods. The structure of a simple SAM is given in Table 1. Activities pay for intermediate inputs, 

factors of production, and indirect taxes, and receive payments for sales of their output. The 

commodity account buys goods from activities (producers) and the rest of the world (imports), 

                                                 
2An appendix with the computer code in the GAMS language used in the procedure is available 
upon request. The method has been used to estimate SAM’s for a number of African countries 
(Botswana, Malawi, Mozambique, Tanzania, Zambia, and Zimbabwe) and a few other countries 
(e.g., Brazil, Mexico, North Korea, and the United States). The Mozambique application is 
described below. 
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and pays tariffs on imported goods, while it sells commodities to activities (intermediate inputs) 

and final demanders (households, government, investment, and the rest of the world). In this 

SAM, gross domestic product (GDP) at factor cost  equals payments by activities to factors of 

production, or value added. GDP at market prices equals GDP at factor cost plus indirect taxes 

and tariffs, which also equals total final demand (consumption, investment, and government) 

plus exports minus imports.  

 

<< Table 1 >> 

 

 The matrix of column coefficients, A, from such a SAM provides raw material for much 

economic analysis and modeling. For example, the intermediate-input coefficients (computed 

from the “use” matrix) are Leontief input-output coefficients. The coefficients for primary 

factors are “value added” coefficients and give the distribution of factor income. Column 

coefficients for the commodity accounts represent domestic and import shares, while those for 

the various final demanders provide expenditure shares. There is a long tradition of work which 

starts from the assumption that these various coefficients are fixed, and then develops various 

linear multiplier models. The data also provide the starting point for estimating parameters of 

nonlinear, neoclassical production functions, factor-demand functions, and household 

expenditure functions.  

 In principle, it is possible to have negative transactions, and hence coefficients, in a 

SAM. Such negative entries, however, can cause problems in some of the estimation techniques 

described below and also may cause problems of interpretation in the coefficients. A simple 

approach to dealing with this issue is to treat a negative expenditure as a positive receipt or a 

negative receipt as a positive expenditure. That is, if ,i jt  is negative, we simply set the entry to 

zero and add the value to ,j it . This “flipping” procedure will change row and column sums, but 

they will still be equal.  

 

3. The RAS Approach to SAM Updating 

 The classic problem in SAM estimation is the problem of “updating” an input-output 

matrix when we have new information on the row and column sums, but do not have new 
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information on the input-output flows. The generalization to a full SAM, rather than just the 

input-output table, is the following problem. Find a new SAM coefficient matrix, *A , that is in 

some sense “close” to an existing coefficient matrix, A , but yields a SAM transactions matrix, 

*T , with the new row and column sums. That is: 

 * * *
, ,i j i j jt a y=  (4) 

 

 * * *
, ,i j j i i

j j

t t y= =∑ ∑  (5) 

Where y* are known new row and column sums.  

 A classic approach to solving this problem is to generate a new matrix *A  from the old 

matrix A  by means of “biproportional” row and column operations: 

 *
, ,i j i i j ja r a s=  (6) 

or, in matrix terms: 

 * ˆˆ=A RAS  (7) 

where the hat indicates a diagonal matrix of elements ir  and js .  Bacharach (1970) shows that 

this “RAS” method works in that a unique set of positive multipliers (normalized) exists that 

satisfies the biproportionality condition and that the elements of R̂  and Ŝ  can be found by a 

simple iterative procedure.3  

 

4. A Cross Entropy Approach to SAM estimation 

 The estimation problem is that, for an n-by-n SAM, we seek to identify n2 unknown non-

negative parameters (the cells of T or A), but have only 2n–1 independent row and column 

adding-up restrictions. The RAS procedure imposes the biproportionality condition, so the 

                                                 
3For the method to work, the matrix must be “connected,” which is a generalization of the notion 
of “indecomposable” (Bacharach, 1970, p. 47). For example, this method fails when a column or 
row of zeros exists because it cannot be proportionately adjusted to sum to a non-zero number. 
Note also that the matrix need not be square. The method can be applied to any matrix with 
known row and column sums: for example, an input-output matrix that includes final demand 
columns (and is hence rectangular). In this case, the column coefficients for the final demand 
accounts represent expenditure shares and the new data are final demand aggregates.  
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problem reduces to finding 2n–1 ir  and js  coefficients (one being set by normalization), yielding 

a unique solution. The general problem is that of estimating a set of parameters with little 

information. If all we know are row and column sums, there is not enough information to 

identify the coefficients, let alone provide degrees of freedom for estimation. Updating, in this 

framework, becomes a special case of the more general estimation problem for which the 

information provided is the balanced SAM to be updated and new row and column totals. 

 In a recent book, Golan, Judge, and Miller (1996) suggest a variety of estimation 

techniques using “maximum entropy econometrics” to handle such “ill-conditioned” estimation 

problems. Golan, Judge, and Robinson (1994) apply this approach to estimating a new input-

output table given knowledge about row and column sums of the transactions matrix—the classic 

RAS problem discussed above. We extend this methodology to situations where there are 

different kinds of prior information than knowledge of row and column sums.  

4.1. Deterministic Approach: Information Theory  
 

 The estimation philosophy adopted in this paper is to use all, and only, the information 

available for the estimation problem at hand. The first step we take in this section is to define 

what is meant by “information”. We then describe the kinds of information that can be 

incorporated and how to do it. This section focuses on information concerning non-stochastic 

variables while the next section will introduce the use of information on stochastic variables. 

 The starting point for the cross entropy approach is information theory as developed by 

Shannon (1948). Theil (1967) brought this approach to economics. Consider a set of n events E1, 

E2, …, En with probabilities  q1, q2,…, qn   (prior probabilities). A message comes in which 

implies that the odds have changed, transforming the prior probabilities into prior probabilities 

p1, p2,…, pn. Suppose for a moment that the message confines itself to one event Ei.   Following 

Shannon, the “information” received with the message is equal to -ln pi. However, each Ei has its 

own prior probability qi, and the “additional” information from pi is given by: 

 [ ]ln ln lni
i i

i

p
p q

q
− = − −  (8) 

Taking the expectation of the separate information values, we find that the expected information 

value of a message (or of data in a more general context) is 
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 ( )
1

: ln
n

i
i

i i

p
I p q p

q=

− = −∑  (9) 

where I(p:q) is the Kullback-Leibler (1951) measure of the “cross entropy” (CE) distance 

between two probability distributions.4 Kapur and Kenavasan (1992, Chapter 4) describe various 

axiomatic approaches that uniquely define the entropy measure as an appropriate measure of 

information and that justify the use of the CE measure for inference. For estimation, the 

approach is to find a set of p’s  that minimize the cross entropy between the probabilities and the 

prior q’s, and that are consistent with the information in the data.5 

  Golan, Judge, and Robinson (1994) use a cross entropy formulation to estimate the 

coefficients in an input-output table. They set up the problem as finding a new set of A  

coefficients which minimizes the entropy distance between the prior A  and the new estimated 

coefficient matrix.6 

 ,
,

,

min ln i j
i j

i j i j

a
a

a

 
 
  
∑∑  (10) 

Subject to: 

 * *
,i j j i

j

a y y=∑  (11) 

 , ,1 and 0 1j i j i
j

a a= ≤ ≤∑  (12) 

The solution is obtained by setting up the Lagrangian for the above problem and solving it.7 The 

outcome combines the information from the data and the prior: 

                                                 
4Note that the cross-entropy “distance” is not a norm. It is neither symmetric nor satisfies the 
triangle inequality. 
 
5If the prior distribution is uniform, representing total ignorance, the method is equivalent to the 
“Maximum Entropy” estimation criterion (see Kapur and Kesavan, 1992; pp. 151-161). 

6The intuition underlying this minimization problem is that it aims to minimize the expected 
information value of additional data given what we know (sample and prior).   

7The problem has to be solved numerically because no closed form solution exists. 



 

 7

 
( )

( )
*

,

, *
,

,

exp

exp

i j i j

i j

i j i j
i j

a y
a

a y

λ

λ
=

∑
 (13) 

where iλ are the Lagrange multipliers associated with the information on row and column sums, 

and the denominator is a normalization factor. 

The expression is analogous to Bayes’ Theorem, whereby the posterior distribution 

,( )i ja is equal to the product of the prior distribution ,( )i ja and the likelihood function 

(probability of drawing the data given parameters we are estimating), dividing by a 

normalization factor to convert relative probabilities into absolute ones. The analogy to Bayesian 

estimation is that the approach can be seen as an efficient Information Processing Rule (IPR) 

whereby we use additional information to revise an initial set of estimates (Zellner, 1988, 1990). 

In this approach an “efficient” estimator satisfies what Zellner (1988) describes as the 

“Information Conservation Principle”: the estimation procedure should neither ignore any of the 

input information nor inject any false information. It can also be shown that the CE estimators 

are consistent and, given assumptions about the form of the underlying distribution, have 

maximum likelihood properties (Golan, Judge, and Miller, 1996).  

 

4.2. Types of Information  
 

Information for SAM estimation comes in many forms: 

 

1. Priors. A SAM from an earlier year provides information about the new coefficients. The 

approach is to estimate a new set of coefficients “close” to the prior, using new 

information to “update” the prior.  

2. Moment constraints. The most common kind of information to have is data on some or all 

of the row and column sums of the new SAM. Treating the column coefficients as 

analogous to probabilities, assuming known column sums in equation (11) is equivalent 

to knowing averages of the column sums, weighting by the coefficients—or first 

moments of the distributions. While the RAS procedure is based on knowing all row and 

column sums, it is only one of several possible sources of information in CE estimation. 
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3. Economic aggregates. In addition to row and column sums, one often has additional 

knowledge about the new SAM. For example, aggregate national accounts data may be 

available for various macro aggregates such as value added, consumption, investment, 

government, exports, and imports.  There also may be information about some of the 

SAM accounts such as government receipts and expenditures. This information can be 

summarized as additional linear adding-up constraints on various elements of the SAM. 

Define an n-by-n aggregator matrix, G, which has ones for cells in the aggregate and 

zeros otherwise. Assume that there are k such aggregation constraints, which are given 

by:  

 ( ) ( )
, ,
k k

i j i j
i j

g t γ=∑∑  (14) 

where γ is the value of the aggregate. These conditions are simply added to the constraint 

set in the cross entropy formulation. The conditions are linear in the coefficients and can 

be seen as additional moment constraints. Assuming known column sums is a special 

case of this general formulation.  

4. Inequality constraints. While one may not have exact knowledge about values for various 

aggregates, including row and column sums, it may be possible to put bounds on some of 

these aggregates. Such bounds are easily incorporated by specifying inequality 

constraints in equations (11) and (14). 

5. Zeros. Typically, a number of cells in a SAM are blank, indicating no flow. In the RAS 

method, the row and column operations guarantee that the updated SAM will contain 

zeros wherever the original SAM had zeros, and nonzero elements otherwise. Such 

constraints are also easily incorporated in the CE approach by constraining SAM entries 

to be zero in the estimation problem. However, it is also straightforward in the CE 

approach to allow zero elements in the prior to become nonzero in the estimated SAM, 

and vice versa. By convention, in information theory, a zero probability yields zero 

information: log 0x x =  by assumption. In practice, in equation (10), we replace 

, , , , and  by ( ) and ( )i j i j i j i ja a a aδ δ+ + , where ä is a small positive number. Then the 

estimated values of the ,i ja  coefficients can be zero. Similarly, we can leave cell entries 

unconstrained, even though the prior values are zero, allowing the possibility of a 
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nonzero entry appearing (say, drawing on information about possible technological 

changes in which the input-output coefficient matrix becomes more dense).  

 

4.3. Stochastic Approach: Measurement Error 

  
 Most applications of economic models to real world issues must deal with the problem of 

extracting results from data or economic relationships with noise. In this section we generalize 

our approach to cases where: (i) row and column sums are not fixed parameters but involve 

errors in measurement; and (ii) the initial estimate, A , is not based on a balanced SAM.  

Consider the standard regression model: 

 y = x â + e (15) 

where â   is the coefficient vector to be estimated, y represents the vector of dependent variables, 

x the independent variables, and e is the error term. Consider the standard assumptions made in 

regression analysis from the perspective of information theory. 

• There is plenty of data providing adequate degrees of freedom for estimation. 

• The error e is usually assumed to be normally distributed with zero mean and constant 

variance. This represents a lot of information on the error structure. The only parameter 

that needs to be estimated is the error variance. Given these assumptions, we need only use 

information in the form of certain moments of the data, which summarize all the 

information required to carry out efficient estimation: ( )ˆ ′ ′-1
â = x x x y  

• On the other hand, no prior information is assumed about the parameters. The null 

hypothesis is â  = 0, and we assume that no other information is available about â . 

• The independent variables are non-stochastic, meaning that it is in principle possible to 

repeat the sample with the same independent variables. 

These assumptions are extremely constraining when estimating a SAM because little is 

known about the error structure and data are scarce. SAM estimation is not a statistical model 

where the issue is specifying a random error generating process, but a problem of  estimation in 
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the presence of measurement error.8  Finally, data such as parameter values for previous years, 

which are often available when estimating a SAM, provide information about the current SAM, 

but this information cannot be put to productive use in the standard regression model. Compared 

to the standard model, we have little data and know little about the errors, but we have a lot of 

information in a variety of forms about the coefficients to be estimated.  

There have been a number of  efforts to apply statistical methods to SAM estimation. See, 

for example Barker et al. (1984), van der Ploeg (1982), and Toh (1998).The approach is to 

specify some kind of quadratic loss function and assume information about the statistical 

properties of the error distributions. Harrigan and Buchanan (1984) argue persuasively for the 

advantages of a constrained maximization estimation approach in terms of flexibility, but are 

aware of the statistical problems. Harrigan and McNicoll (1986) state (p. 1065) that “even where 

inequality restrictions give way to equalities, the assumptions required to sustain statistical 

interpretation are extremely demanding.” Byron (1978) and Schneider and Zenios (1990) also 

argue in favor of a constrained maximization approach, and are also skeptical of imposing strong 

statistical assumptions.  

Harrigan (1990) compares the use of a quadratic positive definite (QPD) objective function 

with the Kullback-Leibler cross-entropy (CE) measure. He concludes that both “possess the 

desirable property that they give posterior estimates which better reflect the unknown, true 

values than do the associated prior estimates.” He then goes on to argue that one cannot prove 

the superiority of either the QPD or CE approaches in terms of the relative closeness of their 

posterior estimates to the true values, using either measure of closeness.9 From the perspective of 

information theory, however, one can show that using any objective function other than the CE 

measure implicitly injects additional unwarranted information into the estimation procedure 

(Golan, Judge, and Miller, 1996). If the additional information is “correct,” then the resulting 

                                                 
8The problem is analogous to the distinction between errors in equations and errors in variables 
in standard regression analysis. See, for example, Judge et al. (1985). Golan and Vogel (1997) 
describe an errors in equations approach to the SAM estimation problem.  

9One should note, however, that the distinction between the QPD and CE approaches is not 
necessarily great. Golan, Judge, and Miller (1996, pp 30-31) show that one can approximate the 
CE minimand using a weighted squared error measure. 
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estimators might be closer to the true values, but there is no prior reason to make such an 

assumption—the CE estimation principle is to use all but only the information available.  

We extend the cross entropy criterion to include an “errors in variables” formulation where 

the independent variables are assumed to be measured with noise, as opposed to the “errors in 

equations” specification, where the process is assumed to include random noise. Rewrite the 

SAM equation and the row/column sum consistency constraints as: 

 [ ]y = A x + e = Ax + Ae  (16) 

 = +y x e  (17) 

where y is the vector of row sums and x, measured with error e, is the known vector of column 

sums, which represents our prior on the column and row sums. In our case, we assume that the 

initial column sums in the data are the best prior estimate. One could use alternative estimates 

(e.g. initial row sums). Equation 17 reflects the requirement that column and row sums must be 

equal. Following Golan, Judge, and Miller (1996, chapter 6), we write the errors as a weighted 

average of known constants as follows: 

 , ,i i w i w
w

e w v= ∑  (18) 

subject to the weights being between zero and one, and summing to one: 

 , ,1 and 0 1i w i w
w

w w= ≤ ≤∑  (19) 

In the estimation, the weights are treated as probabilities to be estimated. The constants, v , 

define the “support set” for the errors (using a bar to indicate that they are not variables) and, 

along with a specified prior for the weights, define a prior for the error distribution. The support 

set is usually chosen to yield a prior symmetric distribution with moments depending on the 

number of elements in the set W. In general, one can add more v’s and W’s to incorporate more 

potential information about the error distribution  (e.g., more moments, including variance, 

skewness, and kurtosis). In our case, we specified a support set with three elements and a 

uniform prior for the weights. The support set is specified so that 2 1 30 and v v v= = − , implying a 

prior on the error distribution with  mean zero and variance 2 2
w w

w

w vσ = ∑ .  One can specify a 

separate prior for every error, if desired, but the main point is that it is only a prior, not a 

maintained hypothesis about the error distribution.  
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 Given knowledge about the error bounds, equations (17), (18) and (19) are added to the 

constraint set and equation (16) replaces the SAM equation (equation 3). The problem is messier 

in that the SAM equation is now nonlinear, involving the product of A and e. The minimization 

problem is to find a set of A’s and W’s that minimize cross entropy including a term in the errors: 

 

( ) , , , ,

, , ,

ln ln

1
ln ln

i j i j i j i j
i j i j

i w i w i w
i w i w

I a a a a

w w w
n

 
= − 

 
 

+ −  

∑∑ ∑∑

∑∑ ∑∑

A, W : A

 (20) 

subject to the constraint equations that column and row sums be equal, and that the W’s and A’s 

fall between zero and one (where n is the number of elements in the error support set W, 

implying a uniform prior), and any other known aggregation inequalities or equalities.  

 Equation (20) is minimized with respect to the A’s (SAM coefficients) and W’s (weights 

on the error term), where the W’s are treated like the A’s. In the estimation procedure, the terms 

involving the A’s and W’s are assigned equal weights, reflecting an equal preference for 

“precision” (closeness to the prior A’s) in the estimates of the parameters, and “prediction” (the 

W’s or the “goodness of fit” of the equation on row and column sums). Golan, Judge, and Miller  

(1996) report Monte Carlo experiments where they explore the implications of changing these 

weights and conclude that equal weighting of precision and prediction is reasonable. 

 Another source of measurement error may arise if the initial SAM, A , is not itself a 

balanced SAM. That is, its corresponding rows and columns may not be equal. This situation 

does not change the cross entropy estimation procedure, but implies that it is not possible to 

achieve a cross entropy measure of zero because the prior is not feasible. The idea is to find a 

new feasible SAM that is “entropy-close” to the infeasible prior. 

Finally, Golan, Judge, and Robinson (1994) discuss a specification where each element in 

the SAM is assumed to be measured with error. In this case, each element has a separate error 

component with a “weak” prior on its distribution in the sense of specifying only a support set. 

The result is that the procedure involves a large number of additional weights to be estimated, 

but generates measures of the precision of the estimates cell by cell. The approach is closely 

analogous to the approach suggested by Byron (1978) in which he assumes that one starts with 

detailed knowledge of the cell-by-cell error distributions, including means and variances. In the 
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CE approach, however, only very weak assumptions need be made about these error 

distributions.10  

 

5. Updating a SAM: RAS and Cross-Entropy 

To illustrate the use of the proposed cross entropy estimator and to compare its properties 

to that of the RAS method, we apply both methods to update a 1994 macro SAM for 

Mozambique (Table 2).11 Monte Carlo simulations are carried out by starting from the balanced 

SAM and then randomly imposing new row and column totals. The SAM is then updated to be 

consistent with the new totals using both the RAS and the cross-entropy methods.  Since we 

change only row and column totals, we have no idea what the “true” updated SAM should be and 

can therefore only compare the results of the two methods in terms of how different they are. We 

compare outcomes using two standard distance measures, the root mean squared deviation 

(RMSD) of either (1) the new SAM values or (2) its column coefficients, both relative to those of 

the original SAM.  

As noted in the literature, the RAS and the cross-entropy methods are equivalent if the 

CE method uses as an objective a single cross-entropy measure (cell coefficients measured 

relative to the sum of all flows in the SAM) instead of using the sum of column cross-entropies 

(normalized relative to column totals).12 Intuitively, the RAS method tries to maintain the value 

structure (flow-dependent) while the CE method seeks to maintain the coefficient structure 

(column-coefficient-dependent).13 Assuming the same information (knowledge of row/column 

sums), we would expect the RAS results to be closer to the original SAM values than the CE 

                                                 
10In applying the CE method to SAM coefficients, one must take care when interpreting the 
resulting statistics because the parameters being estimated are not probabilities, although the 
column coefficients satisfy the same axioms. While such a procedure is common in the entropy 
estimation literature, the cell-by-cell approach taken in Golan, Judge, and Robinson (1994) does 
not rely on any assumptions about the nature of the coefficients. They found the estimated 
coefficients from the two approaches to be extremely close, and argued that the cell-by-cell 
approach was useful in yielding information about the reliability of each cell estimate. 
11Arndt, et al. (1997) describe the Mozambique SAM in detail. 
12See, for example, Bacharach (1970), Schneider and Zenios (1990), and McDougal (1999).  
13McDougal (1999) shows that the RAS method is also equivalent to maximizing a weighted 
sum of the column-coefficient cross-entropies, where the weights are the row (or column) sum 
values. The RAS method can be seen as treating column and row coefficients symmetrically, and 
is a special case of the CE method.  
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method relative to the SAM flows. Similarly, the CE results should be closer to the original 

coefficient matrix.  

If we are seeking to use the updated SAM to estimate column coefficients, which is 

commonly the case when the SAM is used to do multiplier analysis or provide various share 

coefficients for a CGE model, then it is desirable to express the information contained in the 

original SAM in terms of column coefficients, which a priori favors the CE approach. That is, 

the new estimates will be closer to the prior for the CE method, given the same additional 

information (in the form of new column/row sums). On the other hand, if primary interest is in 

the nominal flows, or if row coefficients are as important as column coefficients, then the RAS 

approach appears more desirable a priori. As noted above, the RAS method is a special case of 

the CE method, using a particular cross-entropy minimand and assuming only knowledge of row 

and column sums. So it is feasible to use the CE approach as a generalization of the RAS method 

when different types of information are available. An important question is whether the two 

approaches differ significantly in practice. If not, then it may not matter much which is used in 

most cases.  

The procedure adopted for the Monte Carlo simulations is as follows: three row totals 

were randomly perturbed relative to the balanced Macro SAM, and the perturbed values were 

imposed as the new row and column totals in the updating process. The perturbed values were 

generated by sampling from a set of normal distributions with increasing standard deviations: the 

values  starting from 1% and increasing up to 10% in 1% increments every 100 samples, making 

for a total of one thousand runs.  Figure 1a is a scatter plot of the root mean square deviation 

(RMSD) of the SAM flows after updating relative to the initial flows. On the Y-axis is the 

RMSD obtained using the entropy method, while on the X-axis is the RMSD according to the 

RAS. The solid line at 45 degrees represents situations where the two methods give the same 

answer. The dotted line is a linear regression fitting the sample. 

Figure 1a indicates that the RAS and CE methods perform similarly in flow terms. The 

points are grouped around the 45-degre line, with no strong differences in the degree to which 

the flow estimates deviate from the prior under the two approaches. The regression line is 

slightly above the 45-degree line, indicating that, as expected, the RAS method yields results 

closer to the prior flows, but the differences are not great. 
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<<Figure 1>> 

 

The results are very different when the two methods are compared in terms of deviation of the 

column coefficients after updating relative to the initial coefficients. Figure 1b unequivocally 

shows that, in terms of column coefficients, updating by the cross entropy method yields 

estimates much closer to the prior coefficients than updating with the RAS method. The dotted 

regression line indicates that the coefficient RMSD is about 25% lower using the cross entropy 

method than with the RAS.14 

 The conclusion to be drawn from the comparison of the RAS and the cross entropy 

method is that if the analyst is concerned column coefficients, then the cross entropy method 

appears superior to the RAS method. If, on the other hand, the focus is on the flows in the SAM, 

then the two methods are very close, with the RAS method performing slightly better. 

 

6. From Updating to Estimating Using the Cross-Entropy Approach 

In the previous section the comparison between cross entropy and RAS methods was 

made in the context of the standard updating problem found in the input-output literature. We 

now shift the focus to an application that illustrates a more general formulation of the updating 

problem: estimating a SAM given various data sources of varying quality. This is a process that 

is often done manually by applied researchers. We show, however, that the CE approach 

efficiently uses all the available information for SAM estimation. In fact, many of the manual 

operations (or data “adjustments”) can be incorporated into the CE approach. Most importantly, 

the estimation problem is set in the context of information theory and the procedure generates 

measures of the “importance” of different data used in the estimation process.  

 The performance of the cross entropy method in this estimation process was tested, once 

again, by running Monte Carlo simulations. For one thousand simulations, at each run eight cells 

of the originally balanced SAM were chosen at random and perturbed. Each time, the unbalanced 

SAM obtained through this procedure was balanced using the cross entropy method. This 

procedure was performed assuming varying types of  information were available: (i) in the first 

                                                 
14It is interesting to observe that the pattern in the scatter plot of Figure 1b appears to be 
distributed along two different lines. This dual behavior is probably associated with different 
moment constraints becoming binding in the entropy method.  
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set of simulations no information was assumed other than correspondong row and column sums 

must match, (ii) in the second set, select macroeconomic aggregates were assumed to be known, 

(iii) finally, in addition to some macroeconomic aggregates, row and column totals were 

assumed to be known, but with measurement error.  

In these simulations, the CE estimates can be compared with the correct SAM, which 

provided the starting point for every perturbed simulation. As before, we use two root mean 

square distance measures, one for nominal flows and one for column coefficients. In this case, 

they measure the “error” from the correct value rather than the deviation of two measures, so we 

term them RMSE measures.  

To underscore the flexibility of the cross entropy method and the estimation 

characteristics of this procedure compared to the RAS method, which requires information on 

row and column sums, the first attempt at balancing the SAM proceeds by assuming no 

information beyond the data in the unbalanced SAM. The results were therefore estimated under 

the assumption of no information except that corresponding row and column sums must be 

equal. In cross entropy method, only equations (11) and (12) are imposed as constraints (or 

equivalently, equations 1-8 in Appendix A with all error terms set to zero). This might be the 

situation an analyst faces  when constructing a SAM after all data have been inserted. Due to the 

different data sources adopted, the SAM contains all available data but such data are inconsistent 

leading to imbalances in the SAM accounts. In such a situation, there is no balanced SAM 

available from a prior year, and hence no updating procedure can be used. What is needed is an 

estimation procedure. The estimation problem, however, is that data are sparse. There are 

certainly not enough degrees of freedom for standard statistical  approaches such as least squares 

methods. There is, at best, one observation per parameter to be estimated (in our case, the SAM 

flows). The estimation problem is always “ill posed” in classical statistical terms.  Economic 

knowledge is imposed through constraints such as, at a minimum, that corresponding row and 

column sums be equal.  

Figure 2a presents the 95% confidence interval of the root mean square error (RMSE) of 

the flows relative to the correct (unperturbed) SAM in the no-extra-information case. Figure 2b 

presents the RMSE for the column coefficients. In both cases, on the x-axis are the standard 

deviations used in the sampling distribution of the perturbations imposed on the original SAM. 

One notices immediately that, as the standard deviation of the perturbation increases, so do the 
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mean RMSE and the variance of such error. Notably, the relationships appears to be 

approximately linear with the standard deviation of the perturbation both when flow and 

coefficient error are considered.  

 

<<Figure 2>> 

 

The second set (Allfix) adds additional information assumed known from other sources. 

The additional information includes moment constraints on some row and column sums, 

inequality constraints, and knowledge of various economic aggregates like total consumption, 

exports, imports, and GDP at market prices (results in Fig. 3a and 4a).  The third set of 

simulations (Allfix plus error) extends the second estimation method to include the “errors in 

variables” formulation, adding information on additional row and column sums assumed to be 

measured with error. For the error term (ei), we specify an error support set with three elements 

centered on zero, allowing a two-parameter symmetric distribution with unknown mean and 

variance (results in fig. 3b and 4b). What is immediately apparent from these results is that, by 

incorporating different types of information (new constraints, and therefore greater degrees of 

freedom), the estimates obtained improve considerably judging from the RMSE. When looking 

at flows, if information is added, the RMSE decreases noticeably. For the Allfix scenario there is 

an approximately 30% decrease in the flow RMSE. When the column totals are introduced with 

error, in combination with Allfix, the results are even more dramatic, leading to an 80% 

reduction in the flow RMSE. 

 

<<Figure 3>> 

<<Figure 4>> 

 

Similar results are observed on the coefficient side, and these are also easier to interpret 

since all coefficients are by definition in the [0,1] range.  Figure 4 presents the RMSE of the 

column coefficients when information is added to the basic estimation procedure. The 

improvement is less dramatic than for the flows, especially when fixing flow values such as total 

consumption, exports, imports, and GDP at market prices. Figure 4a shows nearly no change in 

the deviation of the coefficients. This occurs because by fixing a flow, and leaving the column 
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total associated with that flow free to vary, the coefficients tend to remain unchanged (since they 

appear in the objective function) and the total is adjusted (since it does not appear in the 

objective) so as to accommodate the new constraint on the fixed flow. However, one can see that 

if the column totals are assumed known with error (with the weights on the error term appearing 

in the objective), then the RMSE on the coefficients is reduced by as much as 50% in our 

example (see Figure 4b). This result highlights the importance of knowing the row or column 

totals, and in an environment where these totals are not known with certainty, the cross entropy 

specification with error can be extremely useful from an operational standpoint. 

The cross-entropy measures reflect how much the information we have introduced has 

shifted our solution estimates away from the inconsistent prior, while also accounting for the 

imprecision of the moments assumed to be measured with error. Intuition suggests that if the 

information constraints are binding, the distance from the prior will increase; if none are binding, 

then the cross entropy (CE) distance will be zero. That is, there exists a y, such that Ay = y . In 

our Core case without any constraints on the y other than that column and row sums must be 

equal, a solution can be found without changing the column coefficients, as indicated by a CE 

measure of zero.15 We observe that, as more information is imposed, the CE measure increases as 

expected (Figure 5a and 5b). 

 

<<Figure 5>>  

 

7. Conclusion 

The cross entropy (CE) approach provides a flexible and powerful method for estimating 

a social accounting matrix (SAM) when dealing with scattered and inconsistent data. The method 

represents a considerable extension and generalization of the standard RAS method, which 

assumes that one starts from a consistent prior SAM and has knowledge only about new row and 

column totals. The CE framework allows a wide range of prior information to be used efficiently 

in estimation. Drawing on information theory, the cross-entropy approach is “efficient” in that it 

uses all available information, but only that information—no assumed information is injected 

                                                 
15 The CE measure associated with the error term is zero for the Core and AllFix cases because 
the error term is set to zero and the column totals are free to vary, so no binding constraint is 
imposed. 
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into the estimation procedure.The prior information can be in a variety of forms, including linear 

and nonlinear inequalities, errors in equations, and measurement error (using an error-in-

variables formulation). One also need not start from a balanced or consistent SAM. The results 

from a variety of Monte Carlo experiments demonstrate the power of the CE approach and 

provide measures of the gains from incorporating a wide range of information from a variety of 

sources to improve our estimation of the SAM parameters.
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Table 1. A National SAM 

 Expenditure 

Receipts Activity Commodity Factors Institutions World 

Activity  
Domestic 

sales 
   

Commodity 
Intermediate 

inputs 
 

  Final demand Exports 

Factors 
Value added 

(wages/rentals) 
    

Institutions Indirect taxes Tariffs 
Factor 
income 

 
Capital 
inflow 

World  Imports    

Totals Total costs 
Total 

absorption 
Total factor 

income 
Gross domestic 

income 

Foreign 
exchange 

inflow 
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Table 2. 1994 SAM for Mozambique          (millions of 1994 Meticais) 

 Expenditure 

Receipts (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) Totals 

(1) Agr. activity   25.14    30.50      55.64 

(2) Non-agr. activity   12.46 206.28   2.14      220.88 

(3) Agr. Commodity 1.58 13.42     20.12  0.00  0.09 8.58 43.79 

(4) Non-agr. Commodity 7.24 98.86     86.72 16.77 0.00 33.94 33.03 24.13 300.69 

(5) Factors 47.01 108.74           155.75 

(6) Enterprises     62.86        62.86 

(7) Households     91.63 58.96  1.33    3.46 155.38 

(8) Rec. govt.*   0.94 9.88 1.26 2.41 2.49      22.53 

(9) Indirect tax -0.19 -0.14 0.24 5.64         5.55 

(10) Govt. investment            22.94 22.94 

(11) Private investment      1.49 13.41 4.43  -11.00  24.79 33.12 

(12) Rest of the world   5.01 78.89         83.90 

Totals 55.64 220.88 43.79 300.69 155.75 62.86 155.38 22.53 5.55 22.94 33.12 83.90 1163.02 

Source Arndt, C. et al., 1997 
* Recurrent government expenditures 
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(a) flows            (b) coefficients 

Figure 1. Comparison of the root mean square deviation relative to the initial SAM (for 
flows and coefficients). 
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flows       (b) coefficients 

Figure 2. Basic Estimation: 95% confidence interval for root mean square error after 
balancing with entropy method (relative to unperturbed SAM). 
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(a) allfix     (b) allfix +  totals with error 

Figure 3. Adding information: 95% confidence interval for root mean square error of flows 
after balancing with entropy method (relative to unperturbed SAM) . 
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(a) allfix     (b) allfix +  totals with error 

Figure 4. Adding information: 95% confidence interval for root mean square error of 
coefficients after balancing with entropy method (relative to unperturbed SAM)  
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 (a) allfix     (b) allfix  + coltot + err 

Figure 5. Adding information: Cross-Entropy comparison 
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