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ABSTRACT 

Agricultural production statistics reported at country or sub-national geopolitical scales are used 
in a wide range of economic analyses, and spatially explicit (geo-referenced) production data are 
increasingly needed to support improved approaches to the planning and implementation of 
agricultural development. However, it is extremely challenging to compile and maintain 
collections of sub-national crop production data, particularly for poorer regions of the world. 
Large gaps exist in our knowledge of the current geographic distribution and spatial patterns of 
crop performance, and these gaps are unlikely to be filled in the near future. Regardless, the 
spatial scale of many sub-national statistical reporting units remains too coarse to capture the 
patterns of spatial heterogeneity in crop production and performance that are likely to be 
important from a policy and investment planning perspective. To fill these spatial data gaps, we 
have developed and applied a meso-scale model for the spatial disaggregation of crop 
production. Using a cross-entropy approach, our model makes plausible pixel-scale assessment 
of the spatial distribution of crop production within geopolitical units (e.g. countries or sub-
national provinces and districts). The pixel-scale allocations are performed through the 
compilation and judicious fusion of relevant spatially explicit data, including production 
statistics, land use data, satellite imagery, biophysical crop “suitability” assessments, population 
density, and distance to urban centers, as wells as any prior knowledge about the spatial 
distribution of individual crops. The development, application and validation of a prior version 
of the model using data from Brazil strongly suggested that our spatial allocation approach 
shows considerable promise.  This paper describes efforts to generate crop distribution maps for 
Sub-Saharan Africa for the year 2000 using this approach. Apart from the empirical challenge of 
applying the approach across many countries, the application includes three significant model 
improvements, namely (1) the ability to cope with production data sources that provided 
different degrees of spatial disaggregation for different crops within a single country; (2) the 
inclusion of a digital map of irrigation intensity as a new input layer; and (3) increased 
disaggregation of rainfed production systems. Using the modified spatial allocation model, we 
generated 5-minute (approximately 10-km) resolution grid maps for 20 major crops across Sub-
Saharan Africa, namely barley, dry beans, cassava, cocoa, coffee, cotton, cowpeas, groundnuts, 
maize, millet, oil palm, plantain, potato, rice, sorghum, soybeans, sugar cane, sweet potato, 
wheat, and yam. The approach provides plausible results but also highlights the need for much 
more reliable input data for the region, especially with regard to sub-national production 
statistics and satellite-based estimates of cropland extent and intensity.  

Keywords: Sub-Saharan Africa, cross-entropy, satellite image, spatial allocation, 
agricultural production, crop suitability  
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1.  INTRODUCTION 

Enlightened approaches to agricultural development in Sub-Saharan Africa recognize that policymakers 

must consider the extreme heterogeneity of production conditions that exist across the sub-continent 

(Pender et al. 2006, CAADP 2006). Since location is particularly important from a crop production 

perspective, obtaining a better understanding of the spatial patterns of crop production systems should 

allow better targeting of related policies and investments (Wood et al. 1999). In addition, such spatially 

explicit insights are needed to assess the potential human welfare and natural resource impacts of much-

needed improvements in crop productivity. Thankfully, the increased availability of geo-referenced data 

and more accessible geographic information systems (GISs) now support the management and analysis of 

spatial data, and provide better opportunities for researchers to help meet these needs. Recently, numerous 

agricultural economists have extended their analytical methods to capitalize on more disaggregated 

production insights (Nelson 2002; Staal, et al. 2002; Luijten 2003; Bell and Irwin 2002; Anselin 2002).  

The ideal scenario would be for consistent, highly disaggregated production data to be made 

available through national statistical and survey agencies. In many countries of Sub-Saharan Africa, 

however, chronic under-funding of these agencies often means that crop production data are compiled 

only infrequently and with limited geographic disaggregation. Furthermore, even where such data exist, it 

remains a challenge to compile and maintain regional and global collections of sub-national crop 

production data. Large gaps exist in our knowledge of the current geographic distribution and spatial 

patterns of crop performance, and these gaps are unlikely to be filled in the foreseeable future. Regardless 

of these limitations, however, the physical size of many sub-national statistical reporting units remains 

too large to reveal important patterns of spatial heterogeneity in crop production and performance that are 

likely to be relevant from a policy and investment planning perspective.  To fill these disaggregated data 

gaps, we previously developed a meso-scale model for the spatial allocation of crop production and 

applied this model to data from Brazil (You and Wood 2003, You and Wood 2006). Using a cross-

entropy approach, our spatial allocation model allows us to spatially disaggregate crop statistics to 

individual pixels within the larger geopolitical units for which the statistics are reported (e.g. countries or 

provinces). The pixel-scale allocations are performed through the compilation and judicious fusion of 

relevant spatially explicit data, such as production statistics, land use data, satellite imagery, biophysical 

crop “suitability” assessments, population density, distance to urban centers and any available knowledge 

of crop distribution. The development, application and validation of a prior version of the model using 

data from Brazil (You and Wood 2006) strongly suggested that our spatial allocation approach shows 

considerable promise. 
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This paper describes the generation of crop distribution maps for Sub-Saharan Africa (SSA) for 

the year 2000. The application includes three significant model improvements: the ability to cope with 

production data sources that provided different degrees of spatial disaggregation for different crops within 

a single country; the inclusion of a digital map of irrigation intensity as a new input layer; and the 

increased disaggregation of rainfed production systems. Among these three improvements, the first is the 

most complex from a modeling perspective.   

In the Brazil study, we constructed a consistent state-level crop production database (yield, area 

and production) for all crops and all 28 states in the country, and ran independent spatial allocations for 

each state. Notably, within any given geopolitical unit, the spatial distribution of each crop is jointly and 

simultaneously determined (i.e. all crops compete for production space within the available irrigated and 

rainfed cropland, each crop having its own likelihood of being irrigated and its unique spatial patterns of 

yield potential determined by local agroecological conditions). Thus, in order for our approach to function 

accurately, it is important to have all crop statistics compiled at a common sub-national scale. In the case 

of SSA, however, there is a good deal of inconsistency regarding the availability of sub-national 

production statistics for different crops. In any given country, production statistics may be reported at 

strictly the national level for most crops. Major food staple production statistics can often be obtained at 

the first sub-national level of disaggregation (e.g. regions or states), and even greater levels of 

disaggregation may occasionally be available for a limited number of commodities (e.g. important export 

crops). This situation made it impossible for us to apply the methodology used in our study of the 

Brazilian data (You and Wood 2006), which requires all production statistics to be compiled at the same 

level of sub-national disaggregation. For example, if we choose the state as the sub-national unit within 

which the pixel level allocation is made, we face two problems: first, we have no satisfactory way to 

perform state-level disaggregation of crop statistics reported at the strictly national level; and second, we 

have no way to include the desirable finer resolution statistical data that may exist for some other crops. 

Thus, we sought to modify the allocation methodology such that the nation always serves as the primary 

geographic allocation domain wherein the pixel scale allocation takes place, while still including the 

additional detail available from sub-national crop statistics reported at different levels of disaggregation 

for different crops. This methodological advance significantly improves the flexibility of the allocation 

methodology and extends its range of applicability in the face of disparate sources of production data for 

individual crops. Applying the modified spatial allocation model, we are able to generate grid maps of 

area, yield and production of 20 major crops across SSA at five-minute (approximately 10-km) resolution.  

In the present paper, we first describe the various types and sources of data included in the 

allocation model.  Second, we describe the revised spatial allocation model itself. Third, the modified 

approach is applied across SSA to generate pixel-scale crop distribution maps for the selected crops. This 
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is followed by a (partial) validation of the allocation results. We conclude by discussing the significance 

and application of the results, and examine various dimensions of the data and approach that require 

further development. 
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2. DATA 

The SSA region is dominated by humid or sub-humid tropical zones with heterogeneous vegetation cover, 

such as mixed forest and pasture, as well as permanent and annual crops. In 2000, agricultural land 

occupied some 903 million hectares, representing about 40 percent of the land surface and making 

agriculture the most dominant land use in the region. The majority of agricultural land, about 82 percent, 

is permanent pasture while the total land area under annual and permanent crops is only about 161 million 

hectares (FAOSTAT 2006).  The vast majority of farming is practiced by smallholders and subsistence 

farmers.  

We specified 2000 as our base year, in part because regionally consistent land cover and land use 

datasets exist for this period. Where possible, production estimates were derived as annual means for the 

three years 1999-2001, so as to reduce the influence of atypical years on the production allocation results. 

The following 20 crops are included in the spatial allocation for SSA: barley, beans, cassava, cocoa, 

coffee, cotton, cow peas, groundnuts, maize, millet, oil palm, plantain, potato, rice, sorghum, soybeans, 

sugar cane, sweet potato, wheat, and yam. These crops include the top 15 crops (by harvested areas) in 

SSA, as well as traditional export crops such as cocoa, coffee and cotton. These 20 crops occupy more 

than 90 percent of SSA cropland, and their total output makes up almost 40 percent of regional 

agricultural GDP. 

Production Statistics 

Country-level production data are available from FAO (Food and Agricultural Organization of United 

Nations), and these data are augmented with sub-national data1 compiled by the authors from a variety of 

sources, including data from the agro-maps (FAO, IFPRI, SAGE 2006). Figure 1 shows the sub-national 

data coverage for the 20 selected crops. Only Benin, Cameroon, D.R. Congo, Uganda, Zambia and 

Mozambique have more than 10 crops reported at the sub-national scale. For some other countries, such 

as Angola, the Republic of Congo, Gabon and the Ivory Coast, production data was only available at the 

national level. Cowpeas, beans, maize and cassava have the most complete sub-national data coverage, 

with data available for over 70 percent of total sub-national units. Over all crops and countries, there is an 

approximately 40 percent coverage of sub-national data. As an example, Table 1 shows the sub-national 

area data for 10 crops in Uganda. 

                                                 
1 In this paper, sub-national unit refers to the first geopolitical level under country, such as districts in Uganda, regions in 

Nigeria, and provinces in South Africa. Very little second level sub-national data are available for SSA. 
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Figure 1.  Sub-national data coverage 
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Table 1.  Harvested areas of major crops in Uganda (2000/2001) 

District Code District Name Barley Cassava Cocoa Coffee Cotton Cowpea Bean Groundnut Maize Millet
       (Hectares)    
UG00 UGANDA 0 401000 13717 300991 250000 64000 699000 199000 629000 384000
UG26 Apac 0 24671 -999 0 26509 76 43842 12369 7467 26101
UG27 Arua 0 24418 -999 674 2283 177 26908 15968 13464 16667
UG28 Bundibugyo 0 2221 -999 3112 0 0 4504 464 1110 26
UG29 Bushenyi 0 3876 -999 7262 4048 0 12969 2665 1394 9087
UG30 Gulu 0 20822 -999 0 1949 -999 34323 18284 -999 -999
UG31 Hoima 0 2977 -999 4149 1291 125 19375 3035 4327 4183
UG68 Iganga 0 29554 -999 12448 7833 229 17170 8621 71020 28628
UG33 Jinja 0 3248 -999 6224 0 -999 18631 384 12980 1325
UG34 Kabale 0 3391 -999 0 0 0 32974 450 15659 815
UG35 Kabarole 0 16695 -999 4149 571 93 31211 6420 7913 9115
UG36 Kalangala 0 24083 -999 1037 0 -999 219 145 -999 -999
UG37 Kampala 0 0 -999 0 0 -999 0 0 -999 -999
UG38 Kamuli 0 18824 -999 5187 13678 0 24911 6660 64985 18074
UG39 Kapchorwa 0 569 -999 8299 50 0 58714 933 26803 251
UG40 Kasese 0 3223 -999 4668 19733 0 4165 206 4710 413
UG41 Kibaale 0 2320 -999 5187 350 -999 5237 3578 -999 -999
UG42 Kiboga 0 0 -999 12967 75 -999 0 0 -999 -999
UG43 Kisoro 0 0 -999 0 0 -999 5492 0 -999 -999
UG44 Kitgum 0 23645 -999 0 10792 -999 30053 18860 -999 -999
UG45 Kotido 0 169 -999 0 0 -999 983 2846 -999 -999
UG46 Kumi 0 20453 -999 0 2270 -999 15628 14266 -999 -999
UG47 Lira 0 20669 -999 0 43128 372 40916 9382 7593 34381
UG70 Luwero 0 3432 -999 20747 655 0 10371 3132 6074 340
UG71 Masaka 0 4404 -999 45644 0 8 13349 3270 6759 236
UG50 Masindi 0 4922 -999 2593 7275 0 32085 4690 22756 3329
UG51 Mbale 0 29694 -999 18673 7434 16 47055 9965 21083 4460
UG52 Mbarara 0 11097 -999 0 0 235 31977 8607 16944 10176
UG53 Moroto 0 207 -999 0 125 -999 1992 419 -999 -999
UG72 Moyo 0 3096 -999 0 300 -999 617 2704 -999 551
UG55 Mpigi 0 12598 -999 36308 0 139 12006 1294 2787 10
UG56 Mubende 0 3262 -999 22822 4 0 8680 2473 17900 1525
UG57 Mukono 0 14062 -999 56018 35 101 17205 1801 17802 6455
UG58 Nebbi 0 17596 -999 2075 33271 -999 9421 8533 11091 813
UG60 Pallisa 0 18308 -999 13486 42870 -999 8867 3324 -999 -999
UG61 Rakai 0 4278 -999 3112 0 33 21659 2879 13398 581
UG62 Rukungiri 0 1070 -999 0 0 0 6157 2158 4658 6101
UG75 Soroti 0 14803 -999 0 3330 -999 16367 9477 -999 -999
UG76 Tororo 0 12346 -999 4149 20615 783 32967 8737 9952 53529
UG59 Ntungamo 0 0 -999 0 500 26 0 0 2210 3262
Source: IFPRI Sub-national Database. This entry is derived from UBOS (2002). (2) –999 indicates missing data. 
Note: (1) 
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Production System Disaggregation 

There are many reasons why farmers plant specific crops, including the need to satisfy subsistence food 

needs, or the desire to produce for high-risk, high-payoff export markets. There are also many ways in 

which any given crop commodity might be produced, with variables including the accessibility and use of 

inputs such as labor, animal power, improved seeds, supplementary water, fertilizers, and pesticides. 

Different production systems can exhibit quite different levels of crop productivity, and from a 

development perspective, may be susceptible to common threats or amenable to specific enhancement 

opportunities. From a research and policy perspective, therefore, there are distinct advantages in 

attempting to disaggregate reported shares of crop production into (at a minimum) the major categories of 

production systems, as a means of increasing the utility of the allocation results for development 

purposes. 

However, it is not just the search for practical relevance of the results that drives the potential 

utility of an ex ante disaggregation of production into key production systems. Since the crop allocation is 

explicitly spatial, its reliability would be improved by discrimination between, for example,  the distinct 

location and yields of irrigated and rainfed production. Furthermore, high-input rainfed production 

systems are usually only found in more favorable production environments where they support 

intermediate yield levels, and the production of basic foodstuffs in homestead plots- often with relatively 

low yields- might be better predicted on the basis of population density rather than agroecological 

suitability alone. 

We are able to estimate crop production shares by production systems and to perform the spatial 

allocation on the basis of the production system components thanks to three things: the availability of 

biophysical production (area and yield) potential maps for most of the 20 target crops under irrigated, 

high-input rainfed and low-input rainfed conditions (Fischer et al. 2001) (see Section 2.6); access to 

unpublished estimates of the average areas and yields of both rainfed and irrigated production of crops by 

country that, when aggregated, are consistent with FAO-published national average areas and yields for 

the entire national crop output (Bruinsma 2000); and the authors’ compilation and interpretation of a wide 

range of other background data (e.g. farm size structure, adoption of modern varieties, and fertilizer use) 

that provide insights into the overall structure of crop production systems within each country. 

We allow for the sub-division of total national production into up to four production systems for 

each crop: irrigated, high-input rainfed, low-input rainfed, and subsistence. Allocation of the irrigated 

share of production must be made within the mapped extent of irrigated areas, while high and low input 

rainfed shares are allocated within rainfed croplands in accordance with (amongst other factors) the 

different agroecological conditions that best match the needs of each system. While biophysical crop 

suitability or potential revenue is generally used to estimate a prior distribution for each crop production 
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system (see Section 3 on “modified spatial allocation model”), population density also drives the spatial 

allocation of the subsistence share of crop production.  

Appendix Table A1 provides an assessment of the overall breakdown of crops by production 

system for the SSA region. Rice and sugar cane are identified as the two major irrigated crops in the 

region, with the remaining 18 crops having quite limited irrigation. The major staple crops, such as 

cassava, maize, millet, sweet potato, rice and sorghum, are largely grown for subsistence purposes (Table 

A1), while the export crops such as cocoa, coffee and cotton – largely grown by smallholders – are 

classified as low-input rainfed commodities. The percentages for high-input rainfed areas vary from 

country to country, but generally do not exceed 50 percent (Table A1). Overall, the crop-based production 

systems in Sub-Saharan Africa are dominated by low-input rainfed (including subsistence) production. 

Transaction Costs and Market Access 

There is a rich literature on the extent to which the selection, productivity, and profitability of various 

crops in different locations are linked to the distance to product markets (von Thunen 1966), market-

related transactions costs (Jayne 1994, Omamo 1998, Obare et al. 2003, Renkow et al. 2004), and a wide 

range of market imperfections (Kherallah et al. 2000). Furthermore, since many subsistence households 

are also net buyers of food staples, these factors are also important to subsistence producers (Jayne 1994, 

Omamo 1998). Market access affects production costs by constraining access to production-related 

information, services and inputs, and further affects gross revenue by impacting the effective farm-gate 

price of outputs (e.g. through transport and other transaction costs). For this study, rather than using a 

measure of physical market access derived from a very incomplete and inconsistent regional road network 

map and database, we elected to adopt population density as a proxy of market access and transactions 

costs, since higher population densities imply higher access to markets and lower transaction costs. This 

use of population density has been established in the literature (Deichmann 1996, CIESIN, IFPRI and 

WRI 2000). 

The Gridded Population of the World (GPW) Version 2 provides global estimates of population 

counts and population densities (persons per square kilometer) for 1990 and 1995 (CIESIN, IFPRI and 

WRI 2000). National figures have been reconciled to be consistent with United Nations population 

estimates for those years in this GPW database. Figure 2 illustrates the variation in population density 

across SSA extracted from this global map.  
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Figure 2.  Population density for Sub-Saharan Africa  
 

 
 

Our market access proxy (Accessi) is estimated by using the normalized population density 

measure:  

 (2.3)    i k
i

k k

Pop MinPopAccess
MaxPop MinPop

−
=

−
 

where MinPopk and MaxPopk are the population densities at 20 percent and 90 percent of a given country 

k’s cumulative population density distribution curve2, and Popi is the population density for pixel i.  

Land Cover Images 

Satellite-based land cover images play an important role in the allocation model, as they provide detailed 

spatial information on cropland extent, allowing us to distinguish cropland from other forms of land cover 

such as forest, grassland, and water bodies, and helping us delineate the geographical boundaries within 

which crop production must be allocated. Thus, the reliability of the cropland cover data can have 

significant implications for the overall reliability of the allocation. As more and better remotely sensed 

data become available through technological advances in remote sensing and improvements in our ability 

to interpret satellite imagery for agricultural applications, the reliability of such crop production allocation 

                                                 
2 In fact, MinPopk = Max(MinPopk , 5). If MinPopk  is less than 5 people per square kilometer, the region may be just forest 

with little agricultural land. 

Population Density 
individuals/sq. km 
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will increase. For SSA, medium- to high-resolution land cover datasets are available from three (global 

data) sources: NOAA-AVHRR (Hansen et al. 2000; Loveland et al. 2000), TERRA-MODIS (Friedl et al. 

2002), and SPOT-VEGETATION (JRC 2003). Each land cover dataset has its own pros and cons, and 

some researchers (e.g., Jung et al. 2006) are exploring the option of merging individual remote sensing 

products in order to provide high-quality, integrated land cover datasets. For our present purposes, data 

availability is a factor in choosing which land cover dataset to use, and the time period of the satellite-

based estimates of cropland cover should coincide, as closely as possible, with the reference period for the 

allocation (1999-2001). 

Based on evaluation of the two global land cover datasets available for the year 2000, we elected 

to use the Africa Land Cover 2000 from the Global Land Cover 2000 project (GLC2000). GLC2000 

makes use of the VEGA 2000 dataset comprising 14 months (November 1, 1999 – December 31, 2000) of 

pre-processed daily global data acquired by the VEGETATION instrument on board SPOT 4, made 

available through a sponsorship from members of the VEGETATION program 

(http://vegetation.cnes.fr/).   

There are twenty-two land cover classes in GLC2000, ranging from bare land to tree cover. 

Cropland is contained in only three classes: cultivated and managed areas; mosaic, crop land/tree 

cover/other natural vegetation; and mosaic, crop land/shrub/grass. While the ‘cultivated and managed 

areas’ class obviously contains all crop land, only some of the areas under the two mosaic classes actually 

correspond to crop land. Consultation with GLC2000 teams indicates that 80 percent of each pixel under 

the two crop land mosaic classes actually corresponds to crop land. Since the exact percentage of crop 

land within a given pixel of these two classes varies from continent to continent, and thus continent-

specific percentages should be used when available. Figure 3 shows the crop land cover of Sub-Saharan 

Africa in 2000. The crop land shows considerably spatial heterogeneity across SSA, with intensive and 

widespread crop land seen in Uganda, Tanzania, Zambia, Zimbabwe and Mozambique, while cultivated 

land is spatially concentrated in the Sahelian countries, as well as Angola, Sudan, Ethiopia, and  D. R. 

Congo.  
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Figure 3.  Crop land in Sub-Saharan Africa, 2000 

 

Irrigation Map 

The Land and Water Development Division of the Food and Agriculture Organization of the United 

Nations (FAO) and the Center for Environmental Systems Research of the University of Kassel, 

Germany, have developed a global irrigation map showing the amount of area equipped for irrigation in 

the 1990s as a percentage of the total pixel area, with a resolution of five minutes (about 10 x 10 km2 

along the equator). Because the map was generated uniformly across countries, the quality and accuracy 

of the mapped irrigated area is not uniform and is highly dependent on the individual quality of the data 

for the different countries (Siebert et al. 2001). There was no dramatic expansion of irrigation in crop 

production in Africa during the late 1990s, allowing us use this irrigation map as the base data for year 

2000. In our spatial allocation, the irrigation map provides another layer of information the model can use 

to decide where to allocate the irrigated areas. In Sub-Saharan Africa, rainfed agriculture dominates, with 

relatively little irrigation seen (Figure 4). South Africa and Madagascar are the only two countries having 

extensive irrigated cropland, with about 1.43 million hectares and 1.15 million hectares of irrigated 

cropland, respectively. Irrigation is quite limited in the rest of SSA, with countries such as Mauritania, 

Chad, D.R. Congo, and Namibia having very little irrigation.  
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Figure  4.  Irrigation map 

 
 

Agroclimatic Crop Suitability 

Different crops have different thermal, moisture, and soil requirements, particularly under rainfed 

conditions. FAO, with the collaboration of the International Institute for Applied Systems Analysis 

(IIASA), has developed the Agro-ecological Zones (AEZ) methodology based on an inventory of land 

resources and evaluation of biophysical limitations and potentials. AEZ methodology provides a 

standardized framework for the characterization of climate, soil, and terrain conditions relevant to 

agricultural production. Crop modeling and environmental matching procedures are used to identify crop-

specific limitations of prevailing climate, soil, and terrain resources, under assumed levels of inputs and 

management conditions. This methodology provides information pertaining to maximum potential, 

agronomically attainable crop yields, and suitable crop areas for basic land resource units (usually grid-

cells in the recent digital databases) (Fischer et al. 2001, FAO 2003). In the present work, we use three 

production system types from the FAO/IIASA suitability datasets: irrigated – high input (we simply call it 

“irrigated”), rainfed – high input, and rainfed – low input3. For each crop grown with these physical input 

levels, we define our suitable land as the sum of the area held by the ‘very suitable,’ ‘suitable,’ 

‘moderately suitable,’ and ‘marginally suitable’ classes in the AEZ model. The yield is then calculated as 

the area-weighted average of these four suitability classes (FAO 1981). Some crops have many types, 

                                                 
3 There three types correspond to the three production patterns defined on page 8. The forth one, subsistence, always 

corresponds to low-input rainfed production. 
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such as highland and lowland maize germplasm, sub-divided by maturity class. Thus, the crop surface of 

“maize” in this work is a composite of pixels corresponding to the most suitable variety for each location.  

Figure 5 shows the suitability surfaces for maize in SSA, offering both potential yield and 

suitable area distributions under high input and low input rainfed conditions. Obviously, maize is widely 

suitable in Sub-Saharan African except in the extremely northern countries of Mauritania, Mali, Niger, 

Chad, and the extremely southern countries of Angola, Botswana and South Africa. Maize normally does 

not require irrigation, which is shown by the relative scarcity of areas suitable for irrigated maize (Figure 

5 (c )). However, irrigated maize has a much higher potential yield than rainfed maize.  

Figure .5.  Crop suitability surfaces – suitable areas 
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Figure 6.  Crop suitability surfaces – potential yield 
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3. MODIFIED SPATIAL ALLOCATION MODEL 

Cross-Entropy Approach 

Entropy, which goes back to Boltzmann’s distribution law in thermodynamics (Jaynes 1979), is a 

measure of the “disorder” of molecules in a system. One of the fundamental laws of nature is the second 

law of thermodynamics, which says the entropy of a closed system never decreases and increases 

whenever possible.  Shannon (1948) introduced the term ‘information entropy’ as a way to measure the 

uncertainty (state of knowledge) of expected information, giving rise to information theory. According to 

Shannon’s definition, information is a statistical property of a message. Any probability distribution pi, i= 

1, 2, …, n, of a random variable provides some information about that variable. Shannon defined entropy 

H(p) as a weighted sum of the information –lnpi, i= 1,2,…,n, with the respective probabilities as weights: 

(3.1)    )(lnln)(
1

pEpppH
n

i
ii −=−= ∑

=

 

under the convention that 0ln0=0, and E(lnp) is expected value of lnp. 
Jaynes (1957) proposed the maximum entropy principle in statistical inference, which states that 

the least informative probability distribution pi can be found by maximizing the entropy H(p). In (3.1), the 

solutions are: pi = 1/n, i= 1, 2, …, n, H(p) = ln n. In other words, in the absence of information to the 

contrary, all possible states of system are equally likely. The generalized maximum entropy (GME) 

approach is based upon this principle. 

Following (3.1), the cross-entropy of one probability distribution p={p1, p2 , …, pn} with respect 

to another probability distribution q={q1, q2 , …, qn} can be defined 
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This is actually a measure of distance between two probability distributions p and q. If we choose 

the non-informative q, i.e., q = {1/n, 1/n,…, 1/n}, then CE(p, q) becomes: 

(3.3)  npHnppqpCE
n

i
ii ln)(lnln),(
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Therefore, maximizing entropy is actually a special case of minimizing cross-entropy with 

respect to a uniform distribution. The cross-entropy (CE) approach can be stated as a minimization 

problem where the cross-entropy (objective function) is minimized subject to applicable constraints and 

prior knowledge. 

Since the publication of the comprehensive book on this topic by Golan, Judge and Miller (1996), 

numerous groups have sought to apply the entropy approach to various estimation problems (Lencer and 

Miller 1998; Paris and Howlitt 1998; Robinson, Cattaneo and El-Said 2000; Zhang and Fan 2001). A 

unique feature of the entropy approach is its ability to overcome two empirical problems that hamper 
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traditional econometrics: multi-collinearity and ill-posed problems (particularly due to underdetermined 

or incomplete data) (Paris and Caputo 2001; Golan, Judge and Miller 1996). The idea is to remove 

irrelevant information at the beginning of a problem rather than taking pains to make dubious 

assumptions. Preckel (2001) compares least squares and entropy methods from a penalty function 

perspective and concludes that the differences between these two approaches boil down to how the 

supports for errors and coefficients are defined in a generalized cross-entropy approach. When the 

supports are specified to be symmetric, wide, and centered on zero for the residual errors, the coefficient 

estimates are essentially indistinguishable (Preckel 2001). Shen and Perloff (2001) estimate a ratio of 

parameters using different methods and concludes that GME (and the Bayesian method of moments) 

estimator has much smaller mean square errors and average biases than do ordinary least squares (OLS). 

Bera and Bilias (2002) report an excellent synthesis of different estimation approaches, including the 

strategies of method of moments, maximum entropy, maximum likelihood, empirical likelihood, 

estimating function, and generalized methods of moments. The paper compares many of these estimation 

techniques with a unified framework and puts these techniques in an interesting historical perspective. 

Our production allocation problem is underdetermined with quite incomplete data, and the entropy 

approach is ideally suited for our spatial allocation model. 

Modified Spatial Allocation Model 

This section describes the spatial allocation model using the cross entropy approach with partial sub-

national data and new irrigation maps. We first let sijl be the area share allocated to pixel i and crop j at 

input level l with a given country (country X) in SSA. CropAreajl is the total physical area for crop j at 

input level l for a certain spatial allocation unit, and Aijl is the area allocated to pixel i for crop j at input 

level l in country X. Therefore: 

(3.4)    
jl

ijl
ijl CropArea

A
s =  

If we let πijl be the prior area shares (see below) for pixel i and crop j at input level l in country X, 
the modified spatial allocation model can be written as follows: 
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(3.10)  iIRRAreasCropArea i
Ll

ijljl ∀≤×∑
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(3.11)  ljisijl ,,01 ∀≥≥  
where: 
i = 1, 2, 3, … is the pixel identifier within the allocation unit,  

j = 1, 2, 3, … is the crop identifier (such as maize, cassava, rice, etc.) within the allocation unit,  

l = irrigated, rainfed-high input, rainfed-low input, subsistence represents the management and input 

levels for crops, 

k = 1, 2, 3, … is the identifier for the sub-national geopolitical unit,  

J is the set of commodities for which sub-national production statistics exist, 

L is the set of commodities that are irrigated within pixel i, 

Availi is the total agricultural land in pixel i, which is equal to total agricultural area estimated from land 

cover satellite image as described in the previous section,  

Suitableijl is the suitable area for crop j at input level l in pixel i, which comes form FAO/IIASA 

suitability surfaces as introduced in the previous section, and 

IRRAreai is the irrigation area in pixel i from global map of irrigation (Siebert et al. 2001).  

 Compared to our original spatial allocation model (You and Wood 2006), the present work 

includes two new constraints, namely equations (3.9) and (3.10). Constraint (3.9) sets the sum of all 

allocated areas within those sub-national units that have existing statistical data to be equal those 

corresponding sub-national statistics. Constraint (3.10) includes the irrigation information and states that 

the sum of all allocated irrigated crop areas in any pixel must not exceed the total area identified by 

Siebert et al. (2001) as being equipped for irrigation within that pixel. The objective function and all other 

equations are similar to those found in the original model. The modified model is capable of 

disaggregating across mixed scales of production data, giving it a broader range of practical application 

and increasing its reliability by allowing it to use the highest level of production data disaggregation 

available for each crop. 

Obviously, an informed prior (πijl) is very important for the success of the model. We create the 

prior based upon a range of available evidence. First, for each pixel we calculate the potential revenue per 

pixel as: 

(3.12)  Re Prijl j i ijl ijlv ice Access SuitYield SuitArea= × × ×  
where Pricej is the price for crop j in country X, SuitYieldijl is the agro-climatically suitable yield 

for crop j at input level l and pixel i, and Accessi is the previously described proxy of physical market 
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accessibility for pixel i.  In the case of subsistence production, we replace the revenue measure with 

population density because we assume the crops are grown primarily for food security reasons and as an 

expression of preference for certain food staples, even at relatively low levels of biophysical suitability. 

We then pre-allocate the available statistical crop areas (at various geopolitical scales) into pixel-level 

areas by simple weighting: 

(3.13)    lij
v

v
PercentaSubCropAreArea

ki
ijl

ijl
jljkijl ∀∀∀××=
∑
∈

Re
Re

 

where Areaijl is the area pre-allocated to pixel i for crop j at level l, and Percentjl is the area 

percentage of crop j at input level l (see Table A1). Geopolitical units without crop area statistics are 

combined, and a total crop area for the merged unit is derived by subtracting the sum of available sub-

national areas from the national total. After this pre-allocation, we calculate the prior by normalizing the 

allocated areas over the whole country: 

(3.14)   lij
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Area
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4. RESULTS 

The application of the spatial allocation model faces two major challenges. The first is inconsistency 

among the various constraints due to imperfect data. For example, the sum of all the statistical crop areas 

may be even larger than the cropland available from satellite images at either the national or sub-national 

levels, meaning that constraint (3.7) in the model may directly conflict with constraint (3.6) (at the 

national level) or with constraint (3.9) (at a sub-national level), and the optimization problem becomes 

infeasible. Similar conflicts may appear among the rest of the constraints; for example, there may be less 

available irrigated area than the sum of statistical irrigated crops areas [(3.6) or (3.9) vs. (3.10)], less 

cropland than the irrigated area [(3.7) vs. (3.10)], or less suitable area than the statistical crop areas [(3.8) 

vs. (3.6) or (3.9)]. These conflicting constraints, which must be solved before the model is run, are found 

for every SSA country in the current application. Accordingly, we develop computer programs in FoxPro 

language to deal with these conflicts, using a set of rules to solve the conflicts. Although it is unknown 

whether the statistics (either national or sub-national) are more reliable than the other datasets (e.g. 

satellite images), such statistics are widely used and recognized, and we therefore set the statistics as a 

benchmark to make the results more comparable. Two rules are used: first, we scale up cropland areas, 

irrigated areas and suitable areas if they are less than the corresponding statistical areas; and second, we 

set cropland areas equal to the irrigated areas for pixels having zero cropland but positive irrigated areas.  

The second challenge is the size of the optimization problem, in particular for big countries. With 

the utilized grid resolution of five minutes, a middle-sized country such as South Africa has about 10,000 

pixels with nonzero agricultural land (pixels with zero agricultural land are excluded from the model run).  

South Africa produces 16 of the 20 crops considered, and each crop has four input levels. Therefore the 

total number of unknowns for South Africa is in the range of 600,000, which is relatively large for a 

nonlinear programming problem. Large countries, such as Angola and D.R. Congo, have even larger 

problems. In addition, the objective function with logarithms is a challenge for any nonlinear 

programming solver. These issues lead to the issue of sheer computer power. In the present work, we use 

GAMS (2003) to solve the model. The requirement for CPU time depends on the specific country in 

question, ranging from a few minutes to over 50 hours on a Dell desktop with 3.2 GHz CPU and 1GB 

RAM. We run the modified spatial allocation model country-by-country for all 51 countries4 in Sub-

Saharan Africa, yielding the allocated crop areas at the pixel level. A post-processing program takes the 

results from GAMS and calculates both the harvest areas and productions by pixels. Figure 7 shows the 

crop area distribution maps for the four cereal crops (sorghum, maize, millet and rice) examined herein. 

                                                 
4 Some island countries, such as Mayotte and Seychelles, have little or no agricultural production. 
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The maps for the remaining 16 crops are shown in Appendix Figure A1. These are the five-by-five-

minute (about 8,500 hectares in Africa) crop distribution maps.  

Figure  7.  Estimated crop distribution maps of Sub-Saharan Africa 
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5. PARTIAL MODEL VALIDATION 

In order to assess the performance of our modified approach, we undertake the huge effort of collecting 

census data from 1,317 second-level administrative units in 17 countries, including statistics for maize, 

millet, sorghum and cassava. Table 2 shows the data availability for these countries. While not all 

countries have complete data for all four crops, the countries and crops are quite diverse in terms of 

geographical coverage. We use these datasets as a benchmark to assess model performance. 

Table 2.   Data availability for second-level administrative units 

Country Number of admin. units Maize Millet Cassava Sorghum 
Benin 77 complete partial complete partial 
Botswana 26 complete complete complete complete 
Ethiopia 81 complete partial complete complete 
Gambia 37 complete complete none complete 
Guinea 33 complete none complete None 
Guinea Bissau 63 complete complete complete complete 
Kenya 46 complete none none none 
Madagascar 111 complete complete complete none 
Malawi 173 complete partial complete partial 
Mali 49 partial complete complete complete 
Niger 35 none complete none complete 
Senegal 29 partial complete complete partial 
South Africa 378 partial none complete none 
Togo 21 complete complete complete complete 
D. R. Congo 40 complete none complete none 
Zambia 58 complete complete complete complete 
Zimbabwe 60 complete complete none complete 
Note: complete: data for all administrative units are available; partial: only part of administrative units have data; none: all data 
are missing 

We aggregate the allocated areas by pixels into the 1,317 second-level administrative units of the 

17 countries. We then compare these synthetic area estimates with the actual census data we collected. 

Figure 8 shows the graphical results of this comparison. Most of data points cluster around the 45o line of 

perfect correlation. Maize is the best performer among the four crops, with a R2 around 0.8, while the 

other three crops have a R2 around 0.45. If the four crops are representative of the rest of the examined 

crops, we could expect the R2 values for the other 16 crops to lie between 0.45 and 0.8.  

There are several reasons for the differences between the observed and predicted crop areas. 

From a methodological perspective, the most fundamental reason is the simplicity of the method used to 

estimate the prior, relative to the complex factors involved in a given farmer’s decisions regarding crop 

choices, crops mixes and the type and scale of production. We have used nominal gross revenues (except 

in the case of subsistence production) as a basis to generate the prior allocation. However, empirical 
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evidence shows that profit is the driving force behind crop production decisions, for both commercial 

farmers and smallholders alike(Kherallah et al. 2000, Renkow et al. 2004). Many other factors such as 

culture, tradition and food security concern also affects farmers’ production decisions. However, it is 

difficult to obtain such data on a regional scale in regions such as Africa, and since our goal is to develop 

a framework that can applied on a regional and even global scale, we have sought to minimize the 

reliance on such fragmentary and expensive data. Beyond the methodological reason, there are many data 

accuracy issues that may affect our results. First, crop production in Sub-Saharan Africa is mainly 

performed by smallholders sparsely scattered within large areas of forest or grassland. This poses a range 

of challenges for satellite classification, as described in Section 2.4. Secondly, the suitability surfaces may 

have different site accuracies for different crops. Third, we treat the census data as the “truth” for the 

model validation purpose. However, it is important to recognize that the accuracy of such data is often 

questionable, due to weak capacity of many local statistical bureaus.  

Figure 8.  Correlation of area statistics and model predictions: SSA, 2000 
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6. CONCLUSION 

We propose a spatial allocation model of crop production based on a cross-entropy approach (CE). The 

approach utilizes information from various sources, including the best available production statistics, 

satellite imagery, biophysical crop suitability assessments, irrigation maps, and population density, in 

order to generate plausible, disaggregated estimates of the distribution of crop production on a pixel basis. 

With this spatial allocation model we obtain five-by-five-minute resolution maps for the 20 major crops 

in Sub-Saharan Africa. A partial data comparison with second level administrative statistics yields 

correlation coefficients between 0.45 and 0.8 for maize, millet, cassava and sorghum. We briefly discuss 

the factors affecting the accuracy of the model predictions and possible error sources. We also find that 

new technologies such as remote sensing and image processing are useful tools for exploring the spatial 

heterogeneity of agricultural production, infrastructure and natural resources. On the other hand, working 

at the spatial scale of individual pixels creates many data management and computational challenges. 

Some of these challenges will need to be addressed in the future through improved numerical methods 

and the use of mathematical optimization software.  

Though the current model provides what appear to be reasonable results, at least in the absence of 

“truth” regarding the real distribution of production, we are currently working to improve its performance. 

One obvious means for advancement is to improve the underlying quality of the parameters currently 

included in the model, since the end results can only be as accurate as the input information. Thus, we 

seek to include better approximations of the extent of agriculture, more realistic crop suitability surfaces, 

and more research on the association between crop production and population density. In addition, we 

could also add new types of information into the model. For example, household or agricultural survey 

information on the location and quantity of crop production would provide a direct, sampled calibration of 

the entire crop distribution surface. If such information exists and it is of reasonable quality, it will 

definitely improve the estimation accuracy. We could also add some other behavioral assumptions. For 

example, it seems reasonable to assume that farmers would opt to plant higher revenue crops in any given 

location, all other things being equal. But potential revenue is in reality a proxy for potential profitability, 

and some could argue that risk minimization might also play a role. Thus, there are several options for 

further work in exploring alternative drivers of crop choice, both individually and in crop combinations, 

in each location. 
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APPENDIX 

Table A1: Crop production systems in Sub-Saharan Africa 

Country Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet 
     (% by area)     
Angola           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 100.0 65.0 30.0 30.0 10.0 10.0 40.0 
   subsistence 0 90.0 0.0 0.0 0.0 70.0 70.0 90.0 90.0 40.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Benin           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 20.0 0.0 20.0 20.0 35.0 35.0 20.0 0.0 20.0 
   low input rainfed 100.0 40.0 100.0 80.0 80.0 40.0 40.0 40.0 30.0 40.0 
   subsistence 0 40.0 0.0 0.0 0.0 25.0 25.0 40.0 70.0 40.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Botswana           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 20.0 20.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 100.0 100.0 40.0 40.0 10.0 10.0 10.0 
   subsistence 0 0.0 0.0 0.0 0.0 40.0 40.0 90.0 90.0 90.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Burkina Faso           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 35.0 35.0 35.0 20.0 20.0 20.0 
   low input rainfed 100.0 10.0 100.0 100.0 65.0 40.0 40.0 40.0 40.0 40.0 
   subsistence 0 90.0 0.0 0.0 0.0 25.0 25.0 40.0 40.0 40.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Burundi           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.4 0.0 
   high input rainfed 0.0 20.0 0.0 35.0 0.0 35.0 35.0 0.0 0.0 35.0 
   low input rainfed 100.0 40.0 100.0 65.0 100.0 40.0 40.0 30.0 18.8 40.0 
   subsistence 0 40.0 0.0 0.0 0.0 25.0 25.0 70.0 43.8 25.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Cameroon           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 35.0 0.0 20.0 35.0 35.0 35.0 0.0 55.0 20.0 
   low input rainfed 100.0 40.0 100.0 80.0 65.0 40.0 40.0 10.0 30.0 40.0 
   subsistence 0 25.0 0.0 0.0 0.0 25.0 25.0 90.0 15.0 40.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Cape Verde           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100 100 100 100 100 100 100 100 100 100 
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Table A1. Continued 

Country Oil 
Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane
Sweet 
Potato Wheat Yam 

     (% by area)      
Angola           
   irrigated 0.0 0.0 0.0 72.7 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 35.0 35.0 20.0 0.0 0.0 0.0 0.0 0.0 35.0 0.0 
   low input rainfed 65.0 40.0 40.0 2.7 100.0 100.0 0.0 30.0 40.0 100.0
   subsistence 0.0 25.0 40.0 24.5 0.0 0.0 0.0 70.0 25.0 0.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Benin           
   irrigated 0.0 0.0 0.0 58.8 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 35.0 55.0 0.0 8.2 20.0 20.0 0.0 35.0 0.0 0.0 
   low input rainfed 65.0 30.0 100.0 16.5 40.0 40.0 0.0 40.0 100.0 30.0 
   subsistence 0.0 15.0 0.0 16.5 40.0 40.0 0.0 25.0 0.0 70.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Botswana           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 0.0 
   low input rainfed 100.0 100.0 100.0 100.0 10.0 100.0 100.0 100.0 40.0 30.0 
   subsistence 0.0 0.0 0.0 0.0 90.0 0.0 0.0 0.0 25.0 70.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Burkina Faso           
   irrigated 0.0 0.0 0.0 42.9 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 20.0 20.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 5.7 40.0 40.0 0.0 30.0 100.0 100.0
   subsistence 0.0 0.0 0.0 51.4 40.0 40.0 0.0 70.0 0.0 0.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Burundi           
   irrigated 0.0 0.0 0.0 100.0 34.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 35.0 0.0 0.0 0.0 13.2 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 65.0 10.0 10.0 0.0 26.4 100.0 0.0 30.0 10.0 30.0 
   subsistence 0.0 90.0 90.0 0.0 26.4 0.0 0.0 70.0 90.0 70.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Cameroon           
   irrigated 0.0 0.0 0.0 57.1 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 35.0 0.0 15.0 20.0 0.0 0.0 0.0 20.0 0.0 
   low input rainfed 65.0 40.0 10.0 17.1 40.0 10.0 100.0 30.0 40.0 30.0 
   subsistence 0.0 25.0 90.0 10.7 40.0 90.0 0.0 70.0 40.0 70.0 
   Total 100 100 100 100 100 100 100 100 100 100 
Cape Verde           
   irrigated 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 15.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100 100 100 100 100 100 100 100 100 100 
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Table A1. Continued 

Country 
Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
Central African Rep           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 55.0 55.0 20.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 65.0 100.0 30.0 30.0 40.0 30.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 15.0 15.0 40.0 70.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Chad           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 35.0 35.0 20.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 100.0 100.0 40.0 40.0 40.0 30.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 25.0 25.0 40.0 70.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Comoros           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Congo, R.           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 55.0 20.0 0.0 35.0 35.0 35.0 0.0 0.0 
   low input rainfed 100.0 30.0 45.0 80.0 100.0 40.0 40.0 40.0 10.0 100.0
   subsistence 0.0 70.0 0.0 0.0 0.0 25.0 25.0 25.0 90.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Djibouti           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Equatorial Guinea           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Eritrea           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 35.0 35.0 20.0 0.0 20.0 
   low input rainfed 10.0 100.0 100.0 100.0 100.0 40.0 40.0 40.0 9.3 40.0 
   subsistence 90.0 0.0 0.0 0.0 0.0 25.0 25.0 40.0 83.6 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Oil Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane 
Sweet 
Potato Wheat Yam 

    (% by area)      
Central African Rep           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 0.0 0.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 65.0 10.0 10.0 40.0 40.0 100.0 100.0 30.0 100.0 30.0 
   subsistence 0.0 90.0 90.0 40.0 40.0 0.0 0.0 70.0 0.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Chad           
   irrigated 0.0 0.0 0.0 14.1 0.0 0.0 100.0 0.0 100.0 0.0 
   high input rainfed 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 40.0 8.6 30.0 100.0 0.0 30.0 0.0 10.0 
   subsistence 0.0 0.0 40.0 77.3 70.0 0.0 0.0 70.0 0.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Comoros           
   irrigated 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 15.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Congo, R.           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 
   high input rainfed 35.0 35.0 20.0 0.0 0.0 0.0 19.1 0.0 0.0 35.0 
   low input rainfed 65.0 40.0 40.0 10.0 100.0 100.0 76.4 30.0 100.0 40.0 
   subsistence 0.0 25.0 40.0 90.0 0.0 0.0 0.0 70.0 0.0 25.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Djibouti           
   irrigated 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 15.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Equatorial Guinea           
   irrigated 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 15.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Eritrea           
   irrigated 0.0 0.0 100.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 19.2 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 0.0 100.0 38.5 100.0 100.0 100.0 10.0 30.0 
   subsistence 0.0 0.0 0.0 0.0 38.5 0.0 0.0 0.0 90.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
Ethiopia           
   irrigated 0.0 0.0 0.0 0.0 100.0 0.2 0.2 0.0 1.4 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 34.9 34.9 35.0 34.5 20.0 
   low input rainfed 10.0 100.0 100.0 65.0 0.0 39.9 39.9 40.0 39.4 40.0 
   subsistence 90.0 0.0 0.0 0.0 0.0 25.0 25.0 25.0 24.6 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gabon           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 20.0 0.0 35.0 35.0 16.5 35.0 0.0 
   low input rainfed 100.0 10.0 100.0 80.0 100.0 40.0 40.0 32.9 40.0 100.0
   subsistence 0.0 90.0 0.0 0.0 0.0 25.0 25.0 32.9 25.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gambia, The           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 20.0 20.0 
   low input rainfed 100.0 10.0 100.0 100.0 100.0 30.0 30.0 40.0 40.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 70.0 70.0 25.0 40.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ghana           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 35.0 0.0 20.0 20.0 0.0 0.0 20.0 20.0 20.0 
   low input rainfed 100.0 40.0 100.0 80.0 80.0 10.0 10.0 40.0 40.0 40.0 
   subsistence 0.0 25.0 0.0 0.0 0.0 90.0 90.0 40.0 40.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Guinea           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 20.0 20.0 35.0 35.0 35.0 20.0 0.0 20.0 
   low input rainfed 100.0 30.0 80.0 80.0 65.0 40.0 40.0 40.0 30.0 40.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 25.0 25.0 40.0 70.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Guinea-Bissau           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ivory Coast           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 20.0 0.0 35.0 35.0 35.0 20.0 0.0 20.0 
   low input rainfed 100.0 10.0 80.0 100.0 65.0 40.0 40.0 40.0 10.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 25.0 25.0 40.0 90.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country Oil Palm Banana Potato Rice Sorghum Soybean Sugar 
Cane 

Sweet 
Potato Wheat Yam 

    (% by area)      
Ethiopia           
   irrigated 0.0 20.0 0.0 0.0 1.7 57.1 100.0 0.0 0.0 0.0 
   high input rainfed 0.0 44.0 20.0 0.0 34.4 23.6 0.0 0.0 20.0 35.0 
   low input rainfed 100.0 24.0 40.0 100.0 39.3 12.9 0.0 15.0 40.0 40.0 
   subsistence 0.0 12.0 40.0 0.0 24.6 6.4 0.0 85.0 40.0 25.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gabon           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 20.0 0.0 55.0 0.0 20.0 35.0 0.0 0.0 0.0 
   low input rainfed 65.0 40.0 100.0 30.0 100.0 40.0 65.0 30.0 100.0 30.0 
   subsistence 0.0 40.0 0.0 15.0 0.0 40.0 0.0 70.0 0.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gambia, The           
   irrigated 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 0.0 0.0 17.5 20.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 65.0 100.0 100.0 35.0 40.0 100.0 100.0 100.0 100.0 100.0
   subsistence 0.0 0.0 0.0 35.0 40.0 0.0 0.0 0.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ghana           
   irrigated 0.0 0.0 0.0 10.3 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 20.0 0.0 17.9 20.0 0.0 20.0 35.0 0.0 20.0 
   low input rainfed 65.0 40.0 100.0 35.9 40.0 100.0 80.0 40.0 100.0 40.0 
   subsistence 0.0 40.0 0.0 35.9 40.0 0.0 0.0 25.0 0.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Guinea           
   irrigated 0.0 0.0 0.0 13.2 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 20.0 0.0 35.0 0.0 0.0 0.0 
   low input rainfed 100.0 10.0 100.0 26.1 40.0 100.0 65.0 30.0 100.0 30.0 
   subsistence 0.0 90.0 0.0 60.8 40.0 0.0 0.0 70.0 0.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Guinea-Bissau           
   irrigated 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 15.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ivory Coast           
   irrigated 0.0 0.0 0.0 6.8 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 35.0 35.0 0.0 18.6 0.0 35.0 0.0 35.0 0.0 0.0 
   low input rainfed 65.0 40.0 100.0 37.3 10.0 40.0 0.0 40.0 100.0 10.0 
   subsistence 0.0 25.0 0.0 37.3 90.0 25.0 0.0 25.0 0.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
Kenya           
   irrigated 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 20.0 0.0 19.3 0.0 0.0 0.0 0.0 35.0 20.0 
   low input rainfed 50.0 40.0 100.0 77.2 100.0 30.0 30.0 30.0 40.0 40.0 
   subsistence 50.0 40.0 0.0 0.0 0.0 70.0 70.0 70.0 25.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Lesotho           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 35.0 35.0 0.0 0.0 0.0 
   low input rainfed 50.0 100.0 100.0 100.0 100.0 40.0 40.0 100.0 10.0 100.0
   subsistence 50.0 0.0 0.0 0.0 0.0 25.0 25.0 0.0 90.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Liberia           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 20.0 0.0 20.0 20.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 80.0 100.0 40.0 40.0 30.0 100.0 100.0
   subsistence 0.0 70.0 0.0 0.0 0.0 40.0 40.0 70.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Madagascar           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 35.0 20.0 55.0 35.0 35.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 65.0 80.0 45.0 40.0 40.0 30.0 10.0 100.0
   subsistence 0.0 70.0 0.0 0.0 0.0 25.0 25.0 70.0 90.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Malawi           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 35.0 35.0 20.0 20.0 20.0 
   low input rainfed 100.0 62.0 100.0 65.0 100.0 40.0 15.0 30.0 10.0 10.0 
   subsistence 0.0 38.0 0.0 0.0 0.0 25.0 50.0 50.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mali           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 1.2 
   high input rainfed 0.0 20.0 0.0 0.0 35.0 0.0 0.0 19.7 35.0 19.8 
   low input rainfed 100.0 40.0 100.0 100.0 65.0 30.0 30.0 39.5 40.0 39.5 
   subsistence 0.0 40.0 0.0 0.0 0.0 70.0 70.0 39.5 25.0 39.5 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mauritania           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 100.0 100.0 30.0 30.0 40.0 10.0 10.0 
   subsistence 0.0 0.0 0.0 0.0 0.0 70.0 70.0 40.0 90.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Oil Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane 
Sweet 
Potato Wheat Yam 

    (% by area)      
Kenya           
   irrigated 0.0 0.0 0.0 100.0 0.0 0.0 50.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 20.0 0.0 17.5 35.0 35.0 0.0 
   low input rainfed 100.0 10.0 30.0 0.0 40.0 100.0 32.5 40.0 40.0 30.0 
   subsistence 0.0 90.0 70.0 0.0 40.0 0.0 0.0 25.0 25.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Lesotho           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 55.0 
   low input rainfed 100.0 100.0 100.0 100.0 40.0 100.0 100.0 100.0 10.0 30.0 
   subsistence 0.0 0.0 0.0 0.0 40.0 0.0 0.0 0.0 90.0 15.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Liberia           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.0 
   low input rainfed 65.0 40.0 100.0 30.0 100.0 10.0 100.0 30.0 100.0 30.0 
   subsistence 0.0 40.0 0.0 70.0 0.0 90.0 0.0 70.0 0.0 15.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Madagascar           
   irrigated 0.0 0.0 0.0 72.3 0.0 0.0 40.9 0.0 0.0 0.0 
   high input rainfed 35.0 20.0 0.0 9.7 0.0 0.0 11.8 0.0 55.0 0.0 
   low input rainfed 65.0 40.0 30.0 11.1 10.0 100.0 47.3 30.0 30.0 30.0 
   subsistence 0.0 40.0 70.0 6.9 90.0 0.0 0.0 70.0 15.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Malawi           
   irrigated 0.0 0.0 0.0 31.0 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 10.0 40.0 36.0 10.0 90.0 0.0 100.0 10.0 100.0
   subsistence 0.0 90.0 40.0 33.0 90.0 10.0 0.0 0.0 90.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mali           
   irrigated 0.0 0.0 0.0 63.2 1.8 0.0 100.0 0.0 100.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 19.6 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 3.7 39.3 100.0 0.0 10.0 0.0 100.0
   subsistence 0.0 0.0 0.0 33.1 39.3 0.0 0.0 90.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mauritania           
   irrigated 0.0 0.0 0.0 100.0 7.7 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 0.0 9.2 100.0 100.0 10.0 100.0 100.0
   subsistence 0.0 0.0 0.0 0.0 83.1 0.0 0.0 90.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
Mauritius           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
   subsistence 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mayotte           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mozambique           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 20.0 20.0 0.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 65.0 100.0 40.0 40.0 10.0 10.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 40.0 40.0 90.0 89.6 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Namibia           
   irrigated 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 40.0 100.0 100.0 99.6 60.0 60.0 10.0 29.9 10.0 
   subsistence 0.0 60.0 0.0 0.0 0.0 40.0 40.0 90.0 70.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Niger           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 
   high input rainfed 0.0 20.0 20.0 35.0 0.0 20.0 20.0 20.0 19.9 20.0 
   low input rainfed 100.0 40.0 80.0 65.0 100.0 40.0 40.0 40.0 39.8 40.0 
   subsistence 0.0 40.0 0.0 0.0 0.0 40.0 40.0 40.0 39.8 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nigeria           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.5 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 35.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 10.0 100.0 100.0 65.0 10.0 10.0 8.6 30.0 30.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 90.0 90.0 77.8 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Reunion           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Oil Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane 
Sweet 
Potato Wheat Yam 

    (% by area)      
Mauritius           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.0 0.0 
   high input rainfed 0.0 55.0 35.0 0.0 0.0 0.0 28.6 55.0 0.0 20.0 
   low input rainfed 100.0 30.0 40.0 100.0 100.0 100.0 53.1 30.0 100.0 40.0 
   subsistence 0.0 15.0 25.0 0.0 0.0 0.0 0.0 15.0 0.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mayotte           
   irrigated 0.0 0.0 0.0 57.1 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 12.9 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 30.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Mozambique           
   irrigated 0.0 0.0 0.0 12.8 0.0 0.0 76.9 0.0 0.0 0.0 
   high input rainfed 0.0 20.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 40.0 40.0 8.7 30.0 100.0 23.1 30.0 10.0 30.0 
   subsistence 0.0 40.0 25.0 78.5 70.0 0.0 0.0 70.0 90.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Namibia           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 30.0 30.0 60.0 100.0 10.0 57.9 60.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 40.0 0.0 90.0 40.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Niger           
   irrigated 0.0 0.0 20.8 0.4 0.0 0.0 82.6 0.0 35.7 0.0 
   high input rainfed 20.0 20.0 0.0 34.9 20.0 20.0 3.5 20.0 22.5 20.0 
   low input rainfed 80.0 40.0 23.8 39.8 40.0 40.0 13.9 40.0 25.7 40.0 
   subsistence 0.0 40.0 55.4 24.9 40.0 40.0 0.0 40.0 16.1 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nigeria           
   irrigated 0.0 0.0 0.0 50.0 0.0 0.0 100.0 33.3 100.0 0.0 
   high input rainfed 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 40.0 5.0 10.0 100.0 0.0 20.0 0.0 100.0
   subsistence 0.0 0.0 40.0 45.0 90.0 0.0 0.0 46.7 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Reunion           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 30.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
Rwanda           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 35.0 35.0 0.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 65.0 100.0 40.0 40.0 30.0 10.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 25.0 25.0 70.0 90.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sao Tome and Principe          
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Senegal           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 20.0 0.0 0.0 20.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 100.0 80.0 30.0 30.0 40.0 10.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 70.0 70.0 40.0 90.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Seychelles           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sierra Leone           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 55.0 0.0 35.0 35.0 20.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 45.0 100.0 40.0 40.0 40.0 30.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 25.0 25.0 40.0 70.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Somalia           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.5 0.0 
   high input rainfed 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 40.0 100.0 100.0 100.0 30.0 30.0 30.0 7.3 100.0
   subsistence 0.0 40.0 0.0 0.0 0.0 70.0 70.0 70.0 65.3 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
South Africa           
   irrigated 0.0 0.0 0.0 0.0 24.4 0.0 0.0 0.0 3.0 0.0 
   high input rainfed 0.0 20.0 0.0 20.0 0.0 0.0 0.0 0.0 35.0 20.0 
   low input rainfed 100.0 30.0 100.0 80.0 75.6 50.0 75.0 50.0 52.0 30.0 
   subsistence 0.0 50.0 0.0 0.0 0.0 50.0 25.0 50.0 10.0 50.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Oil Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane 
Sweet 
Potato Wheat Yam 

    (% by area)      
Rwanda           
   irrigated 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 20.0 20.0 10.0 20.0 0.0 20.0 0.0 0.0 0.0 
   low input rainfed 100.0 40.0 40.0 20.0 40.0 10.0 80.0 30.0 10.0 10.0 
   subsistence 0.0 40.0 40.0 20.0 40.0 90.0 0.0 70.0 90.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sao Tome and Principe          
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 30.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Senegal           
   irrigated 0.0 0.0 0.0 47.2 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 35.0 0.0 35.0 18.5 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 65.0 100.0 40.0 21.1 30.0 100.0 0.0 10.0 100.0 100.0
   subsistence 0.0 0.0 25.0 13.2 70.0 0.0 0.0 90.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Seychelles           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 30.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sierra Leone           
   irrigated 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 0.0 0.0 0.0 20.0 0.0 55.0 0.0 0.0 0.0 
   low input rainfed 65.0 10.0 100.0 9.3 40.0 100.0 45.0 10.0 100.0 10.0 
   subsistence 0.0 90.0 0.0 83.7 40.0 0.0 0.0 90.0 0.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Somalia           
   irrigated 0.0 0.0 0.0 100.0 13.2 0.0 100.0 100.0 100.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 100.0 100.0 0.0 8.7 100.0 0.0 0.0 0.0 100.0
   subsistence 0.0 0.0 0.0 0.0 78.1 0.0 0.0 0.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
South Africa           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 31.6 0.0 22.7 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 20.0 0.0 17.5 35.0 35.0 0.0 
   low input rainfed 100.0 60.0 60.0 70.0 30.0 90.0 50.9 50.0 32.3 90.0 
   subsistence 0.0 40.0 40.0 30.0 50.0 10.0 0.0 15.0 10.0 10.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
St. Helena           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 100.0 100.0 100.0 30.0 30.0 30.0 90.0 10.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 70.0 70.0 70.0 10.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sudan           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 32.4 26.0 47.8 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 23.7 23.7 0.0 0.0 0.0 
   low input rainfed 100.0 10.0 100.0 100.0 100.0 59.4 27.0 7.4 5.2 10.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 16.9 16.9 66.6 47.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Swaziland           
   irrigated 0.0 0.0 0.0 0.0 68.8 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 35.0 35.0 35.0 35.0 0.0 
   low input rainfed 100.0 100.0 100.0 100.0 31.3 40.0 40.0 40.0 40.0 100.0
   subsistence 0.0 0.0 0.0 0.0 0.0 25.0 25.0 25.0 25.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Tanzania           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 
   high input rainfed 0.0 20.0 35.0 20.0 0.0 20.0 20.0 0.0 19.8 20.0 
   low input rainfed 70.0 40.0 65.0 80.0 100.0 40.0 40.0 30.0 39.6 40.0 
   subsistence 30.0 40.0 0.0 0.0 0.0 40.0 40.0 70.0 39.6 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Togo           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 20.0 0.0 0.0 0.0 0.0 20.0 
   low input rainfed 100.0 10.0 100.0 65.0 80.0 30.0 30.0 30.0 30.0 40.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 70.0 70.0 70.0 70.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Uganda           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 20.0 20.0 0.0 0.0 10.0 
   low input rainfed 100.0 15.0 100.0 65.0 100.0 0.0 10.0 20.0 45.0 5.0 
   subsistence 0.0 85.0 0.0 0.0 0.0 80.0 70.0 80.0 55.0 85.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Congo, D.R.           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 20.0 0.0 20.0 20.0 0.0 0.0 20.0 
   low input rainfed 100.0 30.0 100.0 80.0 100.0 40.0 40.0 30.0 10.0 40.0 
   subsistence 0.0 70.0 0.0 0.0 0.0 40.0 40.0 70.0 90.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Oil Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane 
Sweet 
Potato Wheat Yam 

    (% by area)      
St. Helena           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 30.0 30.0 30.0 30.0 50.0 100.0 10.0 30.0 30.0 
   subsistence 0.0 70.0 70.0 70.0 70.0 50.0 0.0 90.0 70.0 70.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sudan           
   irrigated 0.0 100.0 100.0 100.0 7.3 0.0 100.0 0.0 100.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 0.0 0.0 0.0 27.8 100.0 0.0 10.0 0.0 100.0
   subsistence 0.0 0.0 0.0 0.0 64.9 0.0 0.0 90.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Swaziland           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 0.0 
   low input rainfed 100.0 10.0 10.0 100.0 30.0 100.0 0.0 10.0 40.0 100.0
   subsistence 0.0 90.0 90.0 0.0 70.0 0.0 0.0 90.0 25.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Tanzania           
   irrigated 0.0 0.0 0.0 7.3 0.0 0.0 100.0 0.0 0.0 0.0 
   high input rainfed 35.0 35.0 20.0 0.0 20.0 0.0 0.0 0.0 35.0 0.0 
   low input rainfed 65.0 40.0 40.0 27.8 40.0 10.0 0.0 10.0 40.0 100.0
   subsistence 0.0 25.0 40.0 64.9 40.0 90.0 0.0 90.0 25.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Togo           
   irrigated 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 35.0 0.0 33.5 20.0 0.0 0.0 35.0 0.0 0.0 
   low input rainfed 65.0 40.0 100.0 38.3 40.0 100.0 100.0 40.0 100.0 10.0 
   subsistence 0.0 25.0 0.0 23.9 40.0 0.0 0.0 25.0 0.0 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Uganda           
   irrigated 0.0 0.0 0.0 9.4 0.0 0.0 3.3 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 20.0 0.0 10.0 25.0 0.0 0.0 35.0 0.0 
   low input rainfed 100.0 30.0 25.0 40.6 10.0 35.0 86.7 5.0 15.0 100.0
   subsistence 0.0 70.0 55.0 50.0 80.0 40.0 10.0 95.0 50.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Congo, D.R.           
   irrigated 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 35.0 0.0 20.0 0.0 0.0 0.0 20.0 0.0 20.0 20.0 
   low input rainfed 65.0 10.0 40.0 9.8 30.0 10.0 80.0 10.0 40.0 40.0 
   subsistence 0.0 90.0 40.0 88.5 70.0 90.0 0.0 90.0 40.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table A1. Continued 

Country 
Barley Cassava Cocoa Coffee Cotton Cowpeas Bean Groundnut Maize Millet

    (% by area)      
Zambia           
   irrigated 0.0 0.0 0.0 0.0 8.7 0.0 0.0 0.0 0.0 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 32.0 20.0 20.0 0.0 20.0 20.0 
   low input rainfed 70.0 30.0 100.0 65.0 59.3 40.0 40.0 10.0 40.0 40.0 
   subsistence 30.0 70.0 0.0 0.0 0.0 40.0 40.0 90.0 40.0 40.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Zimbabwe           
   irrigated 100.0 0.0 0.0 0.0 27.9 0.0 0.0 0.0 0.6 0.0 
   high input rainfed 0.0 0.0 0.0 35.0 0.0 35.0 35.0 0.0 0.0 0.0 
   low input rainfed 0.0 10.0 100.0 65.0 72.1 40.0 40.0 10.0 29.8 10.0 
   subsistence 0.0 90.0 0.0 0.0 0.0 25.0 25.0 90.0 69.6 90.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
 

Country 
Oil Palm Banana Potato Rice Sorghum Soybean Sugar 

Cane 
Sweet 
Potato Wheat Yam 

    (% by area)      
Zambia           
   irrigated 0.0 0.0 0.0 23.1 0.0 0.0 100.0 0.0 100.0 0.0 
   high input rainfed 0.0 0.0 20.0 0.0 20.0 35.0 0.0 55.0 0.0 0.0 
   low input rainfed 100.0 10.0 40.0 7.7 40.0 40.0 0.0 30.0 0.0 100.0
   subsistence 0.0 90.0 40.0 69.2 40.0 25.0 0.0 15.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Zimbabwe           
   irrigated 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 0.0 
   high input rainfed 0.0 0.0 35.0 0.0 0.0 35.0 0.0 0.0 0.0 0.0 
   low input rainfed 100.0 10.0 40.0 100.0 30.0 40.0 0.0 10.0 0.0 100.0
   subsistence 0.0 90.0 25.0 0.0 70.0 25.0 0.0 90.0 0.0 0.0 
   Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Figure A1.  Estimated crop distribution maps of Sub-Saharan Africa 
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Figure A1.  Continued  
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Figure A1.  Continued 
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Figure A1.  Continued 

 



 

 43

REFERENCES 

Anselin, L.  2002. Under the hood: Issues in the specification and interpretation of spatial regression models. 
Agricultural Economics 27, 247-267 

Bera, A. K. and Y. Bilias.   2002. The MM, ME, ML, El, EF and GMM approaches to estimations: A synthesis. 
Journal of Econometrics 107:51-86 

Bruinsma, J., 2000. Personal communication, Unpublished estimates of irrigated and rainfed area and yield by 
country and crop. Data from background tables for Agriculture Toward 2015/30. FAO Rome 2003. 

CAADP, 2006. Comprehensive Africa Agriculture Development Programme. 
http://www.nepad.org/2005/files/caadp.php, last accessed on October 2006. 

Center for International Earth Science Information Network (CIESIN), Columbia University; International Food 
Policy Research Institute (IFPRI); and World Resources Institute (WRI). 2000. Gridded Population of the 
World (GPW), Version 2. Palisades, NY: CIESIN, Columbia University. Available at 
http://sedac.ciesin.columbia.edu/plue/gpw. 

Deichmann, U. 1996. A review of spatial population database design and modeling. Technical Report 96-3, 
Simonett Center for Spatial Analysis, University of California, Santa Barbara, USA. 

FAO (Food and Agriculture Organization). 1981. Report of the Agro-Ecological Zones Project, World Soil 
Resources Report No 48 (1-4).  Rome: FAO 

FAO. 2003. http://www.fao.org/ag/AGL/agll/gaez/index.htm. last accessed July 2003.  

FAO, IFPRI, SAGE. 2006. Agro-Maps. A global spatial database of agricultural land-use statistics aggregated by 
sub-national administrative districts, http://www.fao.org/landandwater/agll/agromaps/interactive/index.jsp 

Fischer, G., M. Shah, H. Velthuizen, F. Nachtergaele. 2001. Global agro-ecological assessment for agriculture in 
the 21st century.   Laxenburg, Austria International Institute for Applied Systems Analysis.  

Friedl, M.A., D. McIver, J. Hodges, X. Zhang, D. Mucnoney, A. Strahler. 2002. Global land cover mapping from 
MODIS: Algorithms and early results. Remote Sensing of Environment 83: 287-302 

GAMS. 2003. http://www.gams.com/. Last accessed May 2003. 

Golan, A. G. Judge and D. Miller. 1996. Maximum entropy econometrics: Robust estimation with limited data.  New 
York: John Wiley & Sons. 

Hansen, M.C., R. Defries, J. Townsend, R. Sohlberg. 2000. Global land cover classification at 1km spatial resolution 
using a classification tree approach. International Journal of Remote Sensing 21: 1331-1364 

Jayne, T.S. 1994. Do high food marketing costs constrain cash crop production? Evidence from Zimbabwe. 
Economic Development and Cultural Change 42 (2): 387-402.  

Jaynes, E. T. 1957. Information theory and statistical methods I, Physics Review 106: 620-630 

Jaynes, E. T. 1979. Where do we stand on maximum entropy?  In The maximum entropy formalism, ed., Levine, 
R.D. and M. Tribus.   Cambridge, MA: MIT Press. 

JRC. 2003. Global land cover 2000 database. Joint Research Center, European Commission. 

Jung, M., K. Kenkel, M. Herold, G. Churkina. 2006. Exploiting synergies of global land cover products for carbon 
cycle modeling. Remote Sensing of Environment 101: 534-553 

Kherallah, M., C. Delgado, E. Gabre-Madhin, N. Minot, and M. Johnson. 2000. The road half traveled: agricultural 
market reform in Sub-Sahara Africa. Food Policy Report.  International Food Policy Research Institute, 
Washington, USA.  

Lencer, S.. H. and D. J. Miller. 1998. Estimation of multi-output production functions with incomplete data: a 
generalised maximum entropy approach. European Review of Agricultural Economics 25: 188-209 



 

 44

Loveland, T.R., B. Reed, J. Brown, D. Ohlen, Z. Zhu, L. Yang. 2000. Development of a global land cover 
characteristics database and IGBP DISCover from 1km AVHRR data. International Journal of Remote 
Sensing 21: 1303-1330 

Luijten, J.C.  2003. A systematic method for generating land use patterns using stochastic rules and basic landscape 
characteristics: results from a Colombian hillside watershed. Agriculture Ecosystem & Environment 95: 
427-441. 

Nelson, G.C. 2002. Introduction to the special issue on spatial analysis for agricultural economists, Agricultural 
Economics 27: 197-200. 

Obare, G.A., S.W. Omamo, and J.C. Williams. 2003. Smallholder production structure and rural roads in Africa: the 
case of Nakuru District, Kenya. Agricultural Economics 28: 245-254.  

Omamo, S.W. 1998. Transport costs and smallholder cropping choices: an application to Siaya District, Kenya. 
American Journal of Agricultural Economics 80: 116- 123.  

Paris, Q., R.E. Howitt. 1998. Analysis of ill-posed production problems using maximum entropy. American Journal 
of Agricultural Economics 80:124-138 

Paris, Q., M. R. Caputo. 2001. Sensitivity of the GEM estimates to support bounds. Working Paper No.01-008. 
Department of Agricultural and Resource Economics, University of California, Davis. 

Preckel, Paul V.  2001. Least squares and entropy: a penalty function perspective. American Journal of Agricultural 
Economics 83 (2): 366-377. 

Renkow, M., D.G. Hallstrom, and D.D. Karanja. 2004. Rural infrastructure, transactions costs and market 
participation in Kenya. Journal of Development Economics 73:349-367 

Robinson, S., A. Cattaneo, and M. El Said.  2000. Updating and estimating a social accounting matrix using cross-
entropy methods. Trade and Macroeconomics Division Discussion Paper No.58. Washington D.C.: 
International Food Policy Research Institute.  

Shen, E. and J. M. Perloff. 2001. Maximum entropy and Bayesian approaches to the ratio problem. Working paper 
January 2001, Department of Agricultural and Resource Economics.  Berkeley, Calif.: University of 
California Berkeley. 

Staal, S.J., I. Baltenweck,  M.W. Waithaka, T. deWolff, L. Njoroge. 2002. Location and uptake: Integrated 
household and GIS analysis of technology adoption and land use, with application to smallholder dairy 
farms in Kenya. Agricultural Economics 27: 295-315. 

Siebert, Stefan, P. Döll and J. Hoogeveen. 2001. Global map of irrigated areas version 2.0. Center for 
Environmental Systems Research, Kassel, Germany: University of Kassel, and Rome, Italy: Food and 
Agriculture Organization of the United Nations. 

Thunen, J.H. von. 1826. Der isolietre Staat in Beziehung auf Landwirtschaft und Nationalökonomie, Gustav Fisher, 
Stuttgart; translation by C.M. Wartenburg (1966) The Isolated State, Oxford University Press, Oxford. 
(1966) The Isolated State, Oxford University Press, Oxford.  

UBOS (Uganda Bureau of Statistics). 2002. Ugandan National Household Survey 1999/2000: Report on the Crop 
Survey Module. Entebbe: Uganda Bureau of Statistics.  

Wood, Stanley, K. Sebastian, F. Nachtergaele, D. Nielsen, and A. Dai. 1999. Spatial aspects of the design and 
targeting of agricultural development strategies.  Environment and Production Technology Division 
Discussion Paper No. 44.  Washington, D.C.:  International Food Policy Research Institute. 

Wood, Stanley, K. Sebastian and S. Scherr, 2000. Pilot analysis of global ecosystems: Agroecosystem.  A joint 
study.  Washington D.C.: International Food Policy Research Institute and World Resource Institute.  

You, L. and S. Wood, 2003. Spatial allocation of agricultural production using a cross-entropy approach.  
Environment and Production Technology Division Discussion Paper No. 126. Washington D.C.: 
International Food Policy Research Institute. 



 

 45

You, L. and S. Wood. 2006. An entropy approach to spatial disaggregation of agricultural production. Agricultural 
Systems Vol.90, Issues1-3 p.329-347.  

Zhang, X. and S. Fan, 2001. Estimating crop-specific production technologies in Chinese agriculture: a generalized 
maximum entropy approach. American Journal of Agricultural Economics 83(2): 378-388. 

 



 

 



 

 

RECENT IFPRI DISCUSSION PAPERS 

For earlier discussion papers, please go to www.ifpri.org/pubs/pubs.htm#dp. 
All discussion papers can be downloaded for free. 

724. Assessing the impact of the national agricultural advisory services (NAADS) in the Uganda rural livelihoods. Samuel 
Benin, Ephraim Nkonya, Geresom Okecho,  John Pender, Silim Nahdy, Samuel Mugarura, Edward Kato, and Godfrey 
Kayobyo, 2007. 

723. Rural investments to accelerate growth and poverty reduction in Kenya. James Thurlow, Jane Kiringai, and Madhur 
Gautam, 2007. 

722.      Smallholders’ commercialization through cooperatives: A diagnostic for Ethiopia. Tanguy Bernard, Eleni Gabre-
Madhin, and Alemayehu Seyoum Taffesse, 2007. 

721. Understanding policy volatility in Sudan. Khalid El Harizi, El Sayed Zaki, Betina Prato, and Ghada Shields, 2007. 

720. The impact of the Central America free trade agreement on the Central American textile maquila industry. Hans G.P. 
Jansen, Sam Morley, Gloria Kessler, Valeria Piñeiro, and Marco Sánchez, 2007. 

719. The Food retail revolution in poor countries: Is it coming or is it over?: Evidence from Madagascar. Bart Minten, 2007. 

718. The economic impact and the distribution of benefits and risk from the adoption of insect resistant (bt) cotton in West 
Africa. Jose Falck-Zepeda, Daniela Horna, and Melinda Smale, 2007. 

717.  Quality control in non-staple food markets: Evidence from India. Marcel Fafchamps, Ruth Vargas Hill, and Bart Minten, 
2007. 

716.  Investment, subsidies, and pro-poor growth in rural India. Shenggen Fan, Ashok Gulati, and Sukhadeo Thorat, 2007. 

715. Risk aversion in low income countries: Experimental evidence from Ethiopia. Mahmud Yesuf and Randy Bluffstone, 
2007. 

714. Micro-level analysis of farmers’ adaptation to climate change in southern Africa. Charles Nhemachena, and Rashid 
Hassan, 2007. 

713. Resource abundance and regional development in China. Xiaobo Zhang, Li Xing, Shenggen Fan, Xiaopeng Luo, 2007.  

712. Is food insecurity more severe in south Asia or sub-saharan Africa?: A comparative analysis using household expenditure 
survey data. Lisa C. Smith and Doris Wiesmann, 2007. 

711.  Managing conflict over natural resources in greater Kordofan, Sudan: Some recurrent patterns and governance 
implications. El Fatih Ali Siddig, Khalid El-Harizi, and Betinna Prato, 2007.  

710. Mortality, mobility, and schooling outcomes among orphans: Evidence from Malawi. Mika Ueyama, 2007. 

709. Agricultural technology choices for poor farmers in less-favored areas of south and East Asia. John Pender, 2007. 

708. Sharing science, building bridges, and enhancing impact:  Public private partnerships in the CGIAR. David J. Spielman, 
Frank Hartwich, and Klaus von Grebmer, 2007. 

707. Policies to Promote Cereal Intensification in Ethiopia: A Review of Evidence and Experience. Derek Byerlee, David J. 
Spielman, Dawit Alemu, and Madhur Gautam, 2007. 

706. Sistemas de Innovación Piscícola en la Amazonia Boliviana: Efectos de la Interacción Social y de las Capacidades de 
Absorción de los Pequeños Agricultores.  Frank Hartwich, Vicente Eguez Camacho, Mario Monge, y Luis Ampuero 
Ramos, 2007. 

705. The Role of Clustering in Rural Industrialization: A Case Study of the Footwear Industry in Wenzhou. Zuhui Huang, 
Xiaobo Zhang, and Yunwei Zhu, 2007. 

704. The Economics of GM Food Labels: An Evaluation of Mandatory Labeling Proposals in India. Sangeeta Bansal, Bharat 
Ramaswami, 2007. 

703. The Power Mapping Tool: A Method for the Empirical Research of Power Relations. Eva Schiffer, 2007. 

702. The Bang for the Birr: Public Expenditures and Rural Welfare in Ethiopia. Tewodaj Mogues, Gezahegn Ayele, and 
Zelekawork Paulos, 2007. 



 

 

 

 
 
 
 
 
 
INTERNATIONAL FOOD POLICY  
RESEARCH INSTITUTE 

www.ifpri.org  

IFPRI HEADQUARTERS 

2033 K Street, NW 
Washington, DC 20006-1002 USA  
Tel.: +1-202-862-5600 
Fax: +1-202-467-4439 
Email: ifpri@cgiar.org 

IFPRI ADDIS ABABA 

P. O. Box 5689 
Addis Ababa, Ethiopia 
Tel.: +251 11 6463215 
Fax: +251 11 6462927 
Email: ifpri-addisababa@cgiar.org 

IFPRI NEW DELHI 

CG Block, NASC Complex, PUSA 
New Delhi 110-012 India 
Tel.: 91 11 2584-6565 
Fax: 91 11 2584-8008 / 2584-6572 
Email: ifpri-newdelhi@cgiar.org 


