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Abstract

In this paper we examine theoretically and by simulation whether or not unobserved

heterogeneity independent of the included regressors is really an issue in logit, probit

and loglog models with both binary and fractional data. We found that unobserved

heterogeneity: (i) produces an attenuation bias in the estimation of regression coeffi-

cients; (ii) is innocuous for logit estimation of average sample partial effects, while in

the probit and loglog cases there may be important biases in the estimation of those

quantities; (iii) has much more destructive effects over the estimation of population

partial effects; (iv) only for logit models does not affect substantially the prediction of

outcomes; and (v) is innocuous for the size and consistency of Wald tests for the signif-

icance of observed regressors but, in small samples, reduces their power substantially.
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1 Introduction

In economics, researchers are often interested in explaining a limited dependent variable,  ,

as a function of a set of explanatory variables, . Due to the bounded nature of the variable

of interest, linear specifications often provide an inadequate description of the conditional

mean of  ,  ( |), since no restriction is imposed on the range of values taken by the
predicted outcome. Moreover, when interest lies in the conditional probability of  , Pr ( |),
nonlinear models are typically used. While the omission of relevant explanatory variables that

are independent of the included regressors is relatively innocuous in linear models, it generally

causes inconsistency in the estimation of the parameters of interest in nonlinear models (see

inter alia Gourieroux 2000, pp. 32-33). In this paper we examine the consequences of the

presence of that type of unobserved heterogeneity in logit, probit and loglog models for binary

and fractional or proportionate data.

To the best of our knowledge, there are very few studies examining the consequences

of unobserved heterogeneity in binary and fractional regression models. Moreover, the few

studies undertaken have assumed very restrictive conditions or were only concerned with

the effects of neglected heterogeneity on particular aspects of those models. For example,

Lee (1982) derived conditions under which omission of an orthogonal explanatory variable

would not cause bias in the estimation of the remaining parameters of a binary logit model.

However, those conditions are too stringent to be of practical use. Yatchew and Griliches

(1985) showed that for a binary probit model with a normally distributed omitted variable,

the estimators for the parameters of the included variables suffer from attenuation bias.

Wooldridge (2002, 2005), under similar assumptions, demonstrated that that bias does not

affect the consistent estimation of the partial effect of the observed regressors on the outcome.

Finally, Cramer (2003, 2007) considered the binary logit model and proved formally that

the same bias attenuation would occur in this context if the distribution of the omitted

variables is such that their relegation to the disturbance term of the latent regression equation

that originates the logit model does not change its logistic distribution, which is also a

very strong assumption. However, this last author presents also a small simulation study

which reveals that a particular partial effect, the average sample effect, is quite insensitive

to the inconsistency of the parameters of interest, even in cases where the logit shape of the
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conditional distribution is severely affected.1

Given that calculation of partial effects is often the main aim of empirical work and that

in nonlinear models the analysis of the magnitude of regression coefficients is not relevant

per se, both Wooldridge (2002) and Cramer (2007) suggest that, similarly to what happens

in linear models, unobserved heterogeneity is not an important issue in, respectively, binary

probit and logit models. However, it is not clear whether the robustness of the binary logit

model revealed by the simulation study of Cramer (2007) extends to the binary probit model

(or, in fact, to any other binary or fractional model) since no similar analysis has been carried

out for the latter model. Moreover, there are other quantities of interest in empirical work

that have not been considered by those authors. One example is outcome prediction, which

is relevant not only for the analysis of binary and fractional data but also in the estimation

of multi-part models which require binary outcome prediction in the first stage. Testing the

significance of the observed covariates is clearly another relevant issue for practitioners.

In order to examine these questions, we consider the theoretical framework of Wooldridge

(2002) and Cramer (2007) and extend their results for other quantities of interest and models.

However, given that a more general theoretical approach does not seem to be feasible, in this

paper we conduct also an extensive Monte Carlo study that extends the findings of the cited

papers in several directions. On the one hand, in addition to the binary logit and probit

models, we consider also an alternative asymmetric specification, the loglog model, and, in

each case, both binary outcomes, where interest lies in modelling Pr ( |), and fractional
responses, where the main purpose is modelling  ( |).2 On the other hand, we examine
the consequences of neglected heterogeneity over the performance of standard estimators

for those models at various levels: (i) the magnitude and direction of the parameters of

interest; (ii) the two common forms of calculating partial effects considered separately by

Wooldridge (2002) and Cramer (2007); (iii) the prediction of outcomes; and (iv) the size and

power of Wald tests for the significance of the included regressors. In all cases, we consider

1See also the work by Neuhaus and Jewell (1993) in the area of generalized linear models, which include

the models analyzed in this paper as particular cases. However, their analysis was restricted to the case of a

single observed covariate.
2See Papke and Wooldridge (1996) for a seminal paper on the so-called fractional regression model and

Ramalho, Ramalho and Murteira (2009) for a comprehensive survey on this subject.
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several patterns of neglected heterogeneity by assuming various alternative distributions for

the omitted variables and assigning different weights to their relative importance.

The paper is organized as follows. In Section 2 we establish the framework of the paper,

discussing analytically the consequences of neglected heterogeneity in binary regression mod-

els. The Monte Carlo simulation study to assess the performance of naive estimators in both

binary and fractional regression models is carried out in Section 3. Section 4 concludes.

2 Framework

Consider a random sample of  = 1   individuals and let  be the binary or fractional

variable of interest, defined, respectively, as  = {0 1} and  ∈ [0 1], and 1 and 2 be,

respectively, 1- and 2-vectors of explanatory variables. Denote by 1 and 2 the 1- and

2-vectors of parameters associated with 1 and 2, respectively, and assume that there are

no relevant explanatory variables other than those included in 1 and 2. Assume also that

1 contains an intercept term, 2 is not observed and 1 and 2 are independent. Finally,

assume that

 ( |1 = 1 2 = 2) =  (11 + 22) , (1)

where  () is defined as 
¡
1 + 

¢
, Φ (), and 

−
for, respectively, logit, probit, and

loglog models. Note that in the binary case  (·) also equals Pr ( = 1|1 = 1 2 = 2).

2.1 Effects of neglected heterogeneity on parameter estimation

By a simple application of the law of iterated expectations, it follows that,

 ( |1) = 2
[ (11 + 22)] =

Z
X2

 (11 + 22) 2
(2) 2, (2)

where X2 and 2
(2) denote, respectively, the sample space and the marginal distribution of

2. As, in general,  ( |1) 6=  (11), naive estimation based on  (11) will not produce

consistent estimators for 1. In fact, it seems that omission of 2 will bias 1 towards zero, as

shown by Yatchew and Griliches (1985) and Wooldridge (2002) for a particular binary probit

model, by Cramer (2007) for a peculiar binary logit model, and by Neuhaus and Jewell

(1993) for any generalized linear model based on a log concave density function (which is
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the case of the binary and fractional logit, probit and loglog models) with a single observed

covariate. Howewer, as we show next, retracing the arguments of Yatchew and Griliches

(1985), Wooldridge (2002) and Cramer (2007), it is not possible to prove formally that this

attenuation effect will be the consequence of neglected heterogeneity under any circumstances.

For simplicity, consider the following latent regression equation:

∗ = 11 + 22 + , (3)

where ∗ is not observed, 1 includes a unit variable, 2 contains a single explanatory variable

that is uncorrelated with 1 and  is a random disturbance that is uncorrelated with the

regressors. Instead of ∗, we observe the binary variable , which takes the value 1 if ∗  0

and the value 0 otherwise. Assume that  has mean zero and variance 2 and denote its

standardized distribution by . When 2 is observed, it follows that:

 ( |1 2) = Pr ( = 1|12)

= Pr (  −11 − 22|12)

= 1− Pr ( ≤ −11 − 22|1 2)

= 1−

µ
−11


− 2

2


¶
= 

µ
1

1

+ 2

2


¶
, (4)

where  (·) is the complementary function of  (·). When  has a symmetric distribution,

 (·) ≡  (·). As it is well known, the parameters 1 and 2 are not separately identified

from . Let 1 = 1.

Assume now that 2 is not observed and has mean zero and variance  2. Then, the

composite error ∗ = 22 +  is independent of 1 and has variance 2∗ = 22
2 + 2.

Denote the standardized distribution of ∗ by ∗. In this setting, it follows that:

 ( |1) = Pr ( = 1|1)

= Pr (∗  −11|1)

= 1− Pr (∗ ≤ −11|1)

= 1−∗
µ
−1 1

∗

¶
= ∗

µ
1

1
∗

¶
. (5)
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Let ∗1 = 1∗ . Clearly, we cannot evaluate the effects of omitting 2 over parameter

estimation unless we assume that  = ∗, i.e. the distribution of 2 must be such that its

inclusion in the error term does not change the distribution of the disturbance. If we make

this assumption, then  = ∗ and, comparing (4) and (5), we find that

∗1 =


∗
1. (6)

As ∗   (unless 2 = 0 or 
2 = 0), in general |∗1|  |1|, which implies that, under the

assumptions made, omission of an explanatory variable produces an attenuation bias in the

estimation of the observed covariates.

In this proof, the crucial assumption is that  = ∗. Actually, most of the papers cited

above made this assumption.3 Indeed, both Yatchew and Griliches (1985) and Wooldridge

(2002, 2005) assumed that both  and 2 are normally distributed, which implies that 
∗ has

also a normal distribution. On the other hand, in his proof of the existence of an attenuation

bias in the logit model, Cramer (2007) did not specify the distribution of 2 but assumed

that both  and ∗ had a logistic distribution. However, in practice, it is extremely unlikely

that  = ∗. Moreover, for fractional regression models, which cannot be written in latent

form, no similar proof seems to be feasible. Therefore, in the Monte Carlo simulation study

carried out in the next section, we investigate whether equation (6), which applies only to

very specific binary regression models, also holds approximately for cases where  6= ∗ and

for fractional regression models.

2.2 Effects of neglected heterogeneity on partial effects

For empirical analysis based on nonlinear models, the focus is not so much the analysis

of the magnitude of the regression coefficients, but consistent estimation of partial effects.

The two most usual forms of measuring partial effects in nonlinear models in applied work

are the average sample effect (), which is the mean of the partial effects calculated

independently for each individual in the sample, and the population partial effect (),

which is calculated for specific values of the covariates. As discussed in detail by Wooldridge

3The exception is Neuhaus and Jewell (1993). However, their geometric approach applies only to models

with a single observed covariate.
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(2002), in presence of neglected heterogeneity we are usually interested in calculating partial

effects averaged across the population distribution of the omitted variables.

Consider again the model described by (1) and assume that 2 is not observed. In this

setting, for the covariate 1, those partial effects are defined by

 =
1



X
=1

 (|1)

1
=
1



X
=1

2
[ (11 + 22)]

1
(7)

and, considering evaluation at a given point 1 = ̄1 (e.g. the mean of the observed regres-

sors), by:

 =
 ( |1 = ̄1)

1
=

2
[ (̄11 + 22)]

1
. (8)

As both effects depend on 2, the naive estimators

\ =
1



X
=1


³
1̂



1

´
1

(9)

and

\ =

³
̄1̂



1

´
1

, (10)

where ̂


1 denotes the naive estimator of 1, should be inconsistent, since ̂


1 is inconsistent

and  (·) is in general misspecified. However, when  = ∗ both \ and \ provide

consistent estimates for  and , respectively. Indeed, consider again the example

discussed in the previous section. Using (2) and (5), we know that for binary regression

models:

 ( |1) = 2
[ (11 + 22)] = ∗

µ
1

1
∗

¶
. (11)

Hence,

 =
2

[ (̄11 + 22)]

1
=

∗
³
̄1

1
∗

´
1

. (12)

Therefore, as when  = ∗,  = ∗ and ̂


1 converges to 
∗
1 = 1∗, it follows that under

this assumption \ is a consistent estimator for . A similar proof may be performed

for .

Wooldridge (2002), using similar arguments, was the first to demonstrate that in the

binary probit model with a normally distributed omitted variable the bias in the estimation

of 1 does not carry over to the estimation of the . Cramer (2007) showed that the same
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conclusion holds for logit models in the particular case where the logit shape of  ( |12)

of (1) is preserved in  ( |1) of (2).
4 This last author also shows by simulation that, for

logit models, even in cases where  ( |1) deviates significantly from the logit functional

form assumed for  ( |1 2), the  is relatively robust to neglected heterogeneity. In

section 3 we investigate whether this robustness of naive partial effects may be extended to

other models and more general settings.

2.3 Effects of neglected heterogeneity on predicted outcomes

In this paper we examine also whether naive predictions of  ( |1) or Pr ( |1), based

on the misspecified functional form  (11) evaluated at the inconsistent estimator ̂


1 , are

reliable. So far, the literature has been silent about this issue. However, outcome prediction,

besides being a relevant matter per se, is also the basis for the estimation of partial effects

in multi-part models where the first stage usually requires the estimation of a binary model.

Because 2 is not observed, the main interest is outcome prediction averaged across the

population distribution of the omitted variables, just like discussed above for partial effects.

From (11), it is clear that the same assumptions required above for consistent estimation of

partial effects are still needed: only if  = ∗ does 
³
̄1̂



1

´
consistently predicts  ( |1).

Therefore, in a probit model with normal distributed heterogeneity or in the very special logit

model considered by Cramer (2007) neglected heterogeneity is not a problem also for outcome

prediction. In our Monte Carlo study we focus on cases where  6= ∗.

2.4 Effects of neglected heterogeneity on Wald tests

Finally, as testing the significance of the impact of a particular covariate on the outcome

variable is one of the main aims of any empirical study, we next evaluate the effects of

neglected heterogeneity on significance tests. In particular, we examine the application of

the widely used Wald test to assess the individual significance of the parameters associated

to the observed regressors in presence of unobserved heterogeneity.

When there are no omitted variables, the Wald statistic for assessing 0 : 1 = 0 is

4These findings are supported by a former work by Stoker (1986), who showed that misspecification of

the functional form in single index models does not affect the estimation of average behavioral derivatives.
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given by  = ̂1

Ár
̂
³
̂1

´
, where ̂

³
̂1

´
denotes an estimate of the variance of ̂1,

and converges to a standard normal distribution. For binary data, considering again model

(1), it follows that

̂
³
̂1

´
=

⎡⎢⎣ 1


X
=1


³
1̂1 + 2̂2

´2



³
1̂1 + 2̂2

´ h
1−

³
1̂1 + 2̂2

´i
⎤⎥⎦
−1

(13)

where  () =  ()  and  is the relevant element of 
0
. Hence,

 =

vuuuut 1



X
=1

̂
2

1
³
1̂1 + 2̂2

´2



³
1̂1 + 2̂2

´h
1−

³
1̂1 + 2̂2

´i . (14)

When 2 is omitted, the naive significance test of no effect of 1 is given by

  =

vuuuut 1



X
=1

³
̂


1

´2

³
1̂



1

´2



³
1̂



1

´h
1−

³
1̂



1

´i , (15)

since we are assuming that 1 and 2 are independent.

Under the assumptions made previously, i.e. the distribution of the neglected heterogene-

ity is such that  = ∗, there is a case, 1 = 0, where neglected heterogeneity does not

originate any bias. Indeed, in such a case the existence of an attenuation bias implies that

both ̂1 and ̂


1 are consistent estimators of 1 and, therefore, the size of any significance

test should remain unaffected by unobserved heterogeneity; see also Lagakos and Schoenfeld

(1984), who discuss this issue in the context of score tests in proportional-hazards regression

models where the included variable for which the significance is tested is binary. Later on,

we will examine by simulation the consequences of neglected heterogeneity over the size of

Wald tests when  6= ∗.

Lagakos and Schoenfeld (1984) showed also that the power of a score significance test for

a binary included variable may be substantially reduced in the presence of omitted covariates.

In our framework, we may also suspect that neglected heterogeneity may cause some power

loss in the application of the Wald test. In fact, although no general power comparison

between  and  seems to be feasible, there is a special case, the logit model, where such

comparison is straightforward, provided that we assume again that  = ∗. Indeed, for this
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model it is well known that  () =  () [1− ()], which implies that statistics (14) and

(15) may be simplified to

 =

vuut 1



X
=1

̂
2

1
³
1̂1 + 2̂2

´
 =

q
̂1

vuuut 1



X
=1


³
1̂1 + 2̂2

´
1

 (16)

and

  =

vuut 1



X
=1

³
̂


1

´2

³
1̂



1

´
 =

q
̂


1

vuuut 1



X
=1


³
1̂



1

´
1

, (17)

respectively, since  () 1 = 1 (). Thus, as both 
³
1̂1 + 2̂2

´.
1 and

 
³
1̂



1

´.
1 converge to the same quantity, 2

[ (11 + 22)]/ 1, see (12),

and ̂1 and ̂


1converge to 1 and ∗1, respectively, it follows from (6), (16) and (17) that

 


=

vuut ̂


1

̂1
→
r



∗
. (18)

Hence, assuming  = ∗, in a logit model the naive Wald test  is depressed relative to

by the square root of the attenuation factor that relates ̂


1 to ̂1.
5 This implies that, in fact,

in small samples unobserved heterogeneity may reduce the power of Wald tests. However,

from (18) it is also evident that under neglected heterogeneity the Wald test retains its

consistency.

In the Monte Carlo study that follows we investigate the size and power properties of

naive Wald statistics under general patterns of heterogeneity.

3 A Monte Carlo simulation study

In this section we present an extensive Monte Carlo simulation study for binary and fractional

logit, probit, and loglog models. All experiments bear on a simple two-variable equation,

 ( |1 2) =  (0 + 11 + 22) , (19)

where 0 = 0, 2 ranges from 0 to 4 in steps of 0.25 and 1 takes different values across the

different experiments. Our aim is to analyze the effects of omitting 2 on the estimation

5Note that this implies that the same relationship holds for the ratio of the standard errors of ̂


1 and ̂1.
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of 1 and related statistics. Note that 2 = 0 corresponds to the case where there is no

neglected heterogeneity and that larger values of 2 imply a larger amount of heterogeneity.

In all experiments, 1 is generated from a mixtures of normal distributions, where the

variate is  (−1 1) with probability 07 and  (2333 1) with probability 03, and 2 is

generated from the N (0 1), 5,  (1) and 2(1) distributions. Both variables are

scaled to have mean zero and variance one. The choice of an asymmetric distribution for 1

was made to avoid the reflection property about the origin that would affect the sampling

distribution of the estimators of 1; see Chesher and Peters (1994) and Chesher (1995) for a

discussion on the design of Monte Carlo simulation studies.

We generate  as a Bernoulli (binary case) or a beta (fractional case) variate with mean

given by the logit, probit, or loglog functional form and the shape parameter of the beta

distribution fixed at 1.6 In the former case, the parameters of interest are estimated by

maximum likelihood (ML), while in the latter we use the quasi-maximum likelihood (QML)

method, which are the standard ways of dealing with each type of data. In both cases, we

estimate full and curtailed versions of the models, i.e. models with and without 2. The full

version of the model yields consistent estimators for all the quantities of interest and, hence,

it will be used as a reference to evaluate the consequences of neglected heterogeneity.

All experiments were repeated 5000 times using the statistical package  and, given the

substantial amount of results produced in each experiment, we summarized them in figures.

In most cases (the only exceptions are the experiments regarding the Wald tests), given the

similarity of the results obtained, only those relative to binary models are reported.7 Apart

from the last experiment, where several samples sizes were considered, in all the remaining

cases the sample size is  = 200.

3.1 Attenuation bias in the parameter estimates

Under some special conditions, we proved above that an attenuation bias is imposed by

neglected heterogeneity over naive estimation of the parameters of the observed regressors.

As in this Monte Carlo study we consider only one observed covariate, according to the

6See inter alia Ramalho, Ramalho and Murteira (2009) for the mean-dispersion parametrization of the

beta distribution used in the generation of data.
7Full results are available from the authors upon request.
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findings of Neuhaus and Jewell (1993), we know for sure that an attenuation bias will be

present in all the models simulated. However, this bias may differ substantially from that

predicted by (6), since the assumptions made in its derivation are not met in 11 out of the

12 models simulated. Therefore, the main aim of our first set of experiments is to examine

whether equation (6) measures appropriately the extent of the bias caused by neglected

heterogeneity when  6= ∗. Figure 1 displays the values of the ratio ̂
11 for two different

values of 1 (-1 and 1) for each one of the 17 values of 2 simulated. In this figure we display

also (solid line) the value of the ratio ∗11, obtained from (6).

Figure 1 about here

Clearly, in all cases, ̂
1 is depressed towards zero, its absolute bias increasing as 2 (i.e.

the extent of heterogeneity) increases. Equation (6) gives often a very good approximation

to the attenuation bias (e.g. loglog and, obviously, probit models with normal-distributed

heterogeneity and logit model with 5-distributed heterogeneity) but in some cases there

are some important deviations. For example, when 2 has an exponential or chi-square

distribution ̂
1 is not, in general, as biased as predicted by (6) in the logit and probit

models, while for the loglog model the attenuation effect is amplified relative to (6). Note

also that in some cases the actual bias depends on the value of 1, while (6) is not a function

of that parameter. Therefore, as the extent of that bias is not perfectly approximated by

(6) in many cases, next we investigate the consequences of this fact over the calculation of

marginal effects and prediction of outcomes when  6= ∗.

3.2 Partial effects

Using the same setup of the previous section, in Figure 2 we display the mean across the

replications of the  estimated for the case 1 = 1. For the curtailed model we estimate

the  as in (9), while for the full model we use (7), where the expectation  ( |1) is

calculated by integration as in (2) with 2
(2) replaced by the density used to generate 2.

This figure shows clearly that in the logit case ML estimation based on the full (MLf) or the

curtailed (MLc) equations leads to very similar results (the largest bias is 3.6% for 2 = 275

in the chi-square case). Thus, as already noted by Cramer (2007), logit analysis of the 

is very robust to neglected heterogeneity.
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Figure 2 about here

In the probit model, considering a symmetrical-distributed omitted variable, the s

estimated for each equation are also almost identical, while for asymmetric 2 the deviations

between them are no longer insignificant, achieving a maximum of 7.7% (2 = 225, chi-

square case). With regard to the loglog model, the consequences of neglected heterogeneity

are somewhat similar to those found for the probit model: while for symmetric 2 the bias is

minimal (always inferior to 3%), for asymmetric unobserved heterogeneity the  is often

somewhat overestimated (maximum bias: 8.3% for 2 = 175 in the chi-square case).

Finally, note that the bias increases with the level of unobserved heterogeneity but only

until a certain point, which may be explained by the little importance of 1 in the variation

of  ( |1) when 2 is very large (the marginal effect of 1 tends to zero as 2 increases).

For example, when 2 = 4 the weight of the variance of the term 22 in the total variance

of the index (0 + 11 + 22) is 94%.

In which concerns the s, we calculated them as in (10), for the curtailed equation,

and (8), for the full model. In both cases, the  was evaluated at the mean and the

{0 002 004  098 1} quantiles of 1. Figure 3 shows the results obtained for 1 = 1 and

2 = 05, 1, 2 and 4 when2 is generated according to a normal and a chi-square distribution.

The dotted line indicates the mean of 1. For cases where 2 is normal-distributed, both the

logit and the probit estimators are clearly unaffected by neglected heterogeneity. However,

in the chi-square case, while for small amounts of heterogeneity (2 = 05) the bias in the

estimation of s is not that relevant (maximum bias of 2.0% for the logit and 6.5% for the

probit), for large amounts of heterogeneity (2 = 4) the bias may achieve a maximum value

of 28.9% (logit model) or 50.0% (probit model), even when the analysis is restricted to the

0.05-0.95 quantile range. For the loglog model, the bias is in general substantial, achieving a

maximum of 17.4% for normal-distributed heterogeneity and 82.6% for the chi-square case,

in both cases for 2 = 2 and again restricting the analysis to the 0.05-0.95 quantile range.

Figure 3 about here

When we consider the evaluation of the  at the mean of 1, the bias of the various

estimators is much smaller. For example, for the symmetric 2 case, the maximum bias in

13



the loglog model is now 4.2%. Nevertheless, for the chi-square case the bias may still be

substantial: the maximum bias for the logit, probit and loglog models is, respectively, 9.8%,

21.4% and 25.1%.

Overall, the results obtained in this section allows us to achieve three main conclusions.

First, the logit model produces more robust estimates of partial effects than probit or loglog

models. Second, when our interest is the calculation of average partial effects, which is usually

the case in empirical work (in most cases, practitioners report only average partial effects), it

is preferable to compute s instead of s evaluated at the mean of the regressors, since

the former appears to be clearly much more robust to neglected heterogeneity.8 Finally, under

neglected heterogeneity, computation of s for an individual with specific characteristics

may be very unreliable.

3.3 Predicted outcomes

Figure 4 illustrates the effects of the omission of 2 in the prediction of  ( |1) through

a simulation design similar to that used for the s. For the full model the prediction is

based on (19), while for the curtailed equation we used the naive estimator  (̂
0 + ̂

11).

Clearly, unobserved heterogeneity is relatively harmless in logit models: the maximum

bias in the 0.05-0.95 quantile range is 5.0% (2 = 2). The probit model is also robust

to the omission of variables when the distribution of 2 is symmetric, but displays more

important distortions in cases where 2 is asymmetric (maximum bias: 15.8% for 2 = 2).

Finally, the loglog model is relatively robust to unobserved heterogeneity when 2 has a

normal distribution but displays some bias in the other case, achieving a maximum bias of

23.7% (2 = 2). Hence, for outcome prediction, unobserved heterogeneity resulting from the

omission of independent explanatory variables does not seem to be a relevant issue only in

logit models. Nevertheless, note that our results suggest that when 6= ∗, the consequences

of using a misspecified model∗ are muchmore serious for calculation of s (which require

the computation of derivatives of ∗) than for outcome prediction.

8A similar finding was reported by Ramalho, Ramalho and Murteira (2009), who found that computation

of s is relatively robust to functional form misspecification in the framework of fractional regression

models, while estimation of s evaluated at the mean of the covariates may be severely biased.
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Figure 4 about here

3.4 Size and power of Wald tests for the significance of observed

regressors

In our final set of experiments we investigate the size and power of naive (Q)ML-based Wald

tests for assessing the statistical significance of observed regressors, i.e. we examine their

ability for testing the null hypothesis 0 : 1 = 0 both when it is true and false. Figures

5-6 display the percentage of rejections of 0 for a nominal level of 5% when this hypothesis

is indeed true (the horizontal lines represent the limits of a 95% confidence interval for the

nominal size). This percentage is very similar for the curtailed and full models in the binary

case, being always very near to the nominal level of 5%. For fractional data, where we use

robust estimation of standard errors since we are performing QML estimation, the empirical

size of the Wald test based on the naive estimator is even closer to the nominal size than

that based on the full equation. Therefore, these results show clearly that the size properties

of the Wald test for 1 = 0 are very robust to the presence of neglected heterogeneity.

Figure 5 about here

Figure 6 about here

With regard to the power properties of theWald test, Figures 7-8 illustrate a very different

scenario. In this case, we observe an important decay on the percentage of rejections of the

false 0 as the level of heterogeneity increases. This decay seems to be more substantial, in

relative terms, in the probit and loglog models, in cases where 1 is larger, and with fractional

data.

Figure 7 about here

Figure 8 about here

In order to check whether equation (18), which was derived for binary logit models under

the assumption  = ∗, provides also a good approximation for other models, in Figures

9-10 we represent three ratios: that given by (18) (solid line) and two others that are

given by the mean across replications of that ratio for the two values of 1 simulated.
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Figure 9 about here

Figure 10 about here

For binary models, see Figure 9, equation (18) seems to be a reasonable approximation.

In fact, comparing Figures 1 and 9, a very similar pattern was obtained. In contrast, for

fractional regression models the attenuation bias in the estimation of the Wald statistic is

much larger, which explains why the loss of power detected in Figure 8 is more substantial for

these models. Clearly, equation (18) is not a good approximation when robust sandwich-type

variance estimators are used.

A further investigation on the power of naive Wald tests was conducted. Only for the

chi-square distribution and for the value of 1 = 015, which led to the poorest power

performance of all the cases illustrated in the previous figures, we run experiments for  =

{200 500 1000 2500 5000}. Figure 11 shows that in all cases the power of the test increases
substantially as  increases, which confirms that the Wald test is still consistent in presence

of omitted variables, as discussed in Section 2. Given these results, it seems that we can trust

the outcome of a naive Wald test that reveals that a given explanatory variable is significant.

The opposite conclusion may be simply the consequence of the omission of relevant variables,

unless the sample size is large and/or the amount of heterogeneity is small.

Figure 11 about here

4 Conclusion

It is well known that the omission of orthogonal relevant variables in nonlinear models causes

inconsistency in the estimation of the parameters of interest associated with the included

regressors. However, some recent work on the probit and logit models by Wooldridge (2002,

2005) and Cramer (2003, 2007), respectively, shows that, in some cases, the bias does not

carry over to the marginal effect of those regressors on the outcome and that, hence, neglected

heterogeneity may not be really an issue in, at least, binary logit and probit models. In this

paper, we demonstrated analytically that, under similar assumptions to those imposed by

those authors, their results can be extended to any other model for binary data. Moreover,

we showed that, while other features like outcome prediction are also robust to neglected
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heterogeneity, Wald tests for the individual significance of an included covariate are biased

towards the non-rejection of the null hypothesis of non-significance.

Given that the theoretical analysis undertaken in this paper requires strong assumptions,

we performed also an extensive Monte Carlo simulation study considering more general forms

of heterogeneity. We found that, in general, unobserved heterogeneity independent of the

included covariates: (i) produces an attenuation bias in the estimation of regression coeffi-

cients; (ii) is relatively innocuous for logit estimation of the , while in the probit and

loglog cases there may be important biases in its estimation; (iii) has much more destructive

effects over the estimation of s than s; (iv) only for logit models does not affect

substantially the prediction of outcomes; and (v) is innocuous for the size and the consistency

of Wald tests for the significance of the observed regressors but, in small samples, reduces

their power substantially.

Overall, our results imply that unobserved heterogeneity is not a relevant problem in

any of the nonlinear models considered in this paper if the aim of the analysis is simply

obtaining the direction of the partial effects of the covariates. In addition, in the logit

case, neglected heterogeneity is also relatively innocuous for outcome prediction and the

calculation ofs.9 These are, we think, very comforting and useful results for practitioners

since the usual ways of dealing with unobserved heterogeneity are not entirely satisfactory,

requiring strong distributional assumptions for the unobservables which often give rise to

a model that does not describe properly the data, or are too complex to be widely used

by applied economists, often requiring the utilization of nonparametric techniques which

frequently cannot be computed without substantial programming experience.

Another important implication of our results is that it is extremely important to test

the general specification of the functional form adopted for the model.10 Indeed, if the test

indicates that the functional form of our binary regression model is correctly specified (which

means that = ∗), then we know that calculation of partial effects and outcome prediction

9Note that this unique property of robustness of the logit model is not totally unexpected. In fact, this

model is also robust to other problems, like endogenous stratification and nonignorable missing data, that,

in general, cause the inconsistency of the estimators based on other models; see, respectively, Hsieh, Manski

and McFadden (1985) and Ramalho and Smith (2003).
10For a comparison of various functional form tests for binary and fractional regression models see Ramalho,

Ramalho and Murteira (2009) and Ramalho and Ramalho (2009).

17



is not affected by the presence of neglected heterogeneity. In such a case, the only relevant

problem that remains is the poor power of the Wald test in small samples. However, if all

variables are statistically significant or the sample is very large, then even that is not really

a problem.
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Figure 1: Attenuation bias of parameter estimates in binary regression models
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Figure 2: Average sample effects for binary regression models (αα1 == 1)
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Figure 3: Population partial effects for binary regression models (αα1 == 1)
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Figure 4: Predicted outcomes for binary regression models (αα1 == 1)
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Figure 5: Empirical size for binary regression models (N = 200)
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Figure 6: Empirical size for fractional regression models (N = 200)
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Figure 7: Empirical power for binary regression models (N = 200)
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Figure 8: Empirical power for fractional regression models (N = 200)
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Figure 9: Attenuation bias of Wald statistics in binary regression models
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Figure 10: Attenuation bias of Wald statistics in fractional regression models

Logit model

Probit model

Loglog model



0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα2

em
pi

ric
al

 p
ow

er

Logit

N = 200

N = 500

N = 1000

N = 2500

N = 5000

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα2

em
pi

ric
al

 p
ow

er

Probit

N = 200

N = 500

N = 1000

N = 2500

N = 5000

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα2

em
pi

ric
al

 p
ow

er

Loglog

N = 200

N = 500

N = 1000

N = 2500

N = 5000

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα2

em
pi

ric
al

 p
ow

er

Logit

N = 200

N = 500

N = 1000

N = 2500

N = 5000

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα2

em
pi

ric
al

 p
ow

er
Probit

N = 200

N = 500

N = 1000

N = 2500

N = 5000

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα2

em
pi

ric
al

 p
ow

er

Loglog

N = 200

N = 500

N = 1000

N = 2500

N = 5000

Figure 11: Empirical power − different sample sizes (chi−square−distributed heterogeneity; αα1 == 0.15)
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