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1 Introduction

Nitrogen leaching is a major environmental concern, with consequences on water nitrate

concentrations and on nitrous oxide emissions. The introduction of cover crops during the

inter-cropping season has been advocated as one means of reducing N leaching (Meisinger

et al., 1991). In the European Union, winter cover crops are mandatory in vulnerable zones

under the Nitrate Directive (Council of the European Communities, 1991). They may also

be part of agri-environmental schemes under which farmers are entitled to payments if they

adopt cover crops outside the Nitrate Directive vulnerable zones and/or if they commit

to manage the cover crop using a defined set of environmentally-friendlier practices. As

an illustration, in France, such payments amount to 86 and 48 C per hectare, respectively

(Ministère de l’Agriculture et de la Pêche, 2007).

The positive impact of catch crops with respect to N leaching has been widely demon-

strated (Meisinger et al., 1991), especially before spring crops. They may also play an

important role before a winter crop such as winter wheat, which represents one quarter of

European cropland area and is characterized by low N uptake rate during the rainy sea-

son. Recent agronomic studies suggest that cover crops may also have a beneficial effect

with respect to the development of some plant pathogens. Ennäıfar et al. (2005) show

that summer fallow management affects the development of take-all root rot Gaeuman-

nomyces graminis tritici (Ggt), which poses a serious threat to wheat yield when wheat

follows another cereal crop. In particular, the introduction of a cover crop before wheat

may have a ’biofumigation’ effect that reduces take all disease severity (see also Ennäıfar

et al., 2005; Angus et al., 1994; Kirkegaard et al., 1994).

The adoption of a cover crop thus has consequences on the expected net returns and

net-return variance of the following crop (through the effect on take-all severity), as well

as on the environment (through the effect on N leaching). If those two effects are not

taken into account by farmers, private incentives alone are generally not sufficient to

prompt cover crop adoption before wheat because of increased costs and additional work

to do just after harvest. Moreover, the choice of a particular summer fallow management

results from a decision under uncertainty involving climate- and disease-related risks. In

this paper, we assess how the incentives to introduce a cover crop are modified when the

biofumigation effect on take-all and its interaction with N leaching risks are accounted for.
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There is a large body of literature addressing the issue of N leaching, both in economics

and in agronomy. Some studies have combined approaches from both disciplines. This is

the case in Lacroix et al. (2005). The authors use a biophysical model (STICS) and an

economic framework in which uncertainty is explicitly taken into account. They consider

cover crops as part of a set of measures to control N leaching. However, in their analysis,

the authors do not account for the possibility of diseases such as take all. Roberts et al.

(2004) estimate the effect of take-all severity and fertilization sources/timing on wheat

yield mean and variance. Using experimental data, they analyze the risk-return trade-offs

for risk averse farmers. In their study, the authors do not include the impact of summer

fallow management on disease severity.

To our knowledge, the trade-offs between N leaching and disease risk management in

the decision of adopting (or not) a cover crop before wheat has not been studied in the

economic literature. The novel aspect of our paper is to address this question by combin-

ing results from a crop-soil model (STICS), an epidemiological model, and an economic

framework of choice under uncertainty. We focus on the second wheat in a wheat-wheat

succession. Maximum feasible wheat yield and N-leaching are derived from STICS sim-

ulations. STICS is parameterized using soil and climate data from Grignon, located in

the main wheat growing area in France, and pertaining to years 1978-2007. Eight man-

agement practices (four summer fallow management, including two types of cover crop,

times two levels of input intensity) are simulated. The epidemiological model is based

on Ennäıfar et al. (2007) from which we infer the yield loss associated to various disease

ratings and choices of summer fallow management options. The simulated distributions of

climate-related impacts on yield and take-all severity are then introduced in an economic

model that determines the optimal management system on the basis of expected utility.

Equipped with this framework, we examine the optimal management choice of a risk

averse farmer. We compare the situations when the yield loss risk due to take-all is

taken into account and when it is not. We analyze the impact of price instruments aimed

at combating N leaching and discuss the minimum payment needed for cover crop to

be profitable in each case. This payment includes the differences in costs and revenues

associated with each management system, as well as the relative risk premium associated

to each management system. Last, we examine the robustness of our results with respect

to a wide range of values of input parameters using a Monte Carlo sensitivity analysis.
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The rest of the paper is organized as follows. Section 2 presents the economic model

underlying the choice of summer fallow management for a (risk-averse) farmer producing

wheat. In Section 3, we describe the data used in the calibration of the biophysical,

epidemiological and economic models. Optimal managements with and without taking

into account the take-all disease risk are presented in Section 4. We also examine the

impact of various economic instruments on farmer’s optimal choice. Section 5 presents the

results of the Monte Carlo sensitivity analysis. We discuss in particular the distribution of

the minimum payment needed to trigger the adoption of each summer fallow management

(including cover crops) for a wide range of input parameters values. Section 6 concludes.

2 A model of cover-crop adoption under climate and

take-all risks

We consider a (risk-averse) farmer who produces wheat and has to choose among various

input intensities (indexed by i) and summer fallow managements (SFM, indexed by k).

Two types of risks potentially affect wheat yield: a climate risk (denoted by ε̃c) and a

take-all risk (ε̃d). We denote by Fc and Fd the cumulative distribution probabilities of

the climate and the take-all risks. Agronomic evidence suggest that those two risks are

independent.

For a given type of SFM and a given level of input use intensity, the realisation of the

climate risk determines a maximum feasible yield Ymax(ε̃c, k, i), which is defined as the

maximum agronomic yield for the management system (k, i) without taking into account

the impact of the take-all disease. We denote by φ(ε̃c, ε̃d, k, i) the share of yield that is lost

due to the take-all disease. This share depends upon the type of climate year realized.

The realized wheat yield is:

Y (ε̃c, ε̃d, k, i) = Ymax(ε̃c, k, i)
(
1− φ(ε̃c, ε̃d, k, i)

)
(1)

We denote by c(k, i) the per hectare cost of production as a function of the SFM and

the level of input intensity. As we shall examine policy instruments on fertilizer use, we

distinguish between fertilizer costs and other costs :

c(k, i) = wx(i) + cSFM(k) + c0(k, i) (2)

where x(i) denotes the per-hectare nitrogen use, w is the unit nitrogen fertilizer price,

cSFM(k) are SFM-specific costs, and c0(k, i) denotes all other costs. Absent any public
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regulation, the profit of the farmer is thus:

Π(ε̃c, ε̃d, k, i) = a
[
pY (ε̃c, ε̃d, k, i)− c(k, i)

]
(3)

where p represents the price of wheat received by the farmer1 and a the wheat area.

We assume that the farmer’s attitude toward risk can be fully characterized by a utility

function U(.) with U ′(.) > 0 and U ′′(.) < 0. CRRA and CARA utility functions have been

commonly used in the literature examining expected utility based decisions. However,

these assumptions are somewhat restrictive with respect to the slope of absolute and

relative risk aversion measures. In this paper, we retain a hyperbolic absolute risk aversion

(HARA) function, which provides a more general functional form of utility function (see

Merton, 1971):

U(Π) =
1− γ
γ

(
βΠ

1− γ
+ η

)γ
(4)

where β, η, and γ are parameters subject to the restrictions γ 6= 1, β > 0, and η = 1 if

γ = −∞. The measure of absolute risk aversion (λ) is locally given by:

λ(Π) =

(
Π

1− γ
+

1

β

)−1

(5)

The slopes of the absolute and relative risk aversion measures for this functional form can

be made positive or negative with appropriately selected values for the three parameters.

Equation (4) reduces to a CRRA functional form when the parameter η is equal to 0 ;

as the parameter γ goes to infinity, the utility function is asymptotically identical to a

CARA form.

The problem of the farmer is then to select the combination of SFM and input use

intensity that maximizes his/her expected utility of profit. The optimal combination

(k∗, i∗) is thus defined by:

(k∗, i∗) ∈ arg max
k∈{BS,WV,EM,LM},i∈{C,L}

{
EU (Π(ε̃c, ε̃d, k, i))

}
(6)

where E denotes the expectation operator over the joint distribution of climate and take-

all risks.

1Note here that wheat price is assumed to be certain and known to the farmer. A simple extension of
the model would be to explicitly include a price risk, by treating the wheat price as a stochastic component
in the farmer’s program. This, however, would blur the trade-off between take-all and N-leaching that we
focus on in this paper. The sensitivity analysis conducted in Section 5 provides some static comparative
results with respect to the effect of output price.
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The optimal choice depends on the farmer’s risk preferences, climate and the take-all

risks, production costs and wheat price. Notice that if the farmer does not internalize

the impact of his/her production choices on the take-all risk, the solution of the farmer’s

decision problem is simply obtained by replacing Y (ε̃c, ε̃d, k, i) by the maximum feasible

yield, Ymax(ε̃c, k, i), in equation (3).

The solution of (6) corresponds to a situation in which no policy instrument is in place.

In particular, the social cost of N-leaching is not internalized by the farmer. As we shall

consider policy instruments later on in the paper, we introduce a regulated version of the

farmer’s program (6):

(k̂, î) ∈ arg max
k∈{BS,WV,EM,LM},i∈{C,L}

{
EU (Π(ε̃c, ε̃d, k, i) +G)

}
(7)

where G denotes the level of public intervention and can be positive (subsidy) or negative

(tax). We shall examine three policy instruments in Section 4 and 5.

The first instrument we examine is a tax on N leaching. We denote by n(ε̃c, ε̃d, k, i) the

level of per hectare N leaching. N leaching depends on the farmer’s management choices

(fertiliser use and SFM), take all (a high prevalence of the take-all disease implies a lower

N uptake by wheat), and climate realization (in particular autumn and winter rain). The

introduction of a standard Pigovian tax τ implies that G = −τ(an(ε̃c, ε̃d, k, i)).

Second, we consider a tax t on fertilizer use. The rationale for adopting such an input-

based instrument is that it might be difficult in practice for the regulator to compute the

effective level of N leaching and that fertilizer use is less costly to observe. This indirect

instrument would translate into (7) by G = −t(ax(i)). Notice that, in our framework,

taxing the quantity of fertilizer is equivalent to taxing the conventional use of input

(relative to the low input use case) since nitrogen quantities differ across input intensity

levels but not across SFM types. Compared to the case of a Pigovian tax on N leaching,

taxation of nitrogen induces an efficiency loss since for the same quantity of nitrogen x(i),

the level of N-leaching varies across SFM types.

The last instrument we consider is a direct payment G = as(k, i) to each combination

of SFM and input use (a tax if s(k, i) < 0). Compared to the use of a Pigovian tax, the

loss of efficiency is due to the fact that N-leaching for EM or LM varies according to input

intensity (conventional or low nitrogen use).
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In Sections 4 and 5, we shall also determine the minimum per hectare payment re-

quired for a particular management system to emerge in the optimum. Formally, we shall

compute s(k, i) such that:

EU
(
Π(ε̃c, ε̃d, k, i) +G+ as(k, i)

)
= EU(Π(ε̃c, ε̃d, k̂, î) +G

)
for all (k, i) (8)

where (k̂, î) is the optimum combination resulting from program (7).

3 An empirical application to France

In this section, we present the data and models used to represent the conditions of a

typical wheat-producing farm in Grignon (48o50’N; 1o57’E). Grignon is located in the

Paris Basin, the main French wheat growing area.

3.1 Summer fallow and input use management

Summer fallow (SF) management Input intensity (k, i)
Bare soil conventional (BS,C)
Bare soil low input (BS,L)
Wheat volunteers conventional (WV,C)
Wheat volunteers low input (WV,L)
Early mustard destruction conventional (EM,C)
Early mustard destruction low input (EM,L)
Late mustard destruction conventional (LM,C)
Late mustard destruction low input (LM,L)

Table 1: Farmer’s summer fallow management and input intensity choices

Four types of SFM are considered (k ∈ {BS, WV, LM, EM}). They vary according

to the type of soil tillage, the sowing date, and the nature of the cover crop (see Table 1).

The first type of SFM is bare soil (BS) from harvest of preceding wheat to sowing of the

following wheat. The second option available to the farmer is to allow wheat volunteers

(WV) from harvest of preceding wheat to sowing of the following wheat. With WV, soil

is not tilled until the next wheat sowing. The third and fourth types of SFM correspond

to the introduction of a catch crop, namely white mustard. To account for the influence

of the length of the mustard growth cycle on N leaching, we further distinguish between

two options, whether the wheat sowing date (i) is the same as in the two previous cases

and catch crop destruction occurs just before this date (early mustard destruction, EM),

or (ii) is delayed, thus permitting a later destruction of the mustard (LM).
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In addition, the farmer may opt for conventional or low input use (i = {C, L}). The

conventional (C) and low input (L) practices differ according to wheat yield targets that

define fertilizer use, sowing density, and chemical protection. The conventional crop man-

agement is defined according to a 10 t.ha−1 yield target, which imposes a high sowing

density (275 grains.m−2), high levels of N fertilization to meet high nitrogen requirements

(300 kgN.ha−1), and high chemical protection. The low-input is defined for a medium yield

target (7.5 t.ha−1), involving a 60% lower sowing density than under conventional manage-

ment, nitrogen requirements of 225 kgN.ha−1 and less chemical protection. Fertilization

is calculated using the N balance at the end of winter and is based on N requirements,

mineralized N, final soil residual nitrogen objective at harvest of 40 kgN.ha−1 (Goulevant

et al., 2008).

Table 2 synthesizes the assumptions regarding summer fallow and wheat management

retained in the simulations. A detailed discussion of the underlying assumptions from an

agronomic standpoint can be found in Goulevant et al. (2008).

3.2 Maximum yields

The maximum feasible wheat yield, Ymax(ε̃c, k, i) is obtained from STICS simulations.

STICS is a generic crop-soil model simulating the crop growth from sowing to harvest at

a daily time scale (Brisson et al., 1998). It is based on biomass accumulation and radiation

use efficiency concepts. Given input parameters defining climate, soil, cultivar, and crop

management, STICS calculates the quantity and quality of harvested grains, drainage and

nitrate leaching, and outputs related to the evolution of the soil characteristics under the

influence of the crop. STICS has been validated and parameterized for various crops and

a wide range of pedo-climatic conditions2. Parameterizations of STICS for white mustard

(growth, N mineralization from decomposition of residues) are available and have been

validated under field conditions (Dorsainvil, 2002; Justes and Mary, 2004; Justes et al.,

2004).

The pedo-climatic parameters used in the simulations pertain to a deep and silty

soil, with 190 mm of plant-available water. The simulations were initialized with soil

residual nitrogen at harvest of the preceding crop of 40 kg ha−1. The preceding crop for

all simulations is winter wheat. The climate database includes the daily minimum and

2More information on the STICS model can be found at www.avignon.inra.fr/stics/.
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Table 2: Description of summer fallow and wheat management options.
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maximum temperatures, rainfall, global radiation, and potential evapotranspiration for

thirty years from 1978 to 2007. The average temperature calculated during the whole year

is 11oC, annual global radiation is 4117 MJ.m−2, annual rainfall is 605 mm, and annual

evapotranspiration is 725 mm.

The maximal feasible yield at harvest is simulated for each year by STICS. Simulations

have been run over thirty years (1978-2007) for each combination of SFM and input inten-

sity. Summary statistics of Ymax(ε̃c, k, i) are presented in Table 3. Absent any impact of

take-all, the highest average yield is obtained with conventional input use and a bare soil

during summer. This management option is also characterized by the lowest variability

among conventional input use systems. In accordance with the above discussed assump-

tion governing the level of N fertilization, input intensity has a significant impact on wheat

yield, with low input systems leading to 26% lower yields on average than conventional

ones.

Mean Std dev. Max Min
BS C 9.10 1.56 11.10 5.09

L 7.13 1.11 8.47 4.42
WV C 9.00 1.73 11.19 4.32

L 7.12 1.22 8.50 3.86
EM C 8.98 1.76 11.22 4.19

L 7.01 1.25 8.54 3.63
LM C 8.94 1.87 11.33 4.19

L 7.10 1.31 8.52 3.71

Table 3: Wheat yields (in t.ha−1) from STICS Simulations 1978-2007

3.3 Economic parameters

Unit costs associated with the eight management options are given in Table 4. These costs

include fixed and variable costs associated with summer fallow managements, fertilization,

and other field operations (sowing, chemical protection) described in Table 2.

Fertilizer cost is based on a fertilizer price assumption of 1 C.kg−1 and on quantities

corresponding to the respective yield target of conventional and low input systems. The

unit cost of production ranges from 369 C.ha−1 for WV with low level of input intensity

to 737 C.ha−1 in the case of EM with a conventional level of input. The cost advantage

of WV is mainly due to the absence of costs during the summer fallow period. Therefore,

it allows savings compared to BS, which requires three stubble ploughing during summer.
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Unit costs(∗) N-fertilizer costs (∗∗) SF management Other costs
(c) (wx) (cSF) (c0)

k i Mean Min Max
(C.ha−1) (C.ha−1) (C.ha−1) (C.ha−1)

BS C 728 198 170 220 60 470
L 435 123 95 145 60 252

WV C 656 201 180 210 - 455
L 369 126 100 135 - 243

EM C 737 211 200 225 71 455
L 451 137 125 150 71 243

LM C 671 214 195 225 71 386
L 453 139 115 150 71 243

(∗) Using average quantity of fertilizer use. (∗∗) Based on a fertilizer price of 1 C.kgN−1 (see text).

Table 4: Costs of production

The cost of a mustard cover crop includes one stubble ploughing in August, the sowing of

the cover crop and the destruction of the cover crop (in mid October and mid-november

for EM and LM, respectively). The SFM choice induces some minor differences in the

other production costs. The late mustard cover crop implies lower production costs in

C management due to the assumption of late sowing excluding the need for chemicals

during implantation.

The wheat price effectively paid to farmers (p, in C.t−1) varies according to the protein

content (rp, in percent). Based on the information provided by a large grain cooperative

in the area of study (2008), we use a price scheme, whereby a high (low) protein content

triggers a premium (penalty) relative to some reference price (pi):

p =


pi − 5 if rp < 10%

pi − 2(11− rp) if 10% ≤ rp ≤ 11%

pi + 2(rp − 11.5) if 11.5% ≤ rp ≤ 12.5%

pi + 2 if rp > 12%

(9)

rp is calculated by STICS and depends on climatic conditions and the wheat crop

management. In the base simulations (see Section 4), pi is set to 200 C.t−1 and wheat

area is set to one hectare (a = 1). These assumptions will be relaxed in the sensitivity

analysis presented in Section 5.

In the base simulations, we set the parameters defining the farmer’s utility function

to satisfy the usual properties of farmer’s risk preferences, including decreasing absolute

and relative risk aversion (see Chavas and Holt, 1996). γ, β and η are set to -3, 0.1, and

1, respectively. For a total profit equal to 5,000C, the levels of absolute and relative risk
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aversion are respectively 0.08 and 0.49 which is compatible with a moderately risk-averse

farmer. In Section 5, a wider range of these values will be explored.

3.4 Take-all incidence and yield loss

Ennäıfar et al. (2007) have developed several models to predict the incidence of take-

all disease on winter wheat as a function of crop management, soil characteristics, and

climate. The models have been built and validated on a large database, which includes

data on the area of study. It has been shown that the use a disease measurement at a

very early stage of the plant cycle greatly improves the prediction of the models. In our

simulations, we chose StatL1+ , an additive static model with one of the best predictive

value (Ennäıfar et al., 2007).

This disease score (Fsem30) is the percentage of plants with diseased seminal roots at

the leaf shealth erect stage of the crop cycle (GS30). From this score, the epidemiological

model predicts the percentage of wheat yield loss.

Other variables of the epidemiological model include climatic variables, soil texture,

field crop history (two preceding crops and tillage management), sowing density, amount

of ammonium in nitrogen fertilization applications.

Ennäıfar et al. (2005) have showed that the type of the cover crop has a strong influence

on the Fsem30 value of the following wheat. Following Ennäıfar et al. (2005), the range of

expected Fsem30 values for each are set to (0, 20, 40) for BS, (20, 35, 50) for LM, (40, 55,

70) for EM, and (70, 85, 100) for WV. In the base simulations, the two extreme realizations

of the FSem30 ranges are assigned the same probability (1/6), whereas the central value

is assigned a probability of 2/3. The climatic parameters are drawn randomly among the

set of climatic years. Each year is assigned the same probability.

The take-all related yield loss φ(ε̃c, ε̃d, k, i) is calculated for each year, each SFM, each

level of input intensity, and each value of Fsem30. Summary statistics of the resulting

values are provided in Table 5.

As expected, the lowest reduction in wheat yield obtained under BS management,

whereas WV is the most vulnerable SFM. The introduction of catch crop (either EM or

LM) lead to intermediate performances in term of wheat yield.
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Mean Std dev. Max Min
BS C 7.96 6.17 22.71 0.00

L 7.68 6.05 22.27 0.00
WV C 35.50 6.21 46.11 20.94

L 35.15 6.28 45.93 20.50
EM C 21.50 7.09 36.03 7.45

L 21.06 7.07 35.65 7.14
LM C 15.10 6.38 28.75 4.16

L 13.66 6.21 27.07 3.11

Table 5: Yield loss (in %) due to the take-all disease Simulations 1978-2007 for the three
level of FSEM30 per summer fallow × crop management

3.5 N-leaching estimations and its implementation in the eco-
nomic model

N leaching is obtained by combining simulations both from the agronomic and the epi-

demiological model. N-leaching depends on the amount of soil mineral nitrogen during the

period of high rainfall and low vegetation growth (autumn and winter). Two components

play a role in N leaching: (i) initial soil residual nitrogen after the harvest of the preceding

crop, and (ii) N uptake during and after the inter cropping season. The introduction of a

cover crop tends to increase N uptake. Wheat management (in particular N-fertilization),

climatic conditions and take-all disease severity have an impact on N-uptake and on final

soil residual nitrogen, which in turn may result in N-leaching the following year. As our

approach is static, we have to take into account the variations between initial and final

residual nitrogen in the soil, which represents a potential N-leaching. To this effect, we

distinguish between two components in total N-leaching:

n(ε̃c, ε̃d, k, i) = nL(ε̃c, k, i) + b(k) (HRN(ε̃c, ε̃d, k, i)− HRNinit) (10)

In Equation (10), nL(ε̃c, k, i) represents the ’direct’ (per hectare) N-leaching, which

depends only on the initial soil nitrogen after the preceding wheat harvest and on the

cover crop management3. nL is obtained from STICS simulations results. HRNinit is the

initial soil residual nitrogen at harvest, assumed to be 40 kg.ha−1. HRN(ε̃c, ε̃d, k, i) is the

soil residual nitrogen. It accounts for the quantity of nitrogen that has not been absorbed

because of the disease. We use the same assumptions as Goulevant et al. (2008) with

regard to the share of this quantity of nitrogen that remains in soil. Last, b(k) is the

3This component may also depend, albeit to a very limited extent, on wheat management because of
minor differences in implantation techniques between management systems.
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SFM-specific N-leaching effect of the residual nitrogen in soil. It is obtained from an

estimation of the relationship between the N-leaching and the soil residual nitrogen at

harvest, through simulations using STICS over thirty years under different soil residual

nitrogen levels and for the different cover crop managements (Goulevant et al., 2008).

Mean Std dev. Max Min
BS C 8.183 13.730 49.930 -5.520

L 8.175 14.147 51.310 -5.290
WV C 6.841 11.221 36.200 -5.200

L 6.607 11.558 37.800 -5.200
EM C 5.538 9.085 32.920 -4.420

L 5.661 9.522 34.600 -4.420
LM C 5.741 9.226 27.740 -5.520

L 5.801 9.571 27.555 -5.290

Table 6: Total N-leaching (in kg ha−1) from STICS simulations 1978-2007 including the
impact of take-all disease

The effective N-leaching by SFMs and by level of input intensity are given in Table 6.

As expected, using a white mustard as a catch crop results in the lowest average N-

leaching. White mustard has been proved to reduce leaching by a fast growth rate and a

high N-uptake (Atallah and Lopez-Real, 1991). This is reinforced by its impact on take-all

disease (Angus et al., 1994; Ennäıfar et al., 2005). Conversely, ’bare soil’ is the worst SFM

in terms of N-leaching. With a BS soil tillage simply consists in some stubble ploughings

during the summer period, at given depth. As a result, the risk of N-leaching from harvest

of the preceding wheat to sowing is high. Yet, as shown by Ennäıfar et al. (2007), BS

significantly reduces the risk of take-all. Wheat volunteers systems play a role in reducing

nitrate leaching (see also Macdonald et al., 2005). However, such systems increase take-all

incidence and severity on the following wheat crop (Ennäıfar et al., 2005).

4 Results

The base scenario assumptions regarding input parameters discussed in Section 3 are

summarized in Table 7 (column ’Base’). Wheat and fertilizer prices correspond to observed

levels in 2007. The distribution of the probability of occurrence of one particular Fsem30

value (out of three) plays a key role in the assessment of the impact of take-all risks.

In absence of sufficient experimental evidence, we assume that the central value of the

range given by Ennäıfar et al. (2007) for each management system is associated with a
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Assumptions
Base Sensitivity analysis

Economic parameters
Wheat price (pi) 200 C.t−1 [90; 290] (Uniform)
Area (a) 1 ha [1; 50] (Uniform)
Fertilizer price (w) 1 C.kgN−1 [0.5; 4] (Uniform)
N-leaching tax (τ) 0 C.kgN−1 [0; 4.5] (Uniform)

Utility function
β -0.1 [0.1; 2] (Uniform)
η 1 [5; 10] (Uniform)
γ -3 [−3;−1] (Uniform)

Range of FSem30
(f1, f2, f3) BS: (0, 20, 40); WV: (70, 85, 100); EM: (40, 55, 70); LM: (15, 30, 45)

Probability of each FSem30 ∗

(P1, P2, P3) (1/6, 2/3, 1/6) P1 ∈ [0; 1/3], P1 = P3, P2 = 1− P1 − P3 (Uniform)
∗ Pi denotes the probability of Fsem30 being equal to fi.

Table 7: Input parameters: Assumptions in the base scenario and in the Monte Carlo
sensitivity analysis

probability P2 = 2/3 and that the probabilities that the two extreme values occur are

equal to P1 = P3 = 1/6.

Economic indicators for each of the eight management systems examined under the

base asumptions are presented in Table 8. We first consider the situation in which the

risk of a take-all outbreak is not taken into account by the farmer. The impact of take-

all on yield (φ(ε̃c, ε̃d, k, i)) is thus set to 0 for all management systems. It follows that

Y (ε̃c, ε̃d, k, i) is assumed to be equal to Ymax(ε̃c, k, i) for all (k, i) in this case; the only

remaining risk faced by the farmer therefore results from climate variability. Columns 3

to 5 in Table 8 present the corresponding results in terms of expected utility and mean

and variance of profit. Columns 7 to 9 refer to the case where the farmer’s optimization

program includes the take-all effect φ(ε̃c, ε̃d, k, i). The latter is computed based on the

relationships given by Ennäıfar et al. (2007).

Under the base assumptions and when the risk of yield loss due to take-all is ignored

by the farmer, WV (wheat volunteers) combined with conventional input use yields the

highest expected utility. This system is associated with low costs and relatively high yield

(absent any take-all impact). However, this system is also the most vulnerable to the

development of the take-all disease. It is therefore not chosen when take-all related yield

loss is accounted for. In the latter case, the optimal summer fallow management consists
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Without take-all risk With take-all risk
k i EU(Π) E(Π) V (Π) s EU(Π) E(Π) V (Π) s

(kC.ha−1) (kC.ha−1) (kC.ha−1) (kC.ha−1)
BS C -1.233 1.066 7.642 0.051 -1.245 0.930 7.238 .

L -1.241 0.968 3.926 0.147 -1.251 0.866 3.738 0.063
WV C -1.228 1.118 9.460 . -1.286 0.483 4.717 0.445

L -1.236 1.029 4.731 0.086 -1.281 0.534 2.441 0.394
EM C -1.236 1.030 9.761 0.088 -1.271 0.649 6.975 0.281

L -1.245 0.928 4.968 0.187 -1.272 0.636 3.606 0.291
LM C -1.230 1.095 10.938 0.024 -1.254 0.828 8.732 0.102

L -1.243 0.945 5.345 0.170 -1.261 0.755 4.513 0.173

Table 8: Expected utility, expected profit, variance of profit, and minimum subsidy under
base assumptions with (right) and without (left) taking into account take-all risk. The
highest expected utility in each case is indicated in bold.

of bare soil from harvest of the preceding crop to sowing. In both cases, conventional

input use is preferred.

Obviously, our assumptions regarding the parameters of the utility function matter

in the ranking of management systems. The base combination of assumptions for β, γ,

and η leads to a quite moderate risk-aversion. As an illustration, regardless of the role of

take-all on yields, the preferred management system pertains here to the highest expected

profit, as well as a relatively high level of variance.

In order to compare management systems yielding profits that differ in both expected

levels and variability, we compute the minimum payment s for each management system

such that it emerges in the optimum. s is thus the solution of Equation (6) and embeds

not only the differences in profitability, but also the risk premium differential. The results

without and with take-all risk are presented in columns 6 and 10 of Table 8, respectively.

Absent any yield loss due to take-all, s ranges from 24 to 187 C.ha−1. (By (8), the

minimum subsidy for the optimal system (k̂, î) under the base assumptions is zero). The

implementation of a mustard combined with late crushing, late sowing of wheat, and

combined with conventional management (LM,C) requires a payment of only 24 C.ha−1

to secure the same expected utility as (WV,C). This low level of s can be explained

by the cost advantage of (LM,C) that compensates low yields and a high variance of

profit. At the other end of the spectrum, early mustard (EM) combined with low input

use requires the highest payment to match the expected utility associated with (WV,C).

Whatever the type of SFM, low-input management systems require higher payments than
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conventional management, reflecting the absence of incentives to internalize environmental

externalities.

When accounted for, the risk of a take-all outbreak greatly modifies the ranking of

management systems based on expected utility. This changes explained by the change

in both absolute levels of profit and probability distribution. From the results presented

in Table 8, one can note that the choice of SFM matters more than input management

in this ranking. As WV-based systems are the most vulnerable to take-all risk, the

payment needed for these systems to yield the same expected utility as (BS, C) is markedly

higher than without take-all risk. It reaches 394 and 445 C.ha−1 in the case of low

and conventional input use, respectively. Interestingly, low-input management requires a

smaller payment than conventional management when combined with wheat volunteers.

This is due to a lower variance of yields in this case.

As it lowers the farmer’s exposure to take-all risks, bare soil-based systems plays the

role of an insurance and clearly outperforms all other SFM systems. Even combined

with low input use, ’bare soil’ yields higher expected utility than any other management

system. For all other SFM, the payment needed to match BS expected utility is greater

than in the case without take-all risk. At least 102 C.ha−1 are needed for a catch crop

to emerge in the optimum. Such a level of subsidy would allow a late crushing mustard

combined with conventional input management to break even with (BS,C). Again, this

reflects a cost advantage of LM over EM that offsets the yields differential. An additional

payment of 71 C.ha−1 is needed for farmers to adopt LM in combination with low-input

management systems.

As SFM and input management systems have contrasted impacts on the environment,

we examine how farmers’ optimal choice might be affected by policy instruments. We first

introduce a tax on N-leaching. We assume that N-leaching can be observed and computed

using equation (10). The examined tax varies from 0 to 4.5 C.kgN−1 by steps of 0.5C.

The corresponding results are presented in Figures 1.a and 1.b. Again, we distinguish

between whether take-all risks are accounted for (right) or not (left) by the farmer.

Even for high levels of the tax on N-leaching, the ranking of SFM and input manage-

ment systems is not modified. This suggests that the differences in N-leaching are not

sufficiently large to offset differences in cost and yield differential. Of course, the profit

is reduced by the introduction of the tax. But the ranking of expected utilities is not
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a. Without take-all risk b. With take-all risk

Figure 1: Impact of an N-Leaching tax on expected utility

modified to the extent that it triggers a change in optimal management under the base

assumptions.

The picture is different when a tax on fertilizer use is introduced. Figures 2.a and

2.b present the results (without and with take-all risk, respectively) for a tax on fertilizer

ranging from 0 to 2.25 C.kgN−1. Practices that rely on conventional wheat manage-

ment are relatively more penalized by such a tax. The relative profitability of low-input

management systems therefore increases with respect to the fertilizer tax. For a given

SFM, the tax triggers a switch from conventional to low-input systems for levels of the

tax above 0.75 C.kgN−1. Two exceptions are however noteworthy when take-all risks

are taken into account: WV, for which low-input management dominates conventional

management without any tax on fertilizer, and EM, for which a small tax is sufficient for

low-input systems to yield a higher expected utility than conventional management.

Nevertheless, the introduction of a fertilizer tax does not modify the optimal choice of

summer fallow management. The latter is robust to relatively large changes in N-input

prices. Under our base assumptions and whatever the level of the tax, WV yields the

highest levels expected utility when yield losses due to take-all are not taken into account,

and BS remains preferable when this risk is accounted for by the farmer. The only change

triggered by the fertilizer tax is a switch from conventional to low-input systems. This

occurs for a tax in the neighborhood of 1.25 and 0.75 C.kgN−1 for WV (without take-all)

and BS (with take-all), respectively.
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a. Without take-all risk b. With take-all risk

Figure 2: Impact of a tax on N fertilizer on expected utility

5 Sensitivity analysis

In order to assess the robustness of the SFM choices, we conduct a sensitivity analysis.

As experimental data are not sufficient to set the input parameters based on observed

ranges for all the relevant parameters, we rely on Monte Carlo simulations.

Three main categories of input parameters are examined: economic parameters, the

probability of occurrence of extreme realisations of Fsem30, and the farmer’s attitude to-

ward risk as summarized by the parameters defining the utility function (see equation (4)).

The ranges and distribution used in the Monte Carlo sensitivity analysis are summarized

in the last column of Table 7.

The wheat price range (before adjustment for protein content) is set slightly wider

than the maximum spread in observed farm prices over the period 2000-2007. The range

assumed for fertilizer price is also admittedly wide compared to historic and current

prices. This assumption has been made in order to accommodate for the possibility of a

fertilizer tax, the introduction of which is formally equivalent to an increase of the nitrogen

price in the model. In addition, we consider the possibility of a tax on N-leaching. The

combination of a tax on N-leaching and potentially high nitrogen price tends to favor the

adoption of low input management systems in comparison to the base simulations. Total

farm-level wheat area was normalized to unity in the base scenario. It is now allowed to

vary from 1 to 50 ha to account for the impact of wealth on the farmer’s risk aversion.
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The probability that a particular value of Fsem30 occurs (out of three possible out-

comes for each SFM) affects the expected utility through its impact on wheat yield. We

relax the assumption about the distribution made in the base scenario. However, we

maintain that the central value of Fsem30 provided by plant pathologists remains the

mode (P2 ≥ 1
3
). Furthermore, we assume that the two extreme outcomes of FSem30 are

equiprobable (P1 = P3). The corresponding probabilitues are randomly drawn from [0; 1
3
].

The parameters defining U(.) are randomly drawn, and chosen such that the conditions

implied by the HARA functional forms are fulfilled. Instead of imposing a priori restric-

tions on the values of β, η, and γ, we draw these values from independent distributions

and retain only the combinations that ensure that U(.) is defined with the appropriate

properties.

The set of input parameters is constructed by iteratively and independently drawing

their values from uniform distributions, which ranges are given in Table 7. 10,000 sets

of parameters are contructed. 8,180 are kept after discarding the combinations that do

not fulfill the conditions given in Section 2. The simulations are replicated with two sets

of parameters. In both sets, the parameters have the same values except for the take-all

related yield loss and its impact on N-leaching, which is set either to 0 (“without take

all”) or computed by the take-all model (“with take-all”).

The results confirms the advantage of wheat-volunteers (WV) when the take-all risk is

ignored. This SFM yields the highest expected utility in a vast majority of the simulations

(95%, 69% combined with low input and 26% combined with conventional management).

In the remaining 5%, BS emerges as the optimal SFM in almost all the cases combined

with a conventional input management system. When the probability of yield loss due

to take-all is accounted for, the dominance of BS is also confirmed. Over the whole set

of conducted simulations, this SFM is the only one that emerges in the optimum. It is

combined with low input management in 69% of the simulations.

Figures 3.a and 3.b summarize the distribution of the minimal subsidy needed for

each management system to yield the maximal expected utility (see also Figures 4 and

5 in appendix). For all management systems but BS, the distribution of the minimum

subsidy is shifted upward in the “with take-all” case relatively to the “without take-all”.

This indicates that the relative efficiency of BS in terms of preserving the crop from a

disease outbreak is large compared to the effect on leaching of alternative management
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a. Without take-all risk b. With take-all risk

Figure 3: Monte Carlo sensitivity analysis: Summary of the distributions of s with (right)
or without (left) take-all risk

systems. The insurance effect of a bare soil between the harvest of the preceding crop

and the sowing of wheat clearly dominates other yield and cost considerations for a wide

range of parameter values.

On average, the adoption of mustard would require a minimum subsidy amounting to

127 C.ha−1 absent any risk of take-all, and 152 C.ha−1 if take-all risks are accounted for.

In both cases, these amounts would be sufficient (on average) for a mustard with a late

destruction date and low-input management to compete with the optimal management.

Interestingly, the minimum subsidy associated to this type of SFM is also characterized

by a relatively low variance in comparison to other SFM. It could thus be considered as

a potential candidate for a policy encouraging the adoption of catch crop in the area of

study.

6 Concluding remarks

The choice of the type of summer fallow management in between a wheat-wheat succession

involves trade-offs between (i) standard private interests as reflected in yields and costs,

(ii) environmental impacts on water quality through N-leaching, and (iii) risk management

of a disease outbreak potentially detrimental to the crop. In this paper, we have combined

results from economics, plant pathology, and agronomy to shed some light on this type of

situations.
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Without take-all risk With take-all risk
Mean Std dev. Min Max Mean Std dev. Min Max

(C.ha−1) (C.ha−1)
BS C 114 92 0 400 84 87 0 365

L 74 50 0 342 22 44 0 244
WV C 87 86 0 353 514 99 267 736

L 24 48 0 277 349 138 105 762
EM C 189 91 78 465 373 74 202 568

L 136 48 80 379 260 90 103 567
LM C 142 92 13 412 216 77 56 428

L 127 44 72 353 152 62 45 396

Table 9: Monte Carlo sensitivity analysis: Summary statistics of s with (right) or without
(left) take-all risk

The case study examined in this paper is illustrative of such trade-offs. If the risk of

disease is ignored by farmers, the type of summer fallow management favored by private

incentives alone (“wheat volunteers”, WV) is also the ’worst’ practice with respect to the

development of the disease, possibly leading to significant yield losses. At the same time,

the practice that yields the highest expected utility to farmers fully aware of the disease

risk (“bare soil”, BS) is also the ’worst’ with respect to its impact on water quality through

N-leaching.

Between those two management systems, adoption of a catch crop may appear as

an interesting alternative choice as it provides higher environmental benefits than BS

(through reduction of N leaching), as well as a lower exposure to take-all risk than WV

because of the ’biofumigation’ effect. The results of the simulations conducted in this

paper tend to confirm that private incentives alone are not sufficient to prompt farmers

to adopt mustard as a catch crop. However, the results also show that a standard price

instrument on N leaching might not be sufficient to trigger adoption either, even for high

tax levels compared to current nitrogen prices and even when take-all risks are fully taken

into account by farmers.

The main reason is that the beneficial effect of BS in preventing the development of

the disease provides a protection to the farmer against yield loss. This beneficial (pri-

vate) impact offsets the negative (and public) consequences on nitrogen leaching. Hence,

any incentive scheme meant to convince farmers to switch away from BS must therefore

compensate for the increase in risk, not only for increased costs and/or lower yields.
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From a public policy perspective, N leaching concern and/or take-all risk manage-

ment alone do not justify subsidies, in the context of our case study, to encourage catch

crop adoption within a wheat-wheat succession. Should such payments be implemented,

they should be motivated by the presence of other externalities (soil erosion, water man-

agement, preventing loss of soil organic matter). One finding of the paper is that the

minimum compensation required for farmers to implement a white mustard instead of

BS (when combined with some policy instruments affecting the nitrogen input price) lies

in a range that is comparable to existing CAP-related environmental payments. In this

case, the combination of a catch crop that is destroyed late in the season and a low-input

management may be chosen by risk-averse farmers and would provide some environmental

benefits (reduction of N leaching).

This work can be extended in several directions. The introduction of the possibility of

seed treatment in the economic framework is one. Another is to explicitly account for the

dynamic nature of the problem, both regarding the nitrogen cycle and crop rotation. This

would involve to endogenously determine, rather than impose, the post harvest residual

nitrogen and thus initial soil nitrogen for the following crop. This is left for further

research as it requires a full coupling of the economic and crop-soil models.
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Ennäıfar, S., Makowski, D., Meynard, J.-M., and Lucas, P. (2007). Evaluation of models

to predict take-all incidence in winter wheat as a function of cropping practices, soil,

and climate. European Journal of Plant Pathology, 118:127–143.

Goulevant, G., Jeuffroy, M., Lucas, P., Montfort, F., De Cara, S., Jacquet, F., and Rey-

naud, A. (2008). Combining crop and epidemiological models to simulate the impact of

summer fallow management between two consecutive winter wheat crops on n-leaching

and take-all disease incidence: application to two regions of france. Technical report,

INRA.

Justes, E., Dorsainvil, F., Alexandre, M., and Thiébeau, P. (2004). Simulation with
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Figure 4: Monte Carlo sensitivity analysis: Distribution of s without take-all risk

26



Figure 5: Monte Carlo sensitivity analysis: Distribution of s with take-all risk
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